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Controlling Connectivity of Dynamic Graphs

Michael M. Zavlanos and George J. Pappas

Abstract— The control of mobile networks of multiple agents
raises fundamental and novel problems in controlling the
structure of the resulting dynamic graphs. In this paper, we
consider the problem of controlling a network of agents so
that the resulting motion always preserves various connectivity
properties. In particular, we consider preserving k-hop con-
nectivity, where agents are allowed to move while maintaining
connections to agents that are no more than k-hops away. The
connectivity constraint is translated to constrains on individual
agent motion by considering the dynamics of the adjacency
matrix and related constructs from algebraic graph theory. As
special cases, we obtain motion constraints that can preserve
the exact structure of the initial dynamic graph, or may simply
preserve the usual notion connectivity while the structure of the
graph changes over time. We conclude by illustrating various
interesting problems that can be achieved while preserving
connectivity constraints.

I. INTRODUCTION

Controlling dynamic graphs has recently emerged as a

fundamental problem in the area of systems and control

theory. Apart from the intellectual challenges associated

with it, other motivations come from the area of controlling

formations of ground or aerial vehicles with applications in

air traffic control, satellite clustering, automatic highways,

mobile robotics and mobile sensor networks. One of the

main goals in this area is to achieve a coordinated objective

while using only relative information concerning positions

and velocities. The objective investigated in this paper is that

of maintaining various notions of graph connectivity.

Dynamic graphs have not apparently been studied only

in the framework proposed in this paper. In [1], a measure

of local connectedness of a network, is introduced. This

approach is distributed in the sense that this measure depends

on neighbor-to-neighbor communication only. Motivated by

a class of problems associated with control of distributed dy-

namic systems is also [2], where the authors consider a con-

trollability framework for state-dependent dynamic graphs.

In [3], the problem of finding the graph that corresponds to

the maximum second smallest eigenvalue of its Laplacian is

investigated. The authors propose a method that searches the

graph space towards the direction that maximizes the second

smallest eigenvalue of the graph Laplacian, and prove local

convergence of their method. The second smallest eigenvalue

of the graph Laplacian has also emerged as an important

parameter in many system and control problems defined over

This work is partially supported by NSF ITR 0324977, and ARO MURI
DAAD 19-02-01-0383.

M. M. Zavlanos and G. J. Pappas are with GRASP
Laboratory, Department of Electrical and Systems Engineering,
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networks [4], [5], [6]. In fact, in recent works, such as [5],

it has been observed that this eigenvalue is a measure of

stability and robustness of the networked dynamic system.

Other research issues which are closely related to the

problems discussed in this paper are formation stabilization

[7], [8], [9], [10], consensus seeking by autonomous agents

[5], [6], [11], [12], [13], and coverage tasks [14]. The goal

in formation stabilization is convergence of the agents to

a common velocity. Various approaches have been studied,

such as, control laws that involve graph Laplacians for the

fixed (or switched) associated neighborhood graphs [8] or

Lyapunov function methods such as [9], where the notion of

“formation feedback” as a means to regulate agent motion

in order to satisfy the global formation constraints, was also

introduced. Formation stabilization can also be viewed as a

consensus problem. Necessary and sufficient conditions for

consensus are investigated in [5], [6], [13]. Consensus can

also, under certain conditions, be achieved in the case of

switching communication graphs [6], [13].

Motivated by the importance of connectivity in mobile

sensor networks as well as the connectivity assumption often

made in formation stabilization or consensus problems, in

this paper, we consider graph connectivity as our primary

objective. Under the assumption that the initial graph is

connected, we introduce the notion of k-hop connectivity,

and based upon this notion, we develop a centralized control

framework that guarantees graph connectivity for all time.

The idea is to model connectivity as an invariance problem

and transform it into a set of constraints on the control

variables. Then, using optimization techniques we are able

to compute solutions when the problem is feasible. As a

model for connectivity, we use the adjacency matrix of a

graph and its dynamics, instead of the Laplacian eigenvalues,

since it provides more information about the graph structure.

