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Université Catholique de Louvain

Bâtiment EULER, 4 av. Georges Lemaitre, B-1348 Louvain-la-Neuve, Belgium

Tel: +32 10 472596, Fax: +32 10 472180, Email: {Bombois, Gevers, Scorletti}@csam.ucl.ac.be

Keywords : controller validation, identification for control, robustness analysis

Abstract

This paper focuses on the validation of a controller designed from a model validated
in an ellipsoidal uncertainty set. A controller is said to be validated if it stabilizes all
models in this uncertainty set. This set is embedded in a coprime factor uncertainty set
in order to use the results of mainstream robust control theory such as the Vinnicombe
gap between plants and the related stability theorems.

1 Introduction

Considered problem. In this paper, we focus on controller validation in the case where
a model is validated in a certain uncertainty region which contains the true system. By
validation of a controller, we mean the verification that this controller stabilizes all the
plants in the uncertainty region. For this purpose, we will take the following assumptions:

1. a model G of a true system G0 is given;

2. an uncertainty region composed of ellipsoids at each frequency is deduced from the
recent model validation theory developed in [8, 11]. This uncertainty region contains
the model and the unknown true system with a certain probability level. The case of
several uncertainty regions is also considered.

3. a control law C has been designed from the model G, using usual design methods such
as LQG, model reference control, H∞ and so on.

In addition, the proposed approach must easily be used for the design of a new control
law, when the avalaible controller C is not satisfactory.

†The authors acknowledge the Belgian Programme on Inter-university Poles of Attraction, initiated by
the Belgian State, Prime Minister’s Office for Science, Technology and Culture. The scientific responsibility
rests with its authors.
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Related work. The concept of model validation was extended to the concept of controller
validation in [13]. In their approach, a model of the system is not avalaible, in contrast to
our problem. In fact, our contribution pertains to the so-called “identification for control”
approach, which has been intensively investigated recently (see [7, 6, 5, 2] and references
therein). In this framework, the underlying problem is to identify a model such that if this
model is used for control design, the obtained control law has an achieved performance on
the true system that is close to the designed performance. There are also strong connections
with uncertainty model identification [9] and robust control [17], since a possible approach
is to model the actual system by an uncertainty region to which the true system belongs.

Proposed approach. The paper uses the model validation results1 presented in [8] (closed-
loop method) and [11] (open-loop method). Both methods consist in constructing a dynamic
uncertainty region U which is composed of ellipsoids, at each frequency, and to which the
true system belongs with a certain probability, say 0.95. A model is then said to be validated
if it lies in this validated uncertainty region U .

In this paper, we propose a possible link between the ellipsoidal uncertainty region U
resulting from these validation methods and the tools of mainstream robust control theory
(see e.g. [17, 12, 15, 18] and references therein). These tools allow one to use some powerful
robust stability theorems and controller design methods such as the loop shaping design
approach [12]. Robust control theory focuses on particular uncertainty regions (for instance,
the so-called additive, (inverse) multiplicative or coprime factor uncertainties), which do not
correspond to our uncertainty region U made up of ellipsoids at each frequency. In order
to apply the standard robust control results, we propose to embed our uncertainty region U

into a standard uncertainty region. A similar approach can be found in [9] where, however,
only additive uncertainty sets were considered. In our approach, we consider coprime factor
uncertainty sets. Such sets present several advantages. First, a coprime factor uncertainty
gives a satisfactory representation of the uncertainty both in high frequencies and in low fre-
quencies (see [16, section 2.3.5]). Second, such sets can also be defined, via the Vinnicombe
gap between two plants, as the set of plants whose Vinnicombe distance to a nominal one
is less than a given number. A third reason is that some powerful stability and controller
design results were developed for this kind of uncertainty set (see [12, 15, 16]).

In order to perform this embedding, we develop computationally attractive tests which
boil down to a convex optimization problem involving Linear Matrix Inequality constraints
[1].

An approach avoiding the embedding process can also be developed. Nevertheless, such
an approach can only be used to validate a controller with respect to a model uncertainty
set; it cannot be extended to the design of a robust control law. One of the main advantages
of our approach is that it remains practically interesting also when considering control law
design. Even if in this paper we heavily focus on the analysis problem, it is part of our
continuing investigation of identification and control design interaction.

