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Abstract

We propose a spatial epidemic spread model to study the Covid-19 epidemic. In our
model, a city consists of multiple neighborhoods, each of which has five disease com-
partments (susceptible/exposed/infected clinical/infected subclinical/recovered). Due
to the movement of individuals across neighborhoods (e.g., commuting to work), the in-
fections in one neighborhood can trigger infections in others. We consider the problem
of a planner who reduces the economic activity in a targeted way to curb the spread
of the epidemic. We focus both on the regime with a small number of infections and
the regime with a large number of infections, and provide a framework for obtaining
the policies that induce the lowest economic costs.

We use the available data on individuals’ movements, level of economic activity
in different neighborhoods, and the state of the epidemic to apply our framework to
the control of the epidemic in NYC. Our results indicate that targeted closures can
achieve the same policy goals at substantially lower economic losses than city-wide
closure policies. In addition, to curb the spread of the epidemic in NYC, coordination
with other counties is paramount. Finally, the optimal policy (under different scenarios)
promotes some level of economic activity in Midtown Manhattan locations (due to their
economic importance) while imposing closures in many other neighborhoods in the city
(to curb the spread of the disease). Contrary to what might be intuitively expected,
and due to the spatial aspect of the epidemic spread, neighborhoods with higher level
of infections should not necessarily be the ones exposed to the most stringent economic
closure measures.
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1 Introduction

The Covid-19 pandemic has a global impact, with almost 4M confirmed cases and 278K
deaths as of May 11, 2020 (BNO, 2020). It has also created unprecedented economic damage,
with the global economy projected to contract by 3% (IMFBlog, 2020). To slowdown the
spread of the disease many countries have imposed travel restrictions, which impact more
than 90% of the global population (Pew Research, 2020). In addition, states, cities, and local
governments have undertaken various non-pharmaceutical interventions (NPI), ranging from
requiring residents to practice social distancing to lockdowns, and from ordering the residents
to shelter-in-place to closing schools, non-essential services and businesses, and public spaces
(Keystone, 2020). These interventions have also led to a substantial economic loss, bringing
the unemployment numbers in the US to 23.1M individuals in April 2020 (U.S. Bureau of
Labor Statistics, 2020).

Is it possible to curb the spread of the disease while minimizing the induced economic
losses? In this paper, we investigate the answer to this question. So far many cities have
instituted city-wide suspension of economic activity to varying degrees. However, the spread
of the disease relies on human-to-human contact and has an inherent spatial nature, in
which infected individuals potentially infect others in locations/neighborhoods they have
visited. Thus, it may be possible to target the “hubs” in a city and institute the closure
of public spaces and businesses in such locations so as to reduce the spread of the disease,
while resuming economic activity elsewhere in the city. This could simultaneously reduce the
economic losses and curb the spread of the disease. What is the optimal way to implement
such targeted interventions?

To address this question, we propose a spatial epidemic spread model, which explicitly
accounts for the spillovers of infections across different neighborhoods in a city. We focus
on two regimes that capture different disease prevalence scenarios. In the first regime, the
number of infected individuals is possibly large. The social planner seeks an economic closure
policy that ensures that the infections in all neighborhoods decrease. Her optimal policy is
the one that fulfills the aforementioned policy goal at the lowest possible economic cost. Next,
we focus on the regime where the number of infected individuals is small. This regime is
relevant when deciding how to shut down the economy after the emergence of a new infectious
disease, as well as how to reopen the economy after an existing disease is nearly eradicated.
The planner again controls the level of economic activity of each neighborhood, subject to the
requirement that the permitted level of economic activity does not trigger an epidemic. Once
again the objective of the planner is to find a policy that satisfies this requirement at the
lowest possible economic cost. We provide convex optimization formulations of the planner’s
problem in both cases. We then focus on New York City, and use data on the movements of
individuals within the city and disease-specific parameters for Covid-19 to model the spatial
evolution of the epidemic at the zip code level. Finally, we use our optimization framework
to obtain optimal intervention of the planner in both of the regimes described above. We
shed light on the optimal targeting policies of the planner and discuss which neighborhoods
should experience slowdown in economic activity.

Our epidemic spread model builds on the metapopulation/patch models from the math-
ematical epidemiology literature (Allen et al., 2008; Martcheva, 2015; Brauer et al., 2019),
and captures the spatial nature of epidemic spread explicitly. In particular, in our model a
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city is divided into n neighborhoods. Each neighborhood has a fixed population of individ-
uals who reside there. Each of these subpopulations are subdivided into five compartments.
A member of the subpopulation can be: (i) susceptible, (ii) exposed (infected but not infec-
tious yet), infected (iii) with or (iv) without clinical symptoms, (v) recovered. Susceptible
individuals in a given neighborhood can become infected through contact with an infected
agent (that belongs to compartment (iii) or (iv)). The disease dynamics among these com-
partments are similar to the classic SEIR model (see, e.g., Brauer et al. (2019)), with the
main difference being that the infected agents do not always show clinical symptoms. We
allow the subclinical infectious populations to have a different infection rate than the clinical
ones.