Hence, we consider the problem of designing controllers for

the individual agents, so that the resulting graphs remain

connected for all time.

The rest of this paper is organized as follows. In Section

II we develop a general framework for our problem. In

Section III, we relate our framework to the case of k-

hop connectivity. We provide graph theoretic and algebraic

characterizations for this property and prove that they are

equivalent. In Section IV, we deal with the technical issues

of our approach. We provide the dynamics of the various

quantities that we introduce and propose a solution to the

problem of maintaining k-hop connectivity. Finally, in Sec-

tion V, we state and verify through computer simulations,

various connectivity tasks that illustrate the setting we have

developed.
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II. PROBLEM FORMULATION

A. Graph Theoretic Formulation

Consider n nodes in an m-dimensional space R
m. We

denote by xi(t) ∈ R
m the coordinates of the i-th node at

time t, where by convention, xi is considered a m×1 column

vector, and by x(t) = [xT
1 (t) . . . xT

n (t)]T the mn × 1 vector

resulting from stacking the coordinates of the nodes into a

single vector. Suppose that the dynamics of the i-th node, for

all i ∈ {1, 2, . . . , n}, are given by, ẋi(t) = fi(x(t), ui(t))
where ui(t) is the control vector taking values in some set

U ⊆ R
p. In vector notation, the system dynamics are given

by,

ẋ(t) = F (x(t),u(t)) (1)

where ẋ(t) = [ẋT
1 (t) . . . ẋT

n (t)]T and u(t) =
[uT

1 (t) . . . uT
n (t)]T are mn × 1 and pn × 1 vectors

respectively.

The network of agents described by system (1), gives

rise to a dynamic graph G(t) =
(
V, E(t)

)
, where V =

{x1(t), . . . , xn(t)} denotes the vertex set of the graph, and

E(t) denotes the time varying edge set, where edges repre-

sent pairwise proximity, sensing, or communication relations

between the nodes. For example, two distinct vertices xi(t)
and xj(t) in G(t) could be connected by an edge if their

pairwise distance is within some threshold value related to

their sensing capabilities.

Since we have control over node (or vertex) dynamics, the

question that naturally arises is whether we can control the

motion of the agents, so that G(t) satisfies a graph theoretic

property of interest for all time t ≥ 0. In particular, in this

paper we are interested in whether we can constrain the

motion of all agents so that the graph G(t) always lies in

some desired set C of graphs, such as the set of connected

graphs. More formally, in this paper, we will address the

following problem.

Problem 1 (Graph Theoretic Formulation): Let C be a

desired set of graphs. Given C, determine control constraints

U∗(x(t)) so that if G(0) ∈ C and u(t) ∈ U∗(x(t)) then

G(t) ∈ C for all t ≥ 0.

In other words, we would like the set C to be an in-

variant of motion for system (1). We will achieve this goal

by choosing an equivalent formulation using the algebraic

representation of the dynamic graph G(t).

B. Algebraic Formulation

The structure of any graph can be equivalently represented

using the adjacency matrix.

Definition 2.1 (Adjacency Matrix): Given a graph G with

vertices V = {v1, . . . , vn} and edges in the set E , we define

the adjacency matrix of G to be the matrix A = (aij) such

that aij = 1 if (vi, vj) ∈ E and aij = 0 otherwise. Since

we do not allow self-loops, for every i ∈ {1, 2, . . . , n} we

define aii = 0.

Note that if A is an adjacency matrix of a graph, then

A = AT . In our setting, the dynamic graph G(t) is a time

varying graph (because of the time varying edge set E(t)).
This implies that we will be dealing with a time varying

adjacency matrix. Let, A(x(t)) =
(
aij(x(t))

)
denote the

adjacency matrix corresponding to the graph G(t), where the

entries aij(x(t)) are functions of x(t), such that the structure

of A(x(t)) is consistent with Definition 2.11.