1As these results are given for the SISO case, we will restrict this presentation to SISO systems.
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Paper outline. In the second section, the frequency domain uncertainty region U will be
related to the validation theory results. In the third section, the coprime factor uncertainty
that will be used in order to embed the uncertainty region U will be presented. This coprime
factor uncertainty will be linked to the Vinnicombe distance and a new quantity, the worst
case Vinnicombe distance, will be defined in this same section. In the fourth section, different
stability theorems related to the coprime factor uncertainties described in the third section
will be presented and illustrated by an example. Finally, in the last section, some conclusions
will be given.

2 Preliminaries on model validation

Both model validation approaches (open-loop method [11] and closed-loop method [8]) con-
sist in determining a dynamic uncertainty region U to which the true system belongs with
a certain probability level, say 0.952. This uncertainty region U is deduced from the co-
variance matrix of the parameters of the estimated error model G̃, which is an estimate of
∆G = G−G0, and from the properties of the Gaussian probability density function [8].

The dynamic uncertainty region U is composed of ellipsoids at each frequency around the
frequency response of G+ G̃. A model G is said to be validated if G lies in the uncertainty
region. Note that whether or not a model is validated depends on the uncertainty region.
Indeed, for every validation data set, a new U is constructed and G may or may not lie in
the corresponding uncertainty region U . In other words, if G is not validated for a particular
U , it may well be validated for another data set (and another U). In this paper, we will
always consider a model G that is validated in a certain region U . In the sequel, we will talk
about “validated uncertainty region” for such U .

To say that a model G is validated in an uncertainty region U tells us that the frequency
responses of G and the true system G0 (modulo a certain probability level) lie in U . This
paper proposes a way to use this information in order to guarantee that a controller C

stabilizes all the plants in this validated uncertainty region U (and hence, also the true
system G0).

3 The worst case Vinnicombe distance

As explained in the introduction, an uncertainty region composed of ellipsoids that contains
G0 is not one that fits the standard tools of mainstream robust control theory. Indeed, a
validated uncertainty region is neither an additive nor (inverse) multiplicative, nor a coprime
perturbation of G, ... whilst robust control theory provides theorems about the stabilization
of the true system G0, but with the assumption that G0 lies in one of those particular
uncertainty regions. In order to link the uncertainty region composed of ellipsoids at each
frequency to standard robust control theory, G0 must be included in one of those particular
uncertainty regions. This can be done by embedding the validated region U in one of those

2The probability level depends on the number of standard deviations chosen to construct those ellipsoids
[8]. For a Gaussian distribution, two standard deviations correspond to 95 %
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particular uncertainty sets. In this paper, we have opted for the coprime uncertainty set
described in [16], for the reasons given in the introduction.

3.1 Coprime factor uncertainty and the Vinnicombe distance

Since G will be used as our nominal model for control design, the embedding coprime factor
uncertainty regions that we now construct will be centered at the model G. The coprime
factor uncertainty set of size ξ described in [16] is the set of all plants Gin which can be
written as a perturbation of the normalized coprime factor description [N D] of the model

G, with a perturbation ∆ =

[
∆N
∆D

]
∈ L∞ such that ‖ ∆ ‖∞≤ ξ:

G(G, ξ) =
{
Gin | Gin =

N + ∆N
D + ∆D

, ‖ ∆ ‖∞≤ ξ and η(Gin) = wno(D + ∆D)
}
. (1)

Here η(G) denotes the number of open right half plane poles of G and wno(G) denotes
the winding number about the origin of G(s) as s follows the standard Nyquist D-contour
indented into the right half plane around any imaginary axis poles and zeros of G(s).

An alternative expression, easier to handle than definition (1), was proposed in [16]:

G(G, ξ) = {Gin | δν(G,Gin) ≤ ξ} . (2)

Expression (2) shows that the coprime factor uncertainty set is a ball of systems, centered
on the model G and whose radius is equal to ξ. In this expression, a new quantity, the
Vinnicombe distance δν(G,Gin), is used. In the SISO case, this distance is defined as follows:

δν(G,Gin) =

 maxω κ(G(jω), Gin(jω)) = maxω
|G−Gin|√

1+|G|2
√
1+|Gin|2

if (4) is satisfied

1 otherwise
(3)

The condition to be fulfilled in order to have δν(G,Gin) < 1 is :

(1 +G∗Gin)(jω) �= 0 for all ω and

wno(1 +G∗Gin) + η(Gin)− η̃(G) = 0.
(4)

where G∗(s) = G(−s) and η̃(G) denotes the number of closed right half plane poles of G.

