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The dynamical control of tunneling processes of single particles plays a major role in science
ranging from Shapiro steps in Josephson junctions to the control of chemical reactions via light in
molecules. Here we show how such control can be extended to the regime of strongly interacting
particles. Through a weak modulation of a biased tunnel contact, we have been able to coherently
control single particle and correlated two-particle hopping processes. We have furthermore been
able to extend this control to superexchange spin interactions in the presence of a magnetic-field
gradient. We show how such photon assisted superexchange processes constitute a novel approach
to realize arbitrary XXZ spin models in ultracold quantum gases, where transverse and Ising type
spin couplings can be fully controlled in magnitude and sign.

The control of quantum tunneling of particles through
a barrier using an oscillatory driving field lies at the
heart of the interpretation of the so-called Shapiro steps
observed in the I–V characteristics of a biased Joseph-
son junction under an applied radio-frequency field [1, 2].
Since then, other examples and applications of photon-
assisted tunneling have emerged in several fields, such
as the control of chemical reactions with coherent laser
pulses [3] or the observation of dynamic localization and
absolute negative conductance in semiconductor super-
lattices [4]. More recently the tunnel dynamics of single
atoms in periodically-modulated optical lattices was in-
vestigated, showing in particular the possibility to revert
the sign of the tunnel coupling for strong driving am-
plitudes [5–10]. Periodically shaken optical lattices were
also used as a spectroscopic tool for measuring the excita-
tion spectrum of a superfluid Bose gas [11] or extracting
nearest-neighbor spin correlations in a fermionic Mott
insulator [12], as well as to study atomic transport in a
quantum ratchet [13].

In this article we investigate atom tunneling in an
optical lattice of periodically modulated or ‘AC-driven’
double-well potentials [14, 15]. We first study the in-
fluence of atomic interactions on the dynamics of a sin-
gle atom in the presence of the driving. This technique
constitutes a precision spectroscopic tool for measur-
ing interaction energies and inhomogeneities in optical
lattices [16]. We furthermore demonstrate the ability
to control correlated tunneling processes, i.e. the co-
tunneling of repulsively bound atom pairs [17]. More-
over, we are able to drive superexchange interactions in
the modulated double-well potentials, where the direct
undriven exchange of spins is inhibited by an applied
magnetic-field gradient. This result eventually leads to
a novel proposal for implementing models of quantum
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FIG. 1: AC-driven double-wells. a,b Schematics of the su-
perlattice potential used in our experiments. c-f AC-driven
tunneling processes studied in this work: c tunneling of a
single atom, d tunneling of one atom out of an interacting
atom pair, e correlated tunneling of an atom pair, and f spin
exchange.

magnetism with atomic gases in optical lattices [18–22].
Indeed the generalization to a two-component atomic gas
in a periodically-modulated lattice realizes an XXZ spin
model whose transverse and longitudinal couplings can
be independently tuned by changing the strength of the
driving or the amplitude of the magnetic-field gradient.
The physical system studied in our experiment con-

sisted of an ensemble of 87Rb atoms held in a lattice
of isolated double-wells [17]. We first loaded a quasi-
pure Bose-Einstein condensate of about 105 atoms in the
|F = 1,mF = −1〉 Zeeman state into a 3D optical lattice
formed by three retroreflected beams of laser light at the
wavelengths λxl = 1534 nm along x direction (‘long lat-
tice’), λy = 844 nm along y and λz = 767 nm along z.
The final lattice depths were chosen so that the atomic
sample was in the Mott insulating regime [23–25] with a
central core of two atoms per well and an outer shell of
singly occupied sites. We then transferred all atoms to
the |F = 1,mF = 0〉 state by a radio-frequency Landau-
Zener adiabatic passage. Using microwave-dressed spin-
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changing collisions [26, 27] we converted atom pairs in
individual lattice wells into pairs with opposite mag-
netic moment, labeled as |↑〉 ≡ |F = 1,mF = −1〉 and
|↓〉 ≡ |F = 1,mF = 1〉. In this process, single atoms re-
mained in the |F = 1,mF = 0〉 Zeeman state.
An additional standing wave along the x direction

at λxs ≃ λxl/2 = 767 nm (‘short lattice’) was ap-
plied to create a periodic double-well potential V (x) =
Vxl sin

2(klx)+Vxs sin
2(2klx+π/2−φ), where kl = 2π/λxl

(see Fig. 1a) and φ = 0 corresponds to a lattice of sym-
metric double wells. The relative phase φ and the lattice
depths Vxl and Vxs could be independently controlled
in real time by dynamically adjusting the short-lattice
wavelength λxs and the laser intensities [17, 28]. We ex-
press the depth of each lattice in units of its correspond-
ing recoil energy Ei

r = h2/2mλ2
i , where i = xs, xl, y, z.

