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Abstract

The discovery of chemical reactions is an inherently unpredictable and time-consuming process1. 

An attractive alternative is to predict reactivity, although relevant approaches, such as computer-

aided reaction design, are still in their infancy. Reaction prediction based on high-level quantum 

chemical methods is complex, even for simple molecules. Although machine learning is powerful 

for data analysis, its applications in chemistry are still being developed6. Inspired by strategies 

based on chemists’ intuition, we propose that a reaction system controlled by a machine learning 

algorithm may be able to explore the space of chemical reactions quickly, especially if trained by 

an expert. Here we present an organic synthesis robot that can perform chemical reactions and 

analysis faster than they can be performed manually, as well as predict the reactivity of possible 

reagent combinations after conducting a small number of experiments, thus effectively navigating 

chemical reaction space. By using machine learning for decision making, enabled by binary 

encoding of the chemical inputs, the reactions can be assessed in real time using nuclear magnetic 

resonance and infrared spectroscopy. The machine learning system was able to predict the 

reactivity of about 1,000 reaction combinations with accuracy greater than 80 per cent after 

considering the outcomes of slightly over 10 per cent of the dataset. This approach was also used 

to calculate the reactivity of published datasets. Further, by using real-time data from our robot, 

these predictions were followed up manually by a chemist, leading to the discovery of four 

reactions.

Recent progress in automated chemistry, online analytics and real-time optimization 

suggests that it is possible to construct a robot that can autonomously explore chemical 

reactivity. With this in mind, we have designed, built and programmed a bespoke chemical-

handling robot comprising in-line spectroscopy, real-time data analysis and feedback 

mechanisms (Fig. 1a, b). The robot is configured to execute six experiments in parallel, 

allowing up to 36 experiments to be performed per day. To evaluate the outcome of a 

reaction, the robot is equipped with real-time sensors—a flow benchtop nuclear magnetic 

resonance (NMR) system, a mass spectrometer and an attenuated total-reflection infrared 

spectroscopy system—to record the spectra of the reaction mixtures. Then, it uses an 

algorithm to automatically classify the reaction mixtures as reactive or non-reactive, which 

is reported in binary form as zero or one, using a supported vector machine (SVM) with a 

linear kernel (Fig. 1c) model. This algorithm compares the spectrum of the starting materials 
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with that recorded by the robotic platform using NMR and infrared spectroscopy, registering 

differences as reactivity hits (see Fig. 1e for an example of a non-reactive mixture and Fig. 

1f for a reactive mixture). By training the model on 72 reactive and non-reactive mixtures 

manually classified by an expert chemist, the model could classify the reactivity of reaction 

mixtures with an accuracy of 86%, as determined by leave-one-out cross-validation. The 

machine learning algorithm used to explore the chemical space needs an automatically 

generated representation of the reactions. Because the representation of the data is crucial 

for machine learning, we created a reaction descriptor with a width corresponding to the 

number of starting materials in the pool of reagents and with bits representing reagents that 

were present in a given reaction mixture to one, similarly to one-hot encoding. Figure 1d 

shows example vector representations for the model substrate pool consisting aniline, 

benzaldehyde, acetyl chloride, phenylhydrazine and furan.

This approach to representing chemical space renders it structure-independent and allows 

the robotic platform to operate without prior knowledge about reactivity and chemical 

structure (Fig. 2). Initially, the chemical space was sampled by performing reactions with 

random combinations of starting materials, evaluating their reactivity as reactive or non-

reactive using the SVM model (to determine expected values of reactivity, Y) and encoding 

them in vector form (to obtain a training set, X). The process of random selection is 

important because the system avoids making prior assumptions about the possible reactivity 

of the reagents, ensuring that the initial run results are unknown. Even if the reaction 

mixture decomposes or is non-reactive, this information is still useful for the navigation of 

the chemical space, allowing real-time assessment of the reactivity of the starting materials. 

After the reaction database has been built, a linear discriminant analysis (LDA) model is 

trained on the data obtained to construct a model of the chemical space. The remaining 

reactions are then rated by predicting the probability of reactivity using the LDA model. 

This allows for autonomous decision making, and the reaction with the highest score is 

performed and analysed by the robotic system, thus avoiding many non-reactive 

combinations and speeding up the search. The loop is closed by updating the reaction 

database with the result of the last experiment from the platform and then by retraining the 

LDA model of the chemical space. The cycle is repeated until the required number of 

reactions is performed or until the whole space—defined by a pool of 18 reactive, 

structurally diverse molecules containing functional groups 1–18 (Extended Data Fig. 1)—is 

spanned. The chemical space constituted of two- and three-component reactions formed 

from the pool of starting materials, giving 969 possible experiments. When LDA was 

performed, the algorithm was able to clearly differentiate between reactive and non-reactive 

combinations of the starting materials (Fig. 3a). This means that the LDA can be useful for 

predicting new reactivity. By taking this approach, we showed that the robot can learn how 

reactive the starting materials are and efficiently navigate chemical space. For example, the 

reaction mixture composed from 2-aminothiazole (9), phenylacetyl chloride (15) and DBU 

(13) would be classified as highly reactive, a mixture of malononitrile (3), 

methylacetoacetate (18) and DBU (13) as moderately reactive and a mixture of nitromethane 

(4), benzofuroxan (7) and toluenesulfonylmethyl isocyanide (17) as non-reactive. These 

assignments agree with basic chemical intuition, demonstrating the predictive power of the 

Granda et al. Page 2

Nature. Author manuscript; available in PMC 2018 November 08.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



model (see Supplementary Information for the reactivity of all reactions according to the 

LDA projection).

To further test the learning ability of our robotic system, we performed simulations to 

calculate the number of reactive versus non-reactive combinations of the starting materials 

chosen by the algorithm during the exploration of the chemical space (Fig. 3b). In the initial 

stage, the space was randomly sampled, resulting in an equal number of reactive and non-

reactive combinations being chosen by the algorithm. After reaching the desired number of 

reactions, decisions were made using LDA, leading to a rapid increase in the number of 

reactive combinations being chosen by the algorithm. In the end, the algorithm identified the 

empty part of chemical space; that is, the last experiments that were chosen were non-

reactive (Fig. 3b). The accuracy of predicting the reactivity is shown in Fig. 3c, which shows 

that as chemical space is progressively searched, the accuracy of the prediction of the 

reactivity increases along with the confidence intervals. This demonstrates that the robot can 

‘self-learn’ using artificial intelligence by exploiting this reactivity-first approach. 

Additionally, the accuracy of the LDA classifier in predicting the reactivity of the reaction 

mixtures was determined as 86% ± 3% using five-fold cross-validation.

To further explore the predictive power of our approach, we also investigated the Suzuki–

Miyaura reaction space (see Fig. 4a) described recently by searching for reactions with the 

highest yield with our machine learning approach. To achieve this, we built a neural network 

(for details and implementation, see Supplementary Information) and used one-hot encoding 

to encode literature data for machine learning. We then used the neural network to explore 

the hypothesis that machine learning can be used for the prediction of yields. The dataset 

was partitioned into a training set (3,456 reactions), a validation set (576 reactions) and a 

test set (1,728 reactions) to train and validate the neural network. When the neural network 

was tested, it performed well, giving yields with a root-mean-square error of 11% for 1,728 

reactions (see Fig. 4b for the correlation between real and predicted yield). Having 

established that our approach can predict the yields of Suzuki–Miyaura reactions, we 

performed a simulation to explore this chemical space, as described above for our robot. 

