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Abstract

Standard Functional Unification Grammars (FUGs) provide a structurally guided
top-down control regime for sentence generation. When using FUGs to perform
content realization as a whole, including lexical choice, this regime is no longer
appropriate for two reasons: (1) the unification of non-lexicalized semantic input
with an integrated lexico-grammar requires mapping “floating” semantic elements
which can trigger extensive backtracking and (2) lexical choice requires accessing
external constraint sources on demand to preserve the modularity between con-
ceptual and linguistic knowledge.

We introduce two control tools that we have implemented for FUGs to ad-
dress these limitations: bk-class, a form of dependency-directed backtracking to
efficiently process “floating” constraints and external, a co-routine mechanism
allowing a FUG to cooperate with external constraint sources during unification.
We show how these tools complement the top-down regime of FUGs to control the
whole content realization process.

1 Introduction

Unification-based formalisms (Shieber 1986) and Functional Unification Grammars
(FUGS) in particular, have proved popular in text generation. In previous work
(Kay 1979, McKeown 1985, Appelt 1985, Paris 1987), the input to FUGs was a fully
lexicalized specification. In recent work, however, the functionality of FUGs has been
extended to encompass all of content realization, including lexical choice (McKe-
own et al 1990, Elhadad 1991b, Smadja 1991b, Robin 1992). In this framework, con-
tent realization is viewed as the process of unifying a purely semantic input with an
integrated lezico-grammar, in the systemic sense (Matthiessen 1991).

When a non-lexicalized semantic structure is accepted as input, the FUG has the
burden of mapping this structure onto a syntactic structure. This additional task
increases the complexity of the unification process because semantic and syntactic
structures are not isomorphic:

* Reprinted from Aspects of Automated Natural Language Generation, R. Dale, E. Hovy,
D. Résner and O. Stock editors, Springer Verlag, 1992, pp.89-104.
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— Several elements in the semantic structure can be realized by a single syntactic
constituent (e.g., in a sports report, the verbal pattern “X stunned Y” expresses
both that X is the winner of a game and that Y was the favorite).

— The same semantic element can be realized by linguistic constituents at different
linguistic ranks (e.g., the surprise expressed by “X stunned Y” can alternatively
be conveyed by an adverbial phrase, as in “against all odds, X defeated Y’ or
an adjectival phrase “X defeated the highly favored Y”).

In FUGSs, unification was traditionally controlled by a top-down regime guided by
the input structure. When accepting a semantic input containing “floating” elements
that can be realized by constituents at different levels of the syntactic tree, such a
top-down regime can trigger expensive backtracking.

Moreover, lexical choice is constrained by many different factors: encyclopedic,
interlexical, grammatical, discursive and interpersonal (Robin 1990). All of these
constraints cannot be integrated in a single FUG. In a modular architecture, they
must be provided by independent knowledge sources. To perform lexical choice, the
FUG must interact with these various knowledge sources during unification.

To address these new needs, we propose to integrate explicit control annota-
tions within FUGs. Specifically, we present two control tools that we have imple-
mented in FUF (Functional Unification Formalism), our extended version of FUGs

(Elhadad 1991a, 1990):

— bk-class, a form of dependency directed backtracking, used to handle floating
constraints efficiently.
— external, a co-routine interface used to query external constraint sources from

the FUG.

In this paper, we first describe the standard control regime used in Fur. We
then introduce the bk-class construct and we quantitatively evaluate how it reduces
backtracking for the realization of floating constraints. We then present the external
tool and illustrate its use to query a domain knowledge base at unification time.

2 Standard Control in FUF

FUG relies on the primitive operation of unification of Functional Descriptions (FDs)
(Kay 1979). FDs are sets of pairs (a v), called features, where a is an attribute and
v is a value. A value is either : (1) an atom, (2) recursively an FD or (3) a path to
another feature in the FD.? A given attribute a is allowed to appear at most once in
a given FD. Two simple FDs are compatible if they do not include a contradictory

2 Value paths are used to specify that two features share the same value. In FUF, a path
is a list of embedded attributes surrounded by curly braces. This list can be prefixed by
a number of carets, making the path relative to the level of embedding of the feature. An
attribute is generally an atom. However, it can also be a path to allow for the specification
of its value at various embedding levels in the recursive structure of an FD.
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value for the same attribute.® When they are compatible, the unification of two FDs
merges the features from both to produce a more specific FD, the total FD.