Here, m is the 87Rb atomic mass and h = 2π~ is Planck’s
constant.
The vibrational level splitting being much larger than

the other relevant energy scales, the system can be de-
scribed by a two-site Hubbard-like Hamiltonian,

Ĥ = −J
∑

σ=↑,↓

(

â†LσâRσ + â†RσâLσ

)

− ∆

2
(n̂L − n̂R)

+
U

2
[n̂L(n̂L − 1) + n̂R(n̂R − 1)]

+
G

2
(n̂L↓ − n̂L↑ − n̂R↓ + n̂R↑), (1)

where J is the tunnel coupling, U is the onsite inter-
action energy, and ∆ is the potential tilt between the
two sites. The last term represents a spin-dependent
bias G provided by an additional magnetic-field gra-
dient along the x direction. The operator âR(L)σ an-
nihilates a particle of spin σ in the right (left) well,

n̂R(L)σ = â†
R(L)σâR(L)σ is the corresponding number op-

erator, and n̂R(L) = n̂R(L)↓ + n̂R(L)↑ is the total atom
number per well.
In addition to the static double-well potential, a time-

periodic modulation was applied through a variation of
the long-lattice depth Vxl(t) = V 0

xl + δV cos(ωt) (see
Fig. 1a,b). The modulation introduces an additional

term K̂ cos(ωt) to the Hamiltonian (1) that couples
left and right wells and can induce driven atom tun-
neling. The coupling operator K̂ can be written as

K̂ =
∑

σ(−Kâ†LσâRσ − K∗â†RσâLσ), where the matrix

element K = δV
∫

dxw∗
L(x) sin

2(kLx)wR(x)/2 is calcu-
lated from the Wannier functions wL(x) and wR(x) in
the left and right wells, respectively [29]. For simplicity
we have omitted processes which do not directly induce

atom tunneling, such as terms proportional to â†LσâLσ.

Transfer of a single atom and effect of interactions

Let us first introduce the concepts of AC-driven tun-
neling for the simple case of single atoms (see Fig. 1c)
[7]. Each of them was initially loaded in the left well
of a tilted double-well potential (∆ = h × 4.3(2) kHz)

by ramping up the short lattice with a phase of φ =
0.18 rad. We then applied a modulation with an ampli-
tude δV/Vxl = 0.23 during a time T = 2.5 ms. At the
end of the modulation, we measured the number of atoms
in the right wells by transferring them to a higher Bloch
band and subsequently performing a band-mapping se-
quence [17, 28, 30]. As shown in the black dots of Fig. 2a,
we observe a resonant transfer of atoms to the right wells
when ω/2π = 5.2(1) kHz. This is in agreement with

the difference ∆′ =
√
∆2 + 4J2 = h × 5.0(2) kHz be-

tween the two lowest eigenenergies of the Hamiltonian
(1), where the value J = h × 1.30(5) kHz was obtained
from an independent measurement of single-particle tun-
nel oscillations in a symmetric double-well configuration
(φ = 0).

The resonance condition can be pictured using the Flo-
quet formalism [31]. We denote the eigenstates of the
Hamiltonian by |i, j〉, where i (j) indicates the occupa-
tion number in the first (second) eigenstate correspond-
ing to the left (right) well, respectively. Then the states
|1, 0〉 and |0, 1〉 are dressed by the modulation potential
through the introduction of an effective photon number
n associated with a quantized energy n~ω. The reso-
nance can thus be described as the level crossing be-
tween the states |1, 0;n〉 of energy E0 = n~ω − ∆′/2,
and |0, 1;n− 1〉 of energy E0 +∆′ − ~ω. In this picture,
the driven tunneling process is thus accompanied by the
absorption of one photon. As illustrated in Fig. 2d, vary-
ing the modulation time T on resonance we observe Rabi
oscillations between the states |1, 0〉 and |0, 1〉, showing
that the AC-driven atom tunneling is a coherent pro-
cess. As expected for a single-photon process, the Rabi
frequency ωR/2π is found to be proportional to the driv-
ing amplitude δV , with ωR/(2πδV ) = 24(1) Hz/Exl

r , in
agreement with the value 26(1) Hz/Exl

r obtained from
a single-particle band structure calculation. The damp-
ing of the Rabi oscillations is well accounted for by the
tilt inhomogeneities in our atomic sample that we mea-
sure through the width of the resonance (see Appendix).
These inhomogeneities are mainly caused by the external
harmonic trapping potential superimposed to the lattice.

The scenario of single-particle tunneling becomes
slightly modified if a second atom is present in the
double-well (see Fig. 1d). For our preparation scheme,
this situation was realized with the pair of atoms being in
the spin states |↑〉 and |↓〉. At the beginning of the mod-
ulation both atoms were located on the left well, which
we denote by |↑↓, 0;n〉. This experiment was performed
in the absence of a magnetic-field gradient. Therefore
the modulation symmetrically acted on both spin states
and coupled the atom pair to the spin-symmetric triplet
state |t0;n− 1〉 = (|↑, ↓;n− 1〉 + |↓, ↑;n− 1〉)/

