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In this Letter backstepping design is proposed for controlling chaotic systems. The tool consists
in a recursive procedure that combines the choice of a Lyapunov function with the design of
feedback control. The advantages of the method are the following: (i) it represents a systematic
procedure for controlling chaotic or hyperchaotic dynamics; (ii) it can be applied to several
circuits and systems reported in literature; (iii) stabilization of chaotic motion to a steady state
as well as tracking of any desired trajectory can be achieved. In order to illustrate the general
applicability of backstepping design, the tool is utilized for controlling the chaotic dynamics of
the Lorenz system and Chua’s circuit. Finally, numerical simulations are carried out to show
the effectiveness of the technique.

1. Introduction

Controlling chaotic circuits and systems has
received great interest in recent years [Ott et al.,
1990; Hunt, 1991; Gills et al., 1992; Chen & Dong,
1993; Fuh & Tung, 1995; Yang & Chua, 1997;
Srivastava & Srivastava, 1998]. As is well known,
Ott, Grebogi and Yorke (OGY) were the first to
introduce a technique that can stabilize a peri-
odic orbit embedded in a chaotic attractor [Ott
et al., 1990]. However, since steady-state solu-
tions represent the most practical operation mode
in many chaotic systems such as electronic cir-
cuits [Huang et al., 1996; Yang & Chua, 1997]
or laser systems [Gills et al., 1992], it is impor-
tant to develop control techniques able to drive
a strange attractor not only to a periodic orbit

but also to a steady state. Moreover, another
desirable feature is to develop techniques that are
not closely related to the particular chaotic system
to be controlled. Some attempts to solve these prob-
lems have been made using occasional proportional
feedback (OPF) techniques [Hunt, 1991; Inaba &
Nitanai, 1998; Tsubone & Saito, 1998]. However,
a theoretical analysis of the technique developed
in [Hunt, 1991] is hard to be carried out, whereas
the OPF techniques proposed in [Inaba & Nitanai,
1998] and [Tsubone & Saito, 1998] can be applied
only to the class of piecewise-linear chaotic systems.

In this Letter backstepping design is proposed
for controlling chaotic systems. The suggested
tool enables stabilization of chaotic motion to a
steady state as well as tracking of any desired
trajectory to be achieved in a systematic way.
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Furthermore, it can be applied for controlling the
chaotic (hyperchaotic) dynamics of several well-
known circuits and systems [Rössler, 1976; 1979;
Lorenz, 1963; Huang et al., 1996; Tamasevicius
et al., 1996a; 1996b; Namajunas & Tamasevicius,
1996; Tamasevicius, 1997; Saito, 1990]. The Letter
is organized as follows. In Sec. 2 the class of strict-
feedback systems is presented and the basic notions
of backstepping design are illustrated [Krstic et al.,
1995]. In order to show the general applicability
of the technique, in Sec. 3 the tool is utilized for
achieving stabilization and tracking in the Lorenz
system, whereas in Sec. 4 it is applied for stabi-
lizing Chua’s circuit. Numerical simulations are
carried out to confirm the validity of the proposed
theoretical approach. Moreover, a comparison with
the differential geometric method [Isidori, 1995] is
made. Finally, the robustness with respect to noise
and the behavior in the presence of disturbance are
investigated.

2. Backstepping Design

Backstepping design is a systematic Lyapunov-
based control technique, which can be applied to
strict-feedback systems, pure-feedback systems and
block-strict-feedback systems [Krstic et al., 1995].
In this Letter the attention is focused on strict-
feedback systems, since this class includes several
examples of chaotic circuits and systems. Namely,
let

ẋ = f(x) + g(x)ξ1 (1)

be an input affine nonlinear system, where x ∈ <n is
the state, ξ1 ∈ < is the scalar control input whereas
f and g are nonlinear functions, with f(0) = 0.
Let the system (1) be augmented by the following
equations:

ẋ = f(x) + g(x)ξ1

ξ̇1 = f1(x, ξ1) + g1(x, ξ1)ξ2

...