There are four constructs of FUF that are of importance in this paper: alt, cset,
any and given. The alt keyword expresses disjunction in FUG. The value of the
alt keyword is a list of FDs, each one called a branch. When unifying an input FD
with such a disjunction, the unifier non-deterministically selects one branch that
is compatible with the input. Disjunctions encode the available choice points of a
system and introduce backtracking in the unification process.

During sentence generation, unification is used to add linguistic information from
a functional unification grammar (FUG) to a semantic input, both represented as
FDs. Figure 1 shows the input to generate the sentence “Robinson scored 32 points”
and a FUG (grammar G1) specifying the mapping from semantic categories to syn-
tactic categories. When unifying this semantic input I1 with G1 the following oper-
ations are performed: FUF picks branch 2 of the alt and merges it with the input.
During the merging, the features uppercased in Fig. 1 get added to the result.

The semantic input is a structured representation. It consists of a top-level pred-
icate with embedded arguments. In the single unification shown in Fig. 1, however,
only the top-level FD is enriched. The FDs embedded under agent and medium are
not enriched. To properly refine the structured semantic input into a syntactic de-
scription we need to process these sub-FDs, by reaccessing the grammar at each
level.

The way FUF proceeds at this point, is based on the notion of constituent: a
constituent of a complex FD is a distinguished sub-FD. The special label cset
(Constituent Set) identifies constituents. The value of cset is a list of attributes
naming the constituents of the FD as shown in Fig. 1. Intuitively, constituents bring
structure to functional descriptions.

To handle constituents, the complete unification procedure is:

1. Unify top-level input with grammar (single unification).
2. Identify constituents in result.
3. Recursively unify each constituent with the grammar.

Constituents therefore trigger recursion in FUGs. However, this description of
the unification mechanism does not specify what control regime must be used to
traverse the constituent structure. FUF implements the following regime: top-down
and breadth-first traversal of the constituent structure. At each level of the structure,
constituents are processed in the order they are declared in the cset. So in our
example FD, the constituent structure is processed as follows: top-level first, then
agent, then medium. The resulting FD at the end of the process is shown at the
bottom of Fig. 1.

The two remaining FUF constructs we need to discuss in this section are the
meta-variables given and any.

A well-known problem with top-down control regimes is their handling of left-
recursive rules. For example, the grammar for NPs specifies that the determiner of

% There is no notion of variable in functional unification. Failure can only occur at the leaf
of a feature structure when trying to unify two different atoms for the same attribute.
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Semantic input I1:

((sem-cat action) (concept c-score) (tense past) ;; Predicate

(agent ((sem-cat individual) (concept c-player) ;; Argument 1
(name Robinson)))

(medium ((sem-cat set) (concept c-stat) ;3 Argument 2

(unit c-point) (cardinal 32))))

Grammar G1:

...
(alt
(((sem-cat individual) (synt-cat proper-name)) ;3 Branch 1
((sem-cat action) (synt-cat clause) (cset (agent medium))) ;; Branch 2
((sem-cat set) (synt-cat np)))) ;3 Branch 3
.

Total FD after a single (top-level) unification:

((sem-cat action) (concept c-score) (tense past)

(SYNT-CAT CLAUSE) (CSET (AGENT MEDIUM))

(agent ((sem-cat individual) (concept c-player) (name Robinson)))
(medium ((sem-cat set) (concept c-stat) (unit c-point) (cardinal 32))))

Total FD after recursive constituent unification:

((sem-cat action) (concept score) (tense past)

(synt-cat clause) (cset (agent medium))

(agent ((sem-cat individual) (concept c-player) (name Robinson)
(SYNT-CAT PROPER-NAME)))

(medium ((sem-cat set) (concept c-point) (cardinal 32)
(SYNT-CAT NP))))

Fig.1. An example of unification

an NP can be a possessive NP. In a phrase-structure formalism, this is encoded by
a left-recursive rule such as np/N P — det/N P, nbar /N P (Shieber et al 1989, p.10).
With a top-down regime, such a rule can lead to non-termination. In FUF, this
problem is avoided by the use of the special construct given. The given construct
checks that a given feature is instantiated in the input FD before unification starts.
By adding a pair (possessor given) in the NP sub-grammar, we can ensure that a
possessive NP gets added in determiner position only when a possessor constituent
is given in the semantic input. Thus, recursion is only triggered when necessary and
will always terminate.