In order to translate Problem 1 in state-space, we must

consider algebraic characterizations of the set C of desired

graphs. Let AC denote the set of all adjacency matrices A

whose corresponding graphs belong to the desired set C.

We will assume that AC can be captured by a mapping

characterizing the property of interest.

Definition 2.2: There exists a function p(·) such that the

set AC can be defined as AC =
{
A | p(A) = 0

}
, where p(·)

might also depend on the initial conditions A(x(0)).

Therefore A1, A2 ∈ AC if and only if p(A1) = p(A2).
Let,

XC =
{
x(t) | p

(
A(x(t))

)
= 0

}
where now XC is the set of all states x(t) whose corre-

sponding graphs G(t) belong to the desired set C. Clearly,

A(x(t)) ∈ AC if and only if x(t) ∈ XC . Thus, given a set

of graphs C, the mapping p(·) enables us to consider the

following algebraic reformulation of Problem 1.

Problem 2 (Algebraic Formulation): Consider the desired

graph set C and let, XC =
{
x(t) | p

(
A(x(t))

)
= 0

}
be

the corresponding state-space. Given XC , determine control

constraints U∗(x(t)) so that if x(0) ∈ XC and u(t) ∈
U∗(x(t)) then p(A(x(t))) = p(A(x(0))) or equivalently

x(t) ∈ XC , for all t ≥ 0.

In this general framework, the only assumption we impose

on the function p(·), besides that it is appropriately chosen so

that both the graph theoretic and algebraic formulations are

equivalent, is that the resulting state-space XC is connected2.

Problem 2 requires that we determine constraints for the

evolution of system (1) so that a desired state-space XC

remains invariant for all time. The latter, connectedness,

assumption is necessary for the invariance of XC to be

meaningful.

The algebraic reformulation of the main goal of this paper

is much more amenable to control theoretic analysis. The

main challenge is finding such functions capturing desired

graph properties, and rendering them invariant by appropri-

ately constraining the motion of the nodes. As long as the set

U ∩ U∗(x(t)) is nonempty for all t ≥ 0, we can guarantee

that by choosing u(t) ∈ U ∩ U∗(x(t)) the dynamic graph

G(t) will always belong in C. We are therefore transforming

a constraint on graphs (G(t) ∈ C) into a set of constraints on

the control inputs u.

However, our approach poses two main challenges that we

must address. First, we need to find appropriate representa-

tions p(·) of the graph properties of interest, and second we

should be able to compute the dynamics of these functions

which are necessary for the desired invariance properties. In

1In the following sections, we will explicitly define the functions we will
be using.

2The proof of this condition, which due to space limitations we omit, is
based on a particular choice of the function p(·), which we define later.
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the rest of this paper we will focus on the connectivity prop-

erty of a graph. We will propose a representation function

p(·) and then show that we can actually compute an input

set U∗(x(t)) such that if u(t) ∈ U∗(x(t)) the network of

nodes will remain connected for all time.

III. MODELING OF CONNECTIVITY

A. Graph Theoretic Model for Connectivity

Let G(x) be a dynamic graph on n nodes3, as described

in Section II. We say that two nodes i and j in G(x) are

connected by a path of length r if there exists a sequence

of r + 1 distinct nodes starting with i and ending with j

such that consecutive nodes are adjacent. Let lij denote the

length of the minimum length path from node i to node j.

