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Controllable quantum point junction on the surface
of an antiferromagnetic topological insulator
Nicodemos Varnava 1✉, Justin H. Wilson 1, J. H. Pixley 1,2,3 & David Vanderbilt 1

Engineering and manipulation of unidirectional channels has been achieved in quantum Hall

systems, leading to the construction of electron interferometers and proposals for low-power

electronics and quantum information science applications. However, to fully control the

mixing and interference of edge-state wave functions, one needs stable and tunable junctions.

Encouraged by recent material candidates, here we propose to achieve this using an anti-

ferromagnetic topological insulator that supports two distinct types of gapless unidirectional

channels, one from antiferromagnetic domain walls and the other from single-height steps.

Their distinct geometric nature allows them to intersect robustly to form quantum point

junctions, which then enables their control by magnetic and electrostatic local probes. We

show how the existence of stable and tunable junctions, the intrinsic magnetism and the

potential for higher-temperature performance make antiferromagnetic topological insulators

a promising platform for electron quantum optics and microelectronic applications.
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S
urface and edge-state engineering of topological materials
offers great promise for future electronic devices. Owing to
the topological properties of the bulk of the material, surface

states emerge that are protected from elastic and inelastic scat-
tering. In particular, the community realized early on that
topologically-protected chiral (one-way) or helical (two-way)
edge states provide dissipationless “quantum wires”1,2 with
potential applications in sensor, low-power electronics, and
quantum information technologies. A crucial part of engineering
such wires requires robust and tunable junctions between edge
states.

Strikingly, chiral edge states provide directional control of
carrier propagation and (topological) protection against impurity
backscattering. This was first demonstrated for quantum Hall
edge states in 2D electron gases, but these systems require very
low temperature and external magnetic fields. A potentially more
practical approach to engineering chiral edge states is at the
boundary of a 2D quantum anomalous Hall or “Chern”
insulator3. Experimentally this was first realized in thin films of
magnetically doped topological insulators (TI)4. Unfortunately
the inhomogeneity of the magnetic dopants leads to inevitable
disorder5 and as a result the quantized response is observed at
much lower temperatures than the magnetic gap and Curie
temperature allow; to date the state of the art is around ~1K6–9.
More recently, the discovery of the quantum anomalous Hall
effect in twisted bilayer graphene10,11, MnBi2Te412 and
MnBi2Te4/Bi2Te3 heterostructures13 holds promise for the reali-
zation of topologically protected chiral channels at higher tem-
peratures, due in part to the absence of magnetic-impurity
disorder14.

In their bulk version, the MnBi2Te4 family of materials belongs
to a class of 3D materials that have been variously described as
intrinsic magnetic topological insulators12,15–17, axion
insulators18–20 and second-order topological insulators21–23. The
essential idea is to identify a material whose magnetic symmetry
group enforces20 a quantized bulk axion coupling24,25 of θ= π, as
in an ordinary 3D TI, but does not enforce the presence of gapless
surface states. Instead, gapped surfaces can appear naturally on
such materials. When they do, they exhibit a half-quantized
surface anomalous Hall conductivity, i.e., an odd integer times e2/
2h, whose sign is determined by details of the magnetic order at
the terminating surface. Thus, manipulation of the surface ter-
mination and/or magnetic order in one region of the surface
relative to a neighboring patch, or on one facet relative to another
that meets it at a “hinge,” can give rise to a chiral edge channel at
the boundary between these patches or facets19.

In this work, we develop a theoretical prescription for the
creation and manipulation of chiral edge channels on the surface
of an antiferromagnetic (AFM) TI. This class of materials was
introduced theoretically by Mong and Moore26 and has recently
become the focus of intense research with various candidates such
as MnBi2Te427, MnBi4Te728, EuIn2As229 and NpBi30 appearing in
the literature. Motivated by these recent developments and the
fact that there is in principle no reason why both the bulk and
surface gaps could not be on the order of hundreds of meV,
allowing for potential high temperature device operation for
certain applications, we propose and explore the properties of a
robust and controllable quantum point junction (QPJ) on the
surface of an AFM TI.

