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Abstract 

A systematic procedure for synthesizing all full-state 
feedback controllers for a hybrid system subject to 
a safety (state-invariance) specification has been pro- 
posed by Tomlin, Lygeros, and Sastry [6, 51. The in- 
teraction between the controller and a nondeterminis- 
tic hybrid plant is viewed as a two-person game. The 
controller wins if it keeps the state of the closed-loop 
system within a specified set of good states; its adver- 
sarial environment tries to force the system outside the 
good set. The synthesis procedure iteratively augments 
the set of states from which the environment wins via 
either one additional discrete step, or one additional 
continuous flow. 

The key difficulty in carrying out the synthesis proce- 
dure lies in the computations for continuous flows. One 
must essentially solve a series of differential games in 
which the environment is trying to drive the system 
into its target set at the same time as avoiding the tar- 
get set of the controller. In this paper, we study hybrid 
systems with lower bounds on the separation between 
occurrence times of consecutive discrete moves. These 
systems arise when modeling minimal delay times be- 
tween events, either in the controller, or in the environ- 
ment. For such systems, we provide techniques for solv- 
ing the differential games in reduced state spaces. The 
main idea is to discretize information about whether 
discrete moves are enabled or not. 

1 Introduction 

A systematic procedure for synthesizing all full-state 
feedback controllers for a hybrid system subject to 
a safety specification has been proposed by Tomlin, 
Lygeros, and Sastry [6, 51. A safety specification is a 
state-invariance property, and specifies a set of good 
states within which the closed-loop system must re- 
main. The interaction between the controller and a 
nondeterministic hybrid plant is viewed as a two-person 
zero-sum game. Each player moves by setting both dis- 
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crete and continuous control inputs. The controller 
wins if the state of the closed-loop system remains 
within the set of good states; the environment tries 
to force the system outside the good set. The synthesis 
procedure computes the set of states from which the 
enviroment wins, starting from the set of bad states, 
and iteratively adding the set of states from which it 
wins via either one additional discrete step, or one ad- 
ditional continuous f-low. 

The primary obstacle in executing the synthesis pro- 
cedure lies in the computation for continuous flows. 
While the necessary calculations can be performed 
manually in some cases [6,5], they quickly become com- 
plicated in even low-dimensional linear systems [2, 31. 
One approach to this problem is to solve the dynamic 
game using numerical computation for solving partial 
differential equations [7]. 

In this paper, we advocate a different approach. We 
present techniques to exploit the structure of the 
closed-loop system during the computational step for 
continuous flows. Our method applies to systems where 
there is a lower bound on the delay time between 
each player’s discrete moves. Such systems can model 
communication or computational delays that prevent 
a player from making distinct, discrete actions in quick 
succession. The placement of such delay constraints is 
often used to prevent the synthesis of Zeno controllers 
which satisfy the safety property only by virtue of en- 
forcing infinitely many events in finite time. Our tech- 
nique uses information about whether discrete events 
are enabled or not to decompose complicated dynamic 
games into a series of simpler dynamic games played 
over lower dimensions. 

2 Hybrid Automata 

Intuitively, the hybrid automaton models a game 
board. This modeling formalism merges the game fea- 
tures (explicitly-defined independent moves) of [l] into 
the hybrid automata model (input structure and hy- 
brid dynamics) found in [6, 41. 



A hybrid automaton is a tuple H = ((Q, X), (U, C,), 
(Mzts, MF”‘), (D, C,), (Mits, Medisc), (f, S)), where 

Q is the finite set of modes, 
X C R” is the set of continuous states, 
U C IR” is the domain of continuous control values, 

U = {u(.) E PC”lu(t) E U,Vt E R} is the class of 
control functions, 

C, is the finite domain of discrete control events, 
(CE = C, U {c} is th e set of discrete control moves, 
with the special e move being the silent move), 

McdiSC : Q x X -+ 2’: \ {} is the discrete controller 
feasible move function, 

Mits : Q x X + 2” \ {} is the continuous controller 
feasible move function, 

D c lRp is the domain of continuous disturbance val- 
ues, 23 = {d(.) E PCOId(t) E D,V’t E R} is the class 
of disturbance functions, 

