
Controlling a mobile robot with a biological

brain 

Article 

Published Version 

Warwick, K., Xydas, D., Nasuto, S. J., Becerra, V. M., 

Hammond, M. W., Downes, J., Marshall, S. and Whalley, B. J. 

(2010) Controlling a mobile robot with a biological brain. 

Defence Science Journal, 60 (1). pp. 5-14. ISSN 0011-748X 

Available at https://centaur.reading.ac.uk/8181/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 

work.  See Guidance on citing  .
Published version at: http://publications.drdo.gov.in/ojs/index.php/dsj/article/view/11 

Publisher: Defence Scientific Information & Documentation Centre (DESIDOC), 

Delhi 

All outputs in CentAUR are protected by Intellectual Property Rights law, 

including copyright law. Copyright and IPR is retained by the creators or other 

copyright holders. Terms and conditions for use of this material are defined in 

the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Reading’s research outputs online



Received 22 September 2009

Defence Science Journal, Vol. 60, No. 1, January 2010, pp. 5-14
Ó 2010, DESIDOC

1. INTRODUCTION

The human brain is a complex computational platform

with the ability to rapidly process vast amounts of information,

adapt to noise, and tolerate faults. Recently, progress has

been made towards hybrid systems which integrate biological

neurons and electronic components. Reger1 demonstrated

that it was possible to use the brain of a lamprey to control

the trajectory of a robot whilst others were successfully

able to send control commands to the nervous system of

cockroaches2 or rats3 as if they were robots. Although

such studies can inform us about information processing

and encoding in the brains of living animals4, they do pose

ethical questions and can be technically problematic since

access to the brain is limited by barriers such as the skin

and skull, and data interpretation is confounded by many

factors including the sheer number of neurons present in

the brain of even the neurophysiologically simplest animal.

Moreover, whole animal approaches capable of recording

the activity of individual neurons or their small populations

are limited by the invasive, and hence destructive, nature

of such techniques. For these reasons, neurons cultured

under laboratory conditions on a planar array of non-invasive

electrodes provide a far more attractive platform for probing

the operation of biological neuronal networks.

This area of research is vital for a number of reasons.

Firstly, understanding neural behaviour is important in

establishing better bi-directional interactions between the
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brain and external devices. Secondly, in dealing with numerous

neurological disorders, establishing an improved understanding

of the fundamental basis for the manifestation of neuronal

activity as meaningful behaviour is critical. A robot body

can potentially move around a defined area and the effects

within a biological brain, which is controlling the body,

can be witnessed. This opens up the possibility of gaining

a fundamental appreciation and understanding of the cellular

corelates of memory and considered actions based on learning

and habit.

Recent research has focussed on culturing networks

of some tens of thousands of brain cells grown in vitro5.

These cultures are created by dissociating neurons obtained

from foetal rodent cortical tissue using enzymes and then

culturing them in a specialised chamber by providing suitable

environmental conditions and nutrients. An array of electrodes

is embedded in the base of the chamber (a multi-electrode

array (MEA)) providing an electrical interface to the neuronal

culture6-9. The neurons in such cultures begin to spontaneously

extrude cellular processes, and within an hour of placement,

even without external stimulation, they begin to re-connect

with other nearby neurons and commence both chemical

and electrical communication. This propensity to spontaneously

connect and communicate demonstrates an innate tendency

to network. Studies of neural cultures demonstrate distinct

periods of development defined by changes in activity

which appear to stabilise after 30 days and lasts for at least

REVIEW  PAPER

5Celebrating Sixty Years of Publication



DEF SCI J, VOL. 60, NO. 1, JANUARY 2010

6 Celebrating Sixty Years of Publication

2-3 months10,11. The neuronal culture forms a monolayer

upon the MEA on the base of the chamber, making them

particularly amenable to optical microscopy and accessible

to both physical and chemical manipulation9.

The objective of the present project is to investigate

the use of cultured neurons for the control of mobile robots.

However,  to produce useful processing, it is postulated

that disembodied biological networks must develop in the

presence of meaningful input/output relationships as part

of closed-loop sensory- interaction with the environment.

This is supported by animal and human studies which

show that development in a sensory deprived environment

results in poor or dysfunctional neural circuitry13,14. The

overall closed-loop hybrid system involving a primary cortical

culture on an MEA and a mobile robot ensures a sufficiently

rich and consistent environment for the culture, and hence

constitutes an interesting and novel approach to examine

the computational capabilities of biological networks15.

Typically, in vitro neuronal cultures consist of thousands

of neurons generating highly variable and multi-dimensional

signals. To extract components and features representative

of the network�s overall state from such data, appropriate

pre-processing and dimensionality reduction techniques

must be applied.

Several schemes reported in the literature have thus

far been constructed to investigate the control capacity

of hybrid systems. Notably, Shkolnik16 created an  interesting

control scheme for a simulated robot. Two channels of an

MEA were selected and an electrical stimulus consisting

of a +/-600 mV, 400 µs biphasic pulse was delivered at

varying inter-stimulus intervals. The concept of information

coding was formed by testing the effect of electrically-

induced neuronal excitation with a given time delay termed

the inter-probe interval (IPI) between two stimulus probes.

This technique gives rise to a characteristic response curve

which forms the basis for deciding the robot�s direction

of movement using basic commands (forward, backward,

left, and right).

DeMarse17, et al. have used a simulated rat which

moved inside a four-wall environment including barrier

objects. In other experiments16, physical robots such as

�Koala� and �Khepera� were used in an experiment wherein

one of the robots (the Koala) was able to maintain a constant

distance from the Khepera robot, which was moving under

random control. It was reported that the Koala robot managed

to successfully approach the Khepera and maintain a fixed

distance from it. It is important to stress here that spontaneous

activity of the culture was sent to a computer which then

made a binary decision as to what action the Koala should

take. Importantly, the culture itself was not directly controlling

the Koala through a feedback loop and no learning effect

was reportedly exploited. In contrast, both closed-loop

control and learning are central aims in the present study.

In a well publicised experiment, DeMarse and Dockendorf18

also investigated the computational capacity of cultured

networks by introducing the idea of implementing the control

of a �real-life� problem, such as controlling a simulated

aircraft�s flight path (e.g., altitude and roll adjustments).

Meanwhile, recent developments have focused on the

application of learning techniques in neuronal cultures.

Shahaf and Marom19 reported one of the first experiments

to achieve desired discrete output computations by applying

a simple form of supervised learning to disembodied neuronal

cultures. Recently, Bull  and Uroukov20 successfully applied

a learning classifier system to manipulate culture activity

towards a goal level using simple input signals. However,

in both cases, the desired results were only achieved in

about one-third of experiments, demonstrating the underlying

complexity of neuronal networks, the influence of experimental

variability, and the difficulties in achieving repeatability

in these systems.

Nonetheless, it is clear that even at such an early

stage, such re-embodiments (real or virtual) have a prevailing

role in the study of biological learning mechanisms. The

proposed physical and simulated robots provide the starting

point for creating a proof-of-concept control loop around

the neuronal culture and a basic platform for future, more

specific, reinforcement learning experiments. As the fundamental

problem is the coupling of the robot�s goals to the culture�s

input-output mapping, the design of the robot�s architecture

discussed in this paper emphasises the need for flexibility

and the use of machine learning techniques in the search

of such coupling.

2. CULTURE  PREPARATION

To create the cultured neural network, cortical tissue

was dissected from the brains of embryonic rats and neuronal

cells enzymatically dissociated before seeding onto planar

MEAs. Cells were restricted to lie within the recording

horizon of the electrode array by an inverse template constructed

from adhesive tape placed on the MEA prior to seeding

and was removed immediately after cells were settled (~

1 h). The MEA was also filled with a conventional cell

culture medium containing nutrients, growth hormones,

and antibiotics of which 50 per cent was replaced twice

weekly. Within 1 h of seeding, neurons appeared to extend

connections to nearby cells and within 24 h, a dense mat

of neuronal extensions was visible across the seeded area.

This connectivity further increased over subsequent

days. After 7 days, initial electrical signals were observed

in the form of single action potentials which, in the disembodied

culture (not connected within the closed-loop) and over

the following week, transformed into dense bursts of almost

simultaneous electrical activity across the entire network

which continued through to maturity (30 days in vitro and

onwards). However, such continued bursting behaviour,

after this initial development phase, may subsequently be

representative of an underlying pathological state resulting

from impoverished sensory input and may differ from activity

of a culture developing within a closed loop21.

On an average, cultures remained highly active until

approximately 3 months of age. During this time, they were

sealed with Potter rings22 to maintain sterility and osmolarity,

and were maintained in a humidified, 37 °C, 5 per cent CO
2
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incubator. Recordings were undertaken in a non-humidified

37 °C, 5 per cent CO
2
 incubator for between 30 min and

8 h, depending on environmental humidity and the resulting

stability of the activity.

3. EXPERIMENTAL  SET UP

The MEAs enables voltage fluctuations (relative to

a reference ground electrode outside the network) to be

recorded at 59 sites out of 64 in an 8x8 array

(Fig. 1), allowing the detection of neuronal action potentials

within a 100 µm radius around an individual electrode.

Using spike sorting algorithms12, it may possible (although

non-trivial) to separate the firing of multiple individual

neurons, or small groups of neurons, from a single electrode.

Consequently, multi-electrode recordings permit a picture

of the global activity of the entire neuronal network to be

formed. It is also possible to electrically stimulate via any

of the electrodes to induce focussed neural activity. The

MEA therefore forms a functional and non-destructive bi-

directional interface to the cultured neurons.

The electrically-evoked responses and spontaneous

activity of the culture (the neuronal network) are coupled

to the robot architecture via a machine learning interface

which maps the features of interest to specific actuator

commands. Associating sensory data feedback from the

robot with a set of appropriate stimulation protocols delivered

to the culture closes the robot-culture loop. Thus, signal

processing can be broken down into two discrete sections:

(a) culture-to-robot, in which an output machine learning

procedure processes live neuronal activity, and (b) robot-

to-culture, which involves an input-mapping process, from

robot sensor-to-stimulus.

Our overall system has been designed as a closed-

loop, modular architecture. Neuronal networks exhibit

spatiotemporal patterns with millisecond precision22, the

processing of which necessitates a rapid response from

neurophysiological recording and robot control systems.

The software developed for this project runs on Linux-

based workstations communicating over the ethernet via

fast server-client modules, thus providing the necessary

speed and flexibility required when working with biological

systems.

The study of cultured biological neurons in recent

years has been greatly facilitated by commercially available

planar MEA systems. These consist of a glass specimen

chamber lined with an 8x8 array of electrodes, as shown

in Fig. 1. A standard MEA (Fig. 1(a)) measures 49 mm x

49 mm x 1 mm and its electrodes provide a bi-directional

link between the culture and the rest of the system. The

associated data acquisition hardware includes a head-stage

(MEA connecting interface), 60 channel amplifier (1200x

gain; 10-3200 Hz bandpass filter), stimulus generator and

PC data acquisition card.

Thus far, a modular closed-loop system between a

(physical) mobile robotic platform and a cultured neuronal

network, allowing for bi-directional communication between

the culture and the robot, has been sucessfully created.

It is estimated that the cultures employed in the present

studies consists of approximately 100,000 neurons, the

actual number depending on natural density variations in

proliferation post-seeding, and aim of the experiment. The

spontaneous electrochemical activity of the culture was

used as input to the robot�s actuators and the robot�s

(ultrasonic) sensor readings were (proportionally) converted

into stimulation signals received by the culture, effectively

closing the loop.

For the robotic framework, Miabot, a commercially

available robotic platform (Merlin Robotics, UK), was selected

which exhibits accurate motor encoder precision (~0.5 mm)

and has a maximum speed of approximately 3.5 m/s. Recording

and stimulation hardware was controlled via open-source

MEABench software24.  Custom stimulator- control software

was developed which interfaces with the commercially available

stimulation hardware, with no need for hardware modification24.