√
2. As

shown in Fig. 2a (blue dots), the resonance frequency
ω/2π = 3.8(1) kHz is shifted downwards with respect
to the single-atom resonance. While in the initial state
|↑↓, 0〉 the atoms are located on the same site and thus
do maximally interact, they are essentially spatially sep-
arated in the final state, leading to an additional energy
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FIG. 2: Spectroscopic and coherent dynamical signals of AC-driven tunneling. a Fraction of atoms transferred to the right well
nR as a function of the driving frequency ω/2π with a fixed modulation time T = 2.5 ms (blue dots: atoms in |↓〉, black dots:
atoms in |F = 1,mF = 0〉). The lattice parameters were Vxl = 35(1) Exl

r , Vxs = 7.0(2) Exs
r , φ = 0.18(1) rad, Vy = 76(3) Ey

r ,
Vz = 77(3) Ez

r , and δV = 8.2(3) Exl
r . Single atoms are resonantly transferred at ω/2π = 5.2 kHz, corresponding to ~ω =√

∆2 + 4J2. The dynamics of the atom pairs was monitored on the |↓〉 component: the resonant transfer at ω/2π = 3.8 kHz
corresponds to the transfer of a single particle to the right well, while the one at ω/2π = 10.8 kHz corresponds to the driven
co-tunneling of pairs. Atoms in |↑〉 component show the same behavior. The resonance at ω/2π = 7.5 kHz can be attributed to a
two-photon transfer to the third Bloch band. b Resonance frequencies ω/2π for the driven tunneling processes described above
as a function of the tilt ∆. The solid lines corresponds to the prediction of the Hubbard Hamiltonian (1) with J/h = 1.3 kHz
and U/h = 2.9 kHz. The vertical line corresponds to the lattice configuration used in a. c Resonance frequencies ω/2π of the
driven co-tunneling process as a function of the transverse lattice depth. The horizontal error bars represent a 3% error in the
lattice depth and the vertical error bars represent the standard deviation of the fitted position of the co-tunneling resonance
peak. d-f Time evolution of nR for the three resonances described above, together with fits using a damped sine wave. The
measurements for d and e were performed with a larger modulation amplitude (δV = 16.4(5) Exl

r and δV = 10.2(3) Exl
r ,

respectively).

shift due to interactions. As shown in Fig. 2b, the mea-
sured resonance frequencies are well accounted for by the
Hubbard Hamiltonian (1) in the whole parameter range
0 < ∆ < 5J (J = h×1.3 kHz). Here, the on-site interac-
tion U = h × 2.9(1) kHz is obtained from a single-band
calculation of the localized Wannier functions for ∆ = 0
using a s-wave scattering length of as = 5.61 nm. We
observe that the linewidth of this resonance is smaller
than the one of single atoms, which can be explained by
smaller inhomogeneities in the tilt, since the spatial ex-
tent of the core of atom pairs is less wide than that of
the outer shell of single atoms. In Fig. 2e, we show a
measurement of the respective Rabi oscillations on reso-
nance.

Co-tunneling of an atom pair

Interestingly, we also observe a resonant transfer of atoms
to the right well for ω/2π = 10.8(2) kHz, which is about

twice the resonance frequency for single atoms. We
identify this resonance as a driven co-tunneling of both
atoms in a pair towards the state |0, ↑↓;n− 1〉 [14, 15]
(see Fig. 1e). As expected for a transition between
states with essentially the same interaction energy, we
observe that the resonance frequency barely varies when
the interaction energy U is increased by increasing the
transverse-lattice depths (see Fig. 2c). In addition, we
directly probed the atom number distribution in the fi-
nal state using spin-changing collisions after the modula-
tion (see Appendix). The obtained results show that the
atoms indeed always tunnel to the right well as a repul-
sively bound atom pair [32], while for the resonance at
ω/2π = 3.8 kHz only one atom is transferred. We observe
that the linewidth of the co-tunneling resonance is larger
than the one of the single-particle tunneling resonance.
For the co-tunneling resonance condition ~ω ≃ 2∆ the
effect of tilt inhomogeneities across the atomic sample is
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FIG. 3: Driven co-tunneling process. a Schematics of the lev-
els involved in the co-tunneling of a repulsively bound pair.
The states |↑↓, 0;n〉 and |0, ↑↓;n− 1〉 are brought into reso-
nance for ~ω = 2∆. The co-tunneling can then be understood
as a second-order process mediated via virtual intermediate
states, reached either by bare tunneling (coupling J) or AC-
driven tunneling (coupling K) of single atoms. b Co-tunnel
coupling Jpair measured on resonance as a function of the
modulation amplitude δV . The error bars representing the
standard deviation of the Rabi oscillation frequency as ob-
tained by a damped sine-wave fit are obscured by the data
points. c Co-tunnel coupling Jpair measured as a function of
the bare tunnel coupling J which is adjusted by changing the
short-lattice depth. The solid lines in b and c are linear fits
to guide the eye.

doubled with respect to the single-atom resonance.
The physical mechanism of this co-tunneling [17] can

be understood as a second-order process via off-resonant
intermediate states virtually reached through single-atom
tunneling processes – either driven or undriven (see
Fig. 3a). As an example, |↑↓, 0;n〉 is coupled to |↑, ↓;n〉
via the bare tunneling of the |↓〉 particle (with a cou-
pling J), then |↑, ↓;n〉 is coupled to |0, ↑↓;n− 1〉 via AC-
driven tunneling of the |↑〉 particle (with a coupling K).
Summing the contributions from all possible intermediate
states, we obtain the pair tunneling coupling strength on
resonance (~ω = 2∆) within second-order perturbation
theory in the tunnel couplings,

Jpair = 2JK

(

1

∆− U
+

1

−∆− U

)

. (2)

As shown in Fig. 3b, the resonant Rabi frequency of the
co-tunneling process scales linearly with K (proportional
to the modulation amplitude δV ). Varying the bare tun-
nel coupling J by changing the short-lattice depth Vxs,
we observe that Jpair also scales linearly with J . A single-

particle calculation predicts a variation of both J and K
when varying Vxs, and thus in this approximation Jpair
should not be proportional to J ; however a numerical
calculation of Jpair including five Wannier orbitals shows
that couplings to higher bands due to atomic interac-
tions lead to an effective linearization of the dependence
of Jpair with J . Since these couplings tend to modify the
AC-driven tunnel coupling K with respect to the single-
particle value, we directly measured the driven coupling
strengths, for example by measuring the Rabi frequency
of the |↑↓, 0;n+ 1〉 → |t0;n〉 process on resonance (see
Fig. 2e). Equation (2) then predicts a Rabi frequency for
the driven pair tunneling 2Jpair/h = 190(10) Hz, which
is reasonably close to the measured value of 215(5) Hz
(see Fig. 2f).

AC-driven superexchange interactions

Having demonstrated the driven co-tunneling of an atom
pair, we now apply the method of AC-driving to control
the correlated tunneling process of superexchange inter-
actions. The superexchange of particles mediated via
single particle to off-resonant intermediate states is the
basic next-neighbor interaction mechanism in models of
quantum magnetism arising in two-component Mott in-
sulators [18–21, 33]. Let us consider a one-dimensional
Bose-Hubbard chain with two species of bosons. For large
interactions U ≫ J , the subspace of the Hilbert space
with one atom per site is separated from the other states
by the interaction energy U . However, neighboring spins
can be exchanged through second-order tunneling pro-
cesses [18, 19, 34], leading to an effective spin-spin inter-

action of the Heisenberg type Ĥeff = −Jex
∑

〈i,j〉 Ŝi · Ŝj.

Here Jex = 4J2/U is the superexchange coupling and the
sum is made over pairs of neighboring sites. The spin op-
erators are defined in Refs. [18–21]. In the presence of
a magnetic-field gradient, the exchange of a pair of spins
|↑, ↓〉 → |↓, ↑〉 is associated with an energy cost of 2G.
Therefore, superexchange processes are inhibited as soon
as G ≫ Jex and the ground state corresponds to two spa-
tially separated spin-polarized regions |↑, . . . , ↑, ↓, . . . , ↓〉.
By modulating the lattice potential at the resonance con-
dition ~ω = 2G, however, it is possible to restore the res-
onant exchange of spins. In the dressed state picture, the
system can then be mapped onto an ensemble of inter-
acting spins, with the possibility to simulate an arbitrary
XXZ model (see Methods)

Ĥeff = −
∑

〈i,j〉

[

J⊥
ex(Ŝ

x
i Ŝ

x
j + Ŝy

i Ŝ
y
j ) + Jz

exŜ
z
i Ŝ

z
j

]

. (3)

For example, in the case J2/U ≪ G ≪ U and for small
driving amplitude, one obtains J⊥

ex ≃ 8JK/U while the
spin coupling in the z direction is identical to the un-
driven case Jz

ex ≃ 4J2/U . In particular it is possible
to simulate with this system an Ising Hamiltonian for
K ≪ J [16]. As shown in Fig. 4, the couplings J⊥

ex

and Jz
ex and with them the anisotropy of the effective

XXZ model can also be tuned by adjusting the values of
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ex, J
z
ex as a function of the magnetic-field gradient G. For

this plot the single-atom tunnel couplings are taken to be
J = h × 0.5 kHz and K = h × 0.6 kHz, the tilt induced by
a superlattice potential is ∆ = h × 3.4 kHz and the onsite
interaction energy is U = h × 4.5 kHz. The calculations are
performed using perturbation theory up to quadratic order in
J and K (see Methods).

G and U , or by using a superlattice potential that lifts
ever second site by an amount ∆ in energy (see Supple-
mentary Material). It then becomes possible to simulate
pure Ising and XY models with ferromagnetic or anti-
ferromagnetic interactions without the need to tune the
spin-dependent on-site interaction energies.

In order to probe AC-driven superexchange interac-
tions in our system of double-wells (see Fig. 1f), we
loaded the atomic spin pairs in symmetric double-wells
in the presence of a magnetic-field gradient along the
x direction. Its strength G/h = 1.2(1) kHz was mea-
sured from the shift of the single-particle resonance of
|↓〉 atoms. The degeneracy between |↑, ↓〉 and |↓, ↑〉 was
hence lifted and the atoms were occupying the ground
state |↑, ↓〉. We carried out the modulation spectroscopy
as in the previous cases and a typical spectrum is dis-
played in Fig. 5 for a tilt of ∆ = h × 8.4 kHz. We ob-
serve two kinds of resonances in this spectrum. First
for ω/2π = 4.5(2) kHz and ω/2π = 13.0(2) kHz only
the atoms in one of the spin states are transferred: the
transfer of |↓〉 atoms to the left site occurs at ~ω =
|−∆+ U +G| and the transfer of |↑〉 particles to the right
site at ~ω = |∆+ U +G|. For these measurements, the
on-site interaction energy was U ≃ h × 3.4(3) kHz. For
the second type of resonances both spin states are trans-
ferred simultaneously in an AC-driven superexchange
process.

Let us focus on the resonance occurring at ω/2π =
2.6(1) kHz, which corresponds to the resonance condi-
tion ~ω ≃ 2G for the driven superexchange. As shown
by the Rabi oscillation in Fig. 5b, on resonance both spin
states coherently tunnel between left and right wells in
a correlated manner. At any time the population imbal-
ance between both wells X(t) = (nL − nR)/2 remains
equal to 0, as expected for a spin-exchange process. Our
measurement scheme corresponds to a projection of the
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FIG. 5: Driven superexchange process. a Fraction of atoms
nR in the right well as a function of the modulation frequency
ω/2π (blue dots: spin |↑〉, red dots: spin |↓〉). We observe a
resonant transfer of both spin states for ω/2π = 2.6 kHz cor-
responding to a single-photon-driven superexchange process.
The resonance at ω/2π = 1.5 kHz corresponds to a spin ex-
change driven by the absorption of two photons in total. In
addition, we observe the single-particle tunneling resonances
at ω/2π = 4.5 kHz for the |↓〉 atoms and ω/2π = 13 kHz
for the |↑〉 atoms. For these data the lattice depths were
Vz = 192(6) Ez

r , Vy = 142(5) Ey
r for the transverse lattices

and Vxl = 35(1) Exl
r , Vxs = 7.0(2) Exs

r for the superlattice,
and the superlattice phase was φ = 0.35(1) rad. b Time evo-
lution of the mean population imbalance X(t) and spin imbal-
ance Nz(t) at the superexchange resonance ω/2π = 2.6 kHz,
fitted with a damped sine wave. c,d Driven superexchange
coupling J⊥

ex measured as a function of (c) the modulation
amplitude δV and (d) the tunnel coupling J , together with
linear fits to the data as a guide to the eye. The error bars
representing the standard deviation of the Rabi oscillation fre-
quency as obtained by a damped sine-wave fit are obscured
by the data points.

quantum state on left and right wells; due to the finite
tunnel coupling J the actual eigenstates involved in the
superexchange process are not fully localized. Taking
also into account the coupling to higher bands, we calcu-
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late that for our trap parameters the maximum value
of the mean spin imbalance or Néel order parameter
Nz = (n↑L−n↑R−n↓L+n↓R)/2 amounts to 0.8, close to
the measured value Nz(t = 0) = 0.7. The superexchange
oscillation occurs at a rate J⊥

ex/h = 560(20) Hz and is
damped with a 1/e time τ = 9(1) ms, most likely due to
inhomogeneities in the magnetic-field gradient. Due to
the latter, the Rabi oscillation is detuned for part of the
atomic sample, leading to a non-zero asymptotic value
of Nz(t ≫ τ) = 0.26(2). Finally, we show in Fig. 5c
that the driven superexchange coupling J⊥

ex scales lin-
early with the driving amplitude δV , as expected for a
single-photon assisted correlated tunneling process.
The driven superexchange coupling can be viewed as a

second-order process in which one particle virtually tun-
nels onto the second particle before the latter tunnels in
the other direction (see Fig. 6a). Similarly to the pair
tunneling process, one virtual tunneling spontaneously
occurs with the coupling J while the other one is driven
by the absorption of one photon of frequency ~ω = 2G.
Taking into account the four possible intermediate states,
we obtain the superexchange coupling with second-order
perturbation theory:

J⊥
ex = 2JK

(

1

∆ + U +G
+

1

∆+ U −G

+
1

−∆+ U +G
+

1

−∆+ U −G

)

. (4)

Equation (4) shows that by tuning the tilt ∆ it is pos-
sible to resonantly enhance the superexchange coupling
strength around the values ∆ = U ±G, as well as to sup-
press it for ∆ =

√

|U2 −G2|. The measured variation of

J⊥
ex with ∆ is shown as open circles in Fig. 6b. In order

to widen the validity range of second-order perturbation
theory (set by the conditions J,K ≪ |∆ ± U ± G|), we
increased the depth of the short lattice to 10 Exs

r so that
the tunnel coupling J was reduced to 0.5 kHz. For this
lattice configuration, the resonances correspond to ∆ =
U+G = h×6.7(2) kHz and ∆ = U−G = h×1.7(2) kHz,
and J⊥

ex is predicted to cancel for ∆ = h×3.3(2) kHz. By
decreasing the tilt from 3.9 kHz to 2 kHz we observe a
resonant enhancement of the driven superexchange cou-
pling over a factor of 5 (see Fig. 6b). While equation (4)
gives a qualitative description of our measurements (dot-
ted line), we obtain a better quantitative agreement by
including virtual transitions to higher bands (solid line,
see Appendix).
Finally, we note that the resonance observed for