C, is the finite set of discrete disturbance events, 
(C: = C, U (6) is the set of discrete disturbance 
moves), 

MpSc : Q x X + 2c: \ {} is the discrete disturbance 
feasible move function, 

Mzts : Q x X + 2O \ {} is the continuous disturbance 
feasible move function, 

f : Q x X x U x D + R” is the continuous 
transition function that models the time-invariant 
continuous dynamics, which depend on the mode. 
It is required that the function f is such that, 
for every control function u E U, for every dis- 
turbance function d E 23, and for every x0 E 
X, there is a unique solution of the differential 
equation k(t) = f(q, z(t), u(t), d(t)) with initial 
value 2(O) = x0, which we denote by x(t) = 
tin(ul[o,t), dl[o,tpo, t), Vt 2 0. 

6 : Q x X x C; x C: + 2Qxx \ {} is the dis- 
crete transition function that models the discrete 
dynamics. We require that for all (q, x) E Q x X, 
6(4> x, cr 6) = {(CL xl). 

Both the controller and the environment make their 
moves simultaneously. The discrete transition function 
6 defines the transitions for the joint discrete moves 
of the controller and the disturbance. At the config- 
uration (q,z), the controller chooses a pair (a,,~) E 
Mdisc(q,x) x Mtts(q,z). The environment does like- 
wiie, choosing a pair (oe, d) E MF”“(q, x) x Mtts(q, x). 
If either of the players chooses a non-silent discrete 
movel, then a non-trivial discrete jump takes place, 
with label (oc,ce). The discrete transition function 
6 determines the effect on the system. The resultant 

‘Different discrete move choices of the players can be modeled 
as follows. If A4cdiaC(q,z) = {c}, then there is no non-trivial 
discrete move the controller can take; it can only let time pass. 
If kpC(q, z) = { ccc, E}, then it is possible either to let time pass, 
or to take the discrete move cC. If M$isc(q,z) = {uC}, then it is 
possible to make only the discrete move labeled cc, but it is not 
possible to let time pass (i.e., the move is forced to occur). The 
use of M$sc is similar. 

configuration is any configuration in 6(q, z, (T,, a,). As 
long as both players choose E as their discrete move, 
then time may progress and a continuous evolution 
takes place. In this case, the discrete mode remains 
fixed2, and the continuous variables evolve according 
to the continuous dynamics specified by the function 
f under the continuous control u chosen by the con- 
troller and the continuous disturbance d chosen by the 
environment. We denote by Wait the set of configura- 
tions in which both players may choose not to play 
a discrete move, but instead wait for time to pass: 
Wait = {(q, z) 1 e E M~sc(q,x) and E E M,di”“(q,z)}. 
A trajectory of the hybrid automaton is a (finite or in- 
finite) sequence of discrete jumps and continuous evo- 
lutions. One may think of the interaction between the 
players as a continuous game with occasional discrete 
interruptions where a discrete game takes place. 

A safety property asserts that nothing bad happens 
along trajectories. It can be characterized by the set 
Good c Q x X of good configurations that do not vi- 
olate the property. The hybrid automaton with initial 
configurations (Q x X)0 satisfies the safety property 
Good if all its trajectories that start in (Q x X)0 re- 
main within Good. 

3 Synthesis of maximal controllers 

We review the synthesis methodology introduced in [6]. 
The design of a controller proceeds in two steps. In the 
first part of the procedure, the maximal safe set W 
is computed. By construction, from any configuration 
(q,x) E W, the controller has a strategy to keep the 
system forever in W. In the second part of the proce- 
dure, the control strategy is explicitly extracted from 
W. 

A controller watches the entire state of the system at 
all times, and decides whether to (1) take discrete con- 
trol actions that may cause an instantaneous change in 
the configuration, or to (2) let time pass under a con- 
tinuous input u. A feedback memory-less controller for 
a hybrid automaton is a pair C = (Tdisc, Tcts), where 
Tdisc : Q x X -+ 2c: \ {} and Tcts : Q x X -+ 2” \ {} 
model the values allowed by the controller. The con- 
troller can only offer values permitted by the feasible 
move functions, and hence, for all (q,x) E Q x X, 
we require Tdisc(q, z) E MFSc(q, z) and TCts(q, x) E 
M,CtS(q,z). The coupling of the hybrid automaton H 
with the controller C = (TCtS,Tdisc) is the closed-loop 
hybrid automaton Hc = ((Q, X), (U, C,), (TCtS, Tdisc), 
(D, C,), (Mzt8, Mu”“), (f,@), obtained from H by re- 
placing the discrete controller move function with Tdisc 
and the continuous controller move function with TCts. 

*The requirement that for all (q,z) E Q x X, 6(q, z,E,~) = 
{(q, x)} means that if both players agree not to make a non-trivial 
discrete move, there is no discrete change in configuration. 
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A configuration (q, x) is safe for the automaton H and 
safety specification Good if there exists a controller such 
that the closed-loop system with initial configuration 
(q,x) satisfies the specification. A set W of configu- 
rations is a safe set for the automaton H and safety 
specification Good if W c Good and every element of 
W is safe for H and Good. 

3.1 Maximal Safe Set computation 
The procedure to synthesize the maximal controller 
first computes the maximal controllable safe set [4]. 
This maximal set is obtained by first overapproxi- 
mating it with all the safe configurations. Then one 
calculates all configurations from which the environ- 
ment can drive the system into an unsafe configura- 
tion via either one discrete jump, or one continuous 
flow. These are the configurations from which the en- 
vironment can win within one “step”, and should be 
avoided by the controller. One iterates this computa- 
tion, finding successively the configurations from which 
the environment can win within i steps. If the pro- 
cedure terminates, we have determined the maximal 
controllable safe set. We first define the auxiliary pre- 
decessor operators Pre,, PreC, and Unav, that are used 
to capture the winning configurations for the environ- 
ment3. The discrete uncontrollable predecessors opera- 
tor Pre, : 2(Qxx) + 2(Qxx) is defined as follows: 

Pre,(K) = {(q,x) E Q x X : 
vf7, E Mpyq,x).3a, E Mp=(q,x). 
(~.c,~e) # (%E> A J(q,x,ac,ae) $2 J-q. 

The escaping configurations [8, 41 are characterized by 
the discrete controllable predecessors operator Pre, : 
2(Qxx) -+ 2(Qxx) defined as follows: 

Pre,(K) = {(q, x) E Q x X : 
3[T, E Mp=(q,x).v’~ E M~~yq,x). 
(go 0-e) # (5 6) A J(4, x, ~c,~e) 5 q. 

The configurations that the environment can force into 
a set in one continuous step are characterized by the 
continuous uncontrollable predecessor operator Unav : 
2cQx x) x 2(Qxx) -+ 2(Qxx), defined below. The oper- 
ator takes two arguments. The first is the set of con- 
figurations the environment is trying to reach, and the 
second is a set it must avoid. 

Unav(B, E) = {(q, 2) E Q x X : 
Vu E 2.4 3t > 0 3d E 2) such that 

for the trajectory z(t) = tiq(u, d, 53, t) we have 
VT E [0, t) (q, z(r)) E Wait fl B A (q, x(l)) E B}. 

Figure 1 shows the fixed-point computation to ob- 
tain the maximal safe set. The procedure suc- 
cessively prunes away configurations that are found 
to be losing upon one additional discrete step 
(Pre,(Wi)), or a continuous step to a losing configura- 

3The operators Preee, Pree, and Unau are dependent on the 
underlying automaton H. 

W” := Good 
i := -1 
repeat { 

i:=i+l 
W’ := Wi \ Pre,(Wi) 
Wi+l := W’ \ Unav(Pre,(Wi) Uwi, Pre,(Wi)) 

} until (Wi+l = W’) 
Safe := Wi 

Figure 1: Computation of Maximal Safe Set [6]. 

7 

tion ( Unav(Pre,(Wi) U W*, PreC(Wi)). It is not guar- 
anteed to stop within a finite number of steps, 

3.2 Controller extraction 
Extracting the maximal control strategy from the max- 
imal safe set W amounts to determining for every con- 
figuration in W, which control choices will keep the 
system in W. The available control choices either (1) 
force a discrete control action, or (2) allow time to pass. 
In case (l), the value of u is irrelevant, since a discrete 
jump will occur. In case (2), we must choose the input 
control vector u so that, in the event that the environ- 
ment also lets time pass, the ensuing continuous flow 
remains in W. The control strategy (Tdisc,7’cts) de- 
rived from W is defined on W by the following three 
rules: 

1. crs E Tdisc(q,x), if LTO E M,d”““(q,x)\{~} and for 
all cri E M~sc(q,x), 6(q,x,m,al) 2 W. 

2. E E Tdisc(q, z), if E E M$““(q, x) and 
l for all cri E M~sc(q, z), 6(q, x, e, ~1) E W, and 
l if E E M~isc(q,x), then there must exist a u E 

M$“(q,x) such that for all d E Mzt”(q, x), the 
vector f (q, x, u, d) is in the inward tangent space 
of W at (q,x); 

3. TCts(q,x) = A4,“t”(q,x), if e $! Tdisc(q,x), and 
otherwise for all u E U, we have u E TCts(q,x) 
if u E Mtts(q,x) and for all disturbances d E 
IM,“~“(~, s), the vector f (q, x, u, d) is in the inward 
tangent space of W at (q, x). 

4 Controller synthesis with a lower bound on 
event separation 

Many hybrid control systems involve a delay of at 
least A time units between pairs of consecutive dis- 
crete events. For example, certain sampling actions 
may require a minimal set-up time, or there may be a 
minimal delay between successive control applications. 
Lower bounds on the time between discrete events may 
also be added to ensure nonzenoness. Lower bounds 
on event separations can be enforced by introducing a 
timer t, (a timer is a continuous variable with rate of 
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increment t, = 1). Thus the original continuous state 
space is extended from X to X x R. Discrete events 
are enabled when t, > 0 and every jump resets the 
timer t, to -A, so that no discrete event is allowed 
in the interval -A < t, < 0. We could apply the 
synthesis procedure of Fig. 1 to the hybrid system aug- 
mented with variable t,. However, our previous experi- 
ence with a heating system shows that the addition of a 
variable can complicate reasoning about the dynamics 
of the system substantially [2, 31. It would be con- 
venient to apply the synthesis procedure to the hybrid 
system without variable t,. In this section we develop a 
revised synthesis procedure that operates over the orig- 
inal co@inuous state space X, instead of the extended 
space X = (X, tc). 

The intuitive idea is that since there is only one timer 
t,, information about its value can be discretized into 
the two parts: t, = -A and t, 2 0. The continuous 
computations over the extended (n + 1)-dimensional 
state space X can be replaced with time-bounded com- 
putations over the reduced n-dimensional space X. 
During the main loop of the synthesis procedure, we 
need only to store two kinds of n-dimensional sets - 
those representing states for which discrete events are 
enabled w.r.t. the timer, and those representing states 
immediately after a jump. In either of these two types 
of sets, it does not matter what the specific timer value 
is, because: (1) if t, 2 0, then the specific value of t, 
does not matter, and it suffices to know that a dis- 
crete jump is enabled; (2) immediately after a jump, 
the timer has value -A and need not be stored. For 
states at which -A < t, < 0, we need to know the 
value of t,, but since t, after a jump is always reset to 
-A, the value of t, can be determined by knowing the 
integration time. Thus we can move between the two 
separated parts for t, = -A and t, 2 0 by integrating 
between them for a fixed time A. The proofs of the 
Lemmas contained in this Section can be found in [3]. 

