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Controlling collapse in Bose-Einstein condensates by temporal modulation of the scattering lengt
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We consider, by means of the variational approximation~VA ! and direct numerical simulations of the
Gross-Pitaevskii~GP! equation, the dynamics of two-dimensional~2D! and 3D condensates with a scattering
length containing constant and harmonically varying parts, which can be achieved with an ac magnetic field
tuned to the Feshbach resonance. For a rapid time modulation, we develop an approach based on the direct
averaging of the GP equation, without using the VA. In the 2D case, both VA and direct simulations, as well as
the averaging method, reveal the existence of stable self-confined condensates without an external trap, in
agreement with qualitatively similar results recently reported for spatial solitons in nonlinear optics. In the 3D
case, the VA again predicts the existence of a stable self-confined condensate without a trap. In this case, direct
simulations demonstrate that the stability is limited in time, eventually switching into collapse, even though the
constant part of the scattering length is positive~but not too large!. Thus a spatially uniform ac magnetic field,
resonantly tuned to control the scattering length, may play the role of aneffective trapconfining the conden-
sate, and sometimes causing its collapse.

DOI: 10.1103/PhysRevA.67.013605 PACS number~s!: 03.75.Kk, 42.65.2k, 42.50.Ar
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I. INTRODUCTION

Collisions between atoms play a crucially important ro
in the dynamics of Bose-Einstein condensates~BECs!. As is
commonly known, the collisions are accounted for by t
cubic term in the corresponding Gross-Pitaevskii~GP! equa-
tion that describes the BEC dynamics in the mean-field
proximation. The coefficient in front of the cubic term, pr
portional to the collision scattering length, may be bo
positive and negative, which corresponds, respectively, to
pulsive and attractive interactions between the atoms@1#. In
the case of an attractive interaction, a soliton may be form
in an effectively one-dimensional~1D! condensate@2#; how-
ever, in 2D and 3D cases the attraction results in the colla
of the condensate~weak and strong collapse, respectively
@3#! if the number of atoms exceeds a critical value@1#.

Recently developed experimental techniques@4# make it
possible to effectively control the sign of the scatteri
length using an external magnetic field because the inte
tion constant can be changed through the Feshbach r
nance@5#. This technique makes it possible to quickly r
verse~in time! the sign of the interaction from repulsion t
attraction, which gives rise, via the onset of collapse, to
abrupt shrinking of the condensate, followed by a burst
emitted atoms and the formation of a stable residual cond
sate@4#.

A natural generalization of this approach for controllin
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the strength and sign of the interaction between atoms a
thus, the coefficient in front of the cubic term in the corr
sponding GP equation, is the application of a magnetic fi
resonantly coupled to the atoms and consisting, in the g
eral case, of dc and ac components. The dynamical beha
of 2D and 3D condensates in this case is then an issu
straightforward physical interest, as it may be readily imp
mented in experiments. This is the subject of the pres
work.

It is worth noting that, in the 2D case, this issue is simi
to a problem that was recently considered in nonlinear op
for ~211!D spatial solitons~i.e., self-confined cylindrical
light beams! propagating across a nonlinear bulk mediu
with a layered structure, so that the size@6# and, possibly, the
sign @7# of the Kerr ~nonlinear! coefficient are subject to a
periodic variation along the propagation distance~it plays the
role of the evolutional variable, instead of time, in the d
scription of optical spatial solitons!. The same optical mode
makes also sense in the~311!D case, because it applies t
the propagation of ‘‘light bullets’’~3D spatiotemporal soli-
tons @8#! through the layered medium@7#. We will demon-
strate below that the results obtained for the BEC dynam
in the GP equation involving both dc and ac nonlinearity a
indeed similar to findings reported in the framework of t
above-mentioned optical model. To the best of our kno
edge, a GP equation with a rapid time-periodic modulation
this type is proposed in this work for the first time. Prev
ously, a quasi-1D model was considered in which the B
stability was affected by a rapid temporal modulation appl
to the trapping potential~rather than to the spatially uniform
nonlinearity coefficient! @9# and the macroscopic quantum
interference and resonances have been studied in Ref.@10#.
Resonances in 2D and 3D BEC with periodically varyi
atomic scattering length have been considered in R
@11,12#. The main issue considered in this work is a pos
bility of self-localization of the condensate under the acti
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of the ac field. In this connection, it is relevant to menti
that the application of an external ac field can produce lo
ization, in a very different sense, in linear quantum syste
In Ref. @13#, it was demonstrated that a particle moving on
1D lattice may fall into a localized state if it is driven by a
electric field, and in Ref.@14# it was predicted that dynamica
localization, in the form of suppression of diffusion in
quantum system~periodically kicked rotor!, whose classica
counterpart demonstrates dynamical chaos, can be ind
by external field. The latter effect was observed experim
tally in an ultracold gas of two-level atoms, where the ext
nal field was a standing-wave created by a nearly reso
laser beam@15#. The paper is organized as follows. In Sec.
we formulate the model to be considered in this work and
VA that will be employed to analyze the model. In Sec. I
variational and numerical results are presented for the
case~the analysis based on the VA also employs the Kap
averaging procedure!. Both approaches demonstrate the e
istence of a stable self-sustained condensate, in a certai
gion of parameter space, so that the condensate can be e
tively confined and maintained by means of a spatia
uniform resonant ac magnetic field, without any trapping p
tential. In Sec. III, we also develop an alternative analyti
approach, based on the application of the averaging pr
dure directly to the GP equation, without using the VA. R
sults produced by this approach confirm those obtained
means of the VA. In Sec. IV, we show that the results for
3D case are essentially different from those in the 2D ca
Here VA also predicts the possibility of a stable condens
while direct simulations demonstrate that the stability is li
ited in time, finally giving way to collapse; a noteworthy fa
is that, while the VAper sestill provides reasonable resul
in the 3D case, the averaging procedure, if combined w
the VA, may yield completely wrong predictions in this cas
A nontrivial feature demonstrated by direct simulations
the 3D case is that the ac component of the nonlinearity m
give rise to collapse even in the case when the dc~constant!
component corresponds to repulsion. The paper is conclu
in Sec. V.