The individuals who reside in a neighborhood may spend some of their time in another
neighborhood, e.g., due to work or social activities. Susceptible individuals from a neighbor-
hood “mix” with other individuals in any of the neighborhoods in which they spend time,
and they can get infected there. We model the aggregate amount of time that the mem-
bers of each subpopulation spend in different neighborhoods, and characterize the amount of
“mixing” between infected and susceptible agents that takes place in these neighborhoods.
We then use this to characterize the rate with which the susceptible agents from a given
neighborhood get infected. The model allows the susceptible agent from neighborhood i to
get infected by an infected agent from neighborhood j when they are both spending time
in neighborhood k (where i, j, k can be identical or different). Thus, the amount of time
the members of each subpopulation spend in different neighborhoods plays a key role in the
evolution of the epidemic.

We represent the aforementioned “flow” of subpopulations across different neighborhoods
with a directed weighted network. This network, the populations of different neighborhoods,
the initial disease state (if a nonzero number of individuals are infected), epidemic parame-
ters governing the rates of infection and recovery, as well as the baseline economic activity in
each neighborhood are the primitives of our model. Given these primitives, we focus on the
decision problem of a social planner who can reduce the economic activity in each neighbor-
hood. Formally, the planner chooses a scalar xi ∈ [0, 1] that captures the permitted level of
economic activity within each neighborhood i relative to the baseline level. We assume that
a fraction (1− xi) of the economic activity in neighborhood i is suspended, thereby causing
a proportional economic loss in this neighborhood. In this case, we assume that a fraction
(1− xi) of all of the agents who would otherwise spend time in this neighborhood and mix
with others instead stay at home, thereby not infecting others or getting infected. Note that
because of the spatial structure of the epidemic spread discussed above, the slowdown of
economic activity in one neighborhood impacts the infections among individuals who reside
in this neighborhood, as well as the individuals who reside elsewhere but spend time in this
neighborhood.

The objective of the planner is to minimize the total economic loss across all neigh-
borhoods, while guaranteeing either that, as a result of the choice of {xi}, the number of
infected agents decreases in all neighborhoods with infection individuals (in the first regime),
or that the number of infected cannot increase drastically (in the second regime). The sec-
ond requirement is especially relevant in the regime where only a small number of agents are
infected, and is formally expressed as the asymptotic stability of the no-disease equilibrium

3



(which is equivalent to having the effective reproduction rate Re satisfying Re < 1).1

We show that the problem of the planner is tractable in both regimes. In particular, in
the first regime the problem can be formulated as a linear program, whereas in the second
one it can be formulated as a semidefinite program. Because of the spatial nature of the
epidemic, in both regimes, the optimal levels of economic activity in different neighborhoods
are interdependent. We shed light on which neighborhoods should be targeted with closures
and how this depends on the underlying network structure.

We illustrate our approach by using data from NYC. We define neighborhoods in terms of
the ZIP Code Tabulation Areas (ZCTA) in NYC. In addition, we include neighboring counties
that have a notable flow of individuals to/from NYC. We rely on data from SafeGraph to
capture the movement of individuals across neighborhoods (see SafeGraph, 2020).2 This
allows us to construct the underlying network. Combining this network with the spread
parameters for Covid-19 presented in the literature, we complete our spatial epidemic spread
model. Leveraging the ZIP Codes Business Patterns data from the Census Bureau we capture
the number of individuals employed in each ZCTA, and use this as our measure of the baseline
economic value of the relevant ZCTA. Under this assumption the planner’s problem can
equivalently be interpreted as minimizing the total (temporary) unemployment induced by
the slowdown of economic activity, while ensuring that the spread of the disease is curbed. We
assume that the planner can influence the economic activity in NYC and not the neighboring
counties. The economic activity in the neighboring counties is exogenously fixed, and we
study how the optimal solution changes as a function of this activity level.

We first focus on the ZCTA level infection data from NYC on April 18 (see NYC Health,
2020), when the total number of reported cases in the city is relatively large (with a cu-
mulative number of 128,777 since the disease was first seen in the city, with 72,388 of the
cases being from the preceding two weeks). This corresponds to our first regime, and we
investigate the optimal targeted economic restrictions. We observe that it is optimal for the
planner to permit a limited level of economic activity in a number of ZCTAs in the midtown
area, while suspending it in many of the other neighborhoods. At a high level, this structure
of the policy is driven by the relatively high economic value (in terms of employment num-
bers) of these ZCTAs. At the same time, due to the spatial nature of the epidemic spread,
resuming the economic activity in this area contributes to infections in different neighbor-
hoods. Hence, due to the constraint that the infections should decrease in all neighborhoods,
the planner suspends economic activity in the majority of the remaining ZCTAs.

In this problem, the economic loss in NYC induced by the optimal policy quite heavily
depends on the economic activity level in the neighboring counties. For instance, if the
neighboring counties completely suspend economic activity, NYC can achieve the policy
goal of reducing infections in all neighborhoods by resuming 48.8% of the overall economic
activity. By contrast, if the neighboring regions (i.e. counties outside NYC) resume 80%
of their economic activity, the permissible economic activity level in NYC becomes 40.0%.

1The question in the second regime is similar to the one posed in Budish (2020), where the focus is on
understanding what activities maximize social welfare while satisfying the R < 1 constraint. In our setting
we model the spatial nature of epidemic spread and focus on a similar constraint and objective to explore
the benefit of targeted economic closure policies.

2SafeGraph is a data company that aggregates anonymized location data from numerous applications in
order to provide insights about physical places.
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This observation highlights the need for coordination between governing bodies (of different
counties and states) in the control of the Covid-19 epidemic.

An important question is how much the planner gains from targeted closures, as opposed
to uniform city-wide closures that impose the same level of economic restrictions in all
neighborhoods. The latter class of policies are of interest as they may be perceived as
being more fair and possibly easier to implement. We show that imposing uniform closures
decreases the amount of allowable economic activity by a factor of 4.36 (or more) under the
original policy goal (of achieving a decrease in the infections in all neighborhoods). This
observation highlights the importance of considering targeted closures to curb the spread of
the epidemic while limiting the induced economic losses.

We then turn our attention to the small infection regime. In this regime, we see that
to prevent a larger epidemic and to limit the associated economic cost, the planner finds
it optimal to resume economic activity (almost fully) in some neighborhood (e.g., Lower
Manhattan, Midtown Manhattan), while allowing for partial levels of economic activity else-
where in the city. Relative to the large epidemic regime, as expected, the level of permissible
economic activity (that guarantees the policy goal) is substantially higher (93.0% vs 48.8%
when there is no economic activity in the neighboring counties). Furthermore, the optimal
policy for NYC, as well as its economic cost, is relatively insensitive to the level of economic
activity in neighboring regions for as long as their economic activity levels are not too high.
On the other hand, if the neighboring regions have substantial economic activity, it is not
possible to adjust the economic activity in NYC in a way that guarantees that an epidemic
can be prevented. In this case, the infections in the neighboring counties and their spillovers
are sufficient to infect many individuals in NYC and start an epidemic.

Motivated again by fairness considerations, we explore the uniform policies that require
economic activities to continue at the same rate in all regions in the small infection regime.
We observe that the uniformity requirement once again induces additional economic losses.
In order to achieve the same policy goal, permissible economic activity drops from targeted
policies to uniform policies (93.0% vs 81.5% when there is no economic activity in the
neighboring counties). This finding once again highlights the value of targeted closures in
the small infection regime.

Even though we focus on NYC to illustrate our framework, it is worth noting that our
approach is also relevant at a more macro level. For instance, the spatial effects can be
relevant for epidemic spread between states or countries (e.g., due to trips individuals take
across states). Taking the associated disease spillovers into account, a country can target
different states with different economic closure measures and minimize the economic cost of
achieving certain policy goals. The approach presented in this paper is readily applicable to
such settings.

Our analysis opens up a number of future directions related to the modeling of spatial
epidemics and their control with appropriate targeting measures. We present our model and
optimization framework in Section 2. We then discuss the application of our framework to
NYC in Section 3, where we also discuss various data sources that are used to construct the
primitives of our model. We conclude in Section 4 and we detail the aforementioned future
directions related to this work there.
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Related Literature

Spatial aspects of epidemic spread play an important role in prediction, estimation, and
understanding of disease transmission (Anderson et al., 1992; McNeill and McNeill, 1998;
Allen et al., 2008; Martcheva, 2015; Brauer et al., 2019). Different models from epidemiology
are proposed to analyze the spatial spread of diseases and their control (Hethcote, 1976;
Hethcote and Van Ark, 1987; Diekmann et al., 1990; Van den Driessche and Watmough,
2002). Spatial effects have received attention in the recent literature that studies Covid-19 as
well. Using data on population flows (from Wuhan, China) Jia et al. (2020) propose a spatio-
temporal “risk source” model to forecast confirmed cases and identify high-transmission-risk
locales. This model sheds light on the spread of Covid-19 and its growth pattern in China.
Similarly, Chinazzi et al. (2020) use a metapopulation model and project the impact of travel
limitations on the national and the international spread of the epidemic.

The spatial nature of epidemic spread admits a natural network representation, where
nodes correspond to different locations and edges encode travel of individuals between these
locations. Other network models that focus on an underlying social network and contact be-
tween the individuals in the social network have also proven useful in the study of epidemics.
Jackson and López-Pintado (2013) study how social network structure impacts diffusion,
with a focus on the effect of homophily. Ogura and Preciado (2016, 2017) and Ogura et al.
(2019) introduce an epidemic model over adaptive state-dependent networks, analyze the epi-
demic threshold for the disease-free equilibrium, and propose optimal algorithmic tuning on
the adaptation rates to achieve the disease-free equilibrium. Drakopoulos and Zheng (2017)
study the problem of identifying network effects in contagion processes, and introduce an
instrumental variable approach, based on a spatiotemporally lagged version of the observed
data. Drakopoulos et al. (2014, 2017) consider the problem of allocating limited (curing)
resources to minimize the expected time of the epidemic extinction in an SIS epidemic model
with a given network structure. Nowzari et al. (2015) propose a generalized epidemic model
over networks and study the optimal policy that guarantees global exponential stability of
the disease-free equilibrium while minimizing the total induced cost. In most of models dis-
cussed here, nodes correspond to individuals and the disease can be transmitted from one
individual to another. By contrast, in the spatial epidemic model we consider, each node
(location) has a population of susceptible and infected individuals. The infected individuals
from one node can travel to another node, and meet there with susceptible individuals from
a third node and infect them. This structure leads to a richer set of networked interactions.

In recent literature, various estimation, testing, and control questions related to Covid-
19 have also been studied. Kaplan (2020a) presents a probabilistic model for estimating
the effectiveness of isolation and quarantine within a community and applies it to data
from Wuhan. Drakopoulos and Randhawa (2020) consider the allocation of limit testing
to strategic agents, and study the optimal policy for the social planner. Kaplan (2020b)
presents decision-making models and solutions implemented in Yale University, the Yale
New Haven Hospital, and the State of Connecticut during the early phase of the Covid-19
outbreak. Alvarez et al. (2020) study the optimal lockdown policy for minimizing the loss
of long-term social welfare due to fatalities in a single population. Acemoglu et al. (2020)
generalize this problem from a single-population model to a heterogeneous SIR model where
different subpopulations (e.g., age groups) are susceptible to different risks (i.e., infection,
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hospitalization, and fatality rates vary between subpopulations). Glover et al. (2020) consider
a similar problem where the population is partitioned into age and sector groups, and a
social planner chooses lockdown policies and how to redistribute income across the groups
to optimize long-term social welfare. Lipton and Lopez de Prado (2020) and Gershon et al.
(2020) also focus on heterogeneous SEIR models with populations with different risk levels,
and analyze how to manage the progression of the disease without exceeding the healthcare
capacity or creating undue economic burden. Utilizing cross-county data on face mask use,
Abaluck et al. (2020) argue that the universal adoption of cloth face masks by the public
slows the disease growth rate of cases and deaths. Furthermore, the use of cloth face masks
by the public does not create a shortage of medical masks by healthcare workers. The authors
shed light on the economic value generated by using masks.

Covid-19 has already impacted the economic activity around the globe immensely. Var-
ious economic impacts of the disease (e.g., on financial markets, fiscal policies, employment
and wage, etc.) have been explored in the recent literature (Mulligan, 2020; Coibion et al.,
2020; Gormsen and Koijen, 2020; Guerrieri et al., 2020; Baker et al., 2020a,b,c; He and Liu,
2020; Hanson et al., 2020). Budish et al. (2020) discuss an economic policy response to the
Covid-19 crisis, and offer frameworks and guiding principles to deal with the crisis. Budish
(2020) proposes focusing on minimizing the social welfare loss while taking the appropriate
steps to ensure that the disease is contained. The present paper adopts a similar approach,
and proposes targeted closures as a lever for achieving this goal.

2 Model and Preliminary Results

2.1 A Spatial Compartmental Model of Epidemics

We consider a city with a set N = [n] := {1, . . . , n} of neighborhoods. We denote the
population of neighborhood i ∈ [n] by Ni. We assume that members of neighborhood i
spend a fractionτij of their time in neighborhood j (in aggregate). Here

∑

j τij ≤ 1, and
we let 1 −

∑

j τij capture the fraction of time during which the members of population i
are isolated (and hence cannot infect others or be infected by them). As we will formalize
shortly, the amount of time the members of a population spend in other neighborhoods
impacts the contact between susceptible/infected agents and subsequently the rate of spread
of the epidemic. We represent this setting using a directed weighted network, where the
nodes correspond to the neighborhoods and {τij} correspond to the edge weights. In what
follows, we alternatively refer to the neighborhoods as nodes.

We assume that each member of the population in location i belongs to one of the five
compartments with populations Si, Ei, I

c
i , I

sc
i , Ri that satisfy Si +Ei + Ici + Isci +Ri = Ni.

Here Si denotes the population of susceptible individuals at i (who can get infected if they
come in contact with an infected agent), Ei denotes the population of agents that are exposed
to the disease but who are not infectious yet (e.g., since the infection is in the incubation
period). These agents subsequently move to one of the two infected compartments. The first
of these compartments, with population Ici , is referred to as the infected clinical population
and captures the individuals who are infected and show symptoms. The second compartment
has population Isci and is referred to as the infected subclinical population. The agents in
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both compartments are infectious but possibly with different infection rates. The size of
the latter compartment may not be readily available to a social planner, which may impact
the disease mitigation strategies. The final compartment, with population Ri, captures the
infected agents that recover from the disease and become immune to it. They have no impact
on the future progression of the disease. Note that in this formulation we do not model the
disease-related deaths as they are a small fraction of the total population. Such deaths
could alternatively be included in the Ri population, as they have no impact on the future
evolution of the disease and in that sense are removed from the system.

The evolution of the disease is governed by six parameters, which are listed next:

• β, the effective contact rate, captures the rate with which an infected agent infects
others. It can be viewed as the product of the contact rate (the number of contacts
an individual has with others) times the transmission risk (the probability with which
a meeting between an infected individual and a susceptible individual results in an
infection).

• κ, the infectious rate, captures how quickly the exposed individuals move to the infected
compartment.

• ρ ≤ 1, the clinical rate, captures the fraction of infected agents who show clinical
symptoms (and join the Ici population after leaving the Ei population).

• α ≤ 1, the discount factor, captures the reduced risk of infections in meetings between
susceptible and subclinical (as opposed to clinical) agents.

• γ, the removal rate, captures the rate with which the agents in the infected compart-
ments move to the recovered compartment.

• µ is the natural birth/death rate in the population. For our analysis, we will assume
that µ ≈ 0.

Using these parameters and the spatial structure of the epidemic outlined earlier, for all
i ∈ [n] the system of differential equations that govern the evolution of the population of
different compartments can now be stated as follows:

S ′

i = µNi − β
∑

j

Siτij
︸︷︷︸

Time agent ∈ Si spends at j








∑

k I
c
kτkj

∑

k Nkτkj
︸ ︷︷ ︸

Fraction of clinical infected at j

+α

∑

k I
sc
k τkj

∑

k Nkτkj
︸ ︷︷ ︸

subclinical infected at j








− µSi

E ′

i = β
∑

j

Siτij
︸︷︷︸

Time agent ∈ Si spends at j








∑

k I
c
kτkj

∑

k Nkτkj
︸ ︷︷ ︸

Fraction of clinical infected at j

+α

∑

k I
sc
k τkj

∑

k Nkτkj
︸ ︷︷ ︸

subclinical infected at j








− (µ+ κ)Ei

Ic′i = ρκEi − (µ+ γ)Ici
Isc′i = (1− ρ)κEi − (µ+ γ)Isci
R′

i = γIci + γIsci − µRi.
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A few comments are in order. First, observe that susceptible agents from neighborhood
i can get infected at neighborhood i as well as in other neighborhoods. For instance, they
spend a fraction τij of their time in neighborhood j (in aggregate), and they get infected at
a rate proportional to this quantity. Second, as is common in classic epidemic models, the
rate of infection is also proportional to the fraction of infected agents that are mixing in a
neighborhood. On the other hand, this term now also depends on the time agents spend in
different neighborhoods. This dependence is often found in spatial epidemic models, and is
similar to Post et al. (1983). To see the dependence clearly, consider neighborhood j, and
observe that, after taking into account the fact that agents from different neighborhoods visit
j, we conclude that this neighborhood has an effective mass of

∑

k Nkτkj individuals that are
mixing at j. Of these,

∑

k I
c
kτkj are infected clinical and

∑

k I
sc
k τkj are infected subclinical

agents. The ratio of infected agents (of both types) to the total effective population mixing
at j determines the rate with which the susceptible agents (from different neighborhoods)
are infected in this neighborhood. Third, the last term clarifies the role of the discount
factor α: a contact with a subclinical agent is less likely to result in an infection. Fourth,
all susceptible agents that get the disease initially move to the exposed compartment, but
only a fraction ρ of these develop clinical symptoms (and join Ici ), while the remaining
become infectious without any clinical symptoms. The rate with which exposed agents move
to one of the infected compartments is κ. Fifth, all infected agents move to the recovered
compartment at a rate of γ. Finally, the new births occur at a rate of µNi (and the newborns
join the susceptible pool) while in each compartment natural deaths reduce the population
at a rate of µ. As a result of this structure, we obtain S ′

i + E ′

i + Ic
′

i + Isc
′

i + R′

i = 0 and
Ni = Si + Ei + Ici + Isci +Ri.

For our analysis of the large infection regime (Section 2.2), the natural deaths/births can
be completely ignored (and µ can be set equal to zero). In the analysis of the small infection
regime, we will explore the asymptotic stability of the disease-free equilibrium and for well
posedness of this question, we will assume that µ > 0 (but still µ ≈ 0). It is also worthwhile
to point out that, for the large infection regime, the assumption that the total population
remains constant does not play any role and the disease-related deaths can be incorporated
into the model in a straightforward way.

We assume that a social planner can restrict the economic activity in each neighborhood
in order to control the spread of the epidemic. Let xi ∈ [0, 1] be the level of permitted
economic activity in neighborhood i. When xi < 1, this implies that a fraction 1 − xi of
the economic activity in neighborhood i as being suspended (e.g., by closing a fraction of
businesses and/or public places). In this case, we assume that agents from j spend 1 − xi

times less time in i; i.e., τji in the model is replaced with τjixi. Note that given {xi}, the
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dynamics become:

S ′

i = µNi − β
∑

j

Siτijxj

∑

k(I
c
k + αIsck )τkj
∑

k Nkτkj
− µSi (1)

E ′

i = β
∑

j

Siτijxj

∑

k(I
c
k + αIsck )τkj
∑

k Nkτkj
− (µ+ κ)Ei (2)

Ic′i = ρκEi − (µ+ γ)Ici (3)

Isc′i = (1− ρ)κEi − (µ+ γ)Isci (4)

R′

i = γ(Ici + Isci )− µRi. (5)

If xi < 1, our model implies that a fraction (1− xi) of the individuals who would otherwise
spend time in neighborhood i instead stay at home and as a result they do not infect others (or
become infected). This also applies to agents who reside in neighborhood i: they also isolate
themselves at home as opposed to mixing with others in neighborhood i. Note that due to
the spatial nature of the epidemic spread, suspension of economic activity in neighborhood
i may reduce infection rates in other neighborhoods as well. For instance, the susceptible
agents who reside in neighborhood j but commute to neighborhood i for work may cease to
mix with other agents at i, which in turn reduces the infection rates in j.

We assume that suspending economic activity is economically costly. In particular, set-
ting the economic activity level in location i to xi induces an economic loss of ci(1 − xi),
where ci is a fixed location-specific constant. We investigate the least costly ways of reducing
the economic activity while ensuring that the spread of the epidemic is curbed.

2.2 Large Infection Regime

When the number of infected individuals is large, a natural policy goal for the planner is
to choose permitted levels of economic activity so that the infections in all neighborhoods
(weakly) decrease. Mathematically, we express this condition as E ′

i + Ic′i + Isc′i ≤ 0 for all
i. Note that here we not only focus on the clinical and subclinical populations, but also on
the exposed population. The motivation for this is that these agents become infectious with
some delay; hence, in order to curb the spread of the disease, it is necessary to limit the
number of such agents as well.

The problem of reducing infections in all neighborhoods, while incurring the lowest eco-
nomic cost, can now be expressed as a simple linear program:

max
xi∈[0,1]

∑

i

cixi

s.t.
∑

j

Siτijxj

∑

k(I
c
k + αIsck )τkj
∑

k Nkτkj
≤

µ

β
Ei +

µ+ γ

β
(Ici + Isci ) ∀i.

(P1)

Here the constraint is obtained by summing (2)–(4) and imposing E ′

i + Ic′i + Isc′i ≤ 0 more
explicitly.
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Remark 1. In our computational studies we set µ = 0. Choosing a small positive value
has a negligible impact on the results. In addition, in (P1) we impose the constraint for i
such that Ici + Isci > 0. This is because, when µ = 0, the aforementioned constraint cannot
hold unless there are infected individuals, i.e., the total number of exposed and infected
individuals cannot decrease if there are no infected agents. It is worth pointing out that in
the large infection regime this condition is likely to be satisfied for all neighborhoods. Finally,
as mentioned earlier, the disease-related deaths can be incorporated into our framework. For
instance, the compartment {Ri} can be interpreted as the set of all recovered individuals
and all individuals who die from the disease. A death rate can explicitly model the rate with
which people recover vs. die from the disease. Our formulation can be readily adapted to
this setting, and the cost of expected (future) deaths from the disease can also be included
in our objective function.

Remark 2. Note that in the formulation presented in this section, we focus on a “snapshot”
of infections at a point in time and impose the constraint that the infections decrease at that
time. This requirement can also be used to define a heuristic dynamic policy for the control
of the epidemic over time. For instance, given current infection numbers, it is possible to
solve the relevant optimization problem and obtain the (current) optimal economic activity
levels. After imposing this policy for a fixed amount of time, the problem can be resolved
with the new populations of compartments that result from the policy. Similar steps can be
repeated over time to adjust the policy as needed.

Remark 3. We focused on the policy goal of reducing infections in all neighborhoods.
An alternative goal is to impose reduction in total infections citywide. An accompanying
optimization formulation can easily be obtained by summing both sides of the constraints
of (P1) over i. The associated optimal policy allows for substantial activity in Manhattan
(due to its economic value), which in turn increases the infections there. The policy balances
this by restricting activity elsewhere to achieve a net reduction in infections. However, since
an increase in infections in Manhattan triggers future spread, such a policy could lead to
difficulties in controlling the infection in the long run.

2.3 Small Infection Regime: Preventing an Epidemic

Another natural goal for the planner pertains to the setting where only a few agents are
infected. In this regime, the planner may be interested in preemptively lowering economic
activity so that the number of infected individuals does not drastically increase and trigger
an epidemic. This regime is relevant when there is a new infectious disease impacting the
population. It is also relevant when a large number of individuals are initially infected, but
subsequently (e.g., due to quarantine measures) a majority of them recover, and the active
infections dwindle. In this setting, ignoring the recovered agents (who have no impact on
further infections), the evolution of the epidemic can be analyzed in a similar fashion to the
setting where a new disease impacts the population. For simplicity of exposition, we will
focus on the first setting.
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To study this regime formally, we first note that given {xi}, an equilibrium of the dynam-
ical system (1)–(5) is such that Ici = Isci = Ei = Ri = 0. We refer to this equilibrium as the
disease-free equilibrium. We can view the case where only a few individuals are infectedd
as a perturbation of the disease-free equilibrium. After such a perturbation, the system
may evolve back to the disease-free equilibrium or deviate from it with a growing number
of infections. Formally, the former alternative corresponds to the asymptotic stability of
the disease-free equilibrium. In the second regime, we assume that the planner’s policy goal
is to choose x = {xi} in a way that ensures the asymptotic stability of the disease-free
equilibrium. The optimal {xi} obtains this goal at the lowest possible economic cost.

For nonlinear systems, the asymptotic stability of an equilibrium can be characterized
through the linearization of the dynamics around the equilibrium. More formally, for a
dynamical system ẏ = f(y) with equilibrium y = 0, let ∂f/∂y denote the Jacobian of
f evaluated at y = 0. If the real parts of the eigenvalues of the Jacobian are strictly
less (greater) than one, then y = 0 is asymptotically stable (unstable); see, e.g., Khalil
(2002). Similarly, the asymptotic stability of the disease-free equilibrium for the dynamical
system (1)–(5) can be studied using the associated Jacobian matrix. This is equivalent to
using the next generation method (see, e.g., Allen et al., 2008; Martcheva, 2015) from the
mathematical epidemiology literature, which adapts similar conditions to compartmental
models of epidemic spread.

We proceed by deriving the aforementioned stability condition for our setting more ex-
plicitly. Define the following vectors:

F =




















βS1

∑

j τ1jxj

∑
k(I

c
k
+αIsc

k
)τkj∑

k Nkτkj
...

βSn

∑

j τnjxj

∑
k(I

c
k
+αIsc

k
)τkj∑

k Nkτkj

0
...
0
0
...
0




















and V =



















(µ+ κ)E1
...

(µ+ κ)En

−ρκE1 + (µ+ γ)Ic1
...

−ρκEn + (µ+ γ)Icn
−(1− ρ)κE1 + (µ+ γ)Isc1

...
−(1− ρ)κEn + (µ+ γ)Iscn



















.

Observe that the right-hand sides of (2), (3), and (4) simply correspond to F −V . Viewing
these vectors as functions of (E1, . . . , En, I

c
1, . . . , I

c
n, I

sc
1 , . . . , Iscn ), the Jacobian of F and V ,

evaluated in the disease-free equilibrium, can be expressed as follows:

F (x) =






0
(

βNi

∑

k τikxk
τjk∑
l Nlτlk

)

i∈[n],j∈[n]

(

αβNi

∑

k τikxk
τjk∑
l Nlτlk

)

i∈[n],j∈[n]

0 0 0
0 0 0




 ,

V =





diagn(µ+ κ) 0 0
diagn(−ρκ) diagn(µ+ γ) 0

diagn(−(1− ρ)κ) 0 diagn(µ+ γ)



 .
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Here, 0 is an n×n matrix whose entries are equal to zero, and we use the shorthand notation
diagn(a) to denote an n×n diagonal matrix, whose diagonal entries are given by some scalar
a.

Given a matrix A, let λ1(A) denote its largest eigenvalue (in absolute value). The asymp-
totic stability of the disease-free equilibrium is equivalent to

Re := λ1

(
F (x)V −1

)
< 1. (6)

The quantity on the left-hand side is often referred to as the effective reproduction rate of the
disease, and the stability requirement puts this number at less than one. If the inequality is
flipped, the disease-free equilibrium is unstable (see, e.g., Martcheva, 2015; Diekmann et al.,
1990).

It can be shown that V −1 is a matrix with nonnegative entries (see the proof of Lemma 2.1).
In turn, this implies that F (x)V −1 is a matrix with nonnegative entries. Thus, the Perron–
Frobenius theorem applies, and we conclude that the latter matrix has a real positive eigen-
value that is larger than all its eigenvalues in absolute value. Hence, λ1(F (x)V −1) is real
and the condition in (6) is well posed.

In the small infection regime, the planner’s policy goal can alternatively be stated as
having Re < 1. Note that in (6), the constraints imposed on x = {xi} are given in terms
of the eigenvalues of a matrix. We proceed by providing an equivalent and more explicit
statement of these conditions. In what follows, for a symmetric matrix A, we use the notation
A ≻ 0 to indicate that it is positive definite. We denote by T the matrix whose (i, j)th entry
is τij, N̂ the diagonal matrix with diagonal entries {Ni}, and by Λ the diagonal matrix with
diagonal entries 1/

∑

l Nlτlk. All of these matrices are in R
n×n.

Lemma 2.1. Condition (6) is equivalent to TXΛT ′ ≺ N̂−1 (µ+κ)(µ+γ)
(ρ+α(1−ρ))βκ

.

Proof. It can be seen by inspection that

V −1 =








diagn

(
1

µ+κ

)

0 0

diagn

(
ρκ

(µ+κ)(µ+γ)

)

diagn

(
1

µ+γ

)

0

diagn

(
(1−ρ)κ

(µ+κ)(µ+γ)

)

0 diagn

(
1

µ+γ

)








.

Thus, it follows that F (x)V −1 has the same non-zero eigenvalues as the following matrix:

(ρ+ α(1− ρ))βκ

(µ+ κ)(µ+ γ)

(

Ni

∑

k

τikxk
τjk

∑

l Nlτlk

)

i∈[n],j∈[n].

(7)

Using these observations, we conclude that condition (6) is equivalent to λ1(F̄ (x)) <
(µ+κ)(µ+γ)

(ρ+α(1−ρ))βκ
, where

F̄ (x) =
(∑

k Niτikxk
τjk∑
l Nlτlk

)

ij
. (8)

We rewrite this matrix as F̄ (x) = N̂TXΛT ′. Note that the symmetric matrix

N̂−1/2N̂TXΛT ′N̂1/2 = N̂1/2TXΛT ′N̂1/2

13



is obtained after a similarity transformation of N̂TXΛT ′; hence, the two matrices share the
same eigenvalues. Thus, our condition is equivalent to λ1(N̂

1/2TXΛT ′N̂1/2) < (µ+κ)(µ+γ)
(ρ+α(1−ρ))βκ

,
which can equivalently be written as

TXΛT ′ ≺ N̂−1 (µ+ κ)(µ+ γ)

(ρ+ α(1− ρ))βκ
.

Using this lemma, in the second regime, we formulate the planner’s optimization problem
as follows:

max
xi∈[0,1]

∑

i

cixi

s.t. TXΛT ′ � N̂−1 (µ+ κ)(µ+ γ)

(ρ+ α(1− ρ))βκ
.

(P2)

Note that in this formulation, as opposed to imposing positive definiteness, we impose posi-
tive semidefiniteness. This is equivalent to relaxing the planner’s problem by taking a closure
of the feasible region, and we do this to ensure the existence of an optimal solution to this
problem. It can be trivially checked that given an optimal solution to this problem, multi-
plying xi by (1 − ǫ) for all i and ǫ > 0 is a feasible solution that guarantees that the strict
inequality is obtained. Moreover, by choosing ǫ ≪ 1 arbitrarily small, this solution has an
objective value that is arbitrarily close to the optimal objective value of the aforementioned
relaxation. In other words, a slight perturbation of the solution to this problem gives a
policy that achieves the planner’s goal, while resulting in a cost level that is arbitrarily close
to the optimal one. Motivated by this, in the second regime we refer to the solution of (P2)
as the planner’s optimal policy. We also note that (P2) is a tractable semidefinite program.

3 Application: Economic Activity in NYC

We next apply our framework to NYC and discuss how the economic activity in different
neighborhoods needs to be reduced so as to curb the spread of the Covid-19 epidemic at a
minimum economic loss. In Section 3.1 we explain the data sources used for the construction
of the primitives of our model, and in Section 3.2 and Section 3.3 we respectively report our
findings in the large and small infection regimes.

3.1 Data and Assumptions

There are five main types of data that we use to determine the primitives of our model: (i)
disease-specific parameters (e.g., transmission rates, clinical rates) for Covid-19 (Li et al.,
2020b), (ii) the infection counts for NYC and neighboring counties (NYC Health, 2020; The
New York Times, 2020), (iii) populations of different neighborhoods (US Census Bureau,
2010), (iv) level of economic activity in different NYC neighborhoods (US Census Bureau,
2017), (v) SafeGraph data that records individuals’ movements (SafeGraph, 2020). We next
explain how we construct the different primitives of our model using these data.
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Parameter β κ ρ α γ
Median 1.12 0.27 0.14 0.55 0.29

(95% CIs) (1.06, 1.19) (0.25 ,0.30) (0.10, 0.18) (0.46,0.62) (0.27, 0.32)

Table 1: Disease-specific parameters (source: Li et al., 2020b)

Disease-specific parameters. We use the estimates provided in recent literature (in par-
ticular Li et al., 2020b) to calibrate the disease parameters governing the spread of COVID-
19. We assume that the (daily) transmission rate β is 1.12 with 95% credible interval (CI):
(1.06, 1.19). The latency period is 3.69 days (3.30, 3.96), implying an infectious rate of
κ ≈ 0.27 which captures how fast the exposed agents become infectious. The infectious
period is 3.47 days (3.15, 3.73), implying a recovery rate of γ ≈ 0.29. Not all infections
cause severe symptoms and are reported. We set the clinical rate, which is assumed to be
equal to the reporting rate, equal to ρ = 0.14 (0.10, 0.18) following the estimates in Li et al.
(2020b). The unreported cases have a lower transmission rate, captured by a discount factor
α = 0.55 (0.46, 0.62), i.e., the transmission rate for such cases is given by αβ ≈ 0.62. Ac-
cording to Li et al. (2020b), these parameter values imply an effective reproduction rate of
2.38 (2.03, 2.77), in the absence of interventions. Moreover, they are largely consistent with
other available estimates in the literature (e.g., Wu et al., 2020; Li et al., 2020a; Ferretti
et al., 2020). We report our results by focusing on the median values presented above. The
values are summarized in Table 1.

The natural birth/date rate is much smaller relative to the remaining parameters of the
model. Thus, for our computational studies we set it equal to zero.

Nodes (N ). NYC reports confirmed Covid-19 cases at the ZIP Code Tabulation Area
(ZCTA) level (NYC Health, 2020). Motivated by this, we define the nodes in our analysis
as the different ZCTAs in the city. ZCTAs consist of census blocks (CB) and while in
most instances the ZCTA code is the same as the ZIP Code for an area, there can be
slight differences (see US Census Bureau, 2020). We are mainly interested in understanding
how NYC can reduce economic activity in different ZCTAs so as to curb the spread of
the epidemic. However, due to the spatial nature of the spread of the epidemic infected
individuals from outside NYC can infect susceptible individuals in NYC. To capture this we
define additional nodes that correspond to the counties neighboring NYC.3 Specifically, we
used the SafeGraph data (discussed below) to obtain the 10 counties that have the largest
inflow/outflow of individuals to/from NYC. These 10 counties together with the NYC ZCTAs
constitute the nodes of our network. The list of these counties is provided in the appendix;
see Appendix A.

Populations ({Ni}). In order to define the total population of each node, we use the
2010 Census data that specifies populations at the CB level (US Census Bureau, 2010). We

3Here we aggregate data at the county level, as outside NYC the infection data was provided at the
county level (The New York Times, 2020).
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use these to construct the population of each node in our network. These populations are
relevant as they are the primitives ({Ni}) of our spatial epidemic model.

Sizes of compartments ({Si/Ei/I
c
i /I

sc
i /Ri}). In Section 3.2, we focus on the state of

the epidemