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Controller Synthesis for String Stability of
Vehicle Platoons

Jeroen Ploeg, Dipan P. Shukla, Nathan van de Wouw, and Henk Nijmeijer, Fellow, IEEE

Abstract—Cooperative adaptive cruise control (CACC) allows
for short-distance automatic vehicle following using intervehicle
wireless communication in addition to onboard sensors, thereby
potentially improving road throughput. In order to fulfill per-
formance, safety, and comfort requirements, a CACC-equipped
vehicle platoon should be string stable, attenuating the effect
of disturbances along the vehicle string. Therefore, a controller
design method is developed that allows for explicit inclusion of the
string stability requirement in the controller synthesis specifica-
tions. To this end, the notion of string stability is introduced first,
and conditions for L2 string stability of linear systems are pre-
sented that motivate the development of an H∞ controller synthe-
sis approach for string stability. The potential of this approach is
illustrated by its application to the design of controllers for CACC
for one- and two-vehicle look-ahead communication topologies.
As a result, L2 string-stable platooning strategies are obtained in
both cases, also revealing that the two-vehicle look-ahead topology
is particularly effective at a larger communication delay. Finally,
the results are experimentally validated using a platoon of three
passenger vehicles, illustrating the practical feasibility of this
approach.

Index Terms—Cascaded systems, cooperative adaptive cruise
control (CACC), string stability, vehicle platoons, H∞ optimal
control.

I. INTRODUCTION

COOPERATIVE adaptive cruise control (CACC) can be
regarded as an extension of the adaptive cruise control

(ACC) functionality. ACC is a vehicle-following control system
that automatically accelerates and decelerates a vehicle to keep
a desired distance to the preceding vehicle and, in the absence
of one, aims for a constant cruise speed [1]. The intervehicle
distance and its rate of change are commonly measured by
a radar. A CACC system arises when ACC is extended with
wireless intervehicle communications [2]. This enables vehi-
cles to obtain information beyond the line-of-sight of onboard
sensors and to obtain information of other vehicles that cannot
be retrieved otherwise. As a result, short intervehicle distances
can be realized, thus increasing traffic throughput, without
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compromising safety [3]. In addition, significant fuel savings
are possible, particularly for trucks [4].

The vehicle-following objective, which is essential to CACC,
is subject to requirements related to safety, comfort, and scal-
ability with respect to platoon length. In order to fulfil these
requirements, the vehicle platoon is desired to exhibit string-
stable behavior [5], which can be loosely characterized as the
attenuation of the effects of disturbances along the platoon.
Typical disturbances are, e.g., velocity variations of the lead
vehicle or initial condition perturbations of the platoon vehicles.

Various types of controllers that realize string-stable be-
havior have been proposed in the literature; see, e.g., [6] for
a proportional-derivative-like controller and [7], describing a
sliding-mode controller. These controller synthesis methods,
however, do not allow taking the string stability requirement
explicitly into account. Consequently, string-stable behavior
has to be realized through a posteriori controller tuning. Due
to its capability of including constraints in the controller de-
sign, the application of model predictive control for vehicle
platooning also received quite some attention. As a relevant
example, [8] proposes a controller employing a one-vehicle
look-ahead communication topology, with the attenuation of
the L∞ norm of the disturbance responses as a constraint.
In [9], an H∞ optimal platoon controller is synthesized, also
using a one-vehicle look-ahead topology, which focuses on the
effect of packet loss on performance in terms of disturbance
attenuation, thus being very closely related to string stability.
A mixed H2/H∞ problem formulation is applied in [10], with
string stability as one of the optimization criteria for controller
synthesis, resulting in a centralized controller that requires the
states of all platoon vehicles to be available.

Due to its relevance for application in everyday traffic, this
paper focuses on ad hoc vehicle platooning, i.e., a decentralized
solution without a designated platoon leader (as opposed to
[10]), aiming to develop a systematic controller design method
in which the string stability requirement is a priori included
as a design specification. To this end, H∞ optimal controller
synthesis is applied, since this approach appears to naturally fit
the L2 string stability conditions for linear cascaded systems,
among which vehicle platoon models. In addition, H∞ control
allows to explicitly make tradeoffs between vehicle-following
performance and string stability. It is illustrated through con-
troller synthesis for one- and two-vehicle look-ahead schemes
that the controller design method supports the generic n-vehicle
look-ahead communication topology, extending the one-vehicle
look-ahead approaches in [8] and [9]. Finally, the practical
feasibility of the controllers is shown through experimental
evaluation in a platoon of three passenger vehicles.

1524-9050 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. CACC-equipped homogeneous vehicle platoon.

The outline of this paper is as follows: Section II formulates
the control problem and derives a platoon model that forms
the basis for the controller synthesis approach. Section III
introduces the notion of L2 string stability and presents string
stability conditions for linear systems, upon which Section IV
casts the control problem into the H∞ framework. The actual
controller synthesis is performed in Section V, and the ex-
perimental results obtained with the designed controllers are
presented in Section VI. Section VII summarizes the main
conclusions.

II. CONTROL PROBLEM FORMULATION

Consider a homogeneous platoon of m vehicles, as depicted
in Fig. 1, where di is the distance between vehicle i and its
preceding vehicle i− 1, and vi is the velocity of vehicle i.
The main objective of each vehicle in the platoon (except the
lead vehicle) is to follow its preceding vehicle at a desired
distance dr,i. Adopting the constant time headway spacing
policy, which is known to improve string stability [6], [11], the
desired distance reads

dr,i(t) = ri + hvi(t), i ∈ Sm\{1} (1)

where h is the time headway, and ri is the standstill distance.
In (1), Sm = {i ∈ N | 1 ≤ i ≤ m} is the set of all vehicles in a
platoon of length m ∈ N. This paper focuses on homogeneous
platoons, which is why h does not depend on the vehicle index.
The spacing error ei(t) is then equal to

ei(t) = di(t)− dr,i(t)

= (qi−1(t)− qi(t)− Li)− (ri + hvi(t)) (2)

where qi is the rear-bumper position of vehicle i, and Li is its
length. The platoon control problem is now twofold. First, the
platoon is subject to the vehicle-following objective, i.e.,

a1(t) = 0 ∀ t ≥ 0 ⇒ lim
t→∞

ei(t) = 0 ∀ i ∈ Sm\{1} (3)

where a1 is the acceleration of the lead vehicle; in other words,
with the first vehicle driving at a constant velocity, the spacing
errors ei should converge to zero. Second, the string stability
requirement is imposed, as described in Section III.

Adopting the platoon model as employed in [12] and [13],
the vehicle dynamics are described in the Laplace domain by
the transfer function G(s), with s ∈ C, according to

G(s) =
qi(s)

ui(s)
=

1

s2(τs+ 1)
e−φs (4)

Fig. 2. Step response of an acceleration-controlled test vehicle: desired accel-
eration (solid black), measured acceleration (gray), and simulated acceleration
(dashed black).

where τ is a time constant, and φ is a time delay. ui is the
vehicle input (desired acceleration), whereas the position qi
is the output. Note that ·(s) denotes the Laplace transform of
the corresponding time-domain variable ·(t); if the argument is
omitted, then the domain is either irrelevant or can be easily
devised from the context. Due to the homogeneity assump-
tion, G(s) is identical for all vehicles. Despite its simplicity,
G(s) adequately describes the dynamics of the native force-
controlled hybrid driveline of the test vehicles (see Section VI),
including a precompensator to convert the desired acceleration
to the desired force, taking into account the actual vehicle mass
and the estimated drag forces. This is confirmed in Fig. 2,
which shows the desired acceleration, the measured accelera-
tion response, and the simulated response of the model Ga(s) =
1/(τs+ 1)e−φs, with τ = 0.1 s and φ = 0.2 s. Obviously, this
model does not hold for limit situations, such as emergency
braking, which are characterized by nonlinear behavior due
to tire slip and complex braking system dynamics. Such limit
situations, however, are considered to be outside the operational
range of CACC.

Formulating the spacing error ei(t) in (2) in the Laplace
domain yields

ei(s) = qi−1(s)−H(s)qi(s) (5)

with the spacing policy transfer function H(s) defined as

H(s) = hs+ 1. (6)

Without loss of generality, ri = Li = 0 is assumed in the
remainder of this paper. Inspired by [12], the structure of the
controller of each vehicle is chosen according to

ui(s) =H−1(s)

⎛

⎝Kfb(s)ei(s) +

k
∑

j=1

Kff,j(s)u
∗
i−j(s)

⎞

⎠

=H−1(s)K(s)

⎛

⎜

⎜

⎜

⎝

ei(s)
u∗
i−1(s)

...
u∗
i−k(s)

⎞

⎟

⎟

⎟

⎠

:= H−1(s)ξi(s) (7)

where Kfb(s) represents the feedback control law; Kff,j(s),
j = 1, 2, . . . , k, represents the feedforward controllers, and
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K(s) = (Kfb(s) Kff,1(s) . . . Kff,k(s)). ξi(s) is the output of
the controller K(s). Note that the precompensator H−1(s) in
(7) cancels the spacing policy transfer function H(s), which
is located in the feedback loop according to (5), such that the
driver can select any time headway h without compromising in-
dividual vehicle stability. Due to the ad hoc platooning concept,
K(s) is desired to be independent of the vehicle index i. u∗

i−j ,
j = 1, 2, . . . , k, are the inputs of k preceding vehicles, which
are obtained through wireless intervehicle communication with
a latency θ, i.e., u∗

i−j(t) = ui−j(t− θ). In the Laplace domain,

this latency is modeled by a transfer function D(s) = e−θs, be-
ing (approximately) the same for all preceding vehicles because
all vehicles broadcast their information. It should be mentioned
that the usage of wireless communication introduces time-
varying sampling intervals, which may be relevant to the string
stability characteristics [14]. Assuming a sufficiently high sam-
pling frequency of the discrete-time controller implementation,
these sampled-data effects are ignored here.

The controller (7) is thus required to realize asymptotic
tracking of the preceding vehicle according to (3), under the
additional requirement of string stability, with the latter being
formally introduced in the next section.

III. STRING STABILITY

A comprehensive overview of the various interpretations
of string stability that exist in the literature is given in [13],
based on which a novel definition for Lp string stability was
introduced. Here, this definition is extended to better support a
multiple-vehicle look-ahead CACC design. In doing so, we fo-
cus on L2 string stability for linear systems since the controller
synthesis to be developed in Section V will specifically support
this type of string stability and the vehicular platooning models
in Section II are linear. Consider to this end the cascaded state-
space system, with i ∈ Sm,

ẋi =

i
∑

j=1

Ai−jxj +Bi−1u1

yi =Cxi (8)

representing a homogeneous system with a unidirectional in-
terconnection topology. Ak and Bk (k = 0, 1, . . . ,m− 1) are
the system and input matrices, respectively, and C is the output
matrix. u1 ∈ Rℓ is the external input, and xi ∈ Rn and yi ∈
Rℓ, i ∈ Sm are the state and the output, respectively. Note that,
in view of the upcoming string stability conditions, the system
is assumed to be square, having ℓ inputs and outputs. In case
(8) represents a controlled vehicle platoon, the state may be
defined as xT

i = (ei vi ai . . .), where ei is the distance error,
vi is the vehicle velocity, and ai is the vehicle acceleration,
whereas additional states may be present due to controller
dynamics. With u1 ≡ 0, the system (8) may then have constant
equilibrium states x̄T

i = (0 v̄1 0 . . .) ∀i ∈ Sm, where v̄1 is a
constant lead vehicle velocity. This can be readily understood,
since the string would be in equilibrium when all vehicles drive
at the same constant speed with zero spacing error. Introducing

the lumped state vector xT = (xT
1 xT

2 . . . xT
m), (8) can be

reformulated as

ẋ =Ax+Bu1

yi =Cix, i ∈ Sm (9)

where A is a lower block-triangular matrix, with the matrices
A0 on the main diagonal, the matrices A1 on the subdiago-
nal, etc. Furthermore, BT = (BT

0 BT
1 . . . BT

m−1), and Ci =
(0ℓ×n(i−1) C 0ℓ×n(m−i)). String stability can now be defined as
follows.