II. THE MODEL AND VARIATIONAL APPROXIMATION

We take the mean-field GP equation for the single-part
wave function in its usual form,

i\
]c

]t
52

\2

2m
Dc1gucu2c, ~1!

whereD is the 2D or 3D Laplacian,r is the corresponding
radial variable, andg54p\2as /m, whereas , m are, respec-
tively, the atomic scattering length and mass. As indica
above we will assume the scattering length to be time mo
lated so that the nonlinear coefficient in Eq.~1! takes the
form g5g01g1sin(xt), wherea0 anda1 are the amplitudes
of the dc and ac parts, andx is the ac-modulation frequency

Usually an external trapping potential is included to s
bilize the condensate. We have omitted it because it does
play an essential role. This is also the case in some o
situations, e.g., the formation of a stable Skyrmion in a tw
01360
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component condensate@16#. In fact, we will demonstrate tha
the temporal modulation of the nonlinear coefficient, co
bining the dc and ac parts as in Eq.~2!, may, in a certain
sense, replace the trapping potential. Another caveat c
cerning the present model is that, if the frequency of the
drive resonates with a transition between the ground stat
the condensate and an excited quasiparticle state, the m
field description based on the GP equation will not be
equate.

We now cast Eq.~1! in a normalized form by introducing
a typical frequencyV;2gn0 /\, wheren0 is the condensate
density and rescale the time and space variables ast85Vt
r 85rA2mV/\. This leads to the following equation wher
primes have been omitted:

i
]c

]t
52S ]2

]r 2
1

D21

r

]

]r D c2@l01l1sin~vt !#ucu2c,

~2!

in which it is implied thatc depends only ont and r, D
52 or 3 is the spatial dimension,l0,1[2g0,1/(V\), v
[x/V.

Note thatl0.0 andl0,0 in Eq.~2! correspond, respec
tively, to the self-focusing and self-defocusing nonlineari
Rescaling the fieldc, we will set ul0u[1, so thatl0 re-
mains a sign-defining parameter.

The next step is to apply the VA to Eq.~2!. This approxi-
mation was originally proposed@17# and developed in non
linear optics first for 1D problems and later for multidime
sional models~see a recent review@18#!. A similar technique
was elaborated for the description of the multidimensio
BEC dynamics based on the GP equation@19#.

To apply VA in the present case, we notice that the L
grangian density generating Eq.~2! is

L~c!5
i

2 S ]c

]t
c* 2

]c*

]t
c D2U]c

]r U
2

1
1

2
l~ t !ucu4, ~3!

wherel(t)[l01l1sin(vt), and the asterisk stands for th
complex conjugation. The variational ansatz for the wa
function of the condensate is chosen as the Gaussian@17#,

cg~r ,t !5A~ t !expS 2
r 2

2a2~ t !
1

1

2
ib~ t ! r 21 id~ t !D , ~4!

whereA, a, b, andd are, respectively, the amplitude, width
chirp, and overall phase, which are assumed to be real fu
tions of time. We did not include the degree of freedo
related to the coordinate of the condensate’s center, as
trapping potential, although not explicitly included into th
model, is assumed to prevent the motion of the condensa
a whole.

