
Controlling Change Propagation and Project Policies in IC Design

Abstract
Today’s large IC designs involve highly partitioned,

highly coupled and voluminous design data evolving over
time. Tracking design state is becoming an essential com-
ponent of design tracking systems.

In this paper we present the project BluePrint, a design
data flow management tool which is an extension to the
DAMOCLES tracking system. The project BluePrint is
event driven. It defines project data dependencies and con-
trols change propagation. The BluePrint allows the sepa-
ration of project specific information from tool activities
facilitating tool integration. The project BluePrint follows
the non-obstructive approach championed by the
DAMOCLES tracking system.

changes are propagated across data dependencies, and
which actions are performed upon each change detection.
Thus, the project BluePrint formalizes design methodolo-
gies and enables their reuse.

As in the NELSIS data flow tool [Wolf90], we divided
the project BluePrint information into:

• theconfiguration information which specifies the
design data views tracked in the project flow and
the relations between them, and

• therun-time information which controls how
design activities modify the state of the project data.

We extended the configuration information of the
project BluePrint by adding the meta-data model consist-
ing of a set of properties associated to each view and the
inheritance scheme used for version control.

We present a new concept of run-time information,the
run-time engine, which controls change propagation
across relationships. This engine is anevent driven
machine. Design activities transmit information (such as
the modification of design data, or designer information
about the interpretation of simulation results) to the Blue-
Print by sending events through the computer network.
Upon reception of a design event, the run-time engine
propagates throughout the meta-data the event by selec-
tively traversing the data relationships. When a change
propagation occurs, the state of the design is updated
instantly. Designers can retrieve the state of the project by
performing queries. Therefore, designers know exactly
what data still needs to be modified before reaching a
planned state in the project.

The event driven model simplifies the interface
between the EDA tool set and the tracking system. The
tools are encapsulated in wrapper programs which are
independent of the design flow. The BluePrint allows to
capture the entire information about the design flow and to
implement design policies for enforcing the project meth-
odology.

The rest of the paper is organized as follows. In the next
section, we present the DAMOCLES meta-database. Sec-
tion 3 discusses in detail the project BluePrint and its inte-
gration into the DAMOCLES tracking system. Section 4
gives a quick comparison of DAMOCLES to related work.

Yves Mathys, Marc Morgan, Salma Soudagar

Semiconductor Systems Design Technologies, Motorola Inc.

1: Introduction

Today’s IC design process incorporates additional tools
to automate the process, to improve design quality or to
provide better power and timing analysis. Design data is
viewed from different perspectives. For instance, the
descriptions of an IC circuit as seen through the specifica-
tion by the customer, the system designer, the logic
designer or the layout engineer are all different but must be
correlated. The increasing number of EDA tools and of
design representations, also called designviews, compli-
cates the tracking of the project state for designers. By
project state, we mean information about the data reflect-
ing its consistency and validation related to a design flow,
expressing how tools and data are correlated. As the com-
plexity of the design flow increases, it becomes critical for
design tracking systems to capture and to manage complex
design flows [Katz85,Cas90,Liu90,Sil89]. The success of
a tracking system depends heavily on its ability to accom-
modate a variety of design flows and project methodolo-
gies. Tool integration and minimal system tracking
overhead are critical issues for a tracking system.

In this paper, we present a design data flow manage-
ment tool, theproject BluePrint, an extension to our track-
ing system for managing IC design development,
DAMOCLES [Va92,Ma92]. The project BluePrint enu-
merates the views which are tracked, describes the rela-
tionships between views, specifies how design state

2: DAMOCLES meta-database

The DAMOCLES system relies on a database, where
information about the design data is stored. This meta-
database modelizes the project data and the relationship
among design views. The meta-data model defines the
design’s state for each particular design view.
DAMOCLES manages data repositories, called work-
spaces by associating them to a meta-database.

The DAMOCLES meta-database contains information
about the design data. To each design object corresponds a
meta-data object (referenced by anOID, Object Identifier),
which is defined by a triplet of block-name, view-type and
version number.

The relationship between the design objects are repre-
sented in the meta-database byLinks. Different types of
relations can be specified, such as hierarchy, derivation,
dependency, equivalence, etc. A Link object can be anno-
tated by property/value pairs. DAMOCLES distinguishes
between two classes of Links: use links which represent
hierarchy and derive links which represent other relation-
ships (derivation, etc.).