Figure 1a, b shows a prototypical spin arrangement in an AFM
TI. The magnetic ordering is A-type AFM, i.e., with magnetiza-
tion uniform in-plane but alternating from plane to plane along
the stacking direction, which we take to be along ẑ. As described
in Ref. 26, each individual layer can be thought of as adiabatically
connected to a 2D Chern insulator, with the sign of the Chern
number alternating from layer to layer. The sign of the surface

anomalous Hall conductivity of ±e2/2h is thus determined by the
magnetic orientation of the last layer at the surface. As a result,
two kinds of 1D chiral channels can occur at the surface. As
shown in Fig. 1a, the emergence of a bulk AFM domain wall at
the surface reverses the sign of the anomalous Hall conductivity
on either side of the resulting line defect, which therefore carries a
topologically protected chiral channel we refer to as a domain-
wall channel. Alternatively, even if no bulk AFM domain walls are
present, a single-height step can occur on the surface, as shown in
Fig. 1b. If it does, it also marks a sign reversal of the anomalous
Hall conductivity when crossing the step, and thus carries a chiral
edge channel as well. We will refer to this as a step channel.

Figure 1c, d shows the manifestation of the domain-wall and
step channel in the surface band structure as described in the
context of a tight-binding model used throughout this work (see
“Methods”). The presence of either of these defects results in 1D
linear dispersions in the otherwise gapped bulk and surface
spectrum of the AFM TI. The states that comprise the chiral
bands are exponentially localized in the vicinity of the channel,
and host 1D massless Dirac fermions.

The opportunity opened by the presence of two different kinds
of 1D chiral channels at the surface is that these can be made to
intersect, as shown in Fig. 2a, and such intersections are expected
to remain thermodynamically stable. In contrast, as illustrated in
Fig. 2b, an intersection between two surface steps can easily
evolve via a pinch-off event into a configuration in which an
isthmus of constant surface height separates the steps; indeed, the
width of such an isthmus will tend to grow due to the line ten-
sions of the steps, and the quantum junction will be removed. A
similar mechanism affects the intersection of two domain walls31.
In fact, setups like those depicted in the inset of Fig. 2b, where
two chiral channels come in close proximity, have long been used
in quantum Hall systems to realize electron interferometers32,33.
These constructions, known as quantum point contacts
(QPCs)34,35, enable tunneling between channels, and were
recently used to observe the braiding of anyons36.

Our proposal aims to highlight a robust way to construct
intersecting chiral channels by making use of a material system
that is on the verge of discovery. In fact, these junctions were
recently observed to appear naturally at the surface of the putative
AFM TI MnBi2Te437. Moreover, we show that a QPJ can be
controlled by scanning tips of the kind used in scanning tun-
neling microscopy (STM) and related methods. Here, we are
interested in local probes that affect the magnetic moments and
electrostatic potential, which we refer to as magnetic and elec-
trostatic STM tips respectively. We explore the properties of the
QPJ by constructing the Hamiltonian associated with the system
depicted in Fig. 2a and performing dynamic wave-packet (WP)
simulations that allow us to extract the S-matrix of the junction.
Remarkably, we find that magnetic and electrostatic STM tips in
proximity with the junction can, in principle, be used to realize
any unitary S-matrix. In addition, we show that the effect of
symmetry breaking terms and weak disorder can be “gauged
away” using the two tips.

The stability and tunability of the proposed junction, together
with the intrinsic benefits of a magnetic topological material, can
be utilized in applications involving unidirectional channels, such
as electron interferometry, low-power electronics and quantum
information processing.

Results
Extracting the S matrix. We begin by considering the WP
dynamics at the surface of an AFM TI. Figure 3a shows the
calculated time evolution of a WP on a single domain-wall
channel, while Fig. 3b, that of a WP in the presence of the QPJ in
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Fig. 2a (see also Supplementary Movies for time-evolution ani-
mations). In both cases the dissipationless channels are protected
from back-scattering by the insulating bulk and surface gaps. The
wave function of the WP is thus exponentially confined to the
vicinity of the one-dimensional channel, and it travels with a
constant group velocity along the channel. In Fig. 3b, a WP enters
along the domain-wall channel, gets split by the QPJ, and then
the two components travel away from the QPJ along the step
channels. Later we shall consider configurations in which multi-
ple consecutive scattering events occur.

To understand the behaviors observed above, we note that the
wave function of a WP propagating along a single domain-wall
channel in direction y, as in Fig. 3a, can be well approximated, see
Supplementary Methods, as

Ψdw
στ ðx; y; z; tÞ ¼ χdwστ ðx; zÞf ðy � y0 � vdwtÞ : ð1Þ

Here χdwστ ðx; zÞ captures the transverse shape (x, z) and spin-
orbital character (σ, τ indices respectively) of the WP, see
Supplementary Methods, while f(y) is the envelope function of

the WP, which we take to be a Gaussian. The WP is launched
from position y0 at time t= 0 and travels with group velocity vdw
(which is set by the surface state dispersion in Fig. 1c). In
modeling at this level we neglect spreading of the WP, which we
find to be negligible in our simulations. Similar considerations
apply to the propagation of a WP on a step along x traveling with
group velocity vst (that is set by the surface state dispersion in
Fig. 1d).

We now consider the scattering event depicted in Fig. 3b,
where an incoming WP splits after encountering the QPJ. We will
use unprimed labels a and b to refer to the two incoming domain-
wall channels of Junction 1, as in Fig. 3c. Note that the extra
junctions are the result of in-plane periodic boundary conditions.
The incoming initial conditions are specified by amplitudes
ϕa= 1 and ϕb= 0. Now let t1 indicate a time after the scattering
through Junction 1 is complete, but before Junction 2 is
encountered. We label the two outgoing step channels as a0 and
b0, adopting once and for all the arbitrary convention that a ! a0

and b ! b0 result from taking left turns, as shown in Fig. 3c. As
illustrated in Fig. 3b, one component of the WP moves to the
right and the other to the left, with velocities vst and−vst
respectively. At time t1 both will be centered at a distance x1
relative to the junction, so in general we expect to find

Ψst
στðx; y; z; t1Þ ¼ ϕa0~χ

st
στðy; zÞf ðx þ x1Þ

þ ϕb0χ
st
στðy; zÞf ðx � x1Þ :

ð2Þ

Here ϕa0 and ϕb0 are the amplitudes (magnitude and phase)
describing scattering from incoming channel a into channels a0

and b0 respectively, and ~χst is the time-reversed partner of χst.
These expectations are well reproduced in our full numerical
calculations which therefore allow us to extract the amplitudes ϕa0
and ϕb0 .

Similar calculations, where the incident WP approaches
Junction 1 along the �ŷ direction on channel b, allow us to
extract the corresponding amplitudes that result for initial
conditions of ϕa= 0 and ϕb = 1. Thus, we can model a combined

Fig. 1 Types of chiral channels at surface of an A-type antiferromagnetic topological insulator (AFM TI). Depiction of the chiral channel (blue cylinder)

due to (a), a bulk domain wall (b), a surface step. Surface band structures along (001) in the presence of (c), a bulk domain wall (d), a surface step. The

projection of the states on the chiral channels (blue cylinder) in (a), (b), are also shown (blue markers) to illustrate the localization of the massless Dirac

fermions that disperse linearly along the channel direction at low energy with velocities (c), vdw and (d), vst. The description of the model Hamiltonian can

be found in “Methods”. Energies are expressed in terms of the onsite energy m in Eq. (8).

Fig. 2 Stable and unstable junctions. a The intersection of a domain-wall

channel with a step channel results in a thermodynamically stable junction,

i.e., small surface deformations can only move the junction but not remove

it. b The intersection of two step channels (or two domain-wall channels) is

unstable. The inset shows how small deformations remove the junction.

Blue arrows indicate the direction of propagation on the chiral channels,

while orange and yellow surfaces indicate whether the anomalous Hall

conductivity is ± e2/2h respectively.
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scattering event via

ϕa0

ϕb0

� �

¼ S
ϕa
ϕb

� �

ð3Þ

where the elements of the S-matrix are determined by the four
complex amplitudes discussed above.

In this way, the evolution of the system of propagating WPs is
mapped onto that of a two-level quantum system, so that it is
enough to restrict S to be an SU(2) matrix. The characterization
of a junction by such an S-matrix is a central element of our
theory. It is illustrative to represent the initial or final state as a
point on the Bloch sphere,

ϕa
ϕb

� �

¼
cosðθ=2Þ

eiϕ sinðθ=2Þ

� �

; ð4Þ

where θ determines the relative WP magnitude on channels a and
b and ϕ their phase difference, as illustrated in Fig. 3d.

Each junction scattering event can then be described by the
action of the corresponding junction S-matrix on the spinor
representation of the channel states, regarded as a qubit state, and
the result of consecutive QPJ scattering events, as in Fig. 3e,
corresponds to the action of consecutive gates acting on these
qubits as illustrated in Fig. 3f.

Let us now return to a more specific discussion of our full time-
evolution calculations, and our analysis of them in terms of the
framework sketched above. Figure 3e shows the time evolution of
a WP initiated on channel a. The WP propagates toward and
then scatters at Junction 1, splitting into two equal parts. Later the
two WPs pass through Junction 2, interfering destructively and
constructively on outgoing channels a0 and b0 respectively. As
promised, we can describe the time evolution of the WP
configuration as a qubit passing through two gates. Indeed, using
the convention of Fig. 3c, the calculated S matrix of Junction 1
and 2 corresponds to the Hadamard gate

S1 ¼ S2 ¼
1
ffiffiffi

2
p

1 �1

1 1

� �

; ð5Þ

so that the final state is related to the initial one by applying the
Hadamard gate twice. Geometrically the S matrix expressed as

S ¼ Rn̂ðφÞ ¼ e�i
φ
2n̂�σ ð6Þ

describes a qubit rotation by an angle φ through an axis n̂ and
σ= (σx, σy, σz) is a vector of Pauli matrices. Since
S1 ¼ S2 ¼ Rŷðπ=2Þ, each application rotates the qubit by 90∘

around the ŷ axis of the Bloch sphere, resulting in an overall
reversal of the pseudospin as shown in Fig. 3f.

Controlling the S matrix. Before explaining how the control of
the S matrix is achieved, it is illustrative to break down the action
of S into three stages. First we have the propagation along the
incoming channels; since these cannot scatter into one another,
this is represented by a diagonal matrix Sdw. Then there is the
scattering Spj at the QPJ itself, followed by another channel-
diagonal propagation Sst on the outgoing step channels.
The overall S matrix can then be written in terms of the Pauli
matrices as

S ¼ SstSpjSdw ¼ e�iγσz=2e�iβσy=2e�iασz=2; ð7Þ

where Spj is expressed as a real orthogonal matrix because the
phases can be absorbed into Sdw and Sst. Remarkably, (α, β, γ) are
exactly the three Euler angles that can be used to express any SU
(2) matrix. Thus control over the three Euler angles results in a
universally programmable gate, which we now demonstrate.

To control the S matrix, we will use two local probes in the
vicinity of the junction. The first one, which we refer to as a
magnetic STM tip, affects the local magnetic moments, and as we
shall see, controls the magnitudes of the S matrix. The second
probe is an electrostatic STM tip modifying the site energies
under the tip, thus controlling the phases of the S matrix. The
effect of the magnetic tip is controlled through the coefficient VZ,
and that of the electrostatic tip through VG, both acting in the
local vicinity of the junction. For more details on how this is
modeled, see Eq. (9) in “Methods”.

Fig. 3 Effective description of wave packet (WP) time evolution. a Snapshots of the WP showing the propagation on the domain-wall channel. b A WP

scatters at Junction 1 and splits into two spatially separated outgoing components of the wavefunction. c Channel labeling convention for Junction 1 and 2. d

Qubit representation of a WP state on the Bloch sphere. e The initial WP splits after encountering Junction 1, the two components then meet at Junction 2,

interfering destructively on channel a0 and constructively on channel b0. f Qubit representation of the time evolution in (e). WP plots in (a), (b), (e), are

calculated from the (001)-projected probability densities at different times. Time-evolution animations of the WPs in (a), (e) are shown Supplementary