Initially, the algorithm randomly chose 10% of the reaction space (576 reactions) and then 

the neural network was trained on these data. The unexplored parts of the reaction space 

were then rated by the machine learning model, the next batch of candidates with the best 

scores was selected, and the true yield was evaluated. The initial random guess had a mean 

yield of 39% and standard deviation (s.d.) of 27%, shown as a yellow bar in Fig. 4c. The 

green bars show subsequent batches of 100 reactions chosen by the machine learning 

algorithm. For example, the first batch of 100 reactions had a mean yield of 85% and s.d. of 

14%. The subsequent batches contained progressively fewer reactive starting materials, 

ultimately reaching non-reactive parts of the reaction space. This approach is valuable 

because it shows that by realizing only 10% of the total number of reactions, we can predict 

the outcomes of the remaining 90% without needing to carry out the experiments. Recently, 

the application of machine learning to yield prediction and the navigation of reaction space 

has been demonstrated for a Buchwald–Hartwig amination20 and deoxyfluorination with 

sulfonyl fluorides21, leading to similar conclusions.
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We used the reactive combinations discovered by the system to manually carry out reactions. 

For example, by analysing the spectra recorded by the robot, we identified several 

transformations (Fig. 5). For instance, analysis of the 1H NMR spectrum for the reaction of 

methyl propiolate (16) with benzofuroxan (7) and DBU (13) suggests an interesting 

transformation with new peaks visible in the chemical shift range δ = 4.0–5.0 p.p.m. and 

7.9–8.5 p.p.m. (Fig. 5b). Isolation and NMR analysis of the reaction product showed that it 

contained protons originating from all starting materials suggesting that the compound 

resulted from a multicomponent reaction. Analysis of the 1H–13C heteronuclear single-

quantum and multiple-bond correlation spectra determined the structure of product 19 (see 

Extended Data Fig. 2a for a proposed mechanism).

We explored the utility of this reaction by synthesizing a small library of related molecules. 

By using substituted alkynes, we were able to prepare six structurally diverse compounds in 

one step (Extended Data Fig. 2b). Reaction of DMAD (1), nitrosobenzene (14) and DMAP 

(12) led to a multicomponent reaction with formation of 2,5-dihydrofurane derivative 20 at a 

diastereometric ratio of 2.4:1 (trans:cis) (Fig. 5c, d). Figure 5e shows the formation of 

chlorocyanonitrone 21—an unreported class of nitrones—which was isolated as the product 

of the reaction between trichloroacetonitrile (5) and nitrosobenzene (14) in the presence of 

DBU (13) (structure of 21 confirmed by X-ray analysis). Finally, we also found reactivity 

between ketenes and DBU (Fig. 5f), indicated by the peaks at high molecular weight 

recorded by the platform for this reaction (mass-to-charge ratio, m/z = 506.9 and m/z = 657); 

see Fig. 5f. Under basic conditions, phenylacetyl chloride (15) is deprotonated by DBU, 

giving phenyl ketene, which reacts with DBU to give the polycyclic azepine derivative 22 

(Fig. 5f). The suggested mechanisms for these transformations are presented in Extended 

Data Fig. 2c, d.

To assess how unique these reactions are, we employed the Tanimoto similarity index, which 

compares starting materials and products. We considered over 40 million reactions, filtered 

by first excluding non-organic reactions, then requiring the same number of reagents and 

products as our discoveries, and finally by requiring that the reactions have all the necessary 

structural information. This filtering left more than about 3.5 million reactions to compare. 

For each reaction, we calculated the similarity between each reagent and the product and 

calculated the mean from the obtained values. For reactions in which the reagents undergo a 

slight modification to reach the product, this reaction similarity index would be close to 1. 

Conversely, if the reagents change substantially so that the product is very different, then the 

result would be close to 0. All four of the reactions discovered here (see Supplementary 

Information) have a lower similarity index than the mean. In fact, all are in the top 10 

percentile, with reaction 2 (which gives product 20) in the top 0.8 percentile (Fig. 5g), and 

they are considerably more distinct from the reactions chosen at random. The histogram in 

Fig. 5h shows that there is only one peak in the distribution and that the mean value of the 

Tanimoto similarity index is 0.29.

This study represents an important step towards developing intelligent automated approaches 

to chemical discovery using artificial-intelligence-driven chemical robots trained by human 

experts from the bottom up, in contrast to top-down fragment-based approaches23.
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Methods

General experimental remarks

Reagents were from Sigma Aldrich and were used as received. Acetonitrile employed as a 

solvent in the platform was HPLC grade (VWR International). Mass spectra were recorded 

on a time-of-flight mass spectrometer (MicroTOF-Q MS) equipped with an electrospray 

source supplied by Bruker Daltonics Ltd. All data were collected in positive ion mode. The 

spectrometer was calibrated with a standard tune mix to give a precision of about 1.5 p.p.m. 

in the region m/z = 100–3,000. NMR data were recorded using a Bruker Avance III 600 

MHz or a Bruker Avance 400 MHz NMR system. The spectra were recorded at 298 K using 

residual-solvent proton peaks for scale reference (for example, 1H: δ (CDCl3) = 7.26; 13C: 

δ (CDCl3) = 77.16). The chemical shifts are reported in p.p.m. using the δ scale and all 

coupling constants (J) are given in Hz. The following abbreviations are used to characterize 

spin multiplicities: s, singlet; d, doublet; t, triplet; q, quadruplet; m, multiplet; dd, double 

doublet; dt, double triplet; dq, double quadruplet; and ddt, double doublets of triplets. 

Spectra obtained using distortionless enhancement by polarization transfer, correlation 

spectroscopy, heteronuclear single-quantum and multiple-bond correlation spectroscopy and 

rotating frame Overhauser-effect spectroscopy were used for structure determination and 

structural assignments. New reaction candidates were analysed using thin-layer 

chromatography (TLC) and visualized using TLC plates with a fluorescent indicator.

Syringe pumps and tubing

Control over the fluids was achieved using 27 pumps (model C3000, Tricontinent) equipped 

with 5 ml syringes (TriContinent) and a four-way solenoid valve according to the 

requirements of the experiments. The pumps were connected using a RS232 port and a daisy 

chain, allowing the connection of up to 16 pumps on a single RS232 bus. Commands to the 

pumps were sent using the pumps’ proprietary control language, implemented in a Python 

module, allowing control over the pumps and error-reporting functionality (for example, 

pumps malfunctioning). PTFE plastic tubing with an outer diameter of 1/8 inch (3.175 mm) 

was cut to the specified length and connected using standard HPLC low-pressure PTFE 

connectors and PEEK manifolds (supplied by Kinesis).

Online attenuated total-reflectance infrared spectroscopy

All spectra were recorded using a Thermo ScientificNicoletiS5 Fourier transform infrared 

spectroscopy system equipped with a ZnSe Golden Gate attenuated total reflectance infrared 

flow cell. The resolution was set at 4 cm−1 and each sample’s spectrum was recorded using 

36 scans. The spectrometer was controlled by OMNIC software using Python and the 

ActiveX software framework. Before measurement of the spectra, the solvent (MeCN) was 

recorded as background.

Online NMR spectroscopy

The NMR spectra were recorded using a Spinsolve benchtop NMR system from Magritek 

with a compact permanent magnet (43 MHz) based on the Hallbach design, working on a 

lock-free basis (not requiring deuterated solvents). Shimming was performed using a 
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D2O/H2O mixture (9:1 v:v) to minimize the half-width of the solvent peak. To measure 

reaction mixtures, the spectrometer was equipped with a home-built flow cell with a 

standard 5 mm width to maximize sensitivity. The spectra were measured in a stopped flow 

by pumping reaction mixtures into the flow cell. The spectrometer was controlled by 

Spinsolve software by sending XML messages over a network connection.

Benchtop mass spectroscopy

The spectra were recorded with an Advion Expression mass spectrometer using the 

atmospheric pressure chemical ionization technique. The detailed acquisition parameters can 

be found in Supplementary Information. The mass spectrometer was controlled using 

Python wrapper software and Advion API, allowing complete control over the instrument 

and acquisition parameters. Dilution of the reaction mixtures, which was necessary for 

recording their spectra, was realized using two syringe pumps by diluting reaction mixtures 

3,125 times using solvent (MeCN) before the measurements.