ξ̇k−1 = fk−1(x, ξ1, . . . , ξk−1)

+ gk−1(x, ξ1, . . . , ξk−1)ξk

ξ̇k = fk(x, ξ1, . . . , ξk) + gk(x, ξ1, . . . , ξk)u

(2)

where ξ1, ξ2, . . . , ξk and u are scalars [Krstic et al.,
1995]. Systems in the form (2) are said to be strict-

feedback systems because the nonlinearities fi and
gi in the ξ̇i-equation (i = 1, . . . , k) depend only on
x, ξ1, ξ2, . . . , ξi, that is, on state variables that are
“fed back”. Notice that several chaotic systems be-
long to the class described by (2). These systems
are Rössler’s chaotic system [Rössler, 1976], the
Lorenz system [Lorenz, 1963], Chua’s circuit [Yang
& Chua, 1997; Huang et al., 1996], the chaotic
circuits in [Tamasevicius et al., 1996a; Namaju-
nas & Tamasevicius, 1996; Tamasevicius, 1997].
Regarding hyperchaotic systems (i.e. systems with
more than one positive Lyapunov exponent), the
class of strict-feedback systems includes Rössler’s
hyperchaotic system [Rössler, 1979] and the hyper-
chaotic circuits in [Saito, 1990; Tamasevicius et al.,
1996b].

Backstepping design consists in a recursive pro-
cedure that interlaces the choice of a Lyapunov
function with the design of feedback control [Krstic
et al., 1995; Khalil, 1996]. The key idea is to uti-
lize the Lyapunov’s method by breaking the design
problem for the full system (2) into a sequence of
design problems for lower-order (even scalar) sys-
tems. The technique starts by considering the
variable ξ1 as a “virtual control input” to stabi-
lize the first equation. And when ξ1 has been de-
signed, it continues to consider the variable ξ2 as
the virtual control for the second equation, and
so on. Therefore the design of the actual input
u, which usually depends on x and ξ1, ξ2, . . . , ξk,
is systematically achieved in n steps [Krstic et al.,
1995; Khalil, 1996]. It is worth noting that back-
stepping design proves to be particularly suit-
able for controlling chaos. Namely, it can solve
stabilization and tracking problems under condi-
tions less restrictive that those encountered in
other techniques, since it exploits the flexibility
assured by lower-order and scalar systems. More-
over, the technique gives the flexibility to build a
control law by avoiding cancellations of useful non-
linearities. In this way the goals of stabilization and
tracking are achieved with a reduced control effort.

3. Controlling Chaos in the
Lorenz System

In order to show how backstepping design works, in
this section the tool is applied for controlling the
chaotic dynamics of the Lorenz system. In partic-
ular, both stabilization and tracking are achieved
and a comparison with the differential geometric
method [Fuh & Tung, 1995] is carried out.
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3.1. The Lorenz equations

The system considered herein is described by the
following set of dynamic equations [Singer et al.,
1991; Fuh & Tung, 1995]: ẋẏ

ż

 =

 −px+ py

−xz − y
xy − z −R

 (3)

where R is the Rayleigh number and p = 10 is the
Prandtl number. It is assumed that only the pa-
rameter R can be modified. Thus, let the Rayleigh
number be R = R0 + u, where R0 is the operation
value and u is the control variable. For R0 = 28
the uncontrolled system (i.e. u = 0) is chaotic. A
projection of the Lorenz attractor on (x, y, z) is re-
ported in Fig. 1. In this case, there are three unsta-
ble equilibrium points: (C0, C0, −1), (0, 0, −R0)
and (−C0, −C0, −1), where C0 =

√
R0 − 1. It is

worth noting that when the set point is the state
(C0, C0, −1) the OGY method is not applicable
[Fuh & Tung, 1995]. By translating the origin
of system (3) in the set point (C0, C0, −1), the
system equations become: ẋ1

ẋ2

ẋ3

 =

 −px1 + px2

x1 − x2 − (C0 + x1)x3

C0(x1 + x2)− x3 + x1x2 − u

 (4)

3.2. Stabilization

The objective is to find a control law u for stabiliz-
ing the state of system (4) at the origin. Starting
from the first equation, a stabilizing function α1(x1)
has to be designed for the virtual control x2 in order

Fig. 1. Projection on (x, y, z) of the attractor generated by
the Lorenz system.

to make the derivative of V1(x1) = x2
1/2, that is:

V̇1 = −px2
1 + px1x2 ,

negative definite when x2 = α1(x1). By choosing
α1(x1) = 0 and by defining the error variable z2 as:

z2 = x2 − α1(x1) (5)

the following (x1, z2)-subsystem is obtained:

ẋ1 = −px1 + pz2

ż2 = x1 − z2 − (C0 + x1)x3

for which a candidate Lyapunov function is
V2(x1, z2) = V1(x1)+ 1

2z
2
2 . Since its time derivative:

V̇2 = −px2
1 + z2[(p+ 1)x1 − z2 − (C0 + x1)x3]

becomes negative definite by choosing the virtual
control x3 as:

x3 = α2(x1, z2) =
(p+ 1)x1

C0 + x1

the deviation of x3 from the stabilizing function α2:

z3 = x3 −
(p+ 1)x1

C0 + x1
(6)

gives the following system in the (x1, z2, z3)
coordinates:

ẋ1 = −px1 + pz2

ż2 = x1 − z2 − (C0 + x1)(z3 + α2)

ż3 = [C0(x1 + z2)− z3 − α2 + x1z2 − u]

−
[

(p+ 1)C0

(C0 + x1)2
(−px1 + pz2)

]
.

By iterating the previous steps, the derivative of
V3(x1, z2, z3) = V2 + 1

2z
2
3 , that is,

V̇3 = −px2
1 − z2

2 + z3

[
C0x1 − z3 −

(p+ 1)x1

C0 + x1
− u

− (p+ 1)C0(−px1 + px2)

(C0 + x1)2

]
,

becomes negative definite by choosing the input:

u = C0x1 −
(p+ 1)x1

C0 + x1
− (p+ 1)C0(−px1 + px2)

(C0 + x1)2
,

(7)
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which proves that the origin has been stabilized in
the (x1, z2, z3) coordinates. In view of (5) and
(6), the origin in the (x1, x2, x3) coordinates has
the same properties. As a consequence, (7) repre-
sents the control law for stabilizing system (3) in
(C0, C0, −1).

3.3. Tracking

The goal is to find a control law u so that a scalar
output y(t) tracks any desired trajectory r(t), in-
cluding stable or unstable limit cycles as well as
chaotic trajectories.

Let y(t) = x2 be the output and let z2 be the
deviation of x2 from the target, i.e. z2 = x2 − r(t).
Given V2 = z2

2/2, its time derivative:

V̇2 = z2[x1 − z2 − r(t)− (C0 + x1)x3 − ṙ(t)]

becomes negative by choosing the virtual control x3

as:

x3 = α2 =
x1 − r − ṙ
C0 + x1

.

Again, given V3 = V2 + z2
3/2, where z3 = x3 − α2

is the deviation of the virtual control from the
stabilizing function, the time derivative:

V̇3 = −z2
2 − z3[C0z2 + z2x1 − C0(x1 + x2)

+ z3 + α2 − x1x2 + u+ α̇2]

is negative by choosing the input:

u =
(px1 − px2)(C0 + r + ṙ)

(C0 + x1)2
+

2ṙ + r̈ − x1 + r

C0 + x1

+ r(C0 + x1) + C0x1 (8)

which assures that y(t) = x2(t) tracks the refer-
ence signal r(t). Similar results can be obtained by
choosing x1(t) or x3(t) as output.

Remark. Notice that, although Eqs. (7) and (8)
could appear complex, they enable system (3)
to be controlled using a single input. Different
approaches can be exploited if we assume that the
system can be controlled by two scalar inputs. For
instance, if we had the system: ẋẏ

ż

 =

 −px+ py

−xz − y +R1

xy − z +R2

 (9)

then (9) would be transformed to a linear sys-
tem using the control laws R1 = xz + u1 and
R2 = −xy + u2. As a consequence, linear tech-
niques could be applied for controlling (9) via u1

and u2 [Kailath, 1980].

3.4. Simulation results

Numerical simulations are carried out to show the
effectiveness of backstepping design. In particu-
lar, a comparison with the differential geometric
method [Isidori, 1995; Fuh & Tung, 1995; Nijmeijer
& van der Schaft, 1990] is made. Successively, the
robustness with respect to noise and the behavior
in the presence of disturbance are investigated.

Regarding stabilization, numerical simulations
obtained using the backstepping design are reported
in Fig. 2 for p = 10 and C0 =

√
27. The control law

(7) is switched on at t = 20. By considering the
results reported in [Fuh & Tung, 1995], the con-
trol law using the differential geometric approach is
given by:

u = −q(x)
s(x)

+
v(x)

s(x)
(10)

where:

q(x) = (p2 + p− px3)(−px1 + px2)

− (p2 + p)(x1 − x2 − C0x3 − x1x3)x2

− (pC0 + px1)(C0x1 + C0x2 − x3 + x1x2)

v(x) = −1000x1 − 215(−px1 + px2)

− 17.5((p2 + p)(x1 − x2)− pC0x3 − px1x3)

s(x) = p(x1 + C0) .

The results for the stabilization using the differ-
ential geometric method are shown in Fig. 3. With
reference to tracking, the results for r(t) = sin(t) us-
ing the backstepping design are reported in Fig. 4.
The control law using the differential geometric
approach is given by [Fuh & Tung, 1995]:

u = −q(x)
s(x)

+
v(x) + r(t)

s(x)
(11)

and the corresponding results are shown in Fig. 5. It
can be noted that backstepping design requires less
control effort than differential geometric method.
Moreover, the control laws (7) and (8) are sim-
pler than the corresponding laws (10) and (11).
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Fig. 2. Backstepping design applied to the Lorenz system:
(a) time waveform of the control u switched on at t = 20;
(b) stabilization of the state variables x1, x2, and x3.

Fig. 3. Differential geometric method applied to the Lorenz
system: (a) time waveform of the control u switched on at
t = 20; (b) stabilization of the state variables x1, x2, and x3.

This is because backstepping pursues the goals
of stabilization and tracking rather than that of
linearization.

Now, the robustness with respect to noise is
investigated. To this purpose, let x′1, x

′
2 and x′3

be the assumed measurements of the system states,
that is:

x
′
1

x′2
x′3

 =

 1 0 0

0 1 0

0 0 1


x1

x2

x3

+

n1

n2

n3

 (12)

Fig. 4. Tracking of r(t) = sin(t) using the backstepping
design: (a) time waveform of the control u switched on at
t = 20; (b) time waveform of the output x2 of the Lorenz
system.

Fig. 5. Tracking of r(t) = sin(t) using the differential
geometric method: (a) time waveform of the control u

switched on at t = 20; (b) time waveform of the output x2 of
the Lorenz system.

where n1, n2 and n3 are measurement noises. The
measurements of the state variables (12) are used
for the control law of both backstepping design and
geometric approach. In particular, simulations are
carried out by choosing for the noises a simple Gaus-
sian distribution with zero mean and fixed variance
(σ2), that is, n1, n2, n3 ∼ N(0, 0.22). The results
for the stabilization using backstepping design and
differential geometric method are reported in Figs. 6
and 7, respectively. Referring to the behavior in the
presence of disturbance, let the Lorenz system be
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(a) (b)

(c)

Fig. 6. Stabilization for the Lorenz system using the back-
stepping design. The control is obtained using noisy measure-
ments (12) and is switched on at t = 20: (a) time waveform
of x1; (b) time waveform of x2; (c) time waveform of x3.

described as: ẋ1

ẋ2

ẋ3

 =

 −px1 + px2

x1 − x2 − (C0 + x1)x3

C0(x1 + x2)− x3 + x1x2 − u



+

 0

1

1

d (13)

where the disturbance d is a simple Gaussian
distribution with zero mean and fixed variance, that
is, d ∼ N(0, 022). Notice that the disturbance
is added to the second and third equation, which
contain the nonlinear terms. In this way, the distur-
bance can also model perturbation of the nonlinear

terms. Regarding stabilization of system (13), the
time waveforms of x1, x2 and x3 using backstep-
ping design and differential geometric method are
reported in Figs. 8 and 9, respectively.

By analyzing Figs. 6–9, it can be observed that
differential geometric approach is more robust with
respect to noise and disturbance than backstepping
design. However, notice that this result is obtained
using a great control effort.