4.1 Extension of hybrid automaton with one 
timer 
Let Z = ((Q, z>, (U, Cc), (h;lccts, of”‘), CD, &I, 
( azts, h;ledi”“), (I, 8)), be the hybrid automaton ob- 
tained extending the hybrid automation H with one 
timer t,: 

ji=XxR, 

h;lcdi”“(q, (2, tc)) = {El 
-A<t,<O 

M~SC(q,x) t, 2 0 ’ 

&yq, (2, k)) = M,‘y7, x) vtc 

tidiSC(q, (5, tc)) = 
i 

jE) 
-A<t,<O 

e M~SC(q,x) t, 2 0 ’ 

Mp(q, (5, k)) = M,‘yq, x) vtc 
f : Q x X x U x D -+ lR*+’ are such that at each 

mode the same flows as in f apply, together with 
the flow i, = 1, i.e. J = (f, l), 

i : Q x 2 x Cz x C: + 2Qxz \ {} is defined as 

(a> @q,(x,tc),ac7ae) = {(q,(x,t4>) , if -A 5 
t, < 0 or t, > 0 A (Ok, = (c,E) and 
(b) &q, (2, tc),gc, re) = b(q,x,c,, a,> x {-A} , if 
k 2 0 A (oc,oe) # (c,E). 

4.2 Timer-reduced sets 
The basis of our simplified view of the calculations for 
continuous flows is that the value of the timer is irrele- 
vant once it has exceeded 0. For instance, when t, 2 0, 
it suffices to know the value of X in order to determine 
the future evolution of the system: the timer value is 
not relevant, since the lower bound on event separa- 
tions has passed. In order to capture this notion we 
introduce the following: 

Definition 1 A set G 2 2 is timer-reduced if the set G 
restricted to the dom_in where t, > 0 is independent4 of 
t,. A set W C Q xX of configurations $ timer-reduced 
if for every mode q E Q, the set (5 E X 1 (q,P) E W} 
is timer-reduced. 

Throughout, we use the operators %&, %,, and I%& 
decorated with a tilde to indicate that they operate 
over the extended automaton H and the operators 
Precr Pre,, and Unav which operate over the automa- 
ton H. The following lemmas can be proved: 

Lemma 1 For any set W, the sets KC(W) and 
K,(W) are timer-reduced. Moreover, if B and E are 

timer-reduced sets, then the set i%&(B, E) is timer- 
reduced. a 

Lemma 2 If the specification Good is timer-reduced, 
then the set Safe and also every set Wi computed in 
the synthesis procedure of Figure 1 is timer-reduced. Q 

4.3 Projections of maximal safe set computa- 
tions 
In the previous Section, we stated that when t, 2 0 the 
operators KC, %,, and %& preserve independence 
from t,. For easier algebra, it is convenient to introduc_e 
the following projections operators, where W & Q x X 
is a set of_configurations: n-A : Q x X --+ Q x X, and 
~0 : Q x X + Q x X, are such that 

T-A(w) = {(q,x) E Q x Xl(q,x, -A) E w} 

no(W) = {(q,x) E Q x Xl(q,x,O) E W} 
If W is timer-reduced, then 

and the set TO(W) c IR” captures exactly the part of 
w c lEtn+l for which t, 2 0. We will show that the 
computation of the safe set can be carried out using 
only the projections of the sets W for t, = -A and 

4A set G s Il.= 3 l..kk;. for domains Yj is independent of the 
variable y; having domain Yi if the following holds: Vi+ yj E 
Yj. V Y’,Y” E Yi. (Yl,...,Yi-l,Y’,Yi+l,...,~k) E G iff 
(Yl, . . , yi-1, y”,yi+l,. . . , yk) E G. In other words, member- 
ship of a point y in G can be determined independently of the 
value Of yi. 



t, > 0. We study first the discrete controllable and 
uncontrollable predecessor operators. 