Following the standard procedure@18#, we insert the an-
satz into the density~3! and calculate the effective
Lagrangian,

Leff5CDE
0

`

L~cg!r D21dr, ~5!

whereCD52p or 4p in the 2D or 3D cases, respectivel
Finally the evolution equations for the time-dependent
5-2
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CONTROLLING COLLAPSE IN BOSE-EINSTEIN . . . PHYSICAL REVIEW A67, 013605 ~2003!
rameters of ansatz~4! are derived fromLeff using the corre-
sponding Euler-Lagrange equations. Subsequent analyse
well as the results of direct numerical simulations, are p
sented separately for the 2D and 3D cases in Secs. III an

III. THE TWO-DIMENSIONAL CASE

A. Variational approximation

In the 2D case, the calculation of the effective Lagrang
~5! yields

Leff
(2D)5p„2 1

2 a4A2ḃ2a2A2ḋ2A22a4A2b21 1
4 l~ t !a2A4

…,
~6!

where the overdot stands for the time derivative. The Eu
Lagrange equations following from this Lagrangian yield t
conservation of the number of atomsN in the condensate,

pA2a2[N5const, ~7!

an expression for the chirp and the width,

ȧ52ab, ḃ5
2

a4
22b22

l~ t !N

2pa4
,

and a closed-form evolution equation for the width:

d2a

dt2
5

2„22l~ t !N/2p…

a3
, ~8!

which we rewrite as

d2a

dt2
5

2L1e sin~vt !

a3
, ~9!

L[2~l0N/~2p!22!, e[2l1N/p. ~10!

In the absence of an ac component,e50, Eq. ~9! con-
serves the energyE2D5(ȧ22La22)/2. Obviously, E2D
→2` as a→0, if L.0, and E2D→1` as a→0, if L
,0. This means that, in the absence of the ac compon
the 2D pulse is expected to collapse ifL.0, and will spread
out if L,0. The caseL50 corresponds to the critical num
ber of particles in the condensate~the so-called ‘‘Townes
soliton’’!. Note that a numerically exact value of the critic
number is~in the present notation! N51.862 @3#, while the
variational equation~10! yields N52 ~if l0511).

It is natural to specially consider the case when the
component of the nonlinear coefficient oscillates at a h
frequency. In this case, Eq.~9! can be treated analytically b
means of the Kapitsa averaging method. To this end, we
a(t)5ā1da, with udau!uāu, whereā varies on a slow time
scale andda is a rapidly varying function with a zero mea
value. After straightforward manipulations, we derive t
following equations for the slow and rapid variables:
01360
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d2

dt2
ā52L~ ā2316ā25^da2&!23e^da sin~vt !&ā24,

~11!

d2

dt2
da53 daLā241e sin~vt !ā23, ~12!

where^•••& stands for averaging over the period 2p/v. A
solution to Eq.~12! is

da~ t !52
e sin~vt !

ā3~v213ā24L!
, ~13!

the substitution of which into Eq.~11! yields the final evo-
lution equation for the slow variable,

d2

dt2
ā5ā23F2L2

3Le2

~v2ā413L!2
1

3

2

e2

v2ā413L
G .

~14!

To examine whether collapse is enforced or inhibited
the ac component of the nonlinearity, one may consider
~14! in the limit ā→0. In this limit, the equation reduces t

d2

dt2
ā5S 2L1

e2

6L D ā23. ~15!

It immediately follows from Eq.~15! that, if the amplitude of
the high-frequency ac component is large enough,e2

.6L2, the behavior of the condensate~in the limit of small
ā) is exactly opposite to that which would be expected in
presence of the dc component only: in the caseL.0,
bounce should occur rather than collapse, and vice vers
the caseL,0.

On the other hand, in the limit of largeā, Eq. ~14! takes
the asymptotic formd2ā/dt252Lā23, which shows that
the condensate remains self-confined in the caseL.0, i.e.,
if the number of atoms exceeds the critical value. This c
sideration is relevant ifā though being large remains smalle
than the limit imposed by an external trapping potenti
should it be added to the model. Thus, these asymptotic
sults guarantee that Eq.~14! gives rise to a stable behavior o
the condensate, both the collapse and decay~spreading out!
being ruled out if

e.A6L.0. ~16!

In the experiments, for example, with7Li with the critical
number;1500 atoms if we have initially 1800 atoms~i.e.,
N/2p52.2) to stabilize the condensate, this means that
atomic scattering length forl051 should be harmonically
modulated with the amplitudee50.98. In fact, conditions
~16! ensure that the right-hand side of Eq.~14! is positive for
small ā and negative for largeā. This implies that Eq.~14!
5-3
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must give rise to a stable fixed point~FP!. Indeed, when
conditions~16! hold, the right-hand side of Eq.~14! vanishes
at exactly one FP,

v2ā45
3e2

4L
1A3S 3e4

16L2
21D 23L, ~17!

which can be easily checked to be stable through the ca
lation of an eigenfrequency of small oscillations around i

Direct numerical simulations of Eq.~9! produce results
~not shown here! that are in exact correspondence with tho
provided by the averaging method, i.e., a stable state w
a(t) performing small oscillations around point~17!. The 3D
situation shows a drastic difference because this corres
dence breaks down, as shown in the following section.

For the sake of comparison with the results obtained
means of an alternative approach in Sec. III B, we also n
an approximate form of Eq.~14! valid in the limit of smallL
~i.e., when the number of atoms in the condensate is clos
the critical value! and very largev:

d2

dt2
ā52

L

ā3
1

3

2

e2

v2ā7
. ~18!