If these last two conditions are satisfied, then the distance between two plants has a simple
frequency domain interpretation (in the SISO case). Indeed, the quantity κ(G(jω), Gin(jω))
is the chordal distance between the projections of G(jω) and Gin(jω) onto the Riemann
sphere [15]. The distance δν(G,Gin) between G and Gin is therefore, according to (3), the
supremum of these chordal distances over all frequencies.

These definitions also hold in discrete time via the use of the bilinear transform s =
(z− 1)/(z+1) [16, page 259]. In the sequel, we will use a discrete time formalism since this
formalism is used in the validation methods of [8, 11].
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3.2 The worst case Vinnicombe distance

Expression (2) shows that to embed a validated uncertainty region U in a coprime factor
uncertainty set G(G, ξ), one only has to find the smallest size ξ such that U ⊂ G(G, ξ). This
corresponds to finding the largest Vinnicombe distance between the model G and all plants
inside U . This largest distance will be denoted the worst case Vinnicombe distance in the
sequel: δWC(G,U). A first step will be to make sure that a frequency domain interpretation
is sufficient to compute the worst case Vinnicombe distance. This can be guaranteed by
making one weak assumption on the structure of U as proved in [16, page 137]. This weak
assumption is that, given a metric space Θ and the set of all rational transfer functions R,
there exists a mapping

Θ→R : θ → Gθ,

continuous in the graph topology, such that all plants in U can be parametrized with a θ
inside a pathwise connected closed subset of Θ.

Assuming the existence of such a mapping, the size ξ of the embedding coprime factor
uncertainty set (i.e. the worst case Vinnicombe distance) can be found using the follow-
ing procedure. Recall that a validated uncertainty region is composed of ellipses at each
frequency centered at G(ejΩ) + G̃(ejΩ) and that both G0 and G lie in these ellipses since
the uncertainty region U is assumed validated. At a particular frequency Ω, we define the
worst case chordal distance κWC(G(ejΩ), U(Ω)) as the maximum chordal distance between
the projection of the point G(ejΩ) and the projections of all the points of the ellipsoid onto
the Riemann sphere. The computation of this quantity is a convex optimization problem
involving LMI constraints (see appendix A.1 for more details).

Definition of the worst case Vinnicombe distance Recalling the definition of the
Vinnicombe distance, the worst case Vinnicombe distance is then the maximum over Ω of
this chordal distance :

δWC(G,U) = max
Ω

κWC(G(ejΩ), U(Ω)) (5)

where U(Ω) denotes the ellipsoid at frequency Ω.

This definition without respect to the conditions (4) is sufficient. Indeed if there exists a
plant GU ∈ U and a frequency Ω0 such that (1 +G∗GU)(e

jΩ0) = 03, then it is proved in [15]
that κ(G(ejΩ0), GU(e

jΩ0)) = 1. The worst case Vinnicombe distance (5) is therefore equal
to 1 in such case. Furthermore, the assumption of the existence of a continuous mapping
assures that if there exists a plant G1 in U for which the second part of the conditions (4)
is not verified, then there also exists another plant G2 in U for which the first part fails for
a given frequency (see [16]). The chordal distance between the model and this particular
plant G2 at this frequency is then equal to 1 and the worst case Vinnicombe distance (5) is
therefore also equal to 1.

3G∗(z) = G(1/z)
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Embedding coprime factor uncertainty set The worst case Vinnicombe distance
δWC(G,U) having been defined, the coprime factor uncertainty set which embeds U can
also be defined as follows:

{Gin | δν(G,Gin) ≤ δWC(G,U)}. (6)

Indeed, all the plants in the uncertainty region lie in this set since the distance between the
model G and a plant in U is smaller than (or equal to) δWC(G,U).

3.3 Properties of the worst case Vinnicombe distance and of the

embedding uncertainty set

Before presenting an example of this worst case Vinnicombe distance, let us give some
of its properties. Since the true system G0 lies in the validated uncertainty region U (with
probability 0.95), it also lies in the coprime factor uncertainty set which embeds this validated
region U . Therefore,

G0 ∈ {Gin | δν(G,Gin) ≤ δWC(G,U)}. (7)

The true system also lies in another set which will be useful later.