Another meta-variable, any, implements a powerful delaying mechanism. A fea-
ture (x any) constrains x to be instantiated with some value at the end of the
unification. The unifier enforces this constraint as follows: if x is already instanti-
ated in the input FD, then any is satisfied; if it is not yet instantiated, the constraint
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is delayed and checked again at the end of the unification process. If at this point
x is still not instantiated, the constraint fails and the unifier needs to backtrack.
Therefore any is a meta-variable that triggers a delayed check.

In contrast to a procedural implementation of systemic grammars like NIGEL
(Mann and Matthiessen 1983), where the control regime is driven by an e priori
grammatical structure, FUF’s control regime is driven by the structure of the seman-
tic input FD. It is therefore similar in spirit to the semantic-head-driven algorithm
presented by Shieber et al (1989). Tt also avoids the inefficiencies associated with a
bottom-up control regime, e.g., the backtracking introduced by choosing the case of
an NP before knowing what syntactic role it will fill in a clause.

The control regime described thus far is the default regime followed by Fur. A
more flexible control regime can be implemented by explicitly controlling the value of
the cset feature in different parts of the grammar. In this paper, we do not attempt
to cover the many control issues related to lexical choice. Instead, we focus on the
special control devices we have implemented in FUF. A more complete description
of various control regimes for lexical choice implemented in FUF can be found in

(Elhadad 1992b) and (Robin 1992).

3 Bk-class and Floating Constraints

The task of the generator is to map from a semantic constituent structure to a
syntactic one. This task is difficult because, in general, these structures are not
isomorphic: “a combination of semantic elements can be expressed by a single surface
element, or a single semantic element by a combination of surface elements (Talmy,
1985, p. 57). For example, in the basketball domain, the clause pattern “X edged Y”
conveys two semantic elements: a semantic predicate - X won a game against Y -
and a manner qualification - the game was close.*

Moreover, the same semantic element can be realized by syntactic elements at
different linguistic ranks (e.g., group, clause, sentence) For example, the low rating
of a team can be conveyed by a variety of syntactic constituents:

— Adjective (at the noun-group rank): The hapless Denver Nuggets beat the Boston
Celtics 101-99.

— Verb (at the verb-group rank): The Denver Nuggets stunned the Boston Celtics
101-99.

— Adverbial (at the clause rank): The Denver Nuggets surprisingly beat the Boston
Celtics 101-99.

We call such semantic elements floating constraints. We distinguish them from
structural constraints such as semantic predications or references. Structural con-
straints require the presence of syntactic constituents at a given linguistic rank in
the output and thus guide the mapping process from the semantic structure to the
syntactic structure. For example, when an input event structure is mapped to a

* This non-isomorphism between syntactic and semantic structures is a pervasive phe-
nomenon, as illustrated by Talmy’s extensive cross-linguistic analysis of constructions
expressing motion and causation (Talmy 1976 and 1983).
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clause, the semantic predicate c-win determines how the semantic roles are mapped
onto syntactic complements: winner to subject and loser to object.

The top-down regime implemented in FUF handles structural constraints effi-
ciently because backtracking is circumscribed to the unification of the grammar
with a single input constituent. In contrast, the processing of floating constraints
can be very inefficient because it can trigger non-local backtracking, cutting across
linguistic ranks and requiring the re-unification of the grammar with several input
constituents. To illustrate this problem, consider a system reporting on the results
of a basketball game and an input containing the following three constraints:

— Semantic Predication: convey that the Denver Nuggets defeated the Boston
Celtics by a 101-99 score.

— Manner Qualification: convey that the game was tight.

— Argumentative Orientation: convey the low rating of the Denver Nuggets.

For example, the above input configuration of constraints is correctly satisfied
by the following sentence: “The hapless Denver Nuggets edged the Boston Celtics
101-99.”