To estimate the value of the amplitude of the hig
frequency ac component necessary to stop the collapse
note that a characteristic trap frequency isV;100 Hz. So,
for a modulation frequency;3 kHz, which may be regarde
as a typical ‘‘high modulation frequency,’’ the dimensionle
v is ;30. If the initial dimensionless number of atoms
for example,N/2p52.2 so that according to Eq.~10!, L
50.4 ~this corresponds to the7Li condensate with'1800
atoms, the critical number being'1500), and the param
eters of modulation arel051,l152.3,e510, then the sta-
tionary value of the condensate width found from Eq.~17! is
ast50.8l , wherel 5AmV/\ is the healing length.

Thus our analytical approach, based on the VA and
subsequent use of the assumption that the number of a
slightly exceeds the critical value, leads to an important p
diction: in the 2D case, the ac component of the nonlinea
acting jointly with the dc one corresponding to attractio
may give rise not to collapse, but rather to a stable solit
like oscillatory condensate state that confines itself with
the trapping potential. It is relevant to mention that a qua
tatively similar result, viz., the existence of stable perio
cally oscillating spatial cylindrical solitons in a bul
nonlinear-optical medium consisting of alternating laye
with opposite signs of the Kerr coefficient, was reported
Ref. @7#, where this result was obtained in a completely a
lytical form on the basis of the VA, and was confirmed
direct numerical simulations.

B. Averaging of the Gross-Pitaevskii equation
and Hamiltonian

In the case of a high-frequency modulation, there is
possibility to apply the averaging method directly to the 2
equation~2!, without using the VA. Note that direct averag
ing was applied to the 2D nonlinear Schro¨dinger equation
01360
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~NLS! with a potential rapidly varying inspace, rather than
in time, in Ref. @20#, where the main results were a reno
malization of the parameters of the 2D NLS equation an
shift of the collapse threshold. As we will see below, a rap
temporal modulation of the nonlinear term in the GP eq
tion leads to some effects, which do not reduce to a ren
malization. Some nonlinear-dispersive and higher-order n
linear terms will appear in the corresponding effective N
equation@see Eq.~22! below#. These terms essentially affec
the dynamics of the collapsing condensate.

Assuming that the ac frequencyv is large, we rewrite the
2D equation~2! in a more general form,

i ]c/]t1Dc1l~vt !ucu2c50, ~19!

whereD is the 2D Laplacian. To derive an equation gover
ing the slow variations of the field, we use the multisca
approach, writing the solution as an expansion in powers
1/v and introducing the slow temporal variables,Tk
[v2kt, k50,1,2, . . . , while the fast time isz[vt. Thus,
the solution is sought for as

c~r ,t !5A~r ,Tk!1v21u1~z,A!1v22u2~z,A!1•••,
~20!

with ^uk&50, where^•••& stands for the average over th
period of the rapid modulation, and we assume thatl05
11 ~i.e., the dc part of the nonlinear coefficient correspon
to attraction between the atoms!.

Following a procedure developed, for a similar proble
in Ref. @21#, we first find the first and second corrections,

u152 i @m12^m1&#uAu2A, m1[E
0

z

@l~t!2^l1&#dt,

~21!

u25@m22^m2&#@2i uAu2At1 iA2At* 1D~ uAu2A!#

2uAu4A$ 1
2 @~m12^m1&!222M #1^l&~m22^m2&!%.

Here m25*0
z(m12^m1&)ds,M5(1/2)(^m1

2&2^m1&
2)

5(1/2)(^l2&21) ~recall we have setul0u51). Using these
results, we obtain the following evolution equation for th
slowly varying fieldA(x,T0), derived at the orderv22:

i
]A

]t
1DA1uAu2A12M S e

v D 2

@ uAu6A23uAu4DA

12uAu2D~ uAu2A!1A2D~ uAu2A* #50, ~22!

wheree is the same amplitude of the ac component as in
~10!. We stress that Eq.~22! is valid in both 2D and 3D
cases. In either case, it can be represented in the qu
Hamiltonian form

F116M S e

v D 2

uAu4G ]A

]t
52 i

dHq

dA*
, ~23!
5-4
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Hq5E dVF u“Au222M S e

v D 2

uAu82
1

2
uAu4

14M S e

v D 2

u“~ uAu2A!u2G , ~24!

wheredV is the infinitesimal volume in the 2D or 3D spac
To cast this result in a canonical Hamiltonian representat
one needs to properly define the corresponding symple
structure~Poisson’s brackets!, which is not our aim here
However, we notice that, as it immediately follows from E
~23! and the reality of the~quasi-!Hamiltonian~24!, Hq is an
integral of motion, i.e.,dHq /dt50.

For a further analysis of the 2D case, we apply a mo
lation theory developed in Ref.@22#. According to this
theory, the solution is searched for in the form of a mod
lated Townes soliton. The~above-mentioned! Townes soliton
is a solution to the 2D NLS equation in the formc(r ,t)
5eitRT(r ), where the functionRT(r ) satisfies the boundar
value problem

RT91r 21RT82RT1RT
350, RT8~0!50, RT~`!50.

~25!

For this solution, the normN and the HamiltonianH take the
well-known values,

NT[E
0

`

RT
2~r !rdr 5Nc[1.862,

HT5E
0

`F ~RT8 !22
1

2
RT

4~r !G rdr 50. ~26!

The averaged variational equation~22! indicates an in-
crease of the critical number of atoms for the collapse,
opposed to the classical value~26!. Using relation~20!, we
find

Ncrit5E
0

`

ucu2rdr 5NT12M S e

v D 2

I 6 ,

where I 6511.178 ~see Appendix A!. This increase in the
critical number of atoms is similar to the well-known ener
enhancement of dispersion-managed solitons in optical fi
with periodically modulated dispersion@23,24#.

Another nontrivial perturbative effect is the appearance
a nonzero value of the phasechirp inside the stationary soli
ton. We define the mean value of the chirp as

b5

E
0

`

ImS ]c

]r
c* D rdr

E
0

`

r 2drucu2
.

Making use of expression~21! for the first correction, we
find
01360
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b52
e

v
BM~m12^m1&!,

B[3

E
0

1`

rdrR2~R8!22~0.25!E
0

1`

drR4

E
0

1`

r 2drR2

50.596.

To develop a general analysis, we assume that the solu
with the number of atoms close to the critical value may
approximated as a modulated Townes soliton, i.e.,

A~r ,t !'@a~ t !#21RT@r /a~ t !#eiS, S5s~ t !1
ȧr 2

4a
,

ṡ5a22 ~27!

with some functiona(t) ~where the overdot stands ford/dt).
If the initial power is close to the critical value, i.e., whe
uN2Ncu!Nc and the perturbation is conservative, i.e.,

ImE dV@A* F~A!#50

as in our case, a method worked out in Ref.@22# makes it
possible to derive an evolution equation for the functi
a(t), starting from approximation~27!. The equation of the
modulation theory for width is

a3att52b01
e2

4M0v2
f 1~ t !, ~28!

where

b05b~0!2
e2f 1~0!

4M0v2
, b~0!5

~N2Nc!

M0
,

and M0[(1/4)*0
`r 3drRT

2'0.55. The auxiliary function is
given by

f 1~ t !52a~ t !ReF 1

2pE dxdyF~AT!e2 iS$RT1r“RT~r!%G .
~29!

In the lowest-order approximation, the equation takes
form ~for the harmonic modulation!

d2a

dt2
52

L1

a3
1

Ce2

v2a7
, ~30!

whereL15(N2Nc)/M02Ce2/(v2a0
4) andC is

C[
3

M0
E

0

`

dr@2rRT
4~RT8 !22r2RT

3~RT8 !32 1
8 rRT

8#'39.

~31!

Values of integrals are given in Appendix A. Thus the av
aged equation predicts thearrest of collapse by the rapid
5-5
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modulations of the nonlinear term in the 2D GP equati
The comparison of Eq.~30! with its counterpart~18!, which
was derived by means of averaging the VA-generated eq
tion ~9!, shows that both approaches lead to the same be
ior near the collapse threshold. The numerical coefficient
the second terms are different due to the different profiles
the Gaussian and Townes soliton. In this connection, i
relevant to mention a recent work@25#, that has demon-
strated that, generally, one may indeed expect good ag
ment between results for 2D solitons produced by VA and
the method based on the modulated Townes soliton.

Let us estimate the value of the fixed point for the nume
cal simulations performed in Ref.@6#. In this work the stable
propagation of solitons has been observed for two-s
modulation of the nonlinear coefficient in 2D NLSE. Th
modulation of the nonlinear coefficient wasl511e if T
.t.0, andl512e for 2T.t.T. The parameters in the
numerical simulations have been taken asT5e
50.1,N/(2p)511.726/(2p), with the critical numberNc
511.68/(2p). The map strength isM5e2T2/24. For this
values we haveac50.49, which agreed with the valueac
'0.56 following from the numerical experiment.

Instead of averaging Eq.~2!, one can apply the averagin
procedure, also based on representation~20! for the wave
function, directly to the Hamiltonian of Eq.~2!. As a result,
the averaged Hamiltonian is found in the form

H̄5E dxdyF u“Au212M S e

v D 2

u“~ uAu2A!u22
1

2
uAu4

26M S e

v D 2

uAu8G . ~32!

A possibility to stop the collapse, in the presence of a ra
periodic modulation of the atomic scattering length, can
explained on the basis of this Hamiltonian. To this end, f
lowing the pattern of the usual virial estimates@3#, we note
that, if a given field configuration has compressed itself t
spot with a sizer, where the amplitude of theA field is ;:,
the conservation of the number of particles,N, @which may
be applied to theA field through the relation~20!# yields the
relation

:2rD;N ~33!