We define the k-hop neighborhood of node i corresponding

to the graph G(x), to be the set,

N
(i)
k (x) = {j | lij ≤ k}

and denote the collection of all k-hop neighborhoods

corresponding to the graph G(x), by Nk(x) ={
N

(1)
k (x), . . . ,N

(n)
k (x)

}
. Consider a reference graph

G(x0) at x0, and denote by Nk(x0) the set of k-hop

neighborhoods corresponding to that graph. Let Rk(x0)
be the set of all graphs G(x) that share the same k-hop

neighborhood set with G(x0), i.e.,

Rk(x0) =
{
G(x) | Nk(x) = Nk(x0)

}
(2)

and denote by C the set of all connected graphs. In the rest

of this paper we will be interested in the graphs belonging

to the set Ck(x0) = C ∩ Rk(x0).
Definition 3.1: We say that a graph G(x) is k-hop con-

nected with respect to the k-hop neighborhood Nk(x0) if

and only if G(x) ∈ Ck(x0).
We will call the property associated with k-hop connected

graphs, k-hop connectivity. It is clear that for k = 1,

Ck(x0) = {G(x0)} if G(x0) is connected and Ck(x0) = ∅
otherwise. On the other hand, for k = n − 1, Ck(x0) = C.

Observe that in this case, for every i ∈ V , and every possible

configuration x, N
(i)
n−1(x) ∪ {i} = V . Hence, the condition

in (2) is an identity which implies that Rk(x0) contains all

possible graphs. Taking intersection with C results in the set

of connected graphs C.

B. Algebraic Model for Connectivity

One of the challenges of the setting introduced in Section

II is to come up with an appropriate function representation

for the connectivity property of graphs. The following two

graph theoretic results will provide some insight into this

direction.

Theorem 3.2 ([15]): Let A be the adjacency matrix of a
graph G(A) with vertices {v1, . . . , vn}. Then, the (i, j)-th
entry of Ak is the number of paths of length k from vi to vj .

Theorem 3.3 (Connectivity): Let A be the adjacency ma-
trix of a graph G(A) with vertices {v1, . . . , vn}. Then, G(A)

3We write G(x) instead of G(t) to emphasize the dependence of G(t)
on the state x(t).

is connected if and only if there exists an integer k such that
all the entries of the matrix Ck(A) = I +A+A2 + · · ·+Ak

are non-zero.
We call the matrix Ck(x) = I+A(x)+A2(x)+· · ·+Ak(x)

the k-connectivity matrix of the graph G(x). By Theorem 3.3

it is clear that Ck(x) captures the connectivity property of

a graph. Let û(·) be a continuous approximation to the step

function defined as,

û(y) = lim
w→∞
ε→0

σw(y − ε) →

{
1 if y > 0
0 otherwise

(3)

where σw(y) = 1
1+e−wy is the sigmoid function, and define

the matrix Hk(x) =
(
h

(k)
ij (x)

)
such that,

Hk(x) = û(Ck(x)) (4)

where the step function û(·) is applied to every entry of

Ck(x). Note that the (i, j)-th entry of the matrix Ck(x) is

just the number of paths of length at most k from node i

to node j. Hence, the (i, j)-th entry of the matrix Hk(x)
simply denotes whether there exists a path of length at most

k from node i to node j. h
(k)
ij (x) = 1 implies that such a

path exists, thought h
(k)
ij (x) = 0 implies that such a path

does not exist.

Let x0 = [xT
1,0 . . . xT

n,0]
T denote a reference configuration

of the nodes in the workspace as before, and define the set,

Xk(x0) =
{
x | Hk(x) = Hk(x0), Hn−1(x0) = 1n×n

}
The following proposition, which due to space limitations

we state without proof, actually converts the graph theoretic

problem of identifying the set of k-hop connected graphs

Ck(x0) into an algebraic problem of specifying the set

Xk(x0).
Proposition 3.4: G(x) ∈ Ck(x0) if and only if x ∈

Xk(x0).
Hence, we conclude that equation (4) is indeed an ap-

propriate representation for k-hop connectivity. The rest of

this paper will be devoted in determining control constraints

U∗(x(t)) such that if u(t) ∈ U ∩ U∗(x(t)), then x(t) ∈
Xk(x0) for all t ≥ 0.

IV. MAINTAINING CONNECTIVITY

A. Modeling and Dynamics of the Adjacency Matrix

Let, dij(x) = ‖xi − xj‖2 denote the Euclidean distance
between two nodes i and j. We say that nodes i and j are

connected to each other by an edge in the graph G(x) if

and only if dij(x) ≤ δ, where δ is some specified threshold.

Hence, we may define the (i, j)-th entry of the adjacency

matrix A(x) to be (Figure 1),

aij(x) = û(δ − dij(x)) (5)

where û(·) is a continuous approximation to the step function

given by equation (3). Obviously, aij(x) = 1 if and only if

dij(x) ≤ δ, and equation (5) is consistent with Definition 2.1

of an adjacency matrix. Moreover, since dij(x) = dji(x)
we also have that aij(x) = aji(x) and hence A(x) is a

symmetric matrix.
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Fig. 1. Plot of the function aij(x) = û(δ− dij(x)) for parameter values
w1 = 102, w2 = 103 and threshold δ = 0.2.

Computing, the dynamics of the adjacency matrix is

straightforward. Using the notation introduced in Section II,

let ∇xaij(x) be the mn × 1 column vector denoting the

gradient of aij(x) with respect to x and define the n×mn2

matrix ∇xA(x), with block structure,

∇xA(x) =
(
∇xaij(x)T

)
(6)

We then have,

Ȧ(x) =
(
ȧij(x)

)
=

(
∇xaij(x)T

ẋ

)
= ∇xA(x)

(
In ⊗ ẋ

)
(7)

where In denotes the n-dimensional identity matrix and ⊗
denotes the Kronecker product4.

B. Dynamics of the k-Connectivity Matrix

Using properties of Kronecker products5, observe that,(
In ⊗ ẋ

)
Ak(x) =

(
In ⊗ ẋ

)(
Ak(x) ⊗ 1(1×1)

)
= . . .

=
(
Ak(x) ⊗ Imn

)(
In ⊗ ẋ

)
(8)

Differentiating Ck(x) with respect to time and using equa-

tions (7) and (8) we get,

Ċk(x) = Ȧ(x) + Ȧ(x)A(x) + A(x)Ȧ(x) + · · · +

+Ak−1(x)Ȧ(x)

= . . .

=

{
k−1∑
i=0

C(k−1)−i(x)∇xA(x)
(
Ai(x) ⊗ Imn

)}
·

·
(
In ⊗ ẋ

)
(9)

Equations (6) and (7) can also be applied to the connectiv-

ity matrix, yielding respectively ∇xCk(x) =
(
∇xc

(k)
ij (x)T

)
and Ċk(x) = ∇xCk(x)

(
In ⊗ ẋ

)
.

4Let A = (aij), B = (bij) be n × m and p × q matrices respectively.
Their Kronecker product, denoted by A ⊗ B, is the np × mq matrix with
the block structure: A ⊗ B = (aijB). (see [16])

5Let A, B, C and D be matrices of appropriate dimensions. A property
of the Kronecker product that will be of particular interest to us is: (A ⊗

B)(C ⊗ D) = AC ⊗ BD. (see [16])

Hence, equation (9) can be rewritten as,

∇xCk(x)
(
In ⊗ ẋ

)
=

{
k−1∑
i=0

C(k−1)−i(x)∇xA(x) ·

·
(
Ai(x) ⊗ Imn

)}(
In ⊗ ẋ

)
(10)

or equivalently,

∇xCk(x) =

k−1∑
i=0

C(k−1)−i(x)∇xA(x)
(
Ai(x) ⊗ Imn

)
(11)

since equation (10) should hold for all ẋ.

Equations (7) and (9) provide the dynamics of the adja-

cency matrix and the Ck(x) matrix respectively, in terms of

the dynamics ẋ of the nodes. Finally, equation (11) provides

∇xCk(x) in terms of ∇xA(x). This relation is very useful

when we need to compute the gradients ∇xc
(k)
ij (x).

C. Maintaining Connectivity

Let x0 = [xT
1,0 . . . xT

n,0]
T be the initial configuration of

the nodes in the workspace. Obviously, x0 ∈ Xk(x0). Our

goal is to derive constraints on the control variables u so that

Xk(x0) is an invariant set. For all t ≥ 0, define the system

of differential inequalities,{
ḣ

(k)
ij (x(t)) ≥ 0 if h

(k)
ij (x0) = 1

ḣ
(k)
ij (x(t)) ≤ 0 if h

(k)
ij (x0) = 0

(12)

Then, obviously, for all t ≥ 0, any configuration x(t) =
[xT

1 (t) . . . xT
n (t)]T of the nodes satisfying the system (12)

will belong in Xk(x0).
Since Ck(x) is a symmetric matrix, so is Hk(x). Hence,

the matrix differential inequalities (12), actually reduce to

a set of
n(n−1)

2 differential inequalities corresponding to

the upper triangular part of Hk(x) (not including the di-

agonal entries). Thus, using also the fact that ḣij(x) =
∇xhij(x)T

ẋ = û′(cij(x))∇xcij(x)T
ẋ, equation (12) can

be rewritten as6,{
û′(cij(x))∇xcij(x)T

ẋ ≥ 0 if h0
ij = 1

û′(cij(x))∇xcij(x)T
ẋ ≤ 0 if h0

ij = 0
for every i < j

(13)

where ∇xcij(x)T is given by equation (11) and for nota-

tional simplicity we have dropped the index k. In matrix

notation, (13) can be rewritten as,

G(x)ẋ ≥ 0 (14)

where G(x) is the
n(n−1)

2 × mn dimensional matrix given

by,

G(x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

(−1)1−h0
12 û′(c12(x))∇xc12(x)T

(−1)1−h0
13 û′(c13(x))∇xc13(x)T

...

(−1)1−h0
(n−1)n û′(c(n−1)n(x))·

·∇xc(n−1)n(x)T

⎞
⎟⎟⎟⎟⎟⎟⎠

(15)

6for simplicity, we make use of the notation û′(y) to denote the derivative
dû(y)

dy
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Suppose that the dynamics of the nodes in the graph are

given by equation (1). Then, combining equations (1) and

(14) the system dynamics become,{
G(x)F (x,u) ≥ 0
ẋ = F (x,u)

(16)

For every configuration x of the nodes, the inequality

G(x)F (x,u) ≥ 0 defines a set U∗(x) of valid control inputs.

Hence, in order to guarantee invariance of the set Xk(x0)
we need to pick inputs u from the set U ∩ U ∗(x). As long

as this set is non-empty we can guarantee that by choosing

u ∈ U ∩ U∗(x), the graph G(x(t)) will always be k-hop

connected.

Remark: Clearly, graph connectivity is a problem whose

complexity grows exponentially with the number of nodes.

The combinatorial nature of the problem is captured in the

structure of the k-connectivity matrix. In our setting, k-hop

connectivity serves as a tradeoff between the computationally

expensive (n−1)-hop connectivity, where in order to guaran-

tee connectivity, we have to account for all combinations of

all possible path lengths between all pairs of nodes, and the

computationally inexpensive 1-hop connectivity (keeping the

same neighbors), where we only consider single edge paths

between nodes.

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

Fig. 2. One Leader, Four Followers / 1-hop connectivity (Keep the same
neighbors).

V. CONNECTIVITY TASKS

The model we developed was based on the assumption that

we have control of all nodes in the workspace. However, we

will show that it also performs well in the leaders-followers
case, and in particular when we have no control over the

leaders. Assume that we have n nodes in the plane and

that their dynamics are given by ẋ = u, where notation

is according to the one introduced in Section II. The system

of constraints (14) becomes G(x)u ≥ 0.