ω/2π = 1.50(5) kHz ≃ G/h also corresponds to an AC-
driven superexchange process. Contrary to the previous
case, we observe that the coupling J⊥

ex varies quadrat-
ically with the modulation amplitude δV , showing that
the spin exchange is driven in that case by the absorption
of two photons (see Appendix).
To conclude, we have shown that periodically-

modulated optical superlattices provide a new tool for
controlling (correlated) atom tunneling in an optical lat-

J
e
x
 /
 h

 (
k
H

z
)

2G-ћω

U+G+Δ

U+G-Δ-ћω
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U+G-Δ

b

a

U+G+Δ-ћω

Δ /h (kHz)

0 2 4 6 8 10 12
0

   ,  ;n-1 

0,   ;n

 0,   ;n-1

  ,0;n

  ,0;n-1

0.1

0.2

0.3

0.4

FIG. 6: Control of superexchange interactions with the po-
tential tilt ∆. a Schematics of the driven superexchange
process. The superexchange interaction between the states
|↑, ↓;n〉 and |↓, ↑;n− 1〉 is mediated by bare tunneling and
photon-assisted couplings towards four virtual intermediate
states and is resonant for ~ω = 2G. b Strength of the driven
superexchange interaction J⊥

ex as a function of the tilt ∆. We
observe a resonant enhancement of the coupling when ∆ ap-
proaches U − G ≃ h × 1.7 kHz, the virtual state |↑↓, 0;n〉
becoming closer to resonance. The experimental data (open
circles) is compared with three different predictions: second-
order perturbation theory given by equation (4) (dotted line),
the non-perturbative solution of the Hamiltonian restricted
to the six-level structure pictured in a (dashed line), and a
numerical calculation including the effect of the coupling to
higher bands (solid line). The error bars represent the stan-
dard deviation of the Rabi oscillation frequency as obtained
by a damped sine-wave fit.

tice. It can be used as a spectroscopic tool to mea-
sure the parameters of the underlying Hubbard model,
and its generalization e.g. to the case of a pair of cou-
pled many-body systems such as 1D gases could give a
direct access to their spectral function. Moreover, ex-
tending the driving to a full lattice, the method pro-
vides a new degree of control of effective spin-spin in-
teractions, allowing one to access XXZ models with ar-
bitrary anisotropy by merely tuning the magnetic-field
gradient and the driving amplitude. To adjust J⊥

ex and
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Jz
ex independently in the undriven case one would need to

tune the spin-dependent on-site interaction energy [18–
21]. This can only be achieved by either using near-
resonant spin-dependent lattices which will cause strong
heating due to scattering of lattice photons, or by the
use of Feshbach resonances which might be practically
unavailable for many atomic species. The approach pre-
sented here does not suffer from these problems and can
thus be conveniently applied to e.g. study the phase dia-
gram of the XXZ model [18] or to simulate the dynamics
of XXZ spin chains [35, 36] with ultracold atoms over a
wide range of parameters.

Methods

Mapping to an effective XXZ spin model. Let us
consider a simple 1D chain with one atom per site. A
magnetic-field gradient is applied along the longitudinal
direction, leading to a spin-dependent tilt G. The ex-
change of neighboring atoms with opposite spins costs
an energy 2G. By modulating the lattice potential at
the frequency ω/2π = 2G/h, this process is made reso-
nant with an effective superexchange coupling

J⊥
ex = 8JK

U

U2 −G2
, (5)

given by equation (4) with ∆ = 0. In the dressed state
picture, all states with a given total atom number per
spin Nσ (σ =↑, ↓) are degenerate when the photon num-
ber compensates the magnetic-field gradient:

n~ω =
∑

i

[ni↓ − ni↑]G. (6)

In the following we drop the photon number, assuming
that its value is given by equation (6). Virtual processes
such as |. . . , ↑, ↓, . . .〉 ↔ |. . . , 0, ↑↓, . . .〉 ↔ |. . . , ↑, ↓, . . .〉

lead to a lift of the degeneracy between states with a
given spin polarization. These energy shifts can be calcu-
lated using second-order perturbation theory and can be
recast as an Ising interaction between neighboring sites
∆E = −

∑

〈i,j〉 J
z
exS

z
i S

z
j , where Sz

i = (ni↑ − ni↓)/2 is the

z-component of an effective spin 1/2, and

Jz
ex =

4J2

U

U2

U2 −G2
(7)

is the effective Ising coupling of this spin Hamiltonian
(see Appendix). Here we have assumed that the scat-
tering length describing the collisions of a pair of atoms
does not depend on their internal states, which is a good
approximation for the case of 87Rb atoms [37].

In the low-gradient limit G ≪ U , the Ising coupling
is given by Jz

ex = 4J2/U , while for G ≫ U one obtains
Jz
ex = −4J2U/G2. The sign of Jz

ex can be tuned negative
by choosing G > U , allowing to simulate both ferromag-
netic and antiferromagnetic cases. Combining equations
(5) and (7), we obtain the effective XXZ model

Ĥeff = −
∑

〈i,j〉

[

J⊥
ex(Ŝ

x
i Ŝ

x
j + Ŝy

i Ŝ
y
j ) + Jz

exŜ
z
i Ŝ

z
j

]

,

where Ŝx
i = (â†i↑âi↓+ â†i↓âi↑)/2, Ŝ

y
i = (â†i↑âi↓− â†i↓âi↑)/2i

are the transverse effective spin operators.