~recall D is the space dimension!. On the other hand, the
same estimate for the strongest collapse-driving
collapse-stopping terms@the fourth and second terms, re
spectively, in expression~32!# H2 and H1 in the Hamil-
tonian yields

H2;2S e

v D 2

:8rD, H1;S e

v D 2

:6rD22. ~34!

Eliminating the amplitude from Eqs.~34! by means of rela-
tion ~33!, we conclude that, in the case of the catastrop
self-compression of the field in the 2D space,r→0, both
terms H7 take the same asymptotic form,r26, hence the
collapse may be stopped, depending on details of the c
figuration. However, in the 3D case the collapse-driving te
01360
.

a-
v-

in
f

is

e-
y

-

p

d
e
-

a

d

c

n-

diverges asr29, while the collapse-stopping term has th
asymptotic form;r28, for r→0, hence in this case th
collapse, generally speaking,cannotbe prevented.

Lastly, it is relevant to mention that, although the qua
Hamiltonian ~24! is not identical to the averaged Hami
tonian ~32!, the virial estimate applied toHq yields exactly
the same result: the collapse can be stopped in the 2D bu
in the 3D situation.

C. Direct numerical results

The existence of stable self-confined solitonlike oscill
ing condensate states, predicted above by means of analy
approximations for the case~16!, when the dc part of the
nonlinearity corresponds to attraction between the ato
and the amplitude of the ac component is not too small, m
be checked against direct simulations of the 2D equation~2!.
In fact, it was quite easy to confirm this prediction@in the
casel0521, i.e., when the dc component of the nonlinea
ity corresponds to repulsion, the direct simulations alwa
show a decay~spreading out! of the condensate, which als
agrees with the above predictions#.

A typical example of the formation of a self-confined co
densate, supported by the combination of the self-focus
dc and sufficiently strong ac components of the nonlinea
in the absence of an external trap, is displayed in Fig. 1.

FIG. 1. A typical example of the formation of a self-confine
condensate, revealed from direct simulations of Eq.~2! in the two-
dimensional case. Panel~a! shows pulse collapse in the absence
modulation fort'0.3. Panel~b! shows the modulated pulse wit
the same initial condition fort'0.6. The parameters arel052.4,
l150.85, v5100p, andN55.
5-6
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the left panel we show the pulse collapse att'0.3 in the
absence of modulation. In the presence of modulation
pulse is stabilized for about 40 periods after which it deca
Note the presence of radiation as the pulse adjusts to
modulation.

IV. THE THREE-DIMENSIONAL CASE

A. The variational approximation and averaging

The calculation of the effective Lagrangian~5! in the 3D
case yields

Leff
(3D)5

1

2
p3/2A2a3F2

3

2
ḃa222ḋ1

1

2A2
l~ t !A2

2
3

a2
23b2a2G , ~35!

cf. Eq. ~6!. The Euler-Lagrange equations applied to this L
grangian yield the mass conservation,

p3/2A2a3[N5const,

an expression for the chirp,

ȧ52ab, ḃ5
2

a4
22b22

l~ t !N

2A2p3/2a5
,

and the evolution equation for the width of the condensa

d2a

dt2
5

4

a3
2

l~ t !

A2p3/2

N

a4
. ~36!

Note the difference of Eq.~36! from its 2D counterpart~8!.
As in the 2D case, we renormalize the amplitudes of

dc and ac components of the nonlinearity,L
[221/2p23/2l0N and e[2221/2p23/2l1N, and cast Eq.
~36! in the normalized form,

d2a

dt2
5

4

a3
1

2L1e sin~vt !

a4
. ~37!

In the absence of the ac term,e50, Eq. ~37! conserves the
energy

E3D5 1
2 ȧ212a222 1

3 La23.

Obviously,E3D→2` as a→0, if L.0, andE3D→1` if
L,0, hence one will have collapse or decay~spreading out!
of the pulse, respectively, in these two cases.

Prior to applying the averaging procedure~as it was done
above in the 2D case!, we solved Eq.~37! numerically, with-
out averaging, to show that~within the framework of VA!
there is a region in parameter space where the conden
which would decay under the action of the repulsive dc n
linearity (L,0), may be stabilized by the ac component
the nonlinearity, provided that its amplitude is sufficien
large. To this end, we employed the variable-step ordin
01360
e
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he
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e

te,
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f

y

differential equation~ODE! solver DOPRI5 @26#, which is a
combination of the Runge-Kutta algorithm of the fourth a
fifth orders, so that the instantaneous truncation error can
controlled.

In Fig. 2 we show the dynamical behavior of solutions
Eq. ~37!, in terms of the Poincare´ section in the plane (a,ȧ),
obtained forL521,e5100,v5104p, and initial conditions
a(t50)50.3, 0.2, or 0.13 andȧ(t50)50. As it is obvious
from Fig. 2, in all these cases the solution remains boun
and the condensate does not collapse or decay, its width
forming quasiperiodic oscillations.