Let L ⊂ {1, 2, . . . , n} denote the set of nodes correspond-

ing to the leaders. We will assume that the dynamics of every

leader i ∈ L are of the form ui = fi(xi). Then the system

of constraints becomes,{
G(x)u ≥ 0
ui = fi(xi) for every i ∈ L

Hence, the problem becomes to find solutions that satisfy

these constraints. Since solutions, if they exist, might not be

unique, we may also choose to minimize a cost function.

In particular, we will be interested in minimizing the energy
given to the system. Thus, for every configuration x, we will

be solving the quadratic program,

min
u

‖u‖2

s.t. G(x)u ≥ 0
ui = fi(xi) ∀i ∈ L

The cost function is obviously not unique. Different cost

functions will result in different solutions. The one we use in

our setting gave some nice results which we now illustrate. In

the following tasks, the initial graph configuration is denoted

with black color, and the subsequent graphs with blue. The

leaders are denoted with green and the followers with red7.

A. One Leader, Four Followers

Let L = {1} ⊂ {1, . . . , 5} correspond to the set of leaders,

with dynamics given by,

u1 =

[
1 + x1,2

(
1 − 3

2x1,2

)
− x3

1,1

1 − x1,1

(
1 + x2

1,1

)
− 3

2x2
1,2

]

and let the initial configuration of

the nodes in the plane be: x0 =[
0 0 0.32 0 0 0.32 −0.32 0 0 −0.32

]T
.

We illustrate our results for connectivity threshold δ = 0.5
and for k-hop connectivity values, k = 1 (Figures 2)

and k = 4 (Figures 3). Comparing the respective figures,

we may observe that in all cases, our model generates a

control vector u such that the graph always satisfies the

constraints we impose. Observe that for k = 1 (keep the

same neighbors), edges are not allowed between nodes that

were not initially connected by an edge. This is consistent

with the definition of k-hop connectivity introduced in

Section III.

B. Two Leaders, Three Followers (Cell Coverage Task)

Let L = {1, 2} ⊂ {1, . . . , 5} correspond to the set

of leaders, with dynamics given by the artificial potential

functions [17],

ui = −K∇xi
ϕi(xi) ∀i ∈ L

where ϕi(xi) =
(

γr
d,i

1+γr
d,i

) 1
r

is the potential function, γd,i =

‖xi −xd,i‖
2 is the distance of leader i to its destination xd,i

and K, r > 0 are a gain and a parameter respectively.

Let the initial configuration of the nodes in the plane be:

x0 =
[

1 3 2 3 1.5 3.5 1.33 2.5 1.67 2.5
]T

7For animations of the connectivity tasks illustrated
in this paper, we refer the reader to the web address:
http://www.seas.upenn.edu/˜zavlanos/
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Fig. 3. One Leader, Four Followers / 4-hop connectivity (Stay Connected).

and the destinations of the leaders be: xd,1 =
[

0 0
]T

and xd,2 =
[

3 0
]T

respectively (Figure 4).

We require from the leaders to reach their destinations

while the graph remains connected (i.e., k = 4). This is an

example of a cell coverage task. We may observe that the

task is accomplished in this case as well. (the connectivity

threshold for this task is ε = 0.7571)
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Fig. 4. Two Leaders, Three Followers / 4-hop connectivity (Cell coverage
task).

VI. CONCLUSIONS

In this paper, we considered the problem of controlling

the structure of dynamic graphs so that the resulting motion

always preserves various connectivity properties. In partic-

ular, we introduced the notion of k-hop connectivity and

developed a centralized control framework that guarantees

maintenance of this property. The idea was to model connec-

tivity as an invariance problem and transform it into a set of

constraints on the control variables. Then, by minimizing

an appropriate cost function, we were able to compute

control laws for various connectivity tasks that illustrate

the applicability of our method. We also showed that the

notion of k-hop connectivity serves as a tradeoff between

computational complexity and the size of the reachable set

of graph configurations. We believe that this work points to a

new direction in systems and control theory on the interface

with algebraic and combinatorial graph theory.
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