Links are used in DAMOCLES to propagate events
from one OID to another. The events, which are produced
by design activities, can be propagated in either direction
through the Link. Each Link has a PROPAGATE property
which enumerates events which are allowed to propagate
through it.

The third type of meta-data objects areConfigurations,
which consist of a set of database addresses, referencing
OIDs and Links. This implementation results in light
weight configuration objects, which can be used to store
results of volume queries.

The Configuration management mechanism combines a
version history of different data blocks into one configura-
tion instance which can be considered as a higher level of
description of data across time. Configurations can be used
to save the state of the design hierarchy in a snapshot at
each step of the design cycle. They can be built by travers-
ing a hierarchy while following certain rules, or can be
made as a result of a query, in which case they will be a
non-hierarchical set of data.

3: The project BluePrint

3.1: Tracking information flow

The information produced by data transactions and tool
activities, such as creation, deletion, validation or modifi-
cation, is used to track the state of the design.

The integration of design tools into DAMOCLES
should be kept simple since we face a large number of
tools. The invocation of the tools is encapsulated into shell

scripts called wrapper programs. These scripts post event
messages to the BluePrint. An event message consists of
an event name, a propagation direction (either up or down
through the links), a target OID and optional arguments:

postEvent ckin up reg,verilog,4 “logic sim passed”

As shown in the figure below, the design activities are
converted to events and sent to the project BluePrint,
where they are queued. The BluePrint engine processes the
queue of events by applying the BluePrint instructions to
the target OID and updating the meta-data information.
Events are processed sequentially, first-in first-out.

Figure 1 BluePrint architecture

3.2: BluePrint description

Prior to processing any event, the BluePrint must be
initialized by the project administrator; this is done by
reading in an ASCII file which contains a set of rules
which the BluePrint applies to the meta-database upon
reception of each event. Two types of rules are supported:
template rules, which describe the configuration informa-
tion, and run-time rules, which apply to the run-time
engine.

Configuration information
Template rules enumerate for each view the properties

and links which should be attached to the view. For exam-
ple, a view LayoutGDSII might have a property DRC and
a link which indicates that LayoutGDSII was derived from
the view EdifNetlist.

Template rules are used by the BluePrint to setup new
OIDs and Links as they are created by design activities.
Each time the BluePrint is informed of a new OID being
created, it finds the corresponding view in the BluePrint
and attaches properties and Links to the new OID. It
should be noted that OIDs are instances of views defined
in the BluePrint. These new properties can either be copied
or moved from the previous version of the OID, or simply

design event message queue

design events

BluePrint engine

DAMOCLES PROJECT SERVER

A
B C

meta-database

Rules:
when event do ...
state = ($sim == ok)

Design Environment

created on the new version. Property names are nearly all
defined by the project administrator although certain
generic property names are strongly recommended.

Figure 2 Example of a template rule for a property
of view GDSII

Run-time engine
In the same way, each time the BluePrint is informed of

a new Link being created, it finds the corresponding link in
the BluePrint and attaches the template properties to the
new Link. The main property of a Link is named PROPA-
GATE and contains a list of events which can propagate
through instances of the link. Derive links also have a
TYPE property which specifies the type of relationship the
link expresses. A link’s type is not directly used by the
BluePrint. Link types are, in a way, like comments which
help the user in visualizing the data flow and propagation
model. Common types of derive links are:

• composition, which models the hierarchical decom-
position of data,

• equivalence, which ties alternative representations
together (e.g. VerilogNetList and EdifNetlist) (see
also the equivalence plane in [Katz86]),

• depend-on, which expresses dependance on a tool
version or a process file,

• derive-from, which expresses that a data view is
derived from another view.

Note that the use link does not specify a parent view
name; since a use link represents hierarchy within a view,
the parent and child views of the use link are of the same
view type (e.g. a use link might link OID <cpu, SCHEMA,
4> to its hierarchical component <reg, SCHEMA, 2>).

OID :
view = GDSII
block = alu
version = 5

Prop: DRC = ok

copy property

create new OID

view GDSII
property DRC default bad copy

endview

property COPY or MOVE
property from

previous version

default value
for 1st versionname

OID :
view = GDSII
block = alu
version = 6

Prop: DRC = ok

Figure 3 Example of a template rule for a derive
link from view NetList to view GDSII

The design state of an OID is given by the value of the
OID’s property. When several properties are attached to
the same OID, the state of the OID can be given by a con-
tinuous assignment combining the value of several proper-
ties (e.g. my_state = ($simulation == ok) and ($DRC ==
good)). Such an assignment is continuously being reevalu-
ated. Continuous assignments are defined in the template
rules of a view, like properties and links.

Aside from the template rules, the BluePrint supports
run-time rules which specify what action is to be per-
formed each time a new event is received:

• the properties of the target OID can beassigned new
values.
E.g.: when checkindo oid_is_checked_out = false;

last_check_in_date = $datedone

• a script can beexecuted (i.e. to send warnings to
users, to invoke tools)
E.g.: when checkin do notify “$owner: Your oid

$OID has been modified”done

• a new event can beposted to a specific OID (as in
example 1 below) or directly propagated from the
current OID (as in example 2):
E.g.1: when checkin do post behavioral_sim_ok

down to VerilogNetListdone
E.g.2:when checkindo post out_of_dateup done

The examples above show what actions might be taken
when a checkin event is received.

When the BluePrint receives an event X which is tar-
geted at an OID Y, it processes this event in the following
manner. The run-time engine starts by finding the target
OID Y in the meta-database, and the corresponding view
and run-time rules in the BluePrint. Any run-time rules

OID :
view = GDSII
block = alu
version = 5OID :

view = GDSII
block = alu
version = 6

OID :
view = NetList
block = alu
version = 8

move link

PROPAGATE = OutOfDate
TYPE = derive_from create new OID

view GDSII
link_from NetList propagates OutOfDate type derive_from MOVE

endview

with assign actions are then executed and all continuous
assignments of the OID are reevaluated. The next step
consists in invoking the scripts which are listed in the exec
run-time rules. Finally, the run-time rules which post new
events are executed. Having executed all three types of
run-time rules, the run-time engine can proceed in propa-
gating the event X as well as any new event which was
posted by a post-type run-time rule.

The propagation of an event from a target OID T to
other OIDs in the meta-database first consists in finding all
the links of OID T. Then for each link, the event is passed
on to the OID at the other end of the link if the link propa-
gates the given type of event and if the direction of the link
matches the up or down direction specified in the event
message. This process is repeated for each OID receiving
an event.

Different BluePrints can be defined for each project, or
for each phase of a project, by writing a new set of rules in
an ASCII file and re-initializing the BluePrint mechanism.
In this way, early in the design cycle, when the data has not
yet been validated and changes occur very often, the Blue-
Print can be “loosened” thereby limiting change propaga-
tion.

3.3: Tool scheduling

Tool scheduling is implemented by the wrapper pro-
grams. The program queries the meta-database, requesting
the permission to access data and to run the tool. The per-
mission is given based on the state of the input data. For
example, prior to running a simulation, the wrapper makes
sure that the input netlist is up to date.

The run-time information specifies the action to be per-
formed upon the reception of a design event. This simple,
yet powerful, scheme leads naturally to implementing
automatic tool invocation. Let’s take an example where the
netlister has to be invoked every time a new version of
schematic is promoted (checked in) to the project work-
space. The run-time rule would be:

when ckin do exec netlister.sh “$OID”done

where the netlister.sh is a shell script invoking the
netlister tool and $OID is a built-in environment variable
specifying the schematic OID which received the ckin
event.

Tool scheduling supports partially or fully automated
design flows which reduce both the risk of errors and the
design cycle time.

3.4: Example of a BluePrint

This section discusses the case of a simple design flow.
The figures below show a classical representation of the
flow, which is based on tools and views, and the represen-

tation for the BluePrint, which is based on views, links and
event messages. The golden view of this design flow is the
schematic which can be generated automatically by syn-
thesis and/or manually with the editor.

Figure 4 Classical representation of a sample
design flow

Figure 5 BluePrint representation of the same
design flow

Synthesis tool

Sch. generator

Schematic editor

Layout editor

Netlister

SimulatorHDL model

Synthesis lib

Schematic

Netlist

Layout

Waves

Simulator

Waves

DRC LVS

HDL model

Synthesis lib

Schematic

Netlist

Layout

depend_on

equivalence

hdl_sim “result”

derived

derived

nl_sim “result”

drc “result”

lvs “result”

hierarchy

hierarchy

In this example, the project administrator has chosen to
track five views. The views for the output of simulations
were deliberately left out and replaced by event messages
which indicate how the results were interpreted by a
designer. The synthesis library is tracked so that the instal-
lation of a new version of the library will automatically
invalidate data which depends on it. The netlist view is
tracked in order to receive the event message with the
result of simulation.

Lets take a closer look at a typical scenario. A group of
designers starts out by writing an HDL model for their new
design. The top block name is CPU. So they create an OID
<CPU.HDL_model.1>. They then simulate the model and
get a negative result. In order to tag the OID as not passing
simulation, we add a sim_result property to the
HDL_model view in the BluePrint. This property has a
value of “bad” each time a new OID is created and is mod-
ified each time an hdl_sim event is received. The syntax
for the HDL_model is therefore:

property sim_resultdefault bad
whenhdl_simdo sim_result =$arg done
The variable $arg contains the message passed by the

wrapper program of the simulator. It could typically con-
tain messages like “4 errors” or “good”.

The designers then modify their model and save it as a
new version <CPU.HDL_model.2>. They run the simula-
tion again and this time get a “good” result. They then syn-
thesize the design from their model. This creates OIDs
<CPU.schematic.1> and <REG.schematic.1>. The second
OID is part of the hierarchy of the CPU schematic. It has a
use link (hierarchical link) which points to it from the CPU
schematic. Now the designers look at their CPU schematic
and decide to change part of the design so they modify
their HDL model thereby creating a new OID
<CPU.HDL_model.3>. In order to mark the schematic as
being out of date, we put a derived link in the BluePrint
between the HDL model and the schematic and we have
this link propagate an outofdate event. In this way, when
they check in their new model <CPU.HDL_model.3>, the
ckin event is used to post an outofdate event to all the
derived views. This is implemented in the BluePrint by
adding a run-time rule to the HDL_model which posts an
outofdate event to all views which are linked to the HDL
model upon reception of a check in event:

whenckindo postoutofdatedown done
and by adding to the schematic view an uptodate prop-

erty and a run-time rule which takes into account the out-
ofdate event:

property uptodatedefault true
whenoutofdatedo uptodate = falsedone
The uptodate property has a default value of “true” so

that each time the designers check in a new version of the
schematic, the uptodate property will be set to “true”. In
fact, these two rules are added to all the views (or rather to
the special default view which applies to all the views).

The syntax for the schematic view would also include
the hierarchical use link and the derived link from the
HDL model which are mentioned above:

use_link move propagates outofdate
link_from HDL_model move propagatesoutofdate-

type derived
The two links propagate the outofdate event so that

when such an event is posted from CPU HDL_model, the
CPU schematic and all of its hierarchical components
receive the event. Both links are tagged with themove
keyword to indicate that when a new version of an OID is
created, these links are automatically shifted from the old
version to the new version. For instance, if a new OID
<REG.schematic.2> were created, the use link between
<CPU.schematic.1> and <REG.schematic.1> would be
shifted to link <CPU.schematic.1> to <REG.schematic.2>.

The BluePrint in this example has been set up to auto-
matically create a new netlist each time a new schematic is
checked in. This is done with the syntax:

whenckindo exec netlister “$oid” done
where $oid contains the name of the OID which was

just checked in and is passed to the netlister script which is
a wrapper program for the netlister tool. In this way, when
the designers synthesize their design, the OID
<CPU.netlist.1> is automatically created. In order to mark
this OID as out of date when they modify either the CPU
HDL model or its schematic, a derive link is added from
the schematic view to the netlist view which propagates
the outofdate event.