4. Controlling Chaos in
Chua’s Circuit

In order to show the general applicability of back-
stepping design, the attention is now focused on



Controlling Chaotic Dynamics Using Backstepping Design 1431

(a) (b)

(c)

Fig. 7. Stabilization for the Lorenz system using the differ-
ential geometric method. The control is obtained using noisy
measurements (12) and is switched on at t = 20: (a) time
waveform of x1; (b) time waveform of x2; (c) time waveform
of x3.

Chua’s circuit, which was the first physical dynami-
cal system capable of generating chaotic phenomena
in the laboratory [Madan, 1993]. The circuit con-
sidered herein contains a cubic nonlinearity and is
described by the following set of differential equa-
tions [Huang et al., 1996]:

ẋ = α(y − x3 − cx)

ẏ = x− y + z

ż = −βy

(14)

where α = α0u, u is the scalar control variable
whereas α0, β and c are the circuit parameters.
Notice that the parameter α can be easily mod-
ified by varying a single capacitance of Chua’s

circuit (see [Huang et al., 1996]). By taking α0 =
10, β = 16 and c = −0.143 the uncontrolled circuit
(that is, u = 1) exhibits the double-scroll attractor
(Fig. 10). The objective is to find a control law u so
that the chaotic dynamics of the circuit are stabi-
lized at the origin. Starting from the third equation
of system (14), a stabilizing function α1(z) has to be
designed for the virtual control y in order to make
the derivative of V1(z) = z2/2, that is:

V̇1 = −βyz ,

negative definite when y = α1(z) = z. By defining
the error variable y as:

y = y − α1(z) (15)
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(a) (b)

(c)

Fig. 8. Stabilization for system (13) using the backstepping
design, with the control u switched on at t = 20: (a) time
waveform of x1; (b) time waveform of x2; (c) time waveform
of x3.

the following (y, z)-subsystem is obtained:

ẏ = x− y + β y + βz

ż = −β(y + z)

for which a candidate Lyapunov function is
V2(y, z) = V1(z) + 1

2y
2. Since its time derivative:

V̇2 = −βz2 − y2 + β y2 + yx

becomes negative definite by choosing the virtual
control x as:

x = α2(y, z) = −β y

then the deviation of x from the stabilizing function
α2:

x = x+ β y (16)

gives the following system in the (x, y, z)
coordinates:

ẋ = α0u((y + z)− (x− β y)3 − c(x− β y))
+ β(x− y + βz)

ẏ = x− y + βz

ż = −β(y + z)

Finally, the derivative of V3(x, y, z) = V2 + 1
2x

2,
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(a) (b)

(c)

Fig. 9. Stabilization for system (13) using the differential
geometric method, with the control u switched on at t = 20:
(a) time waveform of x1; (b) time waveform of x2; (c) time
waveform of x3.

Fig. 10. Projection on (x, y, z) of the attractor generated
by Chua’s circuit.

that is,

V̇3 = −βz2 − y2 + xy + xα0u(y − x3 − cx)
+ xβ(x− y + βz) ,

becomes negative definite by choosing the control
variable as

u =
−y − β x+ β y − β2z

α0(y − x3 − cx) , (17)

which proves that the origin has been stabilized in
the (x, y, z) coordinates. By considering (15) and
(16), the following control law is obtained:

u =
−y + z − β(x− y + z)− β2y

α0(y − x3 − cx) (18)
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Fig. 11. Backstepping design applied to Chua’s circuit:
stabilization of the state variables x, y, and z, with the
control u switched on at t = 60.

which enables the chaotic dynamics of the cir-
cuit to be stabilized at the origin in the (x, y, z)
coordinates. The time waveforms of x, y and z are
reported in Fig. 11. At first u = 1, then the control
law (18) is switched on at t = 60.

5. Conclusion

In this Letter a Lyapunov-based approach, called
backstepping design, has been proposed for con-
trolling chaos. The advantages of the tool can
be summarized as follows: (i) it is a systematic
procedure for controlling chaotic or hyperchaotic
dynamics; (ii) it can be applied to several circuits
and systems reported in literature; (iii) both stabi-
lization and tracking can be achieved, even if the
target is outside the strange attractor. The tech-
nique has been successfully applied to the Lorenz
system and Chua’s circuit. Moreover, the robust-
ness with respect to noise and the behavior in the
presence of disturbance has been investigated.
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