Movies 1, 2.
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Magnitude control. We set VG= 0, leaving the electric potential
constant throughout the crystal so that no extra phase evolution
occurs during the propagation (α= γ= 0), and we vary the
strength of the magnetic tip VZ. This affects the left-right mag-

nitude splitting, i.e., S ¼ RŷðβÞ ¼ e�iβσy=2 in Eq. (7), with β= β

(VZ). To understand the mechanism behind the magnitude con-
trol, first consider the extreme scenario depicted in Fig. 4a. Here a
strong magnetic STM tip has polarized the surface magnetization
in the vicinity of the junction (orange circular region), forcing the
anomalous Hall conductivity to be uniformly+ e2/2h in that area
(see “Methods”). This essentially “removes” the junction, and the
WP is completely transferred from the domain-wall (channel a) to
the edge of the step (channel b0), so that S1 ¼ RŷðπÞ. An example

of partial polarization, is shown in Fig. 4b, while the results of
tuning VZ over the entire range of tip strength is shown in Fig. 4c,
where we plot the numerically calculated value of cos2ðβ=2Þ, which
represents the asymmetry between left- and right-scattered WPs,
as a function of VZ. This demonstrates the universal control of the
Euler angle β using a magnetic STM tip. In the Supplementary
Discussion we consider a strong magnetic STM tip that decouples
the channels inducing a QPC and we vary the area of the region
applied to analyze tunneling between the channels.

Phase control. To illustrate the phase control, we set VZ= 0, fix
VG to a non-zero value (see Eq. (9) in “Methods”), and control
the position of the electrostatic tip. Then Sj ¼ RẑðγÞRŷðπ=2ÞRẑðαÞ,
where α and γ are determined by the position (x0, y0) of the tip
relative to the junction, as described by Eq. (10) (see “Methods”).

The electrostatic tip is depicted as a shaded square with
origin (x0, y0) in Fig. 4d, e. In fact, our choice of ϕa= 1 and
ϕb= 0 simplifies the situation, since RẑðαÞ just corresponds to an
overall phase, which is not of interest. Physically, the WP splits
equally at the first junction (β= π/2), and the electrostatic STM
tip, corresponding to the second term in Eq. (9), is then used to
control the relative phases of the outgoing WPs via the
RẑðγÞ term.

In Fig. 4d–f, we illustrate the phase control by applying the
electrostatic gate on Junction 1. To see the effects of the phase
manipulation, we consider the interference that conveniently
occurs when the WPs meet again (due to periodic boundary
conditions in x and y) at Junction 2. In Fig. 4d, the electrostatic
tip is centered four unit cells to the right at (x0, y0)= (4, 0), which
approximately makes γ= π/2 so that S1 ¼ Rẑðπ=2ÞRŷðπ=2Þ, while
S2 ¼ Rŷðπ=2Þ as before. After scattering at Junction 1 the

outgoing WP, whose state corresponds to a vector pointing along
the+y direction of the Bloch sphere, becomes the incoming WP
at Junction 2. Since Junction 2 acts as a rotation around the y-
axis, it does not affect the qubit state of the WP. Similarly, in
Fig. 4e, we set (x0, y0)= (8, 0), so that after encountering Junction
1 the qubit state points along �x̂, and after Junction 2 it returns
to its initial þẑ state. In Fig. 4f, we present a numerical
calculation of γ versus x0. This is done by calculating the phase of
the WPs just after it scatters off Junction 1. We find a linear
behavior as expected from Eq. (10).

In summary, using the two STM tips we can control α, β, and γ
independently in Eq. (7), so that the junction can be made to
implement any SU(2) gate.

Fig. 4 Magnitude and phase manipulation of the quantum point junction. a The magnetic tip with VZ= 2mZ in Eq. (9) (see “Methods”), has polarized the

surface spins in a circular region centered at the junction resulting in two uncoupled channels. b Partially polarized region with VZ= 0.4mZ causes unequal

splitting of the wave packet (WP). c Numerical calculation of the magnitude splitting cos2β=2 as a function of VZ. Each value corresponds to the integral of

∣Ψ(t1)∣
2 on channel a0 of Junction 1. d, e Applying the electrostatic tip with VG= 0.6 in Eq. (9), at Junction 1 induces a phase difference between the

outgoing WPs which then affects how they interfere at Junction 2. d The center of the rectangular region ΩG is chosen so that γ= π/2. e, Same but we set

γ= πmaking the WPs constructively (destructively) interfere on channel a(b) of Junction 2. f Numerical calculation of the angle γ from the relative phase of

the outgoing WPs at t1 as a function of x0. The phases of the outgoing WPs are determined from the inner product between Ψ(t1) in the presence and

absence of the phase gate. Time-evolution animations of the scattering events in (a), (b), (d), (e), are shown in Supplementary Movies 3,4,5,6.
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Symmetries. Our QPJ has some features that even though do not
effect our main conclusions, they should nevertheless not be
expected in any real application. For example, the QPJ naturally
implements the Hadamard gate and the group velocities of the
domain-wall and step channel are approximately equal Fig. 1c, d.
In the former case, this behavior is enforced by the geometry of
the junction and the mirror symmetries Mx and My of the bulk
Hamiltonian. In the latter case, the velocity anisotropy is small
due to the simplicity of the model. In the Supplementary Dis-
cussion we introduce mirror and particle-hole symmetry breaking
terms to remove these non-essential features and show that they
do not affect the ability of our protocol to define and control the S
matrix.

Stability to disorder. A significant advantage of the QPJ design
presented here is that the chiral channels on the domain walls and
steps cannot back-scatter and are therefore expected to be robust
against the presence of weak disorder (i.e., such that the average
bulk and surface gaps remains open). We demonstrate this
topological protection of the QPJ by introducing disorder into
our model via a short-ranged random potential that is sampled
from a Gaussian distribution. Although the qubit gets dephased
in a different way for each realization of disorder, as we
demonstrate in the Supplementary Discussion, the electrostatic
tip can be used to recalibrate the QPJ. This allows us to remove
the random offsets arising from the specific impurity configura-
tion, thus enabling the control of the junction even in the pre-
sence of weak disorder.

Discussion
In this work, we propose a versatile platform for performing
electron quantum optics38,39. It is not hard to see how existing
constructions, such as the Mach-Zehnder electron
interferometer33, can be implemented directly on the surface of
an AFM TI. Figure 5a shows a domain-wall loop channel inter-
secting a step channel. In this case, the interferometer works by
splitting the incoming current (that flows on the step channel) in
two parts that encircle the area defined by the domain-wall loop
and meet at the second QPJ where they interfere. An Aharonov-
Bohm phase can be introduced by threading the loop with a
magnetic flux. In this way, varying the external magnetic field
results in oscillations of the output conductance. The ability to
control the S matrix of the QPJs means they can be calibrated so
that the interferometer can be used as a sensitive sensor.

In the quantum-Hall regime of 2D electron gases, the long
edge-state coherence length and the on-demand creation of
indistinguishable, single-electron WPs40–44 have inspired

ambitious proposals that consider electron interferometers as
platforms for quantum information processing45–47. In this
approach, electronic flying qubits48 – another prominent scheme
is based on photonic flying qubits49—are subjected to quantum
operations while they are being coherently transferred, providing
control over qubit separation and non-local entanglement. In
contrast to photons, electrons are subject to Coulomb interac-
tions, making them vulnerable to dephasing but, at the same time,
allowing control of the entanglement strength and manipulation
of the phase50.

In the context of quantum Hall systems, entangling devices
have been constructed51 by Coulomb-coupling two Mach-
Zehnder interferometers to induce a relative phase ϕ between
the WPs of the two coupled channels. These devices can be used
as electronic quantum erasers51,52 or even as entangling quantum
gates, i.e., controlled phase gates46. In fact, since we have shown
that QPJs can implement any single-qubit gate, a gate such as that
in Fig. 5b, can be adopted to perform the two-qubit entanglement
for a universal set of quantum gates. We also remark that chiral
Majorana fermions, first seen in magnetic TI-superconductor
structures53 and more recently in topological
superconductors54–56, are the superconducting analog of the
chiral fermions discussed here. It has been proposed that topo-
logical quantum computing can be achieved using WPs propa-
gating on chiral Majorana channels57. An interesting question is
whether analogs of robust QPJs can be constructed in the
superconducting case.

Finally, we comment on issues of temperature of operation and
decoherence. In one sense, our scheme is robust to higher tem-
peratures than quantum Hall systems; we only require the
operating temperature to be small compared to the Neel tem-
perature and the band gap in which the chiral mode is propa-
gating. For example, surface Dirac gaps of up to 100 meV have
recently been observed in ARPES measurements of Sb-doped
MnBi2Te458. While these considerations indicate that operation at
tens of Kelvins should be possible, we are keenly aware that any
application that is sensitive to decoherence will require lower
temperatures, perhaps comparable to those needed for the
quantum Hall platform, to avoid dephasing due to electron-
electron, electron-phonon, and electron-magnon interactions.

In the quantum Hall context, the coherence length lϕ was
determined by tracking the appearance of quantum interference
in Mach-Zehnder interferometers59,60. These experiments
showed that lϕ scales inversely with temperature, with the
dominant dephasing mechanism attributed to electron-electron
interactions between adjacent edge channels while short-range
and long-range Coulomb interactions within each channel are
sub-leading61. At low temperatures, the coherence length was

Fig. 5 Illustrations of device implementations at the surface of an antiferromagnetic topological insulator. a A Mach-Zehnder electron interferometer

consisting of a domain-wall channel loop intersected by a step. Arrows show the direction of propagation while trapezoids represent detectors. b Two-

qubit entanglement can be achieved by coupling two of the interferometers through the Coulomb interaction to realize a controlled phase-shift gate.
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even found to reach macroscopic scales (lϕ= 250 μm)62. Our
work points to the need to characterize chiral edge channels on
AFM TIs in a similar way. An implementation of the Mach-
Zehnder interferometer, as in Fig. 5a, would provide a means of
quantifying the dephasing mechanisms in magnetic topological
materials, potentially opening a path to utilizing their unique
properties in future quantum information science applications.

Methods
Model Hamiltonian. We consider an adaptation of a simple four-band tight-
binding model proposed by Bernevig et al.63,64 to describe systems exhibiting a
topological phase transition mediated by a single band inversion at Γ. The sim-
plicity of the model makes detailed calculations practical even for large systems.
The model is written in terms of two spinful orbitals per lattice site and takes the
form

H0 ¼ m∑
‘
cy‘ τ

zc‘ þ
t

2
∑
0

‘‘0
cy‘ τ

zc‘0

þ�iλ

2
∑
0

‘‘0
c
y
‘τ

xn̂‘‘0 � σc‘0 þmZ ∑
‘
ð�Þ‘z cy‘σzc‘ :

ð8Þ

Here ℓ labels a lattice site Rℓ= (ℓx, ℓy, ℓz) on the unit cubic lattice, ∑0
‘‘0 indicates a

sum over nearest neighbor sites, and n̂
y
‘‘0 is the nearest neighbor unit vector. We

have adopted an implied sum notation for the orbital and spin degrees of freedom,

e.g., cy‘ τ
μσνcy‘0 ¼ ∑ij;stc

y
‘isτ

μ
ijσ

ν

stc
y
‘0 jt , where τ and σ are Pauli matrices for orbital and

spin degrees of freedom respectively, and c
y
‘is creates an electron on site ℓ in orbital i

with spin s.
The first three terms in Eq. (8) correspond to the model of Bernevig et al.63,64

for a strong topological insulator, often written in k-space as
HSTIðkÞ ¼ mτz þ∑i¼x;y;zt cosðkiÞτz þ λ sinðkiÞτxσ i. In the last term in Eq. (8), mZ

is the strength of the staggered Zeeman field corresponding to A-type (layered)
AFM order, doubling the unit cell and converting the model to represent an AFM
topological insulator. Time reversal itself is now broken, but time reversal followed
by a unit translation along ẑ is a good symmetry. For our choice of parameters, see
Supplementary Methods, the model is in the topological phase, with a formal
magnetoelectric coupling of (θ/2π)(e2/h) with axion coupling θ= π. As a result,
ẑ-normal surfaces are naturally gapped and carry an anomalous Hall conductivity
of ±e2/2h.

Wave-packet construction. We construct the initial WPs in the space of
momentum k∥ along the direction of propagation. We calculate the surface band
structure for a supercell Hamiltonian Hdw or Hst containing a domain wall or step,
whose presence results in mid-gap bands localized on the conducting channels in
the otherwise gapped surface, as shown in Fig. 1c,d, respectively. Note that tech-
nically each slab contains two domain walls and two steps. In the domain wall case
the configuration as a whole is invariant under time reversal times inversion, so the
bands shown are Kramers degenerate.

Next we construct the WP by making a quantum superposition of channel-
localized solutions according to a k∥-space envelope function that we take to be a
Gaussian. This results in a WP that is localized in all three real space dimensions.
This is then used as the initial wave function Ψ(0) of the time-evolution problem
for the much larger system that includes the QPJ and is described by the
Hamiltonian HQPJ. The width of the WP is chosen narrow enough in momentum
space so that it only samples the linear part of the dispersion in Fig. 1c, d. In this
way we avoid fast spreading of the WP in real space. We have defined HQPJ as the
model Hamiltonian H0 in the presence of an antiferromagnetic domain wall and a
single-height step that intersect in the center of the surface. A more detailed
description of the WP construction can be found in the Supplementary Methods.

Wave-packet dynamics. To avoid finite-size effects, we require the system size L
to be much larger than the extent of the WPs along the channel. When both a
domain wall and step are present, momentum is no longer a good quantum
number in any direction, so we compute the time evolution entirely in real space.
This is done using Chebyshev series expansion methods65 applied to the time-
evolution operator e−iHt. We use slabs of size 160 × 160 in-plane and 16 cells thick,
enough to minimize finite-size effects, and adopt a Chebyshev expansion order of
NC= 211 so that we can time evolve the state accurately over the needed time
intervals.

STM tip modeling. To model the effects of the magnetic and electrostatic STM tips
we extend the QPJ Hamiltonian (HQPJ) with two spatially dependent terms

~HQPJ ¼ HQPJ þ VZ ∑
‘2ΩZ

cy‘ σ
zc‘ þ VG ∑

‘2ΩG

cy‘ c‘ ; ð9Þ

where the second term modifies the Zeeman interaction in a region ΩZ and the
third term shifts the energy of all orbitals and spins uniformly inside a region ΩG.

For a positive VZ in Eq. (9), we choose the region ΩZ such that it restricts the
sum to surface orbitals that lie within a radius r of the tip, and that already
experience a negative Zeeman field from the bulk Hamiltonian of Eq. (8). Thus, VZ

=mZ is just enough to remove the Zeeman field from these sites, and VZ= 2mZ

makes the surface-layer Zeeman field equal on both sides of the domain wall or
step, as in Fig. 4a. We can then tune between these extremes by taking VZ∈ [0,
2mZ], thus modeling cases in which the magnetic tip has only partially reversed the
surface field. Similarly, for VZ < 0, ΩZ is chosen such that the second term in Eq. (9)
is restricted to surface orbitals experiencing a positive Zeeman field in the bulk
Hamiltonian.

The region of influence of the electrostatic tip, ΩG in Eq. (9), is defined to be a
rectangle centered at (x0, y0) relative to the QPJ and one unit cell deep, as shown by
the gray shading in Fig. 4d. A WP propagating for a distance ℓ along any domain-
wall or step channel lying inside the quantum well defined by ΩG acquires an
additional phase proportional to ℓΔk, where Δk is the shift of the Fermi wavevector
of the channel. In the approximation of linear dispersion, we have Δk= VG/ℏυF,
where VG corresponds to a local gate voltage and υF is the Fermi velocity (equal to
υdw and υst for domain-wall and step channels respectively). Thus, the off-centering
of ΩG defined by (x0, y0) allows us to control the travel distances ℓ along each of the
four “legs” near the junction, introducing extra phases that are given by

α ¼ �Δkdwy0; γ ¼ �Δkstx0 ð10Þ
in Eq. (7).

Data availability
The data sets generated and/or analyzed during the current study are available from the

corresponding author on reasonable request.

Code availability
The model system and wave packets were constructed the open-source code package

PythTB http://www.physics.rutgers.edu/pythtb/. The code used to perform wave-packet

dynamics is available upon request.
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