But all these different linguistic devices cannot be freely combined, as illustrated
by the following examples:

1. 2 The Denver Nuggets narrowly stunned the Boston Celtics 101-99.
2. 2 The Denver Nuggets surprisingly nipped the Boston Celtics 101-99.
3. 2 Against all odds, the Denver Nuggets narrowly beat the Boston Celtics 101-99.

In sentence (1), it is not clear which semantic aspect of the verb “stunned” is
modified by “narrowly”: the expression of the game result or its unexpectedness.
Similarly in (2), the modification of “nipped” by “surprisingly” is ambiguous. In
(3), the scope of “against all odds” is ambiguous: it could be either “narrowly” - in
which case the Nuggets are presented as highly rated - or “beat” - in which case the
Nuggets are presented as lowly rated.

The input FD shown at the top of Fig. 2 encodes the three constraints we want
to satisfy. The central part of Fig. 2 shows a fragment of a lexicon specifying the
mapping between concepts and lexical items. The fragment shows how different verbs
impose constraints on the features A0 or manner, or no constraint for “neutral”
verbs. The branch order in the win-lex alt enforces the stylistic preference for
semantically rich verbs over neutral verbs with adverbials.® In addition, to avoid
generating adverbials with ambiguous scope, the grammar enforces that (1) clauses
contain a single adverb and (2) only neutral verbs are used in combination with
adverbials.

Consider the realization of the semantic input at the top of Fig. 2 with the gram-
mar at the bottom of this figure. FUF’s top-down regime allows it to map the struc-
tural constraints to syntactic constituents right away: first the semantic predicate
to a verb-group, and then the roles winner, loser and score to subject, object

® FUF tries the branches of an alt construct in order. When no order is preferable, the
construct ralt (standing for Random Alternation) whose branches are tried at random
is used instead.
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A semantic inpul expressing three constraints:

(;; Semantic predication
(sem-cat action) (concept c-win) (token t-win-666) (tense past)
(winner ((sem-cat individual) (concept c-team) (name Nuggets)))
(loser ((sem-cat individual) (concept c-team) (name Celtics)))
(score ((sem-cat quantity) (concept c-game-score)
(winner-score 101) (loser-score 99)))

;3 Manner constraint
(manner ((sem-cat quality) (concept c-tight)))
;3 Argumentative constraint
(A0 ((sem-cat scale) (concept c-rating)

(carrier {winner}) (orientation -))))

Choice of verb in the lexico-grammar:

(...
((sem-cat action)
(alt (index on concept)
;; Map the concept game-result to a verb
(((concept win)
(alt win-lex (:bk-class (AD manner))
(;; The winner’s rating is poor
(({A0} ((concept c-rating) (carrier {winner})
(orientation -) (conveyed yes)))
(lex ((alt ("stun" "surprise'"))))
({adverb} none))

;; The victory is narrow

(({manner} ((concept c-tight) (conveyed yes)))
(lex ((alt ("edge" "nip"))))

({adverb} none))

;3 Default neutral verbs
((lex ((alt ("beat" "defeat" "down"))))))))
)

Floating constraints mapping in the lexico-grammar:

...

(verb ((alt ...)))

(A0 ((alt ...)))

(manner ((alt manner-adverbial (:bk-class manner)
(;; Can be realized by other means - delay
((manner-conveyed any))

;3 Map manner to an adverbial adjunct

;3 and mark that manner has been realized

(({adverb} ((synt-cat adverb) (concept {~ ~ concept})))
(manner-conveyed adverb))))))

Fig. 2. Handling floating constraints with bk-class




8 Michael Elhadad and Jacques Robin

and adjunct respectively. In contrast, the mapping of the “floating” constraints AQO
and manner must be delayed.

Figure 2 illustrates this delaying mechanism by showing how the manner input
constraint is handled by the grammar. The feature manner-conveyed is used to
record the syntactic category of the constituent realizing the manner constraint. It
remains nil as long as the constraint is not conveyed. In the first branch of the
manner-adverbial alt, we first check whether the manner constraint has already
been handled by some other constituent. This check is implemented by the feature
(manner-conveyed any). This first branch delays the decision to use an adverb
with the any construct. This gives other devices a chance to express the manner
constraint. However if no other linguistic device can be found that satisfies the man-
ner constraint, the grammar resorts to using an adverbial adjunct, by choosing the
second branch of the alt. The feature (manner—conveyed any) therefore prevents the
generation of semantically incomplete sentences like “The Denver Nuggets stunned
the Boston Celtics 101-99.” The argumentative constraint is similarly handled with
a feature ao-conveyed.