In fact, the corresponding stability region in the parame
plane (v/p,e) is small, see Fig. 3. It is also seen from Fig.
that the frequency and amplitude of the ac component n
to be large to yield this stability. Notice that, for frequenci
larger than 106p, the width of the condensatea(t) assumes
very small values in the course of the evolution~as predicted
by the VA! so that collapse may occur in practice for th
solution of the full equation~2!.

The stability is predicted by the VA only forL,0, i.e.,
for a repulsive dc component of the nonlinearity. In the o
posite case, the VA predicts solely collapse.

FIG. 2. The Poincare´ section in the plane (a,ȧ) for L521,

e5100,v5104ṗ, generated by the numerical solution of th
variational equation~37! with different initial conditions~see the
text!.

FIG. 3. The region in the (e,v/p) parameter plane where th
numerical solution of Eq.~37! with L521 predicts stable quasi
periodic solutions in the 3D case. Crosses mark points where st
solutions were actually obtained. Stars correspond to the minim
values of the ac-component’s amplitudee eventually leading to
collapse of the solution of the full partial differential equation~2!
with L521.
5-7
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As v is large enough in the stability region shown in Fi
3, it seems natural to apply Kapitsa’s averaging method
this case too. Doing it the same way as was describe
detail in the preceding section for the 2D case, we find
rapidly oscillating correctionda(t), cf. Eq. ~13!,

da52
e sin~vt !ā

v2ā5212ā14L
, ~38!

and then arrive at the evolution equation for the slow va
able ā(t) @cf. Eq. ~14!#:

d2ā

dt2
5ā24F4ā2L1

2e2

v2ā5212ā14L

1e2
6ā25L

~v2ā5212ā14L!2G . ~39!

In the limit ā→0, Eq. ~39! takes the form

d2ā

dt2
5S 2L1

3e2

16L D ā24, ~40!

cf. Eq. ~15!. Equation~40! predicts one property of the 3D
model correctly, viz., in the caseL,0 and with a suffi-
ciently large amplitude of the ac component@e
.(4/A3)uLu, as it follows from Eq.~40#, collapse takes
place instead of spreading out. However, other results
lowing from the averaged equation~39! arewrong, as com-
pared to those following from the direct simulations of t
full variational equation~37!, which were displayed above—
see Figs. 2 and 3. In particular, a detailed analysis of
right-hand side of Eq.~39! shows that it does not predict
stable FP forL,0, and does predict it forL.0, exactly
opposite to what was revealed by the direct simulations. T
failure of the averaging approach~in stark contrast with the
2D case! may be explained by the existence of singu
points in Eqs.~38! and ~39! ~for both L.0 andL,0), at
which the denominatorv2ā5212ā14L vanishes. Note that
in the 2D case withL.0, for which the stable state wa
found in the preceding section@see Eq.~16!#, the correspond-
ing Eq. ~14! did not have singularities.

B. Direct simulations of the Gross-Pitaevskii equation
in the three-dimensional case

Verification of the above results given by the VA again
direct simulations of the 3D version of the radial equation~2!
is necessary. The partial differential equation simulatio
were carried out by means of the method of lines imp
mented with theDOPRI5ODE solver and space discretizatio
involving high-order finite differences, see the details in A
pendix B. The relative error in the conservation of the nu
ber of atoms was limited by 1028. In the absence of the a
modulation, the energy was conserved with a relative e
limited by 1028.

Quite naturally, in the casee50 ~no ac component! and
L,0, the simulations show straightforward decay of t
01360
to
in
e

-

l-

e

is

r

t

s
-
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-

r

condensate~not displayed here, as the picture is rath
trivial!. If an ac component of sufficiently large amplitude
added, stabilization of the condensate takes place tem
rarily, roughly the same way as is predicted by the solut
of the variational equation~37!. However, the stabilization is
not permanent: the condensate begins to develop sm
amplitude short-scale modulations around its center, and
ter about 50 periods of the ac modulation, it collapses.

An example of this behavior is displayed in Fig. 4, f
which N51, L521, andv5104p. Figure 4 shows radia
profiles of the densityuu(r )u2 at different instants of time.

Results presented in Fig. 4 turn out to be quite typical
the 3D case withL,0. The eventual collapse that take

FIG. 4. Time evolution of the condensate’s shapeuuu2(r ) in the

presence of the strong and fast ac modulation (v5104ṗ,e590).
The profiles ofu2(r ) are shown at timest50.007~a!, 0.01~b!, and
0.015~c!.
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place in this case is a nontrivial feature, as it occurs des
the fact that the dc part of the nonlinearity drives the co
densate towards spreading out. Therefore, a basic chara
istic of the system is a dependence of the minimum ac
plitude e, which gives rise to the collapse at fixedL521,
versus the ac frequencyv. Several points marked by sta
show this dependence in Fig. 3. It is quite natural that
minimum value ofe necessary for the collapse grows wi
v. On the other hand, forv not too large, the minimum ac
amplitude necessary for the onset of collapse becomes s
as even a smalle is sufficient to push the condensate in
collapse during the relatively long half-period when the s
of the net nonlinearity coefficientl(t) is positive, see Eq
~19!.