G0 ∈ {Gin | κ(G,Gin) ≤ κWC(G,U) ∀ Ω ∈ [0, π]} (8)

Another property is that the center of the embedding coprime factor uncertainty is the
model G while G+ G̃ was the center of the validated uncertainty region U .

Finally, since the true system is now included in a coprime factor uncertainty set, we
can apply the different tools of mainstream robust control theory in order to design a robust
controller or to verify the stability of the closed-loop composed of the true system G0 and of
the controller designed from the model G. This last point is developed in section 4.

3.4 Example of the worst case Vinnicombe distance

Consider the following true system and model, respectively,

y0 = G0u+H0e =
z + 0.5

z2 − 1.5z + 0.7
u+

z2

z2 − 1.5z + 0.7
e

y = Gu+He =
z + 0.503

z2 − 1.545z + 0.73
u+

z2

z2 − 1.545z + 0.73
e

The actual Vinnicombe distance δν(G,G0) between G and G0 is equal to 0.023.

For this model G, an open-loop and a closed-loop validation were achieved leading
to two uncertainty regions UOL and UCL correponding to a probability level of 0.95 [8].
The controller chosen for closed-loop validation is a dynamic controller such that u =
r − (0.9z − 0.8)/(z + 0.5)y.
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The model was validated with data sets of 1000 data in open-loop and closed-loop,
respectively, having the following statistics:

Open− loop : σ2u = 0.025 and σ2e = 1 =⇒ σ2y = 8.05

Closed− loop : σ2r = 0.5 and σ2e = 1 =⇒ σ2y = 3.28

The dynamic uncertainty regions UOL and UCL are represented in Figure 1 and Figure 2,
respectively. Observe that G0 and G lie inside both UOL and UCL for all frequencies.
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Figure 1: Nyquist plot of the open-loop validation : G (dash), G + G̃ (dashdot), G0 (solid)
and the uncertainty ellipsoids at each frequency

The uncertainty regions being validated, the worst case Vinnicombe distance δWC(G,U)
can now be computed for the two cases.

Open− loop : δWC(G,UOL) = 0.3318

Closed− loop : δWC(G,UCL) = 0.0600

It can be noted that the two quantities are of course larger than the actual Vinnicombe
distance between the true system G0 and the model G which is equal to 0.023, but the impor-
tant observation is that the worst case Vinnicombe distance is much smaller in closed-loop
than in open-loop. Consequently, it is always better to perform more than one validation
experiment and to select the validated uncertainty region that yields the smallest worst
case Vinnicombe distance, and hence the tightest bound for the actual Vinnicombe distance
between G and G0. Thus, one should always choose the experimental conditions for identifi-
cation and validation such that the corresponding uncertainty region U minimizes the worst
case Vinnicombe distance δWC(G,U).
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Figure 2: Nyquist plot of the closed-loop validation : G (dash), G+ G̃ (dashdot), G0 (solid)
and the uncertainty ellipsoids at each frequency

4 Stability

4.1 Introduction

In the previous section, the worst case Vinnicombe distance has been defined. This worst
case distance allows one to embed a validated uncertainty region U in a coprime factor un-
certainty region as can be seen in expression (6). This coprime factor uncertainty can now
be used in the Vinnicombe stability results. That would not have been the case if an uncer-
tainty region composed of ellipsoids at each frequency had been used. Before presenting the
Vinnicombe stability results, let us first recall the problem we want to solve. From the nom-
inal model G(z), a controller C(z) can be designed. This controller stabilizes G and achieves
satisfactory performance with this model. However, this controller is not assured to stabilize
the true system G0. We therefore need conditions guaranteeing this robust stabilization.

4.2 Min-Max type condition

First we recall the definition of generalized stability margin for a closed-loop system made
up of the feedback connection of a plant G and a controller C.

Definition:

bGC =

{
minΩ κ(G(ejΩ),− 1

C(ejΩ)
) if [C G] is stable

0 otherwise
(9)
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where κ(G1, G2) was defined in (3).

A main result of [15] is the following sufficient but not necessary condition to guarantee
the stabilization of G0 by C.