Having described most of the features of the BluePrint
for this example, we include below the complete descrip-
tion of the BluePrint:

note: keywords appear inbold and
event names appear initalics
blueprint EDTC_example
view default

property uptodatedefault true
when ckin do uptodate = true;post outofdatedown

done
whenoutofdatedo uptodate = falsedone

endview
view HDL_model

property sim_resultdefault bad
whenhdl_simdo sim_result =$arg done

endview
view synth_lib

endview
view schematic

property nl_sim_resdefault bad
property lvs_resdefault not_equiv
let state = ($nl_sim_res == good)and ($lvs_res ==

is_equiv)and ($uptodate == true)
link_from HDL_model propagatesoutofdatetype

derived
link_from synth_lib move propagates outofdate

type depend_on
use_link move propagatesoutofdate
whennl_simdo nl_sim_res =$arg done
when ckin do lvs_res =“$oid changed by $user”;

post lvsdown “$lvs_res” done
whenckin do exec netlister “$oid” done

view netlist
property sim_resultdefault bad
link_from schematicpropagatesnl_sim, outofdate

type derived
whennl_simdo sim_result =$arg done

endview
view layout

property drc_resultdefault bad
property lvs_resultdefault not_equiv
let state = ($drc_result == good)and ($lvs_result ==

is_equiv)and ($uptodate == true)
link_from schematicpropagateslvs, outofdatetype

equivalence
whendrc do drc_result =$arg done
when lvsdo lvs_result =$arg done
when ckin do lvs_result =“$oid changed by $user”;

post lvsup “$lvs_result” done
endview
endblueprint

4: Related work

In the NELSIS framework the data flow management is
driven by design activities, whereas DAMOCLES has an
observer approach to design flow control. This approach
makes DAMOCLES a light weight system which is per-
ceived as non obstructive to the designers since it does not
impose a methodology.

In contrast with NELSIS, the project BluePrint provides
a flexible scheme for controlling the propagation of design
changes. This scheme allows to define the state of data as
the result of a sequence of design tasks and to model a
variety of relationships between the design views.

HILDA [Hil90] and ULYSSES [Ul89] have provided
mechanisms for selecting the appropriate CAD tools to
achieve current design goals. In practice, we found that
designers prefer to have full control over design activities.

5: Conclusion

We introduced a project BluePrint concept capturing
data flow information and providing full control over
change propagation to the project administrator. The
project BluePrint defines and maintains the definition of
the state of the project.

Our approach differs from other works by including the
meta-data model to the data flow definition and by provid-
ing a very flexible run-time engine which allows the prop-
agation of design changes across the data relationships.
This mechanism precisely captures a design flow and mon-
itors the state of the data during the design process. The
flexibility of the run-time engine allows to automate tool
execution or to enforce tool scheduling. The separation of
project policy specific information from tool activities
leads to a generic interface which facilitates the tool inte-
gration.

A prototype of the project BluePrint has been devel-
oped and integrated to the DAMOCLES meta-data server.
We are currently investigating ways to incorporate the
notion of design tasks to the project BluePrint which gives
a higher level of description of design activities and their
environment. In addition, we are working on a graphical
interface to visualize the design state relative to its flow.

6: References

[Cas90] Casotto, A. et al.,Design Management Based on
Design Traces, in 27th Design Automation Conference, pp.136-
141, 1990.

[Hil90] F. Bretscheider et al., Knowledge Based Design Flow
Management, Proc ICCAD 90 (1990).

[Katz85] Katz,R.H.,Information Management for Engineer-
ing Design, Springer-Verlag, 1985.

[Katz86] Katz, RH,A Version Server for Computer-Aided
Design Data, in 23rd. Design Automation Conference, pp 27-33,
1986

[Liu90] Liu,L.C. et al,Design Data Management in a CAD
Framework Environment, in the 27th Design Automation Con-
ference, pp 156-161, 1990.

[Ma92] Y. Mathys, V. Vasudevan, Tracking design methodol
ogy in DAMOCLES, EDAC 92.

[Sil89] Mario Silva et al.,Protection and Versioning for OCT,
in 26th. Design Automation Conference, pp 264-269.

[Ul89] M. Bushnell et al., “Automated Design Tool Execution
in the Ulysses Design Environment”, IEEE, Trans. on Computer-
Aided Design 8(3) March 1989.

[Va92] V. Vasudevan et al.,DAMOCLES, An Observer-Based
Approach to Design Tracking, ICCAD 92.

[Wolf90] P. Van der Wolf et al,Meta data Management in the
NELSIS CAD Framework, ACM/IEEE Design Automation Conf.
1990.