In the case ofL.0 we have never been able to preve
the collapse of the pulse. This is in agreement with the an
sis developed in the preceding section on the basis of
Hamiltonian of the averaged version of the GP equati
which showed that the collapse cannot be stopped in the
case, provided that the amplitude of the ac componen
large enough. Besides that, this eventual result is also
accordance with the findings of direct simulations of t
propagation of localized 3D pulses in the above-mentio
model of the nonlinear-optical medium consisting of alt
nating layers with opposite signs of the Kerr coefficient: co
trary to the stable 2D spatial solitons@7#, the 3D spatiotem-
poral ‘‘light bullets’’ can never be stable in this model@27#.

V. CONCLUSION

In this work, we have studied the dynamics of 2D and
Bose-Einstein condensates in the case when the scatt
length in the Gross-Pitaevskii~GP! equation contains con
stant~dc! and time-variable~ac! parts. This may be achieve
in the experiment by means of a resonantly tuned ac m
netic field. Using the variational approximation~VA !, simu-
lating the GP equation directly, and applying the averag
procedure to the GP equation without the use of the VA,
have demonstrated that, in the 2D case, the ac compone
the nonlinearity makes it possible to maintain the conden
in a stable self-confined state without external traps, wh
qualitatively agrees with recent results reported for spa
solitons in nonlinear optics. In the 3D case, VA also predi
a stable self-confined state of the condensate without a
provided that the constant part of the nonlinearity cor
sponds to repulsion between atoms. Direct simulations re
that, in this case, the stability of the self-confined condens
is limited in time. Eventually, collapse takes place, desp
the fact that the dc component of the nonlinearity is rep
sive. Thus, we conclude that the spatially uniform ac m
netic field, resonantly tuned to affect the scattering leng
may readily play the role of aneffective trapthat confines the
condensate, and sometimes enforces its collapse. These
dictions can be verified in experiments.
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APPENDIX A: CALCULATION OF THE MOMENTS

For the modulation analysis of Sec. III B, we introdu
the following integrals involving the Townes soliton.

The boundary value problem~25! has been solved by dis
cretizing using finite differences and using the shoot
method. The solutions give a residual smaller than 1027.

The integrals have been calculated using the trapezo
rule. As a test the following integrals has been calculated,
norm N(Rs)51.862 . . . andHamiltonian@H(Rs)50#. For
the other integrals we obtain

I 15E
0

`

r 2drRT
251.7, I 25E

0

`

rdrRT
2~RT8 !252.529,

I 35E
0

`

rdrRT
4~RT8 !255.730,

I 45E
0

`

r 2drRT
3~RT8 !3523.109, ~A1!

I 55E
0

`

drR4511.472, I 65E
0

`

rdrRT
6511.312,

I 85E
0

`

rdrRT
8539.963,

I 95E
0

`

rdrRT
3~RT8 !3524.872,

I 105E
0

`

rdrRT
3~RT8 !253.669,

I 115E
0

`

rdrRT
2~RT8 !3522.314.

APPENDIX B: NUMERICAL PROCEDURE FOR SOLVING
THE PARTIAL DIFFERENTIAL EQUATION

Following Ref.@22#, we have solved the cylindrical NLS
equation~2! using the method of lines where the solution
advanced in time using an ODE solver and the spatial pa
discretized using finite differences. Because of its impli
character, this method allows for great stability and accur
as well as giving the possibility of implementing directly th
cylindrical Laplacian and its associated boundary conditio

Specifically we use as ODE solver the variable s
Runge-Kutta of order 4–5DOPRI5 @26#, which enables to
control the error made at each step and bound it by a gi
tolerance. For all the runs presented, the relative error at e
5-9
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step is below 1028. The cylindrical Laplacian] r
21(D

21)] r /r is approximated at each noden of the grid using
the following formulas:

c r un5
1

12h
~cn2228cn2118cn112cn12!1O~h4!,

c rr un5
1

12h2 ~2cn22116cn21230cn116cn112cn12!

1O~h4!,
v.

s

G

n

tt

is

k,

K.

nt

01360
where h is the mesh size. We have therefore a method
solve Eq.~2! that isO(dt4,h4).

The first node corresponds tor 50 and to its left we in-
troduce two fictitious points so thatc r_r 5050. At the
right-hand-side, boundary chosen sufficiently far from t
pulse,c was set to be 0, again in two points.

The number of mesh points was 4000 and the toleranc
the integrator was set to 1028. In all cases theL2 norm N
was conserved up to 1028 in relative error as was the Hamil
tonian in the absence of modulation. The latter quantity p
vided an accurate indicator of collapse.
nd

tt.
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