Note that this scenario can directly be extended to
two- and three-dimensional lattices, where the gradient
field is applied along the respective diagonal direction.
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U. Schollwöck, Phys. Rev. A 79, 053627 (2009).
[37] E. G. M. V. Kempen, S. Kokkelmans, D. J. Heinzen and

B. J. Verhaar, Phys. Rev. Lett. 88, 093201 (2002).

Appendix

A.I. PROBING THE ATOM NUMBER

DISTRIBUTION USING SPIN-CHANGING

COLLISIONS

As shown in Ref. [A1], spin-changing collisions (SCC)
can be used to measure the fraction of atom pairs in an
optical lattice. Here, we use this technique to identify the
final states of the AC-driven tunneling processes shown in
Fig. 2a of the main article. We recall that SCC were used
before the modulation to transfer atom pairs into the
Zeeman states |↑〉 and |↓〉. In this spectrum, the atoms
in |↓〉 are found to be resonantly transferred for ω/2π =
3.8 kHz and ω/2π = 10.8 kHz, and we want to show that
the first resonance corresponds to the transfer of a single
atom while for the second one both atoms tunnel to the
right well at once. For this purpose we did not perform
the SCC before the lattice modulation, but froze out all
tunneling at the end of the driving and only then used
the SCC to convert atom pairs into pairs of |↑〉 and |↓〉.
As shown in Fig. A1, the resonance at ω/2π = 10.8 kHz
is essentially unchanged, showing that the final state for
this process consists of two particles in the right well, as
expected for the co-tunneling process. On the contrary,
the resonance at ω/2π = 3.8 kHz does not appear in the
spectrum for atoms in state |↓〉, indicating that the final
state of this process cannot undergo SCC, i.e. it is made
of one particle on each site of the double-well potential.

A.II. EFFECT OF THE COUPLING TO

HIGHER BANDS

The quantitative understanding of the amplitude of su-
perexchange interactions requires to take the coupling to
higher bands into account. We solve the two-body Hamil-
tonian numerically within the Hilbert space restricted to
the lowest five Bloch bands of the optical superlattice.
The eigenstates are expanded within the basis of the re-
spective Wannier functions which are approximated by
Bloch functions truncated to one lattice period and renor-
malized. The validity of this approximation relies on

ω / 2 π  (kHz)

2 3 4 5 6 10 11 12

0

0.1

0.2

0.3
3

2

n
R

FIG. A1: Fraction of atoms nR transferred to the right well
for |↓〉 atoms as a function of the modulation frequency ω/2π.
The lattice parameters are identical to the ones indicated in
the legend of Fig. 2 in the main article. For the data in blue
spin-changing collisions are performed before the modulation,
and we observe two resonant transfers of atoms at ω/2π =
3.8 kHz and ω/2π = 10.8 kHz. For the data in black, the
spin-changing collisions are performed after the modulation
in order to test whether the final state consists of one atom
per well or whether both atoms lie on the same well. The
absence of a resonance peak at ω/2π = 3.8 kHz shows that
for this tunneling process only one atom is transfered to the
right side.

the large depth of the long lattice which suppresses tun-
neling between double wells. We include the effect of a
magnetic-field gradient by adding to the lattice potential
a periodic sawtooth potential that coincides with the lin-
ear B-field potential inside one double-well. We thus ob-
tain a set of Wannier functions for each spin component.
The effect of interactions is included by calculating all
matrix elements of the contact interaction Hamiltonian
in the basis of the Wannier functions. After diagonalizing
the whole Hamiltonian, we calculate the superexchange
coupling as the matrix element of δV sin2(kLx) between
the relevant eigenstates and obtain the solid curve plot-
ted in Fig. 6 in the main article.

A.III. WIDTH OF THE SINGLE-PARTICLE

TUNNELING RESONANCE

While for large modulation amplitudes δV the width of
the single-particle tunneling resonance is essentially equal
to the resonant Rabi frequency, it is limited for small
modulation amplitudes by the inhomogeneities in the tilt
∆ across the extent of the atomic sample. For trap pa-
rameters corresponding to Fig. 2 in the main article and
for an atom number N ≃ 2× 104, we measure a minimal
width (FWHM) of the resonance peak of 0.35(10) kHz.
Here, the modulation time was T = 3.5 ms, correspond-
ing to a Fourier-limited width of 0.2 kHz. The most
likely source of inhomogeneities stems from the Gaussian
intensity profiles of the lattice beams (waist ≃ 125 µm).
First, the intensity variation of the short and long lat-
tices along the x direction leads to an inhomogeneity of
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FIG. A2: Schematic representation of a spin chain in the 1D
superlattice. The dashed arrow denotes the virtual hopping
of a spin |↓〉 atom on a neighboring site initially occupied
by a spin |↑〉 atom. For this particular process the energy
difference between the final and initial states is ∆ + U −G.