Let us now consider how the manner and argumentation constraints interact. In
a top-down regime, the verb-group is first processed and the concept c—win is lexi-
calized. FUF is now traversing the lexicon fragment in the middle of Fig. 2 and first
chooses the verb “stun” which satisfies both the semantic predication and the argu-
mentative constraint. It then maps the semantic constituents to syntactic functions
and proceeds to the argumentative constraint. This constraint is already satisfied by
the verb, so no modifier needs to be introduced.

At this point Fur attempts to take into account the manner constraint. It first
delays the use of an adverb with the any construct and completes the traversal of
the constituents top-down. It eventually checks the any construct and finds that
the manner constraint has not been satisfied. Backtracking is triggered. Consider at
this point the state of the backtracking-point stack: the whole grammar has been
traversed, all the subconstituents processed. Basically, all potential backtracking
points are on the stack. If Fur blindly backtracks, search is maximized. Since we
cannot know a priori where in the syntactic structure the floating manner constraint
will fit, the decision whether to use an adverb must be delayed until the end of the
traversal. There is therefore no way to detect failure before this point.

To avoid the cost of a blind backtracking, we introduce the bk-class construct.
It implements a version of dependency-directed backtracking (de Kleer et al 1979)
specialized to the case of FUF. The bk-class construct relies on the fact that in
FurF, a failure always occurs because there is a conflict between two values for a
certain attribute at a certain location in the total FD. In our example, we have
to backtrack because an equation requires that the value of the feature {manner
manner-conveyed} be instantiated, but the actual feature is not. The path {manner
manner-conveyed} defines the address of the failure.®

The idea i1s that the location of a failure can be used to identify the only decision
points in the backtracking stack that could have caused it. This identification requires

 In an FD, each embedded feature can be viewed as an equation between the path leading
to the feature in the total FD and the feature value.
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additional knowledge that must be declared in the FUG. More precisely, we first
allow the FUG writer to declare certain paths to be of a certain bk-class. We then
require the explicit declaration in the FUG of the choice points that correspond to
this bk-class.

For example, the statement: (define-bk-class manner {manner manner-conveyed})
specifies that the path {manner manner-conveyed} is of class manner. In addition,
we tag in the FUG all alts that have an influence on the handling of the manner
constraint with a declaration (:bk-class manner) as shown in Fig. 2.

When the unifier fails at a location of class manner, it directly backtracks to the
last choice point of class manner, ignoring all intermediate decisions. In our example,
when the any constraint fails, we directly backtrack to the manner choice point in
the grammar (bottom of Fig. 2). If this last option fails again, we backtrack up to
the choice of verb in the lexicon (middle of Fig. 2). We therefore use the knowledge
that only the verb or the adverb can satisfy the manner constraint in a clause
to drastically reduce the search space. But, this knowledge is locally expressed at
each relevant choice point, retaining the possibility of independently expressing each
constraint in the FUG.

In general, the determination of the address of failure is more complex and it
is necessary to distinguish between nitial failures and derived failures. An initial
failure always occurs at a leaf of the total FD, when trying to unify two incompatible
atoms. Failures however can also propagate up the structure of the total FD. For
example, when unifying ((a ((b 1)))) with ((a ((b 2)))) the original address
of failure is the path {a b}. When the unifier backtracks, it also triggers a failure at
address {a}, which is not a leaf. This type of failure is called a derived failure. In the
implementation of bk-class, FUF ignores derived failures and directly backtracks
to the first choice point whose bk-class matches the last initial failure.

For the example of Fig. 2, we have measured the number of backtracking points
required to generate different clauses conveying the same core content. Table 1 sum-
marizes these measurements.”

Table 1. Measuring the effect of bk-class

Backtracking points |
Input [Output w/o bk-class|w/ bk-class)|
No floating constraints | The DN beat the BC 110 110
Manner in the verb The DN edged the BC 110 110
Manner as adverbial The DN narrowly beat the BC >10000 214
AQ in the verb The DN stunned the BC 112 112
AO as adjective The hapless DN beat the BC 1,623 239
AO as adverbial The DN surprisingly beat the BC| >100,000 277
AO & manner together| The hapless DN edged the BC 1,178 238

The number of backtracking points required to generate each example clause is

" In this table, DN abbreviates Denver Nuggets and BC abbreviates Boston Celtics.



10 Michael Elhadad and Jacques Robin

listed with and without bk-class. The numbers for the first clause, which does not
include any floating constraints, give an indication of the size of the grammar. It can
be interpreted as the number of decisions the grammar makes to generate a basic
clause for which practically no backtracking is required. It roughly corresponds to the
number of unretracted decisions made by the grammar. It is the optimal number of
backtracking points that a search control regime can obtain for the given input with
this grammar. Without bk-class, the wide variation in number of backtracking
points among the examples indicates the exponential nature of the blind search
which floating constraints impose on the standard control regime. In contrast, with
bk-class, the variation in number of backtracking points remains within a factor
of three among all the examples.

The dependency-directed mechanism implemented in FUF with bk-class there-
fore complements a general top-down control regime to make the processing of float-
ing constraints efficient. The performance penalty imposed by a floating constraint
depends on the number of sites in the syntactic structure where it can be realized.
For example, the AO constraint can be realized at three levels and it may require
the unifier to re-traverse the grammar three times until it finds a site to convey the
AO constraint. Each floating constraint can be characterized by its range of possible
attachment nodes. In general, it would be desirable to delay the attachment until
it 1s proven compatible with the other constraints. In FUF, an explicit annotation
called wait implements such a delaying mechanism. It is similar to Naish’s imple-
mentation for Prolog (Naish 1985). In FUF, a wait annotation freezes the choice of
a branch in a disjunction until values for a given set of paths in the total FD are
available.

While backtracking can be minimized by the use of wait, it cannot be avoided
entirely. When FUF’s input contains several mutually dependent floating constraints,
they are all delayed in a deadlock situation. To break the deadlock, FUF selects one of
the constraints arbitrarily. This non-deterministic choice can lead to backtracking. In
this case, a combination of bk-class and wait is necessary to minimize backtracking.
We are currently evaluating the efficiency gains of this combination of control tools
over the use of bk-class alone.

The bk-class mechanism improves FUGs’ efficiency while preserving their desir-
able properties - declarativeness and bidirectional constraint satisfaction. It can be
declaratively read as a statement of dependency between a decision in the grammar
and a class of constraints in the input. Using bk-class, however, is not always easy
for the grammar writer since it requires thinking about the control strategy of the
unifier - the same drawback as for Prolog’s cut mechanism. But bk-class annota-
tions are optional, and can be added only when needed to optimize a grammar.

4 External and Modularity

Content realization consists of mapping a semantic input structure onto a syntactic
tree. In addition to the constraints present in the input, this process is constrained
by a heterogeneous set of factors. Such factors are surveyed in (Matthiessen 1991)

and (Robin 1990). They include:



Controlling Content Realization with FUGs 11

— grammar rules

— a conceptual lexicon specifying the mapping between domain concepts and lex-
ical items

— a grammatical dictionary providing the special grammatical properties of lexical
items

— a collocation dictionary providing the restrictions on lexical co-occurrences

— a discourse model keeping track of the structure of the text as it is generated

— a domain knowledge base representing the encyclopedic context of generation

— a user-model representing the interpersonal context of generation

These sources vary along several dimensions:

— Structure: the grammar rules and the conceptual lexicon express structural con-
straints. They specify a transformation from one regular structure to another.
Other sources like the collocation dictionary express inherently non-structural
constraints (Halliday 1976, p. 73).

— Portability: the grammar rules, the grammatical dictionary (Cumming 1986) and
to some extent the collocation dictionary (Smadja 1991a) are domain-independent.
The other sources are highly domain-dependent.

— Dynamism: the discourse model is inherently dynamic, changing from one sen-
tence to the next. In some applications (Dale 1988), this is also the case for the
domain model and the user-model. The other sources are static.

How can these knowledge sources be combined?

One approach would be to integrate all these constraints into a single FUG.
In addition to being non-modular and thus hindering portability, this approach is
impractical for dynamic constraints: being a monotonic process, unification is inad-
equate to update dynamic models as generation unfolds.

A modular architecture is therefore preferable. The structural constraint sources
- conceptual lexicon and grammar rules - can readily be implemented as a FUG as
they are well handled by FUF’s top-down regime. During unification, this backbone
FUG needs to communicate with the other sources when necessary. What we need
is a mechanism allowing constraints that lie outside of both the input FD and the
FUG to be taken into account at any point during the unification process.

We introduce the external construct to address this need. When FUF encounters
a feature of the form (a #(external F)) it performs the following operation:

1. Unification is suspended.

2. The external function F - a LISP function returning a sub-FD - is evaluated.

3. The value returned by F becomes the new value of the attribute a in the total
FD.

4. Unification resumes where it was suspended with the updated total FD.

Therefore External allows the dynamic expansion of a FUG at unification-time.
To illustrate the use of the external construct in FUF, consider again the task
of generating the sentence: “The hapless Denver Nuggets edged the Celtics 101-
99.” As explained in Sect. 3, the verb “fo edge” in this sentence not only realizes
the predicate element of the semantic input but also the manner constraint. This
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floating constraint provides a qualitative evaluation of the basketball game reported
by the sentence. Such a qualitative evaluation does not depend only on the final score
of the game® but on other quantitative factors as well, such as the number of lead
changes in the final minutes or the largest lead by either team at any point during
the game. Several such quantitative facts about a game are abstracted and conflated
with the semantic predicate by verbs like “to edge”, “to hammer”, “to outlast” or
“to rally past”. Choosing among these verbs requires deciding which combination of
quantitative facts is abstracted by the manner connotation of each verb.

In Sect. 3, we assumed that this decision was performed by the content planner
building the FUG semantic input as illustrated by the presence of the (concept
c-tight) feature in the input of Fig. 2. Performing such a mapping, however, re-
quires knowledge of the existing lexical resources available in a given sublanguage
(Kittredge and Lehrberger 1983). The fact that a given combination of quantitative
data about a basketball game can be compactly expressed in English by describing
the game as “tight” is linguistic knowledge. Tt should therefore be located in the
lexicon portion of the FUG. Using external allows FUF to enforce this separation
between linguistic and conceptual knowledge. In this case, the semantic input to the
FUG no longer needs to provide a pre-linguistic specification of the manner. It needs
only indicate that one of the sentence’s communicative goals is to express the man-
ner. Instead of the feature: (manner ((sem-cat quality) (concept c-tight))),
the semantic input just contains the feature: (manner any). The lexico-grammar is
now in charge of choosing a lexical item to appropriately qualify the game. To per-
form this choice, 1t must access the description of the game in the encyclopedic
knowledge base. Figure 3 shows a fragment of a lexicon where the external con-
struct implements an example of such query.

Unification of the semantic input with the win-lex alt of this lexicon fragment
triggers calls to external functions. Each of these functions queries the knowledge
base for quantitative data and returns an FD containing corresponding qualitative
features. For example, the function get-lead-changes shown in Fig. 3 enriches the
total FD with the feature lead-changes. These external functions connect the FUG
with the knowledge base. Within the body an external function, one can access any
feature in the total FD by specifying its path prefixed by @. In Fig. 3, note how this
notation is used in the get-lead-changes function to retrieve information from the
knowledge base about the particular token given in the semantic input.®

After the external functions return, the features added to the total FD are used
for choosing a verb conveying the manner connotation appropriate to this particular
game. For example, the verb “to edge” is preferred when a combination of features
signals that (1) there was no overtime (2) no team built a big lead and (3) there
were many lead changes. As we have identified about 100 different verbs in the
basketball sublanguage to express the victory of a team, many features are required
to discriminate between them. However, in a given situation, only a few features
will actually be needed. Having the content planner systematically retrieve all the

8 In which case it would be redundant with the quantitative expression of the score in the
sentence.
? Recall that the semantic input is part of the total FD at any point during unification.
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An external query function:

(defun get-lead-changes ()
(let ((lead-change-num (get-role-value (get-token @{token})
’lead-change-num)) )
(cond ((> lead-change-num 15) ‘((lead-changes numerous)))
((and (> lead-change-num 5) (> 15 lead-change-num))
¢ ((lead-changes average)))
((> 5 lead-change-num) ‘((lead-changes few)))))

Backbone lexico-grammar with external constructs:

(...