Flow setup implementation

The platform was assembled as in Fig. 1a, using the 27 syringe pumps, the benchtop infrared 

spectroscopy system, the NMR and the mass spectrometer. Round bottom flasks (25 ml) 

were employed as the mixer and reactors. 18 pumps were responsible for dispensing the 

chemicals to the mixer, six pumps were used to transfer the reaction mixture from the mixer 

to the proper reactor, one pump was employed to pump the solvent (MeCN), and two pumps 

were used to realize the dilution step that was necessary to measure mass spectra. The 

starting materials were prepared as 1.0 M solutions. Automatic data collection and 

processing and platform control were achieved using the Python programming language. 

Before the execution of the reaction, the robot was cleaned three times by flushing the 

mixer, reactor flasks and analytics. The reaction was performed by adding proper reagents to 

the mixer (total volume 5.0 ml) in a 1:1 ratio, transferring the reaction mixture to the reactor 

and saving the reaction parameters (the identity and volumes of the starting materials). After 

two hours, the reaction mixture was transferred to the measurement loop, where the NMR 

and infrared spectra were recorded. The mass spectrum was recorded after dilution of the 

reaction mixture. After the reaction mixture has been measured, the mixer, reactor and 

analytics were cleaned by flushing with solvent twice. Parallel execution of six reactions 

was implemented by shifting the execution of each reaction in time so that each experiment 

had access to the liquid-handling robot and analytics without colliding with the other 

experiments. Spectra (NMR and infrared) were also recorded for each chemical in the pool 

of starting materials (Extended Data Fig. 1) that was used for the calculation of the 

theoretical spectrum of the reaction mixture.

Autonomous navigation of chemical space by the robot

The algorithm for the exploration of chemical space starts by measuring 90 random 

experiments in the platform, and then each experiment in this set is processed to assess its 

reactivity and generate its vector representation. The 1H NMR spectrum of the reaction 

mixture is automatically processed using fast Fourier transform, phasing and referencing of 

the solvent peak. The intensity of the solvent peak is normalized to 1.0 (the solvent peak is 

used as an internal standard, allowing easy addition of the spectra). The infrared spectra are 
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used without any preprocessing. Next, the theoretical spectra of the reaction mixture (the 

sum of the starting materials) are constructed for NMR and infrared spectroscopy. The 

spectra are normalized by removing the mean and scaled to unit variance. The reactivity of 

the reaction mixture is assessed by feeding the NMR reaction mixture and NMR theoretical 

spectrum to the SVM classifier (trained previously; see Supplementary Information). The 

outcome of the classifier is Y = 0 (non-reactive) or Y = 1 (reactive). Similarly, the reactivity 

is assessed by the SVM classifier using the infrared spectra. An experiment is classified as 

reactive if any of the above classifiers categorizes it as reactive. The vector representation is 

generated using the identity of the starting materials. The vector representation (X) and 

reactivity (Y) are added to the reaction database.

The machine learning algorithms are realized using the sci-kit learn package in Python. 

After the initial database of the reactions is built, the LDA classifier is trained on the vector 

representation of the reactions (X) and their reactivity (Y). All the possible unperformed 

reactions are then rated by assigning them the probability of being reactive, as calculated 

from the LDA model. After the reactions with the highest score are realized by the liquid-

handling robot, they are processed as described above, updating the reaction database. Then, 

the LDA model is retrained on the updated database and the robot iteratively explores the 

chemical space until the desired number of experiments is performed. Simulations of the 

exploration of the chemical space with this algorithm were performed using the data 

collected by the robot.

Syntheses of molecules discovered by the platform

The solutions of the starting materials (1.0 M solutions in MeCN) were added to the round 

bottom flask (25 ml) in a 1:1 ratio (total volume 5.0 ml) and stirred in room temperature for 

2 h. Subsequently, silica gel (4.0 g) was added and the solvent was evaporated. The products 

of the reaction were isolated using column chromatography. The syntheses of all compounds 

were adjusted according to the need for each reaction. For the detailed procedure followed 

for each compound and characterization, see Supplementary Information.
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Extended Data

Extended Data Fig. 1. Reaction space explored.

The chemical inputs (1–18) used in the platform to search for new transformations and to 

evaluate the performance of the algorithm.
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Extended Data Fig. 2. Suggested mechanisms for observed transformations and small library of 
compounds synthesized.

a, Suggested mechanism for the synthesis of compound 19. b, Small library of compounds 

synthesized. c, Suggested mechanism for the synthesis of compound 22. d, Suggested 

mechanism for the synthesis of compound 21.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Automatic reaction detection with machine learning.

a, Schematic of the chemical robot. The circles are pumps and the coloured dots are the 

positions of the valves. APCI, atmospheric pressure chemical ionization; MS, mass 

spectrometer; ATR-IR, attenuated total reflectance infrared spectrometer. b, Photograph of 

the chemical robot, showing the pumps, reactors and real-time analytics, including the 

NMR, MS and infrared (IR) spectroscopy systems. c, SVM workflow for reaction detection 

using infrared and NMR spectroscopy, utilizing changes in the spectra. d, Reaction space 

representation using vectors. e, Example of a 1H NMR (43 MHz, MeCN) spectrum for a 

non-reactive reaction mixture. a.u., arbitrary units. f, Example of a reaction mixture 1H 

NMR (43 MHz, MeCN) spectrum for which a chemical reaction has been detected.
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Fig. 2. Overview of the artificial intelligence algorithm used for the exploration of chemical space 
with the liquid-handling robot.

The liquid-handling robot performs reactions by choosing reactants from the pool of starting 

materials. Online analytics is used for real-time interpretation of reaction outcomes as 

reactive or non-reactive, and the reaction database stores reaction outcomes. Machine 

learning is used to build a model of the chemical space, recommend the next experiments 

and control the robot.
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Fig. 3. Simulations exploring the chemical space and predictive power of the model.

a, Left, LDA projection of all the reactions performed, demonstrating the predictive power 

of LDA in classifying the reactivity. Red symbols, reactive combinations; blue symbols, 

non-reactive combinations. Right, examples of reactions in different regions of chemical 

space projected by LDA on the basis of collective chemical knowledge acquired by the 

robot. Top, very reactive; middle, moderately reactive; bottom, non-reactive. b, Simulation 

showing the number of reactive and non-reactive mixtures chosen by the algorithm during 

the exploration of chemical space. c, Aggregated results from 100 simulations showing the 

average accuracy of the LDA in predicting the reactivity versus the fraction of chemical 

space explored; the confidence intervals are defined by the maximum and minium values.
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Fig. 4. Exploring the Suzuki–Miyaura reaction using machine learning.

a, The reaction space of the Suzuki–Miyaura reaction. Shown are the identity of reactants, 

ligand, base and solvent, and the vector representation of the reaction for machine learning. 

b, Validation of the predictive power of the model for a test set of 30% of the reactions 

(1,728 reactions). RMSE, root-mean-square error. c, Simulation of the machine-learning-

controlled exploration of this reaction space. The yellow bar shows the initial random choice 

of 10% of reaction space (576 reactions). The green bars show the next batches of 100 

reactions chosen by the machine learning algorithm. The error bars represent the standard 

deviation within individual batches for Suzuki–Miyaura coupling.
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Fig. 5. Reactivity discovered with the machine-learning-driven robot.

a, Multicomponent reactions between methyl propiolate (16), benzofuroxan (7) and DBU 

(13); the yield obtained is given in per cent. Light-grey boxes show calculated and measured 

(by electrospray ionization mass spectroscopy, ESI-MS) molecular ion masses. b, 1H NMR 

spectrum recorded in the platform for the reaction shown in a. c, Multicomponent reaction 

of DMAP (12), DMAD (1) and nitrobenzene (14), leading to the derivative 2,5-dihydrofuran 

(20). d.r., diastereometric ratio. d, Solid-state structure of compound cis-20 (50% probability 

level). e, Synthesis of chlorocyanonitrone (21) from nitrosobenzene (14) and 

trichloroacetonitrile (5) in the presence of DBU (13). f, Newly discovered reaction of 
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phenylketene with DBU. g, Tanimoto similarity between discovered reactions and 3.5 

million known reactions. h, Histogram showing the Tanimoto similarity index between the 

discovered reactions and 3.5 million known reactions.
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