A simulated counterpart for the real-life robot and

its environment has also been developed. The simulation

can interface with the culture software in exactly the

same manner as the real robot system, thereby extending

the modular capabilities of the system. It is expected that

this simulation will be particularly helpful in long-running

experiments where a real robot could face issues such

as battery depletion, as well as in the deployment of

various machine learning experiments explained later. It

must be stressed here that the  key drive for this work

is for the culture to directly control the physical Miabot

robot (Fig. 2). The simulation has been created as an

auxiliary tool to this end and is principally useful for

system set up and to ensure that the systems are running

appropriately.

200mm
200mm

(b) (c )

Figure 1. (a) An MC200/30iR-gr MEA (NMI, Reutlingen,

Germany, UK), showing the 30 mm electrodes which

lead to the electrode column�row arrangement (b)

Electrode arrays in the centre of the MEA seen under

an optical microscope (Nikon TMS, Nikon, Japan),

x4 magnification and (c) An MEA at x40 magnification,

showing neuronal cells in close proximity with visible

extensions and interconnections.

(a )
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The overall closed-loop system therefore consists of

several modules including the real-life or simulated robot,

the MEA and stimulating hardware, a directly linked workstation

for conducting computationally expensive neuronal data

analyses and a separate workstation running the robot

control interface; a network manager routing signals directly

between the culture and the robot body. The various components

of the architecture communicate via TCP/IP sockets, allowing

for the distribution of processing loads to multiple machines

throughout the University of Reading�s internal network.

The modular approach to the problem is shown in more

detail in Fig. 3.

The Miabot robot is wirelessly controlled via bluetooth.

Communication, control are performed through custom C++

server code and TCP/IP sockets and clients running on

the acquisition PC which has direct control of the MEA

recording and stimulating software. The server sends motor

commands and receives sensory data via a virtual serial

port over the bluetooth connection, while the client programs

contain the closed-loop code which communicates with

and stimulates the MEA culture.

The client code also performs text logging of all important

data during an experiment run, which can then be analysed

offline with the use of custom written Matlab (Mathworks,

USA) tools. This modular approach to the architecture has

resulted in a system with easily re-configurable components.

The obtained closed-loop system can efficiently handle

the information-rich data that is streamed via the recording

software. A typical sampling frequency of 25 kHz of the
Figure 2. Miabot robot with a cultured neural network.

Figure 3. Modular layout of the robot/MEA system.
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culture activity demands large network, processing, and

storage resources. Consequently, on-the-fly streaming of

spike-detected data is the preferred method when investigating

real-time closed-loop learning techniques.

Initially, all system components and operation of the

entire closed loop in experiments utilising the custom stimulation

software and a model cell were tested25. The model cell

is a simple electronic circuit which allows for an ideal

(artificial) response event within quick succession of stimulation

(<100 ms).

The same experiment was then conducted with a live

culture. To this end, an existing appropriate neuronal pathway

was identified by searching for strong input/output relationships

between pairs of electrodes. Suitable input/output pairs

were defined as those electrode combinations in which neurons

proximal to one electrode responded to stimulation of the

other electrode at which the stimulus was applied (at least

one action potential within 100 ms of stimulation) more than

60 per cent of the time and responded no more than 20 per

cent of the time to stimulation on any other electrode.  An

input-output response map was then created by cyclic stimulation

of all pre-selected electrodes individually with a positive-

first biphasic waveform (600 mV; 100 ms each phase, repeated

16 times). By averaging over 16 attempts, this ensures that

the majority of stimulation events fall outside any inherent

culture bursting that may occur. In this way, a suitable

input/output pair could be chosen, dependent on how the

cultures had developed, to provide an initial decision making

mechanism for the robot.

The robot followed a forward path within its corral

confines until it reached a wall, at which point the front

sonar value decreased below a threshold (set at approximately

30 cm), triggering a stimulating pulse as shown in Fig. 4.

If the responding/output electrode registered activity following

the input pulse then the robot turned to avoid the wall.

Essentially, activity on the responding electrode was interpreted

as a command for the robot to turn to avoid the wall. As

a result, it was apparent that the robot also turned spontaneously

whenever activity was registered on the response/output

electrode. However, the most interesting and relevant  result

was the occurrence of the chain of events: wall detection�

stimulation�response.

The model cell experiment provided a realistic representation

of the maximum speed at which the closed loop could respond,

this being subsequently tempered by the processing time

of the culture itself when used in the loop rather than the

model cell. Such a study opens up the possibility of investigating

response times of different cultures under different conditions

and how they might be affected by external influences such

as electrical fields and pharmacological stimulants25. At any

one time typically 25 different cultures were available and

hence such comparative developmental studies are now

being conducted.

With the sonar threshold set at approx 30 cm from a

wall, a stimulation pulse was applied to the culture, via

its sensory input, each time this threshold was breached�

effectively when the robot�s position was sufficiently close

to a wall. An indication of the robot�s typical activity

during a simple wall-detection/right turn experiment is shown

in Fig. 4.  The green trace indicates the front sonar value.

Yellow bars indicate stimulus pulse times and blue/red

bars indicate sonar timing/actuator command timing. These

response events (single detected spike) may occur

spontaneously or due to electric stimulation as a result

of the sensor threshold being breached. These events are

deemed meaningful only in the case when the delay between

stimulation and response is < 100 ms. In other words, this

event is a strong indicator that the electric stimulation on

one electrode caused a neural response on the recording

electrode. The red vertical lines indicate the time that a

rotation command is sent to the robot. These events are

always coupled (the first one starts the right-turn rotation

and the second simply ends the rotation). Only the second

ones of each pair can be clearly seen here as the rotation

initiation commands are overlaid by the yellow electrode

firing bars (as a result of electrode firing which instantly

Figure 4. Analysis of the robot�s activity during a simple wall-detection/right turn experiment.
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initiates a rotation command). A �meaningful� event chain

would be for example at 1.95 s, where sonar and value

drops below and threshold (30 cm) and a stimulation-response

occurs.

 Table 1 contains typical results from both a model

cell and live culture test. If the live culture acted perfectly,

making no mistakes, then the two columns (model cell and

live culture) would be identical.

characterising the culture responses using machine learning

techniques for performing more complex robot control.

As a follow up closed loop experiment, the robot�s

individual (right and left separately) wheel speeds were

controlled via the spike firing frequency recorded from the

two chosen motor/output electrodes. The frequency is

actually calculated by means of the following simple principle:

A running mean of spike rate from both the output electrodes

was computed from the spike detector. The detected spikes

for each electrode were also separated and divided by the

signal acquisition time to give an instantaneous frequency

value. These frequencies were then linearly mapped (from

their typical range of 0�100 Hz) to a range of 0�0.2 m/s

for the individual wheel linear velocities. Meanwhile, received

sonar information was used to directly control (proportionally)

the stimulating frequency of the two sensory/input electrodes.

The typical sonar range of 0�100 cm was linearly re-scaled

into the range 0.2�0.4 Hz for electrode stimulation frequencies

(600 mV voltage pulses).

The overall setup is reminiscent of a simple Braitenberg

model26. However in this case,  the sensor-to-speed control

is mediated by the cultured network within the overall

feedback loop. For comparative purposes, the experiment

was performed with both real and simulated robots with

run-times of approximately 30 min. It might be felt that

such a test time is not long enough to evoke directed

neural pathway changes in the culture, thereby effecting

plasticity between the stimulating-recording electrodes.

Although this was not a major target in carrying out this

part of the experiment, it has been noted elsewhere that

a high frequency burst time can induce plasticity quickly27,28.

As a result, the spike timing-dependent plasticity based

on the coincidence of spike and stimulus were investigated.

5. MACHINE  LEARNING

Initially, the inherent operating characteristics of the

cultured neuronal network have been taken as a starting

point to enable the physical robot body to respond in an

appropriate fashion. The culture then operates over a period

of time within the robot body in its corral area. Experimental

duration, is merely dependent to experimental design. Several

experiments can therefore be completed within a day, whether

on the same or differing cultures.

Learning and memory investigations are at an early

stage. However we were surprised to see that during the

system tests with the live culture, the robot appeared to

improve its performance over time in terms of its wall avoidance

ability. Currently, investigations are being carried out to

know whether this promising initial observation can be

repeated, robustly, and subsequently quantified. What has

been witnessed could suggest that neuronal structures/

pathways that bring about a satisfactory action tend to

strengthen purely through a process being habitually performed.

Such plasticity has been reported elsewhere, e.g.,  Karniel29,

et al, carried out experimentation to investigate the effects

of sensory deprivation on subsequent culture development.

In the present case, changes were monitored and attempts

In Table 1, the total closed-loop time refers to the time

between wall detection and a response signal witnessed

from the culture. Meaningful turns refers to the robot turning

due to a wall detection-stimulation-response chain of events.

A wall-to-stimulation event corresponds to the 30 cm threshold

being breached on the sensor such that a stimulating pulse

is transmitted to the culture. Meanwhile a stimulation-to-

response event corresponds to a motor command signal,

originating in the culture, being transmitted to the wheels

of the robot to cause it to change direction. It follows that

for the culture, some of the stimulation-to-response events

will be in considered response to a recent stimulus � termed

meaningful, whereas other such events � termed spontaneous

� will be either spurious or in considered response to some

thought in the culture, about which there is some unawareness.

In fact, by totalling all the trials carried out thus far

(> 100), considerable differences (as typically indicated in

Table 1) are observed between the ratio of expected and

spontaneous turns between the model cell and the live

culture. Under control of the model cell 95 ± 4 per cent

(mean ± SD) meaningful turns were observed whilst the

remaining spontaneous turns (5 ± 4 %) were easily attributable

to aspects of thresholding spike activity. In contrast, the

live culture displayed a relatively low number of meaningful

turns (46 ± 15 %) and a large number of spontaneous turns

54  ± 19 % as a result of intrinsic spontaneous neuronal

activity. Such a large number of spontaneous turns was

to be expected in an uncharacterised system and current

work aims to both reduce the level of ongoing spontaneous,

reminiscent of epileptiform, activity present in such cultures,

and to discover more appropriate input sites and stimulation

patterns.

This experiment has closed the loop with the ability

to apply custom stimulation protocols and has set the

basis for subsequent experiments which will focus on

Table 1. Basic measures from a wall-avoidance experiment

Results Model cell Live culture 

Wall -> Stimulation event 100% 100% 

Stimulation -> Response event 100%  67%  

Total closed loop time 0.075 s 0.2-0.5 s 

Run time 240 s 140 s 

Meaningful turns 41 22 

Spontaneous turns 41 16 
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were made to provide a quantitative characterisation relating

plasticity to experience and time. The potential number of

confounding variables was considerable, as the subsequent

plasticity process was (most likely) dependent on such

factors as initial seeding and growth near electrodes as

well as environmental transients, such as feed rate, temperature

and humidity.

Following the completion of these initial phases of

the infrastructure setup, a significant research contribution,

it is felt, lies in the application of machine learning (ML)

techniques to the hybrid system�s closed-loop experiments.

These techniques may be applied in various areas, such

as the spike-sorting process (dimensionality reduction of

spike data profiles, clustering of neuronal units), the mapping

process between sensory data and culture stimulation as

well as the mapping between the culture activity and motor

commands, and the application of learning techniques on

the controlled electrical stimulation of the culture, in an

attempt to exploit the cultured networks� computational

capacity.

6. CONCLUSIONS

At this stage it can be concluded that a closed-loop

adaptive feedback system involving a (physical) mobile

robotic platform and a cultured neuronal network using

MEA using electrophysiological methods has been successfully

realised. This enables real-time bi-directional communication

between the culture and the robot. A culture being employed

consists of approximately 100,000 neurons, although at

any one time, only a small proportion of these neurons

are actively firing.

Initial trial runs were carried out with the live cultures

and comparisons made with ideal model performance. It

has been observed that the culture on many occasions

responds as expected, on other occasions, however, it

does not, and in some cases, it provides a motor signal

when it is not expected to do so.

In these circumstances, the mere concept of an ideal

response is difficult to address as a biological network is

involved, and it should perhaps not be seen as a negative

when the culture does not adhere to or achieve such an

ideal. As one still knows very little about the fundamental

neuronal processes that give rise to meaningful behaviours,

particularly where learning is involved, one should perhaps

retain more of an open mind as to a culture�s performance.

The culture preparation techniques employed are constantly

being refined and have lead to stable cultures that exhibit

both spontaneous and induced spiking/bursting activities

which develops inline with the findings of other groups

(e.g., by Chiappalone15, et al. and Potter22 and DeMarse).

A stable robotic infrastructure has also been set up,

tested and is in place for future ML and culture behaviour

experiments. The embodiment module can be instantiated

via either a robotic hardware platform or as a software

simulation. The existing, successfully tested infrastructure

could be easily modified to investigate culture-mediated

control of a wide array of alternative robotic devices, such

as a robot head, an autonomous vehicle,  robotic arms/

grippers, mobile robot swarms, and multi-legged walkers.

In terms of robotics, this study and others like it,

show that a robot can have merely a biological brain to

make decisions. The 100,000 neuron basis is merely due

to present-day limitations - clearly this will increase. This

whole area of research is therefore a rapidly expanding one

as the range of sensory inputs is expanded and the number

of cultured neurons encapsulated rises. The potential capabilities

of such robots, including the range of tasks they can

perform, therefore needs to be investigated.

7. FUTURE  RESEARCH

There are a number of ways in which the current research

programme can be taken forward. Firstly the Miabot can

be extended to include additional sensory devices such

as extra sonar arrays, audio input, mobile cameras and

other range-finding hardware such as an onboard infra red

sensor. This could provide an opportunity to investigate

sensory fusion in the culture and to perform �behavioural�

experiments, possibly even attempting to demonstrate links

between behaviour and culture plasticity, along the lines

of Karniel29, et al. as different sensory inputs are marshalled.

Provision of a powered-floor for the robot�s corral is

also important, to provide the robot with relative autonomy

for a longer period of time while the suggested machine

learning techniques are applied and the culture�s behavioural

responses are monitored. For this, the Miabot must be

adapted to operate on an in-house powered floor, providing

the robot with an unlimited power supply. This feature,

which is based on an original design for displays in museums30,

is necessary since machine learning and culture behaviour

tests will be carried out for many minutes and even hours

at a time. It is worth pointing out however that the robotic

simulation provides an alternative solution to continuous

operation of the closed loop avoiding current hardware

limitations.

Current hard-coded mapping between the robot goals

and the culture input/output relationships can be extended

using machine learning techniques to reduce, or even eliminate,

the need for an a priori choice of the mapping. In particular,

modern reinforcement learning techniques can be applied

to various mobile robot tasks such as wall following and

maze navigation, in an attempt to provide a formal framework

within which the actual learning capabilities of the neuronal

culture will be introduced.

To increase the effectiveness of culture training beyond

the ~30 per cent success rate seen in previous work, biological

experiments are currently being performed to identify

physiological features which may play a role in cellular

correlates of learning processes. These experiments also

investigate possible methods of inducing an appropriate

receptive state in the culture that may allow greater control

over its processing abilities and the formation of memories26

involving specific network activity changes (switch between

input and feedback states), which may allow identification

of the function of given network ensembles. A further area
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of research is to identify the most suitable stage of development

at which to place cultures within the closed-loop and whether

a less pathological (epileptiform), and therefore more effectively

manipulated, state of activity is achieved when cultures

are allowed to undergo initial development in the presence

of sensory input.

Also, progression of the project requires benchmarking

both the machine learning techniques and the results obtained

by the culture. To achieve this, it is necessary to develop

a model of the cultured neural network based on experimental

data about culture density and activity. This behavioural

evaluation model is likely to provide insight into the workings

of the neuronal network by comparing the model�s and

culture�s performance. In particular, there is hope to gain

a better understanding of the contribution of culture plasticity

and learning capacity to the observed control proficiency.
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