the depths Vxs and Vxl and thus of the superlattice po-
tential. Second, the lattices along the transverse direc-
tions provide an additional overall harmonic confinement
1
2mω2

xx
2 along the x direction that is superimposed to the

superlattice and locally deforms the double-well poten-
tials. For the parameters of Fig. 2 in the main article, we
estimate a harmonic confinement along the x direction of
ωx/2π ≃ 80 Hz. Assuming that the atom number distri-
bution is the one of a T = 0, J = 0 Mott insulator with
one atom per double-well, we calculate the inhomogene-
ity in ∆ due to both effects, and obtain a resonance width
of 235 Hz, reasonably close to the measured value. In ad-
dition to the external confinement, the inhomogeneities
in transverse directions due to any misalignment of the
superlatice beams would further increase the width of the
respective peak.

A.IV. MAPPING TO AN EFFECTIVE XXZ

SPIN MODEL

In this section we describe how to calculate the lift
of degeneracy of the single occupancy subspace due to
single-particle virtual hopping, and map it onto an effec-
tive spin model. For simplicity we present the case of a
1D chain of atoms, held in an optical superlattice with
every second site raised in energy by ∆ and in the pres-
ence of a gradient G (see Fig. A2). The extension to two-
and three-dimensional systems is straightforward.
Let us consider the effect of the single-particle hop-

ping process of |. . . , ↓, ↑, . . .〉 ↔ |. . . , 0, ↓↑, . . .〉 pictured
in Fig. A2, that occurs with a coupling J and is detuned
by an energy ∆+U −G. Within second-order perturba-
tion theory, this virtual process leads to an energy shift
−J2/(∆+U −G) of the initial state. Together with the
virtual process in which the right particle hops on the
left particle, one obtains the energy shift associated with
this atom pair: −J2[1/(∆+U −G) + 1/(−∆+U −G)].
Virtual hopping can also be driven by the absorption or

emission of one photon, leading to an additional energy
shift

−K2[1/(∆ + U −G+ ~ω) + 1/(−∆+ U −G+ ~ω)

+1/(∆ + U −G− ~ω) + 1/(−∆+ U −G− ~ω)].

Similarly, each pair of neighboring atoms contributes
to the energy shift with a total value δEα

σσ′ that depends
on the spin configuration (σ for the left spin, σ′ for the
right spin) and on whether the left particle is on a high
well (α = +) or not (α = −). The total energy shift can
then be written as

δE =
∑

σ,σ′,α

Nα
σσ′δEα

σσ′ , (A.1)

where Nα
σσ′ is the number of pairs of neighbor atoms

in the configuration σ, σ′, α. The numbers of domain
walls ↑↓ and ↓↑ cannot differ by more than one, hence
in the thermodynamic limit N↑↓ = N↓↑, where Nσσ′ =
∑

α Nα
σσ′ . Moreover, a direct calculation shows that the

energy shift does not depend on α for a pair of opposite
spins. This allows us to replace in (A.1) the terms with
σ 6= σ′ by (N↑↓+N↓↑)(δE

+
↑↓+ δE+

↓↑)/2. Similar relations
when considering the pairs of identical spins finally lead
to (up to a constant)

δE = (N↑↑+N↓↓)
δE+

↑↑ + δE+
↓↓

2
+(N↑↓+N↓↑)

δE+
↑↓ + δE+

↓↑

2
.

(A.2)
Equation (A.2) is nothing but the energy of a spin-1/2
chain with an Ising coupling Jz

ex = δE+
↑↓+ δE+

↓↑− δE+
↑↑−

δE+
↓↓. The transverse component J⊥

ex is provided by the

photon-assisted hopping and is given by equation (4) in
the main article.

A.V. TWO-PHOTON-DRIVEN

SUPEREXCHANGE PROCESS

While the energy cost of a spin exchange in the pres-
ence of a magnetic-field gradient is 2G, we observe a
resonant transfer of both spin states for ω/2π = G/h
(see Fig. 5a in the main article). In addition, as shown
in Fig. A3, on resonance the tunnel dynamics for both
spin components is perfectly correlated, indicating that
this process corresponds to a spin exchange. Its cou-
pling strength is found to vary quadratically with the
modulation amplitude (see Fig. A3), which shows that
this superexchange process is driven by the absorption of
two photons. The condition for a resonant spin exchange
thus reads 2~ω = 2G, which explains the position of the
resonance.
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FIG. A3: Superexchange process for ω/2π = G/h. a The
superexchange interaction between the states |↑, ↓;n〉 and
|↓, ↑;n− 2〉 is mediated by photon-assisted couplings to vir-
tual intermediate states and is resonant for ~ω = G. b Time
evolution of the mean population imbalance X and spin im-
balance Nz at the superexchange resonance ω/2π = 1.5 kHz,
fitted with a damped sine wave. c Driven superexchange cou-
pling J⊥

ex measured as a function of the square of the modu-
lation amplitude δV together with a linear fit as a guide to
the eye.

[A1] F. Gerbier et al., Phys. Rev. Lett. 96, 090401 (2006).
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