Definition 1 (L2 String Stability): The system (9), with a
constant equilibrium solution x̄ for u1 ≡ 0, is L2 string stable if
there exist class K functions1 α and β, such that, for any initial
state x(0) ∈ Rmn and any u1 ∈ Lℓ

2, it holds that

‖yi(t)− Cix̄‖L2
≤ α

(

‖u1(t)‖L2

)

+ β (‖x(0)− x̄‖)

∀ i ∈ Sm and ∀m ∈ N. (10)

If, in addition to (10), with x(0) = x̄ it also holds that

‖yi(t)− Cix̄‖L2
≤ ‖y1(t)− C1x̄‖L2

∀ i ∈ Sm\{1} and ∀m ∈ N\{1} (11)

the system (9) is semi-strictly L2 string stable with respect to
its input u1. If, in addition to (10), with x(0) = x̄ it also holds
that

‖yi(t)− Cix̄‖L2
≤ ‖yi−1(t)− Ci−1x̄‖L2

∀ i ∈ Sm\{1} and ∀m ∈ N\{1} (12)

the system (9) is referred to as strictly L2 string stable with
respect to its input u1.

Here, ‖ · ‖ denotes any vector norm, ‖ · ‖L2
denotes the

signal 2-norm [15], and Lℓ
2 is the ℓ-dimensional space of vector

signals that are bounded in the L2 sense. It is noted that Defini-
tion 1 closely resembles the common L2 stability definition [16]
as far as (nonstrict) L2 string stability is concerned, except for
the fact that the inequality (10) must hold for all string lengths
m ∈ N.

The notion of (semi-)strict Lp string stability, for which not
only (10) must hold but also (11) or (12), has been introduced to
accommodate the requirement of upstream disturbance attenu-
ation, as already mentioned in Section I. Compared to [13], the
novel notion of semi-strict string stability has been introduced
here to support the controller design in the two-vehicle look-
ahead scheme, as will become clear in Section V.

It is noted that the system with index i = 1 may be either
uncontrolled or, in case of vehicle platoons, velocity controlled.
Alternatively, it is also possible to apply a vehicle-following
controller with a so-called virtual reference vehicle. Choosing
u1 as the external platoon input encompasses all such options,
thus yielding the most generic approach.

1A continuous function α : [0, a) �→ [0,∞) is said to belong to class K if it
is strictly increasing and α(0) = 0.



PLOEG et al.: CONTROLLER SYNTHESIS FOR STRING STABILITY OF VEHICLE PLATOONS 857

Definition 1 provides a basis for easy-to-check string stability
conditions. To this end, the model (9) is first formulated in the
Laplace domain as follows:

yi(s) = Pi(s)u1(s) +Oi(s)x(0), i ∈ Sm (13)

with x(0) denoting the initial (time-domain) condition, and
Pi(s) = Ci(sI −A)−1B and Oi(s) = Ci(sI −A)−1. Because
the system with index i = 1 is assumed to be uncontrolled,
(9) may contain unstable and/or marginally stable modes. Con-
sequently, Pi(s) may be unstable, leading to the following
assumption.

Assumption 1: The output yi, i ∈ Sm, is chosen such that
unstable and marginally stable modes of the system (9) are
unobservable.

As a consequence of Assumption 1, it holds that, for linear
time-invariant systems, if the function α in (10) exists, then also
the function β exists. In view of string stability, it therefore
suffices to only analyze the input–output behavior, character-
ized by Pi(s), which is equivalent to assuming x(0) = x̄ in
(13). To simplify the synthesis of string stability conditions,
x̄ = 0 is chosen without loss of generality, since there always
exists a coordinate transformation yielding the origin as the
equilibrium.

Provided that Pi(s) represents a causal and stable system, its
H∞ norm ‖Pi(s)‖H∞

is defined as

‖Pi(s)‖H∞

:= sup
Re(s)>0

σ̄ (Pi(s)) (14)

where σ̄(·) denotes the maximum singular value.2 It can be then
shown [15, p. 101] that ‖Pi(s)‖H∞

is equal to the L2 induced
(system) norm related to the input u1(t) and the output yi(t), as
follows:

‖Pi(s)‖H∞
= sup

u1 �=0

‖yi(t)‖L2

‖u1(t)‖L2

(15)

where the L2 norm is defined on the interval t ∈ [0,∞). Hence

‖yi(t)‖L2
≤ ‖Pi(s)‖H∞

‖u1(t)‖L2

≤ max
i∈Sm

‖Pi(s)‖H∞
‖u1(t)‖L2

. (16)

Note that (16) is not conservative, in the sense that there is
always a subsystem i ∈ Sm and a specific signal u1(t) for
which the equality holds, due to (15). Therefore, according to
Definition 1 and under the conditions mentioned in Assumption
1, the existence of maxi∈Sm

‖Pi(s)‖H∞
, for all m ∈ N, is a

necessary and sufficient condition for L2 string stability of the
interconnected system (9).

If an infinite-length string consisting of linear unidirection-

ally coupled systems has a bounded output response to a
bounded input, then also finite-length strings have a bounded
output response. It therefore suffices to consider only the
infinite-length string instead of all possible string lengths m ∈

2According to the maximum modulus theorem [15], the H∞ norm can
be computed by evaluation of σ̄(Pi(s)) along the imaginary axis, i.e.,
supRe(s)>0 σ̄(Pi(s)) = supω∈R σ̄(Pi(jω)). Therefore, s and jω are some-
times used interchangeably in this paper.

N. The sets Sm, m ∈ N, over which the inequality (10) must
hold, can be then simplified to a single set N. As a result, the
following string stability condition can be formulated.

Condition 1 (L2 String Stability): The interconnected sys-
tem (9), with input–output representation (13), is L2 string
stable, under the condition mentioned in Assumption 1, if and
only if

sup
i∈N

‖Pi(s)‖H∞

< ∞. (17)

Assuming functional controllability [17] of the system (13) for
i = 1, i.e., P−1

1 (s) exists (which is why the system is assumed
to be square), the transfer function Θi(s) from “input” y1(s) to
output yi(s) can be defined according to

Θi(s) := Pi(s)P
−1
1 (s) (18)

such that Pi(s) = Θi(s)P1(s). The following condition for
semi-strict L2 string stability can now be formulated.

Condition 2 (Semi-Strict L2 String Stability): Subject to
Assumption 1, the interconnected system (13) is semi-strictly
L2 string stable with respect to its input u1 if and only if

‖P1(s)‖H∞

< ∞ (19a)

‖Θi(s)‖H∞

≤ 1 ∀ i ∈ N\{1}. (19b)

The sufficiency of the conditions (19a) and (19b) for
L2 string stability follows from the fact that ‖Pi(s)‖H∞

≤
‖Θi(s)‖H∞

‖P1(s)‖H∞
and Condition 1. Furthermore, since

yi(s) = Θi(s)y1(s), it follows that the system is also semi-
strictly L2 string stable if (19b) holds. The necessity of con-
dition (19a) is immediate. Moreover, if (19b) is not satisfied for
some i, it follows that ‖yi(t)‖L2

> ‖y1(t)‖L2
for some y1(t),

indicating the necessity of condition (19b).
Along the same line of thought, the transfer function Γi(s)

from yi−1(s) to yi(s) is introduced, assuming functional con-
trollability of Pi−1(s), according to

Γi(s) := Pi(s)P
−1
i−1(s) (20)

which is referred to as the string stability complementary
sensitivity. This leads to the following strict L2 string stability
condition, a formal proof of which is given in [13].

Condition 3 (Strict L2 String Stability): Subject to Assump-
tion 1, the system (13) is strictly L2 string stable with respect
to its input u1 if and only if

‖P1(s)‖H∞

< ∞ (21a)

‖Γi(s)‖H∞

≤ 1 ∀ i ∈ N\{1}. (21b)

Conditions 2 and 3 now provide a basis for controller design
by means of H∞ optimization for the vehicle-following control
problem, as introduced in the next section.

IV. H∞ CONTROL PROBLEM

Before casting the platoon control problem into the H∞ syn-
thesis framework [15], the general H∞ control configuration,
as shown in Fig. 3, is described first. Here, the plant P is
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Fig. 3. H∞ optimal control configuration.

the system to be controlled, whereas w denotes the exogenous
inputs, r denotes the control signals, z denotes the exogenous
outputs, and v denotes the controller inputs, i.e.,

(

z(s)
v(s)

)

= P(s)

(

w(s)
r(s)

)

. (22)

In the scope of the platooning problem, the control signal is
scalar and equal to r = ξi, and the controller inputs are equal to
vT = (ei u

∗
i−1 . . . u∗

i−k), corresponding to (7).
The feedback loop is closed by a controller K according to

r(s) = K(s)v(s) (23)

upon which the controlled system is described by

z(s) = N(s)w(s) (24)

with N = P11 + P12K(I − P22K)−1P21, omitting the argu-
ment s for readability. Here, P(s) is partitioned in block
matrices Pij(s), i, j ∈ {1, 2}, of dimensions corresponding to
the inputs and outputs in (22). N(s) is known as the (lower)
linear fractional transformation (LFT) [15]. H∞ optimal control
now involves finding a controller Kopt(s), such that

Kopt(s) = argmin
K

‖N(K)‖H∞

(25)

yielding a stable system without cancellation of unstable or
marginally stable plant poles by the controller (i.e., internally

stable). To this end, either a Riccati-based approach or a linear-
matrix-inequality-based approach can be applied [18]. The spe-
cific form of the H∞ synthesis objective in (25) motivates the
choice for this type of controller design strategy for the platoon
problem, since the conditions (19b) and (21b) for (semi-)strict
L2 string stability are also concerned with minimizing the H∞

norm of a transfer function. Hence, if the exogenous input w
and the exogenous output z are chosen such that N(s) contains
either Θi(s) or Γi(s), then (semi-)strict L2 string stability is
actively pursued by the controller synthesis procedure, and
condition (19b) or (21b) is satisfied if N(s) in (24) satisfies
‖N(s)‖H∞

≤ 1. In addition, the error ei must be included in
z, in view of the vehicle-following objective (3). The specific
choices for w and z, however, depend on the particular commu-
nication topology under study, as will be further described in
the next section.

V. CONTROLLER SYNTHESIS FOR

STRING-STABLE PLATOONING

Having formulated the control problem, a platooning con-
troller for a one- and a two-vehicle look-ahead topology is

Fig. 4. One-vehicle look-ahead CACC configuration.

designed. The motivation for the latter is to investigate the
benefits of a more complex communication topology, while also
illustrating that the controller synthesis procedure is able to go
beyond the basic one-vehicle look-ahead topology.

A. One-Vehicle Look-Ahead Topology

In case of the one-vehicle look-ahead CACC scheme, the
input ui−1 of the preceding vehicle is employed to obtain string
stability. Since ui−1 and qi−1 are related through the vehicle
model G(s) (bearing in mind the homogeneity of the vehicle
dynamics), the block scheme arises, as shown in Fig. 4.

The (weighted) distance error ei is chosen as the first output,
since it directly relates to the vehicle-following objective. The
weighting is implemented in the Laplace domain by a func-
tion We(s), providing a means to further specify the control
objectives as commonly employed in H∞ controller synthesis.
Consequently, e′i(s) = We(s)ei(s) becomes the first exoge-
nous output. Next, since ui−1 is the exogenous input, the string
stability complementary sensitivity is chosen as

Γi(s) =
ui(s)

ui−1(s)
(26)

which is why ui is taken as the second exogenous output,
having the advantage that the control effort is minimized at the
same time. The controller design thus aims for strict L2 string
stability. Hence, Condition 3 applies. Note that P1(s) = 1, due
to the choice of ui as the relevant output for string stability;
therefore, condition (21a) is satisfied by definition.

The (mixed-sensitivity) H∞ control problem is now to com-
pute a stabilizing controller K(s) = (Kfb(s) Kff(s)), with

ξi(s) = (Kfb(s) Kff(s))

(

ei(s)
u∗
i−1(s)

)

(27)

such that ‖N(s)‖H∞
is minimized, where

(

e′i(s)
ui(s)

)

=

(

We(s)S(s)
Γ(s)

)

ui−1(s) := N(s)ui−1(s). (28)

Here, the sensitivity is

S(s) = S̃(s)G(s) (1 −Kff(s)D(s)) (29)

and the string stability complementary sensitivity is

Γ(s) = S̃(s)H−1(s) (Kfb(s)G(s) +Kff(s)D(s)) (30)
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with

S̃(s) = (1 +Kfb(s)G(s))−1 . (31)

It is noted that Γ(s) does not depend on the index i, which can
be readily understood when realizing that the block scheme in
Fig. 4 holds for all vehicles i > 1. As desired, the synthesized
controller is also independent of i.

From N(s) in (28), it follows that

‖N(s)‖H∞

= γ ⇒ ‖Γ(s)‖H∞

≤ γ. (32)

According to condition (21b), string stability is thus obtained
for any value γ ≤ 1. On the other hand, if the vehicle-following
objective is realized, it must hold that limω→0(vi(jω)−
vi−1(jω)) = 0, where ω ∈ R is the frequency. Also taking into
account the homogeneity of the vehicle dynamics, due to which
ui(jω)/ui−1(jω) = vi(jω)/vi−1(jω), this implies

lim
ω→0

|Γ(jω)| = 1 ⇒ ‖Γ(s)‖H∞

≥ 1. (33)

From (32) and (33), it thus follows that

‖N(s)‖H∞
= 1 (34)

is the H∞ synthesis objective for the design of a strictly L2

string-stabilizing controller. Note that, considering (33) and
N(s) in (28), (34) is a sufficient condition for strict L2 string
stability and asymptotic tracking.

The weighting function We(s) in (28) balances vehicle-
following performance against string stability. However, since
the focus here is on string stability, We(s) = 1 is chosen,
thus equally penalizing the amplification of disturbances in
ui−1 over the entire frequency range. Furthermore, the vehicle
parameters are set to τ = 0.1 s and φ = 0.2 s, with commu-
nication delay θ = 0.02 s (see Section VI). In addition, both
the vehicle and the communication delay are described by a
third-order Padé approximation, yielding a sufficiently accurate
phase in the frequency interval of interest. Finally, a design time
headway h = 1 s is chosen, being the standardized minimum
for ACC [19]. The H∞ optimization procedure then yields a
tenth-order state-space model of the controller. This controller
is reduced by removing the states that are associated with small
Hankel singular values, upon which the controller is written as
a transfer function K(s). After manually removing the poles
and zeros that are outside the frequency region of interest and
that do not significantly influence the string stability properties
of the controlled system, the final controller design reads

Kfb(s) =
2.6880(s+ 23.22)(s+ 10)(s+ 1)(s+ 0.3646)

(s+ 24.65)(s+ 5.926)(s+ 5.049)(s+ 0.9947)

Kff(s) =
1.0391(s+ 24.1)(s+ 7.233)(s+ 4.051)(s+ 1)

(s+ 24.65)(s+ 5.926)(s+ 5.049)(s+ 0.9947)
.

(35)

This controller realizes a stable platooning system, which can,
e.g., readily be checked by computing the poles of Γ(s). Be-
cause the controller does not cancel the marginally stable poles
of G(s), the system is also internally stable.

Fig. 5. Frequency response magnitude. (a) N(jω): |Γ(jω)| (solid) and
|S(jω)| (dashed). (b) K(jω): |Kfb(jω)| (solid) and |Kff (jω)| (dashed).

Fig. 6. Time responses of (a) acceleration ai(t) and (b) velocity vi(t)
(black–light gray: i = 1, 2, . . . , 5) and of (c) distance di(t) and (d) distance
error ei(t) (dark–light gray: i = 2, 3, 4, 5).

Indeed, with this controller, ‖N(s)‖H∞
= 1 is obtained.

This is confirmed in Fig. 5(a), showing that |S(jω)| ≤ 1 and
|Γ(jω)| ≤ 1, hence realizing strict L2 string stability. In ad-
dition, Fig. 5(b) shows the controller magnitudes |Kfb(jω)|
and |Kff(jω)|, which illustrates that the feedforward gain is
very close to 1 over the entire frequency range. This, in fact,
corresponds to the controller designed in [12], where the feed-
forward gain was chosen identical to 1. Note that the magnitude
response |Kfb(jω)| exhibits a slope of approximately + 1
around ω = 1 rad/s, indicating that the feedback controller
contains a differential action.

Fig. 6 shows the time responses of five vehicles for h =
1 s, with vehicle 1, which is velocity controlled (refer to
Section VI), performing a smooth velocity step upward and
downward, based on a trapezoidal acceleration profile. The
acceleration responses (which are very similar to the control
actions, given the relatively small values for τ and φ) clearly
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Fig. 7. Two-vehicle look-ahead CACC configuration.

show a decreasing amplitude along the string, indicating strict

L2 string-stable behavior. This is confirmed by the absence
of overshoot in the velocity responses. Furthermore, the dis-
tance responses reflect the velocity-dependent spacing policy,
whereas from the distance error response, it can be concluded
that the vehicle-following objective is reached.

It is noted that, although (semi-)strict L2 string stability
characterizes the propagation of the effects of input distur-
bances, satisfying this property also implies that the system
outputs are bounded with respect to bounded initial condition
perturbations. In other words, no (string-unstable) amplification
of initial condition perturbations can occur. Moreover, since
the controlled system is linear and time invariant, the initial
condition response is characterized by the transfer function
that also describes the input–output behavior, i.e., Γ(s). For
these reasons, initial condition perturbations are not explicitly
considered here.

B. Two-Vehicle Look-Ahead Topology

To illustrate the design procedure in case of a more complex
information topology and to investigate the possible benefits
of this topology with respect to string stability, this section
is concerned with a two-vehicle look-ahead topology, taking
an additional controller input u∗

i−2 into account. In this case,
however, u∗

i−1 and u∗
i−2 are not independent inputs, since they

both depend on u∗
i−3, whereas u∗

i−2 and u∗
i−3 both depend on

u∗
i−4, etc. In other words, a single-vehicle subsystem with an

independent input cannot be isolated, as was the case with
the one-vehicle look-ahead topology. Consequently, the lead
vehicle input u1 is chosen to be the independent input, yielding
the block scheme as shown in Fig. 7. In this figure, it is shown
that the transfer function Θi(s), defined in (18), is equal to

Θi(s) =
ui(s)

u1(s)
. (36)

Again choosing the exogenous outputs to be the weighted
distance error e′i and the desired acceleration ui, whereas u1

becomes the exogenous input, the mixed-sensitivity H∞ con-
trol problem now involves computing a stabilizing controller
K(s) = (Kfb(s) Kff,1(s) Kff,2(s)) according to

ξi(s) = (Kfb(s) Kff,1(s) Kff,2(s))

⎛

⎝

ei(s)
u∗
i−1(s)

u∗
i−2(s)

⎞

⎠ (37)

such that ‖Ni(s)‖H∞
is minimized, with

(

e′i(s)
ui(s)

)

=

(

We(s)Si(s)
Θi(s)

)

u1(s) := Ni(s)u1(s). (38)

Here, the sensitivity Si(s) is equal to (omitting the argument s)

Si = S̃G ((1 −Kff,1D)Θi−1 −Kff,2DΘi−2) (39)

with S̃ as in (31), whereas Θi(s), i ≥ 3, is equal to

Θi = S̃H−1 ((KfbG+Kff,1D)Θi−1 +Kff,2DΘi−2) (40)

with Θ1(s) = 1 and Θ2(s) = Γ2(s) by definition. Assuming
that the second vehicle, having only one preceding vehicle, is
controlled using the one-vehicle look-ahead controller (35), it
follows that Γ2(s) = Γ(s) according to (30).

The controller design thus naturally aims for semi-strict
L2 string stability, which is subject to Condition 2, where
the inequality (19a) is met by definition since P1(s) = 1. As
opposed to the one-vehicle look-ahead case, Ni(s) now appears
to depend on the vehicle index i, and so will the synthesized
controller. Consequently, the H∞ optimal controller depends on
the position in the platoon of the specific vehicle, which is unde-
sired in view of the ad hoc platooning approach. This property is
a direct consequence of the fact that a single-vehicle subsystem
with an independent input cannot be isolated, as mentioned
before. To overcome this limitation, a controller is synthesized
for the third vehicle only, being the first vehicle in the string
with two preceding vehicles, aiming for ‖N3(s)‖H∞

= 1. This
controller is then applied to all upstream vehicles i ≥ 4 as
well, after which the resulting string stability properties will be
analyzed through the assessment of condition (19b).

Using the same motivation as before, We(s) = 1 is chosen.
The controller is synthesized with the model parameters from
the previous subsection and a design time headway of h =
1 s, while employing a third-order Padé approximation for
the vehicle and the communication delay. In addition, Γ(s)
is approximated by H−1(s) (by substituting Kff(s) = 1 with
communication delay θ = 0) to decrease the order of the con-
troller. As a result, the following reduced-order controller is
obtained:

Kfb=
1.8517(s+23.22)(s+10)(s+1.39)(s+1)(s+0.3893)

(s+23.97)(s+8.201)(s+2.783)(s+1.272)(s+1.185)

Kff,1=
0.4299(s+23.22)(s+10.03)(s+1)(s2+2.904s+3.617)

(s+23.97)(s+8.201)(s+2.783)(s+1.272)(s+1.185)

Kff,2=
0.2664(s+23.14)(s+10.49)(s+1)(s2+2.411s+7.145)

(s+23.97)(s+8.201)(s+2.783)(s+1.272)(s+1.185)
.

(41)

This controller realizes an internally stable system since
the poles of Θ3(s) are in the left half-plane, whereas the
controller does not cancel the marginally stable poles of G(s).
Furthermore, ‖N3(s)‖H∞

= 1 is obtained, which is confirmed
in Fig. 8(a), showing that |S3(jω)| ≤ 1 and |Θ3(jω)| ≤ 1. In
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Fig. 8. Frequency response magnitude. (a) LFT N(jω) : |Θ3(jω)|
(solid) and |S3(jω)| (dashed). (b) Controller K(jω) : |Kfb(jω)| (solid),
|Kff,1(jω)| (dashed), and |Kff,2(jω)| (dotted).

Fig. 9. Frequency response magnitude of Θi(jω) (black–light gray: i =
2, 3, . . . , 20).

addition, Fig. 8(b) shows the controller magnitudes |Kfb(jω)|,
|Kff,1(jω)|, and |Kff,2(jω)|, from which it can be concluded
that a weighted feedforward of u1 and u2 is obtained. Note that
|Kff,1(jω) +Kff,2(jω)| → 1 for ω → 0.

For semi-strict L2 string stability, condition (19b) must hold,
which requires to investigate ‖Θi(s)‖H∞

for i ≥ 4. This can
be done by numerical evaluation of |Θi(jω)| using (40) with
initial conditions Θ1(jω) = 1 and Θ2(jω) = Γ(jω), the result
of which is shown in Fig. 9 for i = 1, 2, . . . , 20. This figure
shows a trend of decreasing magnitude |Θi(jω)| for increasing
i (also for i > 20), confirming semi-strict L2 string stability.

Fig. 10 shows the time responses of five vehicles to a smooth
velocity step of vehicle 1, which is the same as the one used
in Fig. 6, obtained with h = 1 s. It appears that the responses
of the acceleration, the velocity, and the distance are very sim-
ilar to those of the one-vehicle look-ahead controlled system,
as shown in Fig. 6. The distance error response, however,
shows significantly larger error amplitudes, although asymp-
totic tracking behavior is certainly obtained. Note that, using
(26) and (36), the string stability complementary sensitivity is
equal to

Γi(s) = Θi(s)Θ
−1
i−1(s) (42)

based on which it can be established that the controlled system
is not strictly L2 string stable (not shown here). Nevertheless,
|Γi(jω)| slightly exceeds 1 only for i ≥ 10 and only at frequen-
cies beyond the bandwidth of Θi(jω), which is why this effect
only becomes visible in the distance error responses.

Fig. 10. Time responses of (a) acceleration ai(t) and (b) velocity vi(t)
(black–light gray: i = 1, 2, . . . , 5) and of (c) distance di(t) and (d) distance
error ei(t) (dark–light gray: i = 2, 3, 4, 5).

C. Performance Comparison

Based on the results so far, the two-vehicle look-ahead
strategy does not seem to improve upon the string stability prop-
erties of the one-vehicle look-ahead strategy for this particular
case study. To further compare both communication topologies,
the influence of the time headway h on string stability in
relation to the communication delay θ is investigated.

For the one-vehicle look-ahead controller, it appears that
the factor H−1(s) = 1/(hs+ 1) in Γ(s) [see (30)] decreases
the peak value of the magnitude of the remaining transfer
functions in Γ(s), the effect of which is smaller for decreasing
values of h. Hence, with a communication delay θ > 0, a
minimum time headway hmin must exist that realizes string
stability.3 Indeed, it appears that, with θ = 0.02 s, the controlled
system is string stable for h ≥ hmin = 0.15 s. However, for the
two-vehicle look-ahead topology, a significantly larger value
of hmin = 0.39 s is found. This result can be understood as
follows: Without communication delay (D(s) = 1), while ap-
proximating the feedforward transfer function by Kff(s) = 1,
the one-vehicle look-ahead sensitivity (29) is equal to S = 0,
indicating perfect following behavior. Consequently, additional
information, which is obtained from the second preceding
vehicle, would not yield additional benefit. On the other hand,
for increasing communication delay, one may expect to benefit
from the information of the second preceding vehicle, because
it provides “preview” disturbance information, due to the fact

3Without communication delay, i.e., D(s) = 1, while substituting
Kff(s) = 1, Γ(s) = H−1(s) is obtained, such that ‖Γ(s)‖H∞

= 1,
regardless of the value of the time headway h.
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Fig. 11. Minimum headway hmin as a function of communication delay
θ for one-vehicle and two-vehicle look-ahead control (solid and dashed,
respectively).

Fig. 12. Experimental vehicle platoon, consisting of three CACC-equipped
passenger vehicles.

that the delay is identical for all vehicles. This intuition is con-
firmed by determining the minimum string-stable time headway
hmin as a function of the communication delay θ, the result of
which is shown in Fig. 11. This figure has been obtained by
taking a fixed value for θ and then searching for the smallest
value of h, such that ‖Γ(s)‖H∞

= 1 for the one-vehicle look-
ahead case, or ‖Θ3(s)‖H∞

= 1 for the two-vehicle look-ahead
case. Indeed, it appears that above a certain break-even com-
munication delay, here about 0.1 s, the two-vehicle look-ahead
topology allows for smaller time headways in view of string
stability. It can therefore be concluded that a multiple-vehicle
look-ahead scheme provides a benefit with respect to minimum
string-stable time headway when the communication delay
exceeds a certain threshold. Hence, it may be worthwhile, in
practice, to actively switch between communication topologies
and corresponding controllers, depending on the actual latency
of the wireless communication.

VI. EXPERIMENTAL VALIDATION

Both controllers have been implemented in a platoon of
three passenger vehicles, as shown in Fig. 12, equipped with a
prototype CACC system. This system encompasses a forward-
looking radar, wireless communications according to the ETSI
ITS G5 standard [20], and a computer system that executes the
CACC controller and allows for computer-controlled vehicle
acceleration through interaction with the native vehicle control
system [12]. This section presents experimentally obtained
frequency and time responses to validate the theoretical results
regarding string stability.

Fig. 13. Test signal: (a) magnitude |v∆(jω)| and (b) excerpt of the corre-
sponding time-domain signal vr(t).

A. Frequency Response Experiments

The lead vehicle is required to follow a predefined velocity
profile vr(t), which is designed to excite the follower vehicles
in the frequency region of interest for the assessment of string
stability. To this end, the frequency-domain amplitude |v∆(jω)|
of a zero-mean velocity profile v∆(t) is chosen, as displayed in
Fig. 13(a), covering the frequency interval [0.05, 5] rad/s, while
emphasizing the region [0.1, 3] rad/s because it is expected that
string stability may be violated in this interval. Upon choosing a
uniformly distributed random phase for each value of |v∆(jω)|,
the frequency-domain signal is transformed to the time domain,
which, after scaling and adding a nominal velocity of 15 m/s,
yields the velocity profile vr(t), as partly depicted in Fig. 13(b).
Here, the amplitude of the velocity variations is scaled, such
that the acceleration covers the interval [−3, 3] m/s2. vr is
subsequently applied as the desired velocity for a velocity-
feedback controller implemented in the lead vehicle, where
the performance is greatly enhanced by adding a feedforward
signal uff on the vehicle’s input, which is derived from (4),
according to

uff(t) = τ v̈r(t+ θ) + v̇r(t+ θ) (43)

thus taking care that the frequency content of the velocity pro-
file remains intact. Note that the same velocity controller was
used in the time-domain simulations presented in Section V.

Based on earlier experiments, the round-trip time of a wire-
less message appeared to be 40 ms on average, which is
primarily determined by the update rate of 25 Hz of the wireless
communication network. Consequently, θ ≈ 0.02 s, as used
earlier in the controller design.

The first experiment is conducted with two vehicles, focusing
on the one-vehicle look-ahead topology in which the follower
vehicle is equipped with the controller (35). Upon measuring
the communicated input u∗

1(t) of the lead vehicle and the local
input u2(t) of the follower vehicle, the magnitude |Γ(jω)| of
the string stability complementary sensitivity is estimated, em-
ploying Welch’s averaged periodogram method. Note that the
delayed input u∗

1(t) can be used instead of the actual input u1(t)
since only the magnitude of Γ(jω) is of interest. Fig. 14(a)
shows the theoretical magnitude according to (30) and the
estimated magnitude, with time headway h = 1 s. This figure
clearly shows the similarity between both frequency response
magnitudes, thus validating the theoretical results. Note that the
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Fig. 14. Estimated (black) and theoretical (gray) frequency response magni-
tude. (a) |Γ(jω)| for the one-vehicle look-ahead topology. (b) |Θ3(jω)| for the
two-vehicle look-ahead topology. h = 1.0 s in both cases.

quality of the estimate strongly degrades for ω > 5 rad/s, which
is of course due to the fact that the test signal does not contain
any frequency content in this region.

The same experiment is carried out with three vehicles. Here,
the second vehicle is controlled by the one-vehicle look-ahead
controller (35), whereas the third vehicle is controlled by the
two-vehicle look-ahead controller (41). The theoretical mag-
nitude |Θ3(jω)| according to (40) and the resulting estimated
frequency response magnitude are shown in Fig. 14(b), with
h = 1 s. Again, the experimental results are consistent with the
theoretical results.

B. Time Response Experiments

The second type of experiment aims to validate the simulated
time responses, as shown in Section V. First, the simulation
shown in Fig. 6 for the one-vehicle look-ahead controlled
system with h = 1 s is repeated, in practice, with three vehicles,
where the first vehicle is velocity controlled with the same
controller used in the simulation, which is subject to the same
desired velocity profile. Fig. 15 shows the measured accelera-
tion, velocity, distance and distance error, which can be directly
compared with the simulation results in Fig. 6.

The acceleration, velocity, and distance are clearly very
similar to those shown in the simulation, thus confirming L2

string stability. Furthermore, there is no overshoot during the
acceleration section of the test scenario and (almost) no un-
dershoot at the rather strong deceleration, thus ensuring safe
behavior within the operational range of the CACC system.

The distance error, however, appears to be significantly larger
than in the simulation. This is partly caused by measurement
noise, the level of which is indicated by the constant-velocity
sections of the test scenario. Another cause is the following. It
is known that, due to the feedforward of the preceding vehicle’s
input, the system behavior is sensitive to variations in the vehi-
cle dynamics (4) along the string. Although all test vehicles are
of the same type, these “inhomogeneities” occur, among others,
because the batteries of the hybrid drivelines do not have the
same state of charge. Since particularly the second vehicle in
the string shows a relatively large distance error, it is therefore
concluded that the first vehicle behaves slightly differently than
the other vehicles. This causes an error in the input feedforward
for the second vehicle, but does not influence the third vehicle,

Fig. 15. One-vehicle look-ahead CACC time responses of (a) acceleration
ai(t) and (b) velocity vi(t) (black–light gray: i = 1, 2, 3) and of (c) distance
di(t) and (d) distance error ei(t) (black, light gray: i = 2, 3).

Fig. 16. Two-vehicle look-ahead CACC time responses of (a) acceleration
ai(t) and (b) velocity vi(t) (black–light gray: i = 1, 2, 3) and of (c) distance
di(t) and (d) distance error ei(t) (black, light gray: i = 2, 3).

as shown by the responses in Fig. 15. Nevertheless, taking
into account the high level of acceleration and deceleration, the
designed controller performs at a satisfactory level.

Finally, the same experiment is performed with the two-
vehicle look-ahead controller, the results of which are shown
in Fig. 16, to be compared with Fig. 10. The aforementioned
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remarks also apply here, apart form the fact that the inho-
mogeneity now influences both follower vehicles due to the
communication topology. It is noted that the velocity and the
distance are slightly less damped, as compared in the one-
vehicle look-ahead case. This is also observed in Fig. 10.

VII. CONCLUSION

String stability is an important requirement for the design
of controllers for vehicle platoons because it allows for short
intervehicle following distances and scalability of the platoon
with respect to its length. The application of the H∞ synthe-
sis framework appeared to allow for the explicit inclusion in
the controller design specification of the L2 string stability
requirement for linear cascaded systems, in general, and vehicle
platoons in particular. As a result, strict (preceding to follower
vehicle) L2 string-stable behavior was obtained for a one-
vehicle look-ahead communication topology, whereas semi-
strict (lead to follower vehicle) L2 string-stable behavior was
realized for a two-vehicle look-ahead topology. In addition, it
was found that the two-vehicle look-ahead topology provides
a benefit with respect to minimum string-stable time headway
when the communication delay exceeds a certain threshold.

Both controllers were evaluated, in practice, using a platoon
of three passenger vehicles, which were specifically instru-
mented to test platooning controllers. A frequency- and time-
domain analysis of the test results validated the theoretical
results, while illustrating the practical feasibility of the pre-
sented approach at the same time.
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