((sem-cat action)

(concept c-win)

(alt win-lex (:bk-class (AD manner))
((({manner} any)

;3 Knowledge base query for information discriminating

;; among manner-conveying verbs.

({manner} ((overtime #(external #’get-overtime))
(biggest-lead #(external #’get-biggest-lead))
(lead-changes #(external #’get-lead-changes))
o))

(alt win-and-manner-lex

(;; The victory was obtained in overtime after many lead changes
(({manner} ((overtime yes) (lead-changes numerous)))
(lex "outlast"))

;3 The victory was close and obtained in regulation
(({manner} ((overtime no) (biggest-lead small)
(lead-changes numerous)))
(alt (((lex "edge") (lex "nip")))))
LI

Fig. 3. Accessing an external knowledge source from the lexicon

knowledge base information necessary to discriminate between all the words of the
lexicon would thus be computationally wasteful.

In addition, the set of features required to discriminate between words depends
on the part of speech. For example, there are many fewer adverbs available to convey
the manner connotation than there are verbs. Fewer features are therefore required
to select an adverb than to select a verb. Requiring the content planner to provide the
features for all classes of lexical choice in advance would therefore impair modularity
between linguistic and conceptual knowledge.
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To summarize, the external construct enhances FUF in the following ways:

— It provides a co-routine control structure to interact with external processes.

— It enforces an information-hiding principle between different knowledge sources.

— It 1s a way to fetch constraints lying outside the FUG on demand, only when
needed by FUF to choose between alternatives.

These different points correspond to needs that have been identified in many
generation systems. TELEGRAM (Appelt 1985) implemented a mechanism where
a FUG and a content planner cooperated to generate referring expressions. The
external construct is a generalization of this mechanism. With PAULINE, Hovy
(1988) advocated interleaving pervasively content realization with content planning.
With external, FUF can implement such an interleaving while benefiting from the
declarative nature of FUGs. While traversing a systemic linguistic network, PENMAN
(Mann 1983) accesses its environment by calling functions called inquiries. FUF’s
external functions provides a similar facility in the context of FUGs. Finally, Dio-
GENES, (Nirenburg and Nirenburg 1988) uses a blackboard to communicate with
and control specialized modules working with their own separate knowledge sources.
With external, a similar cooperation among specialized modules can be imple-
mented in FUF with the total FD playing the role of the blackboard.

5 Conclusion

In this paper, we have addressed the issue of using FUGs to perform content realiza-
tion as a whole, including lexical choice. When unifying a non-lexicalized semantic
input with an integrated lexico-grammar, two new problems occur: (1) dealing with
floating constraints and (2) accessing external knowledge sources. We have presented
two control tools in FUGs to address these problems: bk-class and external.

To improve efficiency, bk-class implements a form of dependency-directed back-
tracking, taking advantage of the knowledge of what choice points in a grammar can
influence the realization of a floating constraint. Naish (1985, p. 59) lists heuristics
to improve efficiency in search, including “detect failure early” and “avoid failure.”
We have shown in Sect. 3 that there are good linguistic reasons why an early de-
tection of failure for “floating” constraints is very difficult. In such cases, bk-class
implements the heuristic of avoiding failure.

To achieve modularity in text generators, external implements a co-routine
mechanism for communication between a FUG and other knowledge sources during
unification. This mechanism generalizes approaches introduced in earlier work and
addresses a criticism often expressed against FUGs.

Both bk-class and external augment the general semantic structure driven
top-down regime of FUGs. They have been implemented and tested extensively in a
wide variety of applications: COMET (McKeown et al 1990), a system that generates
explanations in a multimedia setting, COOK (Smadja 1991b) a sentence-generation
system that addresses the issue of collocations in stock market reports, ADVISOR
(Elhadad 1991b, 1992a), a question-answering system that generates argumentative
paragraphs and STREAK (Robin 1992) a system that generates information-packed
report leads in the basketball domain.
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