Proposition Consider a model G and a controller C that stabilizes G with a stability
margin bGC . Then C stabilizes G0 if

G0 ∈ {Gin | δν(G,Gin) < bGC}. (10)

As the true system G0 is unknown, this condition can not be verified in practice. Never-
theless in the previous section, it has been shown that, modulo a probability level of 0.95, the
true system G0 lies in the coprime factor uncertainty set {Gin | δν(G,Gin) ≤ δWC(G,U)}
where U is a validated uncertainty region. Therefore, a sufficient condition to guarantee the
stabilization of the true system G0 by a controller C is to verify that :

δWC(G,U) < bGC . (11)

4.3 A less conservative condition

The condition G0 ∈ {Gin | δν(G,Gin) < bGC} is rather conservative. Indeed, it is proved in
[15] that the stabilization of the true system G0 by the controller C is already guaranteed if

G0 ∈ {Gin | κ(Gin(e
jΩ), G(ejΩ)) < κ(G(ejΩ),−

1

C(ejΩ)
) ∀ Ω and δν(G,Gin) < 1} (12)

The classical condition G0 ∈ {Gin | δν(G,Gin) < bGC} is a much stronger (and thus
more conservative) constraint since δν(G,Gin) = maxΩ κ(G,Gin) (if δν(G,Gin) < 1) and
bGC = minΩ κ(G(ejΩ),− 1

C(ejΩ)
).

With the worst case Vinnicombe distance, this less conservative condition can be rewrit-
ten as follows.

Main theorem: Let G be a model and let U be a validated set of models containing G

and the true plant G0. If δWC(G,U) < 1, then the stabilization of the true system G0 by C
is guaranteed if

κWC(G(ejΩ), U(Ω)) < κ(G(ejΩ),−
1

C(ejΩ)
) ∀ Ω ∈ [0, π] (13)

Proof: According to expression (8), G0 lies in {Gin | κ(G,Gin) ≤ κWC(G,U) ∀ Ω}. If
expression (13) holds, one can thus write

G0 ∈ {Gin | κ(Gin(e
jΩ), G(ejΩ)) < κ(G(ejΩ),−

1

C(ejΩ)
) ∀ Ω}
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In order to verify expression (12), we still have to verify that the distance between G and
G0 is smaller than one. This is indeed the case since the worst case Vinnicombe distance
δWC(G,U) between the model G and the plants in the uncertainty region U which containsG0
is smaller than one. 2

4.4 Usefulness of having several validated uncertainty regions

If two validated uncertainty regions U1 and U2 are available, then two embedding coprime
factor uncertainty sets are also available (i.e. two worst case Vinnicombe distances are
available). The robust stability can therefore be tested for these two embedding uncer-
tainty sets and it may happen that the stabilization of G0 by C is established only for
one of these two worst case Vinnicombe distances and not for the other (for instance,
δWC(G,U1) < bGC < δWC(G,U2)), as we shall illustrate in the next subsection.

Furthermore, two uncertainty regions U1 and U2 having been validated, a new val-
idated uncertainty region can be constructed from these two, namely their intersection
Uinter = U1 ∩ U2. Indeed, since G lies in both U1 and U2, it also lies in Uinter. The true
system G0 lies in Uinter with probability (0.95)2 = 0.9025 since it lies in U1 with probability
0.95 and in U2 with probability 0.95.

The advantage of using the intersection Uinter as uncertainty region is that we have:

κWC(G(ejΩ), Uinter(Ω)) ≤ min(κWC(G(ejΩ), U1(Ω)), κWC(G(ejΩ), U2(Ω))) (14)

δWC(G,Uinter) ≤ min(δWC(G,U1), δWC(G,U2)) (15)

It is then possible that the stabilization by a controller C is established for all plants in Uinter,
but not separately for U1 or U2. Conversely, if the stability is proved for U1 or U2, then it is
also proved for Uinter. However, the use of Uinter also has a drawback : the probability that
G0 lies in Uinter is only 0.9025 instead of 0.95 with U1 and U2.

The computation of the worst case chordal distance κWC(G(ejΩ), Uinter(Ω)) at a given
frequency for a region Uinter that is the intersection of two ellipsoidal regions, is explained
in appendix A.2.

4.5 Sequel of the example

In order to illustrate the results of this section, we take the same true system G0 and model
G as in Section 3.4. For this choice of systems, we consider the following controller C which
stabilizes the model G:

u = r − C(z)y = r −
z − 0.6

z + 0.7
y

In practice, the true system is unknown. But, in this case, the stabilization of G0 by the
controller can easily be tested. Indeed, the stability margin bGC is equal to 0.0347 which is
larger than the actual Vinnicombe distance between the true system and the model (=0.023).
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Figure 3: Frequency by frequency comparison of κWC(G(ejΩ), UOL(Ω)) (dotted),
κWC(G(ejΩ), UCL(Ω)) (dashdot), and κWC(G(ejΩ), Uinter(Ω)) (solid). κWC(G(ejΩ), UCL(Ω))
and κWC(G(ejΩ), Uinter(Ω)) coincide at almost every frequency

Consequently, C stabilizes G0 according to (10).

In practice, the only information we have about G0 is that it lies in the validated uncer-
tainty regions UOL and UCL with probability level 0.95. These uncertainty regions have both
been embedded in a coprime factor uncertainty set and the corresponding worst case Vinni-
combe distances δWC(G,UOL) and δWC(G,UCL) were equal to 0.3318 and 0.06, respectively.
A third validated uncertainty region can be deduced from these two, namely Uinter = U1∩U2.
The worst case Vinnicombe distance for Uinter is also equal to 0.06. Figure 3 represents the
worst case chordal distance at each frequency for UOL, UCL and Uinter. It can be seen in this
figure that κWC(G(ejΩ), Uinter(Ω)) is a lower bound for the minimum of the chordal distances
related to UOL and UCL at each frequency.

The stabilization of G0 by the controller C can only be guaranteed by verifying expres-
sion (11) or expression (13). It is to be recalled that if expression (13) is satisfied, then
expression (11) is also verified. Therefore, the less conservative condition will always be
prefered. We show the results with the Min-Max type condition to underline the extreme
conservatism of this condition.

Verification of the Min-Max type condition (11): In this example, the stabilization
of G0 by C can not be deduced from the condition (11), neither with the uncertainty regions
UOL or UCL, nor with their intersection. The corresponding worst case Vinnicombe distances
are all larger than bGC .

bGC = 0.0347 < δWC(G,UCL) = δWC(G,Uinter) = 0.06 < δWC(G,UOL) = 0.3318
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Figure 4: Frequency by frequency comparison of the worst case chordal distance
κWC(G(ejΩ), UOL(Ω)) (solid) and κ(G(ejΩ),− 1

C(ejΩ)
) (dashdot)

Verification of the less conservative condition (13): Figure 4 illustrates the use of
UOL. It shows that, even though this condition is less conservative, the worst case chordal dis-
tances κWC(G(ejΩ), UOL(Ω)) corresponding to UOL are not smaller than κ(G(ejΩ),− 1

C(ejΩ)
)

at each frequency. The stabilization of G0 by C is therefore not guaranteed if the validated
region UOL is used. But the stabilization is guaranteed with the worst case chordal distances
corresponding to UCL as can be seen in Figure 5. According to (14), this will also be true
with the worst case chordal distances corresponding to Uinter.

Some comments are to be made about this example. As the stabilization is only guar-
anteed for the less conservative condition applied to UCL (and therefore also Uinter), this
example once more shows:

• the conservatism of the Min-Max type condition with respect to the frequency by
frequency condition since the stabilization is not guaranteed with the first condition
but is guaranteed with the other one,

• the usefulness of making several validation experiments since the stabilization is not
established with UOL but is established with UCL.

5 Conclusions

In this paper, the robust stability problem of guaranteeing the stabilization of a true system
by a controller designed from a model has been developed in the case where a validated
uncertainty region, composed of ellipsoids at each frequency, is available. In order to use
robust control theory tools, this validated uncertainty region has been embedded in a coprime
factor uncertainty set. A new quantity, the worst case Vinnicombe distance, has also been
defined; it corresponds to the size of the coprime factor uncertainty set. This new quantity
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Figure 5: Frequency by frequency comparison of the worst case chordal distance
κWC(G(ejΩ), UCL(Ω)) (solid) and κ(G(ejΩ),− 1

C(ejΩ)
) (dashdot). The horizontal dotted line

is bGC

has been used in the robust stability theorems developed by Vinnicombe in [15]. An example
shows that a pointwise use of the classical Vinnicombe theorem can significantly reduce
the conservatism of this sufficient but not necessary condition. One example also shows
the usefulness of having more than one validated uncertainty region. Indeed, with several
uncertainty regions, a better estimate of the actual Vinnicombe distance between the true
system and the model can be obtained and, furthermore, a new and “smaller” uncertainty
region can be constructed by considering the intersection of these uncertainty regions. A
last remark is that the results of this paper are only true modulo some probability level since
the presence of the true system in a validated uncertainty region can only be guaranteed at
a certain probability level.

References

[1] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in
Systems and Control Theory, volume 15 of Studies in Appl. Math. SIAM, Philadelphia,
June 1994.

[2] P.M.J. Van den Hof and R.J.P. Schrama. Identification and control - closed-loop issues.
Automatica, 31:1751–1770, December 1995.

[3] L. El Ghaoui, R. Nikoukhah, and F. Delebecque. LMITOOL: A front-end for LMI opti-
mization, users’s guide, February 1995. Avalaible via anonymous ftp to ftp.ensta.fr,
under /pub/elghaoui/lmitool.

[4] P. Gahinet, A. Nemirovsky, A. L. Laub, and M. Chilali. LMI Control Toolbox. The
Mathworks Inc., 1995.

13



[5] M. Gevers. Connecting identification and robust control: A new challenge. Proc.
IFAC/IFORS Symposium on Identification and System Parameter Estimation, pages
1–10, 1991.

[6] M. Gevers. Towards a Joint Design of Identification and Control ? Essays on Control :
Perspectives in the Theory and its Applications, pages 111-151. Birkhauser, New York,
1993.

[7] M. Gevers. Modeling, Identification and Control. Communications, Computation, Con-
trol and Signal Processing : A Tribute to Thomas Kailath, pages 375-389. Kluwer
Academic Publishers, 1997.

[8] M. Gevers, B. Codrons, and F. De Bruyne. Model validation in closed-loop. submitted
to A.C.C. 1999, 1998.

[9] R.G. Hakvoort. System Identification for Robust Process Control - PhD Thesis. Delft
University of Technology, Delft, The Netherlands, 1994.

[10] V.A. Jakubovic̆. The S-procedure in nonlinear control theory. Vestnik Leningrad Univ.
(russian) Vestnik Leningrad Univ. Math. (amer.), 4 (amer.)(1 (russian)), 1971 (russian)
1977 (amer.).

[11] L. Ljung. Identification for control - what is there to learn. Workshop on Learning,
Control and Hybrid Systems, Bangalore, 1998.

[12] D. M. McFarlane and K. Glover. A loop shaping design procedure using H∞. IEEE
Trans. Aut. Control, 37(6), June 1992.

[13] M.G. Safonov and T.C. Tsao. The unfalsified control concept and learning. IEEE Trans.
Automatic Control, 42(6):843–847, June 1997.

[14] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38(1):49–95,
March 1996.

[15] G. Vinnicombe. Frequency domain uncertainty and the graph topology. IEEE Trans
Automatic Control, AC-38:1371–1383, 1993.

[16] G. Vinnicombe. Uncertainty and Feedback (H∞ loop-shaping and the ν-gap metric).
1998.

[17] G. Zames. Feedback and optimal sensitivity: Model reference transformations, mul-
tiplicative seminorms, and approximate inverses. IEEE Trans. Aut. Control, AC-
26(2):301–320, April 1981.

[18] K. Zhou, J.C. Doyle, and K. Glover. Robust and Optimal Control. Prentice Hall, New
Jersey, 1995.

14



A LMI approach for the computation of the worst case

chordal distance at a given frequency

A.1 Case of one ellipsoid

The problem of determining the worst case chordal distance κWC(G(ejΩ), U(Ω)) for a given
frequency can be expressed as follows : for a given frequency Ω, find a bound on the chordal
distance κ between a given point G(ejΩ) and any point y belonging to an ellipsoid in the
complex plane. For the sake of clarity, let us denote x = G(ejΩ).

For a given y, the distance κ(x, y) is given by:

|x− y|√
1 + |x|2

√
1 + |y|2

.

In the sequel, the complex vectors and matrices are decomposed in their real part, referred
to with the subscript R and their imaginary part, referred to with the subscript I. The
ellipsoid is defined as:

EQ =

y |
[
yR − cR
yI − cI

]T
Q

[
yR − cR
yI − cI

]
≤ α

 .

where c is the ellipsoid center (i.e. G(ejΩ)+ G̃(ejΩ)) and α describes the number of standard
deviations chosen to construct the ellipsoids (i.e. α = 2 for a probability level of 95%).

Thus the previous problem boils down to find the smallest γ such that: |x− y|√
1 + |x|2

√
1 + |y|2

2 ≤ γ (16)

for all y such that: [
yR − cR
yI − cI

]T [
Q11 Q12
Q12 Q22

] [
yR − cR
yI − cI

]
≤ α. (17)

Note that condition (16) can be straightforwardly rewritten as:[
y

1

]∗ [
1− γ(1 + x∗x) −x

−x∗ x∗x− γ(1 + x∗x)

] [
y

1

]
≤ 0 (18)

that is,

σ0(yR, yI)︷ ︸︸ ︷ yR
yI
1


T  1− γ(1 + x∗x) 0 −xR

0 1− γ(1 + x∗x) −xI
−xR −xI x∗x− γ(1 + x∗x)


 yR
yI
1

 ≤ 0. (19)

Let us introduce:
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σ1(yR, yI) =

 yR
yI
1


T



Q11 Q12 −(Q11cR +Q12cI)

Q12 Q22 −(Q12cR +Q22cI)

− (Q11cR +Q12cI) −(Q12cR +Q22cI)

[
cR
cI

]T
Q

[
cR
cI

]
− α


 yR
yI
1

 .

The problem boils down to find (the smallest) γ such that σ0(yR, yI) ≤ 0 for all (yR, yI) for
which σ1(yR, yI) ≤ 0. By the S procedure [10, 1], this problem is equivalent to finding (the
smallest) γ and a positive scalar τ such that σ0(yR, yI)−τσ1(yR, yI) ≤ 0, for all (yR, yI) ∈ R

2,
that is:

minimize γ

over γ, τ
subject to τ ≥ 0 and

1− γ(1 + x∗x)− τQ11 −τQ12 −xR + τ(Q11cR +Q12cI)

− τQ12 1− γ(1 + x∗x)− τQ22 −xI + τ(Q12cR +Q22cI)

− xR + τ(Q11cR +Q12cI) −xI + τ(Q12cR +Q22cI)

x∗x− γ(1 + x∗x) · · ·

· · · − τ

[ cR
cI

]T
Q

[
cR
cI

]
− α




≤ 0.

There are many efficient algorithms for solving such LMI optimization problem, see e.g. [4].
The LMI problem can be solved using the free ware code SP [14] and its Matlab/Scilab
interface LMITOOL [3], or the available commercial Matlab Toolbox, LMI Control Toolbox [4].

It is to be noted that the corresponding worst case chordal distance κWC(G(ejΩ), U(Ω))
is equal to

√
γ.

A.2 Case of the intersection of N ellipsoids

The previous results readily extend to the case of N ellipsoids:

EQi =

y |
[
yR − ciR
yI − ciI

]T
Qi
[
yR − ciR
yI − ciI

]
≤ α

 i = 1, · · · , N.

Note that, in the case N > 1, the S procedure condition is no longer necessary. We obtain
the following LMI formulation.

minimize γ

over γ, τi, i = 1, · · · , N
subject to τi ≥ 0, i = 1, · · · , N and φ11 φ12 φ13

φ12 φ22 φ23
φ13 φ23 φ33

 ≤ 0 with
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φ11 = 1− γ(1 + x∗x)−
i=N∑
i=1

τiQ
i
11,

φ12 = −
i=N∑
i=1

τiQ
i
12,

φ13 = −xR +
i=N∑
i=1

τi(Q
i
11c
i
R +Qi12c

i
I),

φ22 = 1− γ(1 + x∗x)−
i=N∑
i=1

τiQ
i
22,

φ23 = −xI +
i=N∑
i=1

τi(Q
i
12c
i
R +Qi22c

i
I),

φ33 = x∗x− γ(1 + x∗x)−
i=N∑
i=1

τi

[ ciR
ciI

]T
Qi
[
ciR
ciI

]
− α

 .
As, in the case of N > 1, the S procedure condition is no more necessary, the result of

this procedure is only an upper bound of the worst case chordal distance at the considered
frequency. However, by using a gridding of the points inside the intersection of the ellipsoids
and by computing the chordal distance for those points, a lower bound of the searched
quantity can also be found. This way, a tighter estimate of the worst case chordal distance
can be found. In our particular example of section 4.5, these lower and upper bounds are
nearly identical.
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