Lemma 3 
- 

(1) r-A(P?%(w)) = 8 - 
(2) n-A(h%(W)) = 0 - 
(3) ~O(Pre,(W))=Pre,(~-A(W)) 

(4) rO(Ge(w) =Pre,(r-A(w)) 0 

The continuous uncontrollable predecessors we are in- 
terested in consist of 

// Good c Q x X is independent of t, 
W,o := Good; WfA := Good 
i := -1 
repeat { 

i:=i+l 
w’ := w,i \ Pree(w.fA) 
wgi+L+ w’\Unuv(fb& (w-i,) u @, Prec(w~A)) 

ia+’ := WjA \ &&+A 01 (Good, w,“f’) 
]?kI (Wi+’ = Wi and b:L1 = WjA) 
Sufe() := w:; Safe-* := W?“, 

1. the configurations that start from t, > 0 and un- 
avoidably lose at t, 2 0, 

2. the configurations that start from t, = -A and 
(a) unavoidably lose at -A < t, < 0, 
(b) unavoidably lose at t, = 0 
(c) unavoidably lose at t, > 0. 

We show how the set can be computed using projec- 
tions onto the t, 2 0 subspace and the t, = -A sub- 
space. The configurations defined by case 1 are handled 
by the following result. 

h-w 

Figure 2: Computation of Maximal Safe Set with Projec- 
tion of 1 Timer. 

Lemma 4 ‘lro(Unav(Pre,(W) UW,F&(W)))= 

huv(Pree(r-A(W)) u rO(~),f%%(~-A(W))) 4 

The configurations defined by case 2 are handled by 
the following lemma. 

Pre,(Wi) U Good. This reduction in target set yields 
the same set of continuous uncontrollable predecessors 
Unuv( Pre, ( Wi) U Good, Pre, (W”)) = Unuv( Pre, ( Wi) U 
wi, Pre,( Wi)) b ecause every trajectory that arrives at 
a state in Pre,(Wi) U wi is also winning for the envi- 
ronment in the game with target Pre, (Wi) U Good: the 
game either continues to a state from which there is 
a “bad” jump (out of Pre,(Wi) which increases mon- 
notonically with i), or to a state which violates the 
specification (i.e., a state in Good). 

Lemma 5 If W is timer-reduced, then 
-N 

r-A( Unau(Prf&(W) u m, K,(w))) = 

{(q,~)E&XX~v2LEU~~E(O,~]3d~~svchthat 

for the trajectory z(t) = tiq(u, d, P, t) we have 

(q, z(f), -A + E) E w A t < A v 

(q,z(A)) E ;rro(6&(W) UFU 
-VW 

Lemmas 4 and 5, together with the above observa- 
tion, motivate the definition of Unav(-A,s] : 2(Qxx) X 

2(Qxx) + 2(Qxx) as 

{(q,h)EQxX)VuEZEItE(O,A]3dCD 
such that for the trajectory x(t) = & (u, d, 2, t) either 
Z<A A (q,z(t))EBG or 
t = A A (q,z(A)) E B}. 

Unuv(Pre,(W) u v, z,-(W)))) A f = A} a 

Condition (q, z(E), -A + fl E w on the right hand 
side of the previous equation collects the configura- 
tions defined by case 2.a, while condition (q,z(A)) E 

The intention is that the argument & will represent 
the states that violate the specification for some t, < 0, 
and the argument B will represent the states for which 
the game is won by the environment for t, > 0. 

-- 
7To(E$.(W) UWU Unaw(Pre,(W) UW,F&(W))) col- 
lects those defined by case 2.b and case 2.~. In partic- - 
ular the term Pre, (W) U w in TO (.) is related to case -- 
2.b, and the term unav(Pre,(W)U~,~=(W)) to case 
2.c. 

From Lemmas 4 and 5, we almost obtain a means to 
compute the continuous uncontrollable predecessors us- 
ing only sets in n-dimensional space. The remaining 
obstacle is the use of W c )7 in the condition for case 
2.a above. It appears as if one needs to know the record 
the states of W for which -A < t, < 0. 

Figure 2 shows the fixed-point computation with timer 
projection to obtain the maximal safe set. The pro- 
cedure computes the projections safemA C Q x X, for 
t, = -A, and Safe0 c Q x X, for t, = 0, of the maxi- 
mal safe set Safe c Q x X for the hybrid automaton ii. 
The procedure makes use of the definitions of the orig- 
inal hybrid automaton H and proceeds by computing 
intermediate sets Wi c Q x X, WjA c Q x X related 
respectively to t, > 0 and t, = -A. 

However, the following observation solves our problem. 

Theorem 1 The procedure in Fig. 2 applied to 
the automaton H converges if and only if @e pro- 
cedure in Fig. 1 applied to the automaton H, with 
W” = Good x R, does5. If so, Safe0 = no(Sufe) and 

Observation 1 In the synthesis procedure of Fig. 1, 
the target set Pre,(Wi) U 9 of the environment 

5Since the procedure is applied to the automaton &, then the 
operators Pre,, Pre, and Unau in the procedure in Fig. 1 must be 

in the continuous game can be replaced by the set replaced with the operators %, , %, and Unau, respectively. 
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Safe-a = T-D, (Safe). 

Sketch of the proof The proof is by induction on 
the index of iteration i. For our inductive hypothesis, 
we assert that 

xo(wi) = w,i and r-A(Wi) = w:& 

The base case of i = 0 is easily established. We need 
to show that, given the inductive hypothesis above, 

1) 7re(wi+‘) = w;+i 
2) %,(wi+‘) = w::‘. 

Consider first property (1). According to Fig. 2, we 
have 

w;+1= wi \ [pm& (wjA) u - 

Applying the induction hypothesis, using the property 
qrvq = 7ro(wi) and by Lemmas 3 and 4, it follows 
that 

w,i+1 = 7ro(Wi) \ [no(F&(Wi)) U -N 
7ro( Unav(Pre,(Wi) U wi, Kc(Wi)))]. 

The result then follows by distributivity of the pro- 
jection ;TTO over the set operations \ and U applied to 
timer-reduced sets. 

We now establish property (2). According to the pro- 
cedure in Fig. 2, it is 

W $l = WLA \ Unuv(-A,o]( Good, wo+‘) 

Applying the induction hypothesis and since we al- 
ready proved that 7ro(Wi+l) = Wi+‘, one has w,“+1= 
ro(Wi+l) = rs(Wifl) from which it follows that 

W iy = r-a(Wi) \ Unuv(-A,o](Good,7ro(Wi+l)). 

Then, using Lemma 5, Observation 1 and Lemma 3, 
according to which n-A(Pre,(Wi)) = 8, one gets 

W i+l 
-A = n-A@@) \ [r-A(Ge(wi)) u 

-N 
r-A( Unuv(Pree(wi) u wi, i%ic(wi)))], 

The result then follows by distributivity of the projec- 
tion T-A over the set operations \ and U applied to 
timer-reduced sets. 

5 Conclusion 

The modified controller synthesis procedure presented 
here applies to systems that are subject to lower bounds 
on the separation times between all discrete events. 
When both the controller and the environment make 
their discrete actions independently, this modeling may 
introduce a false coupling between the enablement of 
events. We have extended our results to handle sys- 
tems that have separation bounds on the events of the 

controller and independent separation bounds on the 
events of the plant [3]. Furthermore, we have demon- 
strated the applicability of these reduction methods by 
synthesizing maximal controllers for the heating system 
first introduced in [2]. 

This work is part of a larger project on developing tech- 
niques for the synthesis of controllers for various modes 
of an automotive engine. In particular, we are explor- 
ing the idle regime mode of operation, for reduction 
and approximation methods that, similar to those in 
this paper, exploit the particular structure of the hy- 
brid systems under control. The goal is to design a feed- 
back controller which keeps the speed of the crankshaft 
in a specified range (safety specification) robustly with 
respect to disturbances due to load torques and the 
inertial load changes due to the driver pushing or re- 
leasing the clutch pedal. The available controls are the 
spark ignition time and the input voltage of the DC 
motor which drives the throttle valve. 
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