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Controlling collapse in Bose-Einstein condensates by temporal modulation of the scattering length
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We consider, by means of the variational approximati®A) and direct numerical simulations of the
Gross-Pitaevski{GP) equation, the dynamics of two-dimensioriaD) and 3D condensates with a scattering
length containing constant and harmonically varying parts, which can be achieved with an ac magnetic field
tuned to the Feshbach resonance. For a rapid time modulation, we develop an approach based on the direct
averaging of the GP equation, without using the VA. In the 2D case, both VA and direct simulations, as well as
the averaging method, reveal the existence of stable self-confined condensates without an external trap, in
agreement with qualitatively similar results recently reported for spatial solitons in nonlinear optics. In the 3D
case, the VA again predicts the existence of a stable self-confined condensate without a trap. In this case, direct
simulations demonstrate that the stability is limited in time, eventually switching into collapse, even though the
constant part of the scattering length is posifibat not too large Thus a spatially uniform ac magnetic field,
resonantly tuned to control the scattering length, may play the role effaantive trapconfining the conden-
sate, and sometimes causing its collapse.

DOI: 10.1103/PhysRevA.67.013605 PACS nuntber03.75.Kk, 42.65-k, 42.50.Ar

[. INTRODUCTION the strength and sign of the interaction between atoms and,
thus, the coefficient in front of the cubic term in the corre-
Collisions between atoms play a crucially important rolesponding GP equation, is the application of a magnetic field
in the dynamics of Bose-Einstein condensa@sCsg. Asis  resonantly coupled to the atoms and consisting, in the gen-
commonly known, the collisions are accounted for by theeral case, of dc and ac components. The dynamical behavior
cubic term in the corresponding Gross-Pitaevé®iP) equa- of 2D and 3D condensates in this case is then an issue of
tion that describes the BEC dynamics in the mean-field apstraightforward physical interest, as it may be readily imple-
proximation. The coefficient in front of the cubic term, pro- mented in experiments. This is the subject of the present
portional to the collision scattering length, may be bothwork.
positive and negative, which corresponds, respectively, to re- It is worth noting that, in the 2D case, this issue is similar
pulsive and attractive interactions between the atphhsin  to a problem that was recently considered in nonlinear optics
the case of an attractive interaction, a soliton may be formeébr (24+-1)D spatial solitons(i.e., self-confined cylindrical
in an effectively one-dimension&lD) condensat¢2]; how-  light beam$ propagating across a nonlinear bulk medium
ever, in 2D and 3D cases the attraction results in the collapsgith a layered structure, so that the sjg¢ and, possibly, the
of the condensatéweak and strong collapse, respectively sign[7] of the Kerr (nonlineay coefficient are subject to a
[3]) if the number of atoms exceeds a critical valdé periodic variation along the propagation distaficglays the
Recently developed experimental techniqiésmake it  role of the evolutional variable, instead of time, in the de-
possible to effectively control the sign of the scatteringscription of optical spatial solitonsThe same optical model
length using an external magnetic field because the interagnakes also sense in tli@8+1)D case, because it applies to
tion constant can be changed through the Feshbach resthe propagation of “light bullets”(3D spatiotemporal soli-
nance[5]. This technique makes it possible to quickly re- tons[8]) through the layered mediufiv]. We will demon-
verse(in time) the sign of the interaction from repulsion to strate below that the results obtained for the BEC dynamics
attraction, which gives rise, via the onset of collapse, to arin the GP equation involving both dc and ac nonlinearity are
abrupt shrinking of the condensate, followed by a burst ofindeed similar to findings reported in the framework of the
emitted atoms and the formation of a stable residual conderabove-mentioned optical model. To the best of our knowl-
sate[4]. edge, a GP equation with a rapid time-periodic modulation of
A natural generalization of this approach for controlling this type is proposed in this work for the first time. Previ-
ously, a quasi-1D model was considered in which the BEC
stability was affected by a rapid temporal modulation applied
*Permanent address: Physical-Technical Institute, Uzbek Acado the trapping potentidrather than to the spatially uniform
emy of Sciences, 2-b Mavlyanov Strasse, 700084 Tashkennonlinearity coefficient[9] and the macroscopic quantum
Uzbekistan. interference and resonances have been studied in[ Raf.
"Permanent address: Laboratoire de Mathematiques INSA dResonances in 2D and 3D BEC with periodically varying
Rouen, Bae Postal 8, 76131 Mont-Saint-Aignan cedex, France. atomic scattering length have been considered in Refs.
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of the ac field. In this connection, it is relevant to mentioncomponent condensdt&6]. In fact, we will demonstrate that
that the application of an external ac field can produce localthe temporal modulation of the nonlinear coefficient, com-
ization, in a very different sense, in linear quantum systemsbining the dc and ac parts as in E@), may, in a certain

In Ref.[13], it was demonstrated that a particle moving on asense, replace the trapping potential. Another caveat con-
1D lattice may fall into a localized state if it is driven by ac cerning the present model is that, if the frequency of the ac
electric field, and in Ref.14] it was predicted that dynamical drive resonates with a transition between the ground state of
localization, in the form of suppression of diffusion in a t_he conderjsa_lte and an excited quaSIpart_che state, the mean-
quantum systenperiodically kicked rotor, whose classical field description based on the GP equation will not be ad-
counterpart demonstrates dynamical chaos, can be induc&§Uate:

by external field. The latter effect was observed experimen- tW(_a nlo;/v cast Eq(llizn a r}%rmarl]ized fo_rmthby intrgducintg
tally in an ultracold gas of two-level atoms, where the exter-2 ypica requency) 9No/7, WNETEN, IS the condensate
ty and rescale the time and space variables as)t

nal field was a standing-wave created by a nearly resonar(ﬁ,efsi — . . .
laser beanf15]. The paper is organized as follows. In Sec. Il, r'=ry2mé)/4. This leads to the following equation where

we formulate the model to be considered in this work and thé' M€ have been omitted:
VA that will be employed to analyze the model. In Sec. Il op ( 2 D-19

variational and numerical results are presented for the 2D i—= )w—[)\OH\lsin(wt)]lew,

. . ot
case(the analysis based on the VA also employs the Kapitsa
averaging proceduyeBoth approaches demonstrate the ex- )
istence of a stable self-sustained condensate, in a certain rigr which it is implied thatys depends only ort andr, D
gion of parameter space, so that the condensate can be effeco or 3 is the spatial dimensiong,=—go:/(Q%), o
tively confined and maintained by means of a spatially=,/q. ’ '

unifprm resonant ac magnetic field, without any trapping PO-  Note thath >0 and\ <0 in Eq.(2) correspond, respec-
tential. In Sec. Ill, we also develop an alternative analyticakiyely, to the self-focusing and self-defocusing nonlinearity.
approach, based on the application of the averaging ProcRescaling the fieldy, we will set|\g|=1, so that\, re-
dure directly to the GP equation, without using the VA. Re-mains a sign-defining parameter.

sults produced by this approach confirm those obtained by The next step is to apply the VA to E(). This approxi-
means of the VA. In Sec. IV, we show that the results for themation was originally proposeid 7] and developed in non-
3D case are essentially different from those in the 2D cas@inear optics first for 1D problems and later for multidimen-
Here VA also predicts the possibility of a stable condensatesional modelgsee a recent reviefd8]). A similar technique
while direct simulations demonstrate that the stability is lim-\yas elaborated for the description of the multidimensional
ited in time, finally giving way to collapse; a noteworthy fact Bec dynamics based on the GP equafia@].

is that, while the VAper sestill provides reasonable results 1o apply VA in the present case, we notice that the La-
in the 3D case, the averaging procedure, if combined withyrangian density generating EQ) is

the VA, may yield completely wrong predictions in this case.

A nontrivial feature demonstrated by direct simulations in (o . 9y 4
the 3D case is that the ac component of the nonlinearity may L¢)= 2 E‘/’ ot “oar
give rise to collapse even in the case when thécdnstant

component corresponds to repulsion. The paper is concludednere A (t)=Ao+A;sin(wt), and the asterisk stands for the
in Sec. V. complex conjugation. The variational ansatz for the wave

function of the condensate is chosen as the Gau$&idn

-+ —
o’brz r ar

Z 1
MO 3

Il. THE MODEL AND VARIATIONAL APPROXIMATION r2

We take the mean-field GP equation for the single-particle

1 .
+ Elb(t) r2+|6(t)) A
wave function in its usual form,

wg(r,t)zA(t)exp< — T

whereA, a, b, andé are, respectively, the amplitude, width,

oy 2 chirp, and overall phase, which are assumed to be real func-
|ﬁE:—ﬁA¢+g|w|2¢, (1) tions of time. We did not include the degree of freedom

related to the coordinate of the condensate’s center, as the
trapping potential, although not explicitly included into the
model, is assumed to prevent the motion of the condensate as
whole.
Following the standard proceduf&8], we insert the an-
atz into the density(3) and calculate the effective
Lagrangian,

whereA is the 2D or 3D Laplacian;, is the corresponding
radial variable, and = 4w#2a,/m, whereag, mare, respec-
tively, the atomic scattering length and mass. As indicate(?
above we will assume the scattering length to be time modué
lated so that the nonlinear coefficient in Ed) takes the
form g=gy+g4sin(xt), wherea, anda, are the amplitudes
of the dc and ac parts, andis the ac-modulation frequency. o b1

Usually an external trapping potential is included to sta- '-eff:CDf0 L(ihg)r=""dr, ®)
bilize the condensate. We have omitted it because it does not
play an essential role. This is also the case in some othavhere Cp =2 or 41 in the 2D or 3D cases, respectively.
situations, e.g., the formation of a stable Skyrmion in a two+inally the evolution equations for the time-dependent pa-
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rameters of ansati#l) are derived fronL .4 using the corre- d2_ _ _ o
sponding Euler-Lagrange equations. Subsequent analyses, as——a=—A(a *+6a °(5a’)) —3¢(sasinwt))a™*,
well as the results of direct numerical simulations, are pre- 11
sented separately for the 2D and 3D cases in Secs. Illl and IV. (11)
2
Ill. THE TWO-DIMENSIONAL CASE d_2 sa=3 saAa *+esinwt)a 3, (12)

A. Variational approximation

In the 2D case, the calculation of the effective Lagrangiarwhere(- - -) stands for averaging over the periodr/2y. A
(5) yields solution to Eq.(12) is

LGP = 7(— 3a%A’h—a?A%5— A2—a*A%b?+ A (1)a%A%), € sin(wt)

(6) da(t)=— (13)

a%(w?+3a *A)’
where the overdot stands for the time derivative. The Euler- o o _ _
Lagrange equations following from this Lagrangian yield thethe substitution of which into Eq11) yields the final evo-
conservation of the number of ator\sin the condensate,  lution equation for the slow variable,

wA%a’=N=const, 7) d>— — | 3A€? . 3 €?
: . . dt? (0%a*+3A)2 2 w?a*+3A |
an expression for the chirp and the width, (14)
) .2 , MON To examine whether collapse is enforced or inhibited by
a=2ab, b= ;—Zb pryvy the ac component of the nonlinearity, one may consider Eq.

(14) in the limit a—0. In this limit, the equation reduces to

and a closed-form evolution equation for the width: )
€
—A+
A 6A

d?—
2 _ L
d%a 22— \(t)N/2m) dt

e FERE @®

a3 (15)

It immediately follows from Eq(15) that, if the amplitude of
the high-frequency ac component is large enough,
>6A2, the behavior of the condensate the limit of small

E) is exactly opposite to that which would be expected in the

which we rewrite as

2 .
ﬁ: —Atesin(ot) 9) presence of the dc component only: in the casg 0,
dt? as ' bounce should occur rather than collapse, and vice versa in
the case\ <0.
A=2(\oN/(27)—2), e=—\;N/. (10) On the other hand, in the limit of large Eq. (14) takes

the asymptotic formdZa/dt?= —Aa 3, which shows that
In the absence of an ac componeat 0, Eq. (9) con- the condensate remains self-confined in the casd, i.e.,
serves the energ)E2D=(éz—Aa‘2)/2. Obviously, E,p if the number of atoms exceeds the critical value. This con-

——» asa—0, if A>0, andE,p—+» asa—0, if A sideration is relevant i though being large remains smaller

<0. This means that, in the absence of the ac componenriian the limit imposed by an external trapping potential,
the 2D pulse is expected to collapse\if-0, and will spread  should it be added to the model. Thus, these asymptotic re-
out if A<0. The case\ =0 corresponds to the critical num- Sults guarantee that E€L4) gives rise to a stable behawor of
ber of particles in the condensatthe so-called “Townes the condensate, both the collapse and despyeading out
soliton”). Note that a numerically exact value of the critical Peing ruled out if
number is(in the present notatigrN=1.862[3], while the
variational equatiorf10) yields N=2 (if N g=+1). €>\/6A>0. (16)

It is natural to specially consider the case when the ac
component of the nonlinear coefficient oscillates at a highn the experiments, for example, witfLi with the critical
frequency. In this case, EP) can be treated analytically by number~1500 atoms if we have initially 1800 atonfise.,
means of the Kapitsa averaging method. To this end, we s@l/27=2.2) to stabilize the condensate, this means that the
a(t)=a+ da, with | 5a|<|a|, wherea varies on a slow time ~atomic scattering length fok,=1 should be harmonically
scale andda is a rap|d|y Varying function with a zero mean modulated with the amplltude=098 In faCt, conditions
value. After straightforward manipulations, we derive the(16) ensure that the right-hand side of Ej4) is positive for
following equations for the slow and rapid variables: smalla and negative for larga. This implies that Eq(14)
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must give rise to a stable fixed poifEP). Indeed, when (NLS) with a potential rapidly varying irspace rather than
conditions(16) hold, the right-hand side of E¢l4) vanishes in time, in Ref.[20], where the main results were a renor-

at exactly one FP, malization of the parameters of the 2D NLS equation and a
shift of the collapse threshold. As we will see below, a rapid

] 3€? 3et temporal modulation of the nonlinear term in the GP equa-
wa'=7+\/3 ToA2 —1]=3A, (17 tion leads to some effects, which do not reduce to a renor-

malization. Some nonlinear-dispersive and higher-order non-

which can be easily checked to be stable through the calcdinéar terms will appear in the corresponding effective NLS

lation of an eigenfrequency of small oscillations around it. €duationsee Eq(22) below]. These terms essentially affect
Direct numerical simulations of Eq9) produce results the dynamics of the collapsing condensate. .

(not shown hergthat are in exact correspondence with those _Assuming that the ac frequenayis large, we rewrite the

provided by the averaging method, i.e., a stable state witgP equation(2) in a more general form,

a(t) performing small oscillations around poifi7). The 3D , 2,

situation shows a drastic difference because this correspon- 9yl at+ Ayt Mat)[ 9"y =0, (19

dence breaks down, as shown in the following section. ) ) . )
For the sake of comparison with the results obtained by'hereA is the 2D Laplacian. To derive an equation govern-

means of an alternative approach in Sec. Il B, we also neelf!d the slow variations of the field, we use the multiscale
an approximate form of Eq14) valid in the limit of smallA  @PProach, writing the solution as an expansion in powers of
(i.e., when the number of atoms in the condensate is close t® _kand introducing the slow temporal variable3,
the critical valug and very largew: =w t, k=0,1,2 ..., while the fast time i=wt. Thus,
the solution is sought for as
d’>_— A 3 €

a® @ 27 18 ¢<r.t>=A<r,Tk>+w*lul<§,A>+w*2u2<§,A>+~-~,(20)

To estimate the value of the amplitude of the high- B
frequency ac component necessary to stop the collapse, Wdth (Ui =0, where(. - -) stands for the average over the
note that a characteristic trap frequency(is-100 Hz. So, Period of the rapid modulation, and we assume thgt
for a modulation frequency 3 kHz, which may be regarded +1 (i.e., the dc part of the nonlinear coefficient corresponds

as a typical “high modulation frequency,” the dimensionless[© attraction between the atoms .
 is ~30. If the initial dimensionless number of atoms is, Following a procedure developed, for a similar problem,

for example,N/2mr=2.2 so that according to Eq10), A in Ref.[21], we first find the first and second corrections,
=0.4 (this corresponds to théLi condensate with=1800 .
atoms, the critical number being 1500), and the param- U= —i _ Al2A Ef MNP — (N )1d
eters of modulation ar&,=1\;=2.3=10, then the sta- 1= =1l = (RO IAPA 2 o[ ()= (Ap)]dr,
tionary value of the condensate width found from EL) is (21
as= 0.8, wherel =\mQ/% is the healing length.

Thus our analytical approach, based on the VA and the Uy =[ o— (o) I[20|AIPA+iIA2AF + A(|A|2A)]
subsequent use of the assumption that the number of atoms
sl_ig_htly Qxceeds the critical value, leads to an import_ant pre- —|APAL [ (1= (1))2=2M T+ () (o —{u2)) ).
diction: in the 2D case, the ac component of the nonlinearity,

acting jointly with the dc one corresponding to attraction,Here MZ_fg(M1_<M1>)dS M—(1/2)(<,u2)—<,u1>2)
—Jo y IV 1

may give rise not to collapse, but rather to a stable S°|it°n'—(1/2)(<)\2>—1) (recall we have sdi|=1). Using these
— ol=1).

like oscnllatory condensa'te state that confmes itself Wlthol.JPesuIts, we obtain the following evolution equation for the
the trapping potential. It is relevant to mention that a quali- o : by

. oS X . .. slowly varying fieldA(x,T,), derived at the orde® ™ “:
tatively similar result, viz., the existence of stable periodi-
cally oscillating spatial cylindrical solitons in a bulk
nonlinear-optical medium consisting of alternating layers i%+AA+|A|2A+2M
with opposite signs of the Kerr coefficient, was reported in at
Ref.[7], where this result was obtained in a completely ana-
lytical form on the basis of the VA, and was confirmed by
direct numerical simulations.

€ 2

—) [|AJSA—3|A[*AA

w

+2|AIPA(|A]2A)+ A%A(|A]2A* =0, (22

wheree is the same amplitude of the ac component as in Eq.
(10). We stress that Eq22) is valid in both 2D and 3D
cases. In either case, it can be represented in the quasi-

Hamiltonian form
In the case of a high-frequency modulation, there is a

possibility to apply the averaging method directly to the 2D
equation(2), without using the VA. Note that direct averag-
ing was applied to the 2D nonlinear Sctiager equation

B. Averaging of the Gross-Pitaevskii equation
and Hamiltonian

e\? ,]9A  SH,
1+6M| —| [A]f| == —i—F, (23
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2 €\ s L €
Ho= | dV||VA[Z=2M| =] A= Z]A b=~ ~BM(u1—(u)),
2
€ 271]2 o o
+4M 5) |V(|A| A)| , (29 J' rdI’RZ(R,)Z—(O.ZE))f drr*
0 0
B=3 — =0.596.

wheredV is the infinitesimal volume in the 2D or 3D space. J' r2drR2
To cast this result in a canonical Hamiltonian representation, 0

one needs to properly define the corresponding symplectic ) )
structure (Poisson’s brackels which is not our aim here. 10 develop a general analysis, we assume that the solution
However, we notice that, as it immediately follows from Eq. With the number of atoms close to the critical value may be
(23) and the reality of théquasiyHamiltonian(24), H is an approximated as a modulated Townes soliton, i.e.,
integral of motion, i.e.dH,/dt=0. ar?

_For a further analysis o_f the 2D case, we _apply a n_10du- A(r,H)~[at)] Ryr/a(t)]e'S, S=a(t)+ —,
lation theory developed in Refl22]. According to this 4a
theory, the solution is searched for in the form of a modu- _
lated Townes soliton. Th@bove-mentionedlownes soliton o=a? (27)
is a solution to the 2D NLS equation in the forg(r,t)

—e'R¢(r), where the functiorR.(r) satisfies the boundary with some functiora(t) (where the overdot stands fdfdt).
value problem If the initial power is close to the critical value, i.e., when

IN—N¢| <N, and the perturbation is conservative, i.e.,
Ri+r 'R, —Rr+R3=0, RH0)=0, Rq(*)=0.
(25 Imf dV[A*F(A)]=0

For this solution, the norml and the Hamiltoniaid take the

as in our case, a method worked out in R&2] makes it
well-known values,

possible to derive an evolution equation for the function
a(t), starting from approximatiof27). The equation of the

Ny= JmRi(r)rdr= N.=1.862 modulation theory for width is
c . ’
0 2
3 _ €
» 1 a‘ay=—PBot M ? 5 fa(t), (28
Ho= JO (R})Z—ERi(r)}rdr=O. (26) 0
where
The averaged variational equatig®2) indicates an in- €2£,(0) (N=N,)
crease of the critical number of atoms for the collapse, as Bo=pB(0)— ! 5. BO)= -
opposed to the classical val(26). Using relation(20), we ow Mo

find
and MOE(1/4)f§r3drR$~0.55. The auxiliary function is
given by

2
* €
Ncritzj |¢|2I’dl’=NT+2M(—) le,
0 w

1 .
f1<t)=2a<t)Re{Z f dxdyRAr)e 'S{Rr+pVRr(p)}|.
where 15=11.178 (see Appendix A This increase in the

i A 29
critical number of atoms is similar to the well-known energy o ' (29
enhancement of dispersion-managed solitons in optical fibel® the lowest-order approximation, the equation takes the

with periodically modulated dispersid23,24]. form (for the harmonic modulation
Another nontrivial perturbative effect is the appearance of
a nonzero value of the phashirp inside the stationary soli- d’a Ay Cé
- i — ==t (30
ton. We define the mean value of the chirp as dt2 a3 w2a’
f“lm(a_ww*)rdr whereA ;= (N—Ng)/My—Ce?/(w?al) andC is
— 3 o0
% - 4 ~\2_ 2p3/pry3__ 1 81
f rzdr|¢|2 C= Mofo dp[2pR7(R7)“— p°R7(Ry)”— 5pR7]~39.

0 (32)
Making use of expressiof2l) for the first correction, we Values of integrals are given in Appendix A. Thus the aver-
find aged equation predicts tharest of collapse by the rapid
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modulations of the nonlinear term in the 2D GP equation. 6
The comparison of Eq.30) with its counterpart18), which

was derived by means of averaging the VA-generated equa-

tion (9), shows that both approaches lead to the same behav-

ior near the collapse threshold. The numerical coefficients in

the second terms are different due to the different profiles of 337
the Gaussian and Townes soliton. In this connection, it is
relevant to mention a recent wofR5], that has demon-

strated that, generally, one may indeed expect good agree-

ment between results for 2D solitons produced by VA and by

the method based on the modulated Townes soliton.

Let us estimate the value of the fixed point for the numeri- (a)
cal simulations performed in R€i6]. In this work the stable
propagation of solitons has been observed for two-step
modulation of the nonlinear coefficient in 2D NLSE. The
modulation of the nonlinear coefficient was=1+¢€ if T
>t>0, andA=1—¢€ for 2T>t>T. The parameters in the
numerical simulations have been taken af=e
=0.1N/(27)=11.726/(27), with the critical numberN,
=11.68/(27). The map strength i81=€?T?/24. For this
values we havea.=0.49, which agreed with the value,
~0.56 following from the numerical experiment.

Instead of averaging E@2), one can apply the averaging
procedure, also based on representati@d) for the wave 0
function, directly to the Hamiltonian of Eq2). As a result, 0 1 2
the averaged Hamiltonian is found in the form (b) r

0 1 2

ful
©

o €2 1 FIG. 1. A typical example of the formation of a self-confined
H= f dxdy{|VA|2+ 2M (-) |V(|A|2A)|2— —|A|4 condensate, revealed from direct simulations of @jin the two-
@ 2 dimensional case. Pan@) shows pulse collapse in the absence of
modulation fort~0.3. Panel(b) shows the modulated pulse with
. (32 the same initial condition fot=0.6. The parameters ahg=2.4,

2
€
—6M(—) |AI®
@ N1=0.85, ®=100m, andN=5.

A possibility to stop the collapse, in the presence of a rapid _9 . .
periodic modulation of the atomic scattering length, can bellVEr9es as =, Whﬂ% the collapse-stopping term has the
explained on the basis of this Hamiltonian. To this end, fol-8SYMptotic form~p~7, for p—0, hence in this case the
lowing the pattern of the usual virial estimated, we note collapse, ge.nerally speakmgannotbe prevented. .
that, if a given field configuration has compressed itself to a Lgstly,_ Itis reIeyant to mention that, although the quasi-
spot with a size, where the amplitude of th field is ~ X, Hamiltonian (24) is not identical to the averaged Hamil-

the conservation of the number of particlés,[which may ~ onian(32), the virial estimate applied tbl, yields exactly
be applied to the field through the relatiori20)] yields the f[he same rgsult; the collapse can be stopped in the 2D but not
relation in the 3D situation.

NZPDN N 33 C. Direct numerical results

(recall D is the space dimensipnOn the other hand, the The existence of stable self-confined solitonlike oscillat-
same estimate for the strongest collapse-driving andhg condensate states, predicted above by means of analytical
collapse-stopping termfthe fourth and second terms, re- approximations for the cas@6), when the dc part of the
spectively, in expressiof32)] H_ and H, in the Hamil-  nonlinearity corresponds to attraction between the atoms,
tonian yields and the amplitude of the ac component is not too small, must
be checked against direct simulations of the 2D equdf@n

In fact, it was quite easy to confirm this predictifin the
caseng= —1, i.e., when the dc component of the nonlinear-
ity corresponds to repulsion, the direct simulations always
Eliminating the amplitude from Eq$34) by means of rela- show a decayspreading oytof the condensate, which also
tion (33), we conclude that, in the case of the catastrophicagrees with the above predictidns

self-compression of the field in the 2D spage;0, both A typical example of the formation of a self-confined con-
termsH- take the same asymptotic form,; ©, hence the densate, supported by the combination of the self-focusing
collapse may be stopped, depending on details of the cordc and sufficiently strong ac components of the nonlinearity
figuration. However, in the 3D case the collapse-driving termin the absence of an external trap, is displayed in Fig. 1. On

2

Ho~—|= zxspD Ho~| S| 8822 (34
- - . He~| = .
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the left panel we show the pulse collapsetat0.3 in the 0.5
absence of modulation. In the presence of modulation the 0 S
pulse is stabilized for about 40 periods after which it decays. / 0.2 03 0.13
Note the presence of radiation as the pulse adjusts to the
modulation. g
©
IV. THE THREE-DIMENSIONAL CASE 2
A. The variational approximation and averaging

The calculation of the effective Lagrangi@b) in the 3D -3 /

case yields ; ;
0.1 0.2 0.3 0.4

a

1
Lg‘fD)=—7r3/2A2a3

3b2 25+ ! A(1)AZ

2\/— FIG. 2. The Poincarsection in the planeaja) for A=—1,
€=100, w=10'm, generated by the numerical solution of the

variational equation(37) with different initial conditions(see the
, (35 text).

) ] ) differential equation(ODE) solver DOPRI5 [26], which is a
cf. Eq.(6). The Euler-Lagrange equations applied to this La-compination of the Runge-Kutta algorithm of the fourth and

3
_ __ _12p252
2 3b“a

grangian yield the mass conservation, fifth orders, so that the instantaneous truncation error can be
3127273 N — controlled.
AT =N=const, In Fig. 2 we show the dynamical behavior of solutions to

Eq. (37), in terms of the Poincarsection in the planea(a),

ion for the chi : S Ve
an expression for the chirp, obtained forA = — 1,e= 100w = 10", and initial conditions

. " AN a(t=0)=0.3, 0.2, or 0.13 and(t=0)=0. As it is obvious
a=2ab, b= ——-2b%— T s from Fig. 2, in all these cases the solution remains bounded
a 2\27%% and the condensate does not collapse or decay, its width per-

] . ) forming quasiperiodic oscillations.
and the evolution equatlon for the width of the condensate, In fact, the Corresponding Stabmty region in the parameter
plane @/ ,€) is small, see Fig. 3. Itis also seen from Fig. 3
d’a 4 A(t) N that the frequency and amplitude of the ac component need
W - ; _\/5—773/2 g' (30 tobe large to yield this stability. Notice that, for frequencies
larger than 18, the width of the condensasgt) assumes

Note the difference of Eq36) from its 2D counterpartg).  Very small values in the course of the evoluti@s predicted
As in the 2D case, we renormalize the amplitudes of the®Y, the VA so that collapse may occur in practice for the

: . solution of the full equatiorf2).
icz_f}zn d_3,2iCN c;c;}rgp::e_n;s_ 1,20f_3,2thN n:nnclllnf:Srrtyé The stability is predicted by the VA only foh <0, i.e.,
LT o~ = N ™ S 9 fora repulsive dc component of the nonlinearity. In the op-
(36) in the normalized form,

posite case, the VA predicts solely collapse.

d’a 4 —A+esinot) 37 1000
dt?  a a* '
In the absence of the ac term=0, Eq.(37) conserves the 100
energy o
E3D=%éz+2372—%/\a73. 10
Obviously,E;p— —« asa—0, if A>0, andEzp— +oo if
A <0, hence one will have collapse or dec¢apreading out 1 . .
of the pulse, respectively, in these two cases. 10 1000 100000 Te+07
Prior to applying the averaging procedygs it was done n
above in the 2D cagewe solved Eq(37) numerically, with- FIG. 3. The region in thed,w/) parameter plane where the

out averaging, to show thawithin the framework of VA" nymerical solution of Eq(37) with A=—1 predicts stable quasi-
there is a region in parameter space where the condensajyriodic solutions in the 3D case. Crosses mark points where stable
which would decay under the action of the repulsive dc nonsojutions were actually obtained. Stars correspond to the minimum
linearity (A<0), may be stabilized by the ac component ofvalues of the ac-component’s amplitudeeventually leading to

the nonlinearity, provided that its amplitude is sufficiently collapse of the solution of the full partial differential equati¢
large. To this end, we employed the variable-step ordinarith A=—1.
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As w is large enough in the stability region shown in Fig.
3, it seems natural to apply Kapitsa's averaging method to
this case too. Doing it the same way as was described in 4r
detail in the preceding section for the 2D case, we find the
rapidly oscillating correctiorsa(t), cf. Eq.(13),

esin(wt)a 2t
da=— —_— ", (38)
w?a’—12a+4A

and then arrive at the evolution equation for the slow vari-

= _ 0 .
ablea(t) [cf. Eq. (14)]: 0 05 y
da — | — 26 @ '
— Q0 = a_4 4a_A+ —_—
t? w’a®>—12a+4A \
2 6a—5A 39 4
€ — — .
(w?a°—12a+4A)?
In the limit a—0, Eq.(39) takes the form = .
dzg_ N 3é€2 — . 40
2 + 16A a -, (40)
cf. Eq. (15). Equation(40) predicts one property of the 3D 00 0:5 1
model correctly, viz., in the casa <0 and with a suffi- r

. i b
ciently large amplitude of the ac componerite ®)

>(4/\3)|A|, as it follows from Eq.(40], collapse takes
place instead of spreading out. However, other results fol-
lowing from the averaged equati@89) arewrong as com- 4l
pared to those following from the direct simulations of the
full variational equatior(37), which were displayed above—
see Figs. 2 and 3. In particular, a detailed analysis of the
right-hand side of Eq(39) shows that it does not predict a
stable FP forA <0, and does predict it foA >0, exactly
opposite to what was revealed by the direct simulations. This
failure of the averaging approa¢h stark contrast with the
2D cas¢ may be explained by the existence of singular
points in Egs.(38) and (39) (for both A>0 andA<0), at 0 0 0:5 1
which the denominaton?a®— 12a+ 4A vanishes. Note that, © r

in the 2D case withA>0, for which the stable state was
found in the preceding sectigree Eq(16)], the correspond-
ing Eq. (14) did not have singularities.

(vl

FIG. 4. Time evolution of the condensate’s shap(r) in the
presence of the strong and fast ac modulatiar=00"7,e=90).
The profiles ofu?(r) are shown at times=0.007(a), 0.01(b), and

0.015(c).
B. Direct simulations of the Gross-Pitaevskii equation

in the three-dimensional case condensate(not displayed here, as the picture is rather

Verification of the above results given by the VA againsttrivial). If an ac component of sufficiently large amplitude is
direct simulations of the 3D version of the radial equati®n added, stabilization of the condensate takes place tempo-
is necessary. The partial differential equation simulationgarily, roughly the same way as is predicted by the solution
were carried out by means of the method of lines imple-of the variational equatiof87). However, the stabilization is
mented with theooPRI5 ODE solver and space discretization not permanent: the condensate begins to develop small-
involving high-order finite differences, see the details in Ap-amplitude short-scale modulations around its center, and af-
pendix B. The relative error in the conservation of the num-ter about 50 periods of the ac modulation, it collapses.
ber of atoms was limited by I¢. In the absence of the ac An example of this behavior is displayed in Fig. 4, for
modulation, the energy was conserved with a relative errowhichN=1, A=—1, andw=10%=. Figure 4 shows radial
limited by 10°8. profiles of the densityu(r)|? at different instants of time.

Quite naturally, in the case=0 (no ac componentand Results presented in Fig. 4 turn out to be quite typical for
A <0, the simulations show straightforward decay of thethe 3D case withA<0. The eventual collapse that takes
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place in this case is a nontrivial feature, as it occurs despitevas partially supported by FAPESP. The authors are grateful
the fact that the dc part of the nonlinearity drives the conto R. Galimzyanov for help with the numerical simulations.
densate towards spreading out. Therefore, a basic character-
istic of the system is a dependence of the minimum ac am-
plitude €, which gives rise to the collapse at fixdd=—1,
versus the ac frequenay. Several points marked by stars  For the modulation analysis of Sec. Il B, we introduce
show this dependence in Fig. 3. It is quite natural that thehe following integrals involving the Townes soliton.
minimum value ofe necessary for the collapse grows with  The boundary value proble5) has been solved by dis-
. On the other hand, fo not too large, the minimum ac cretizing using finite differences and using the shooting
amplitude necessary for the onset of collapse becomes smathethod. The solutions give a residual smaller than’10
as even a smalt is sufficient to push the condensate into  The integrals have been calculated using the trapezoidal
collapse during the relatively long half-period when the signrule. As a test the following integrals has been calculated, the
of the net nonlinearity coefficient(t) is positive, see Eq. norm N(R;)=1.88 ... andHamiltonian[H(Rs)=0]. For
(19). the other integrals we obtain

In the case ofA >0 we have never been able to prevent
the collapse of the pulse. This is in agreement with the analy- % %
sis developed in the preceding section on the basis of the |1=f r2drR2=1.7, |2=f rdrR3(R})?=2.529,
Hamiltonian of the averaged version of the GP equation, 0 0
which showed that the collapse cannot be stopped in the 3D
case, provided that the amplitude of the ac component is (" PURON
large enough. Besides that, this eventual result is also in l3= Jo rdrR7(Ry)“=5.730,
accordance with the findings of direct simulations of the
propagation of localized 3D pulses in the above-mentioned
model of the nonlinear-optical medium consisting of alter- N P S
nating layers with opposite signs of the Kerr coefficient: con- la= J' rdrRr(Ry)™=—3.109, (AL)
trary to the stable 2D spatial solitofg], the 3D spatiotem-
poral “light bullets” can never be stable in this mod@&7].

APPENDIX A: CALCULATION OF THE MOMENTS

|5=f drR*=11.472, |6=J rdrRS=11.312,
0 0

V. CONCLUSION

In this work, we have studied the dynamics of 2D and 3D "
Bose-Einstein condensates in the case when the scattering IB:I rdrR&=39.963,
length in the Gross-PitaevskiGP) equation contains con- 0
stant(dc) and time-variabléac) parts. This may be achieved
in the experiment by means of a resonantly tuned ac mag- o
netic field. Using the variational approximatidwA ), simu- Ing rdrR?(R})3= —4.872,
lating the GP equation directly, and applying the averaging 0
procedure to the GP equation without the use of the VA, we
have demonstrated that, in the 2D case, the ac component of . © drR3(R)2—
the nonlinearity makes it possible to maintain the condensate 0 |, rdrRy(Ry)“=3.669,
in a stable self-confined state without external traps, which
qualitatively agrees with recent results reported for spatial
solitons in nonlinear optics. In the 3D case, VA also predicts
a stable self-confined state of the condensate without a trap,
provided that the constant part of the nonlinearity corre-
sponds to repulsion between atoms. Direct simulations reveal
that, in this case, the stability of the self-confined condensateAPPENDIX B: NUMERICAL PROCEDURE FOR SOLVING
is limited in time. Eventually, collapse takes place, despite THE PARTIAL DIFFERENTIAL EQUATION

the fact that the dc component of the_nonllne_arlty is repul- Following Ref.[22], we have solved the cylindrical NLS
sive. Thus, we conclude that the spatially uniform ac mag-

netic field, resonantly tuned to affect the scattering Iengthequatlon(z) using the method of lines where the solution is

may readily play the role of aeffective traghat confines the a_dvanged in time using an ODE solver and the Sp.at"'?‘l part is
. . discretized using finite differences. Because of its implicit
condensate, and sometimes enforces its collapse. These pre: . o
. e . character, this method allows for great stability and accuracy
dictions can be verified in experiments. L - 4 . .
as well as giving the possibility of implementing directly the
cylindrical Laplacian and its associated boundary conditions.
ACKNOWLEDGMENTS Specifically we use as ODE solver t_he variable step
Runge-Kutta of order 4—®0OPRI5 [26], which enables to
F.K.A. and B.A.M. appreciate the hospitality of Instituto control the error made at each step and bound it by a given

de Fisica Teorica — UNESFSa Paulo, Brazj. The work  tolerance. For all the runs presented, the relative error at each

|11:f rdrR#(Ry)%=—2.314.
0
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step is below 10°%. The cylindrical Laplaciang?+(D  whereh is the mesh size. We have therefore a method to
—1)g,/r is approximated at each nodeof the grid using solve Eq.(2) that isO(dt*,h%).
the following formulas: The first node corresponds te=0 and to its left we in-
troduce two fictitious points so thap,_r=0=0. At the
1 4 right-hand-side, boundary chosen sufficiently far from the
Yiln=150 (¥n—278Yn-17 81— Pns2) +O(hY), pulse, s was set to be 0, again in two points.
The number of mesh points was 4000 and the tolerance of
the integrator was set to 18. In all cases thé.?> norm N

'ﬁrr|n=m( — n—2F 16¢—1— 300+ 16¢ 11— Pns2) was conserved up to 18 in relative error as was the Hamil-
tonian in the absence of modulation. The latter quantity pro-
+0(h%), vided an accurate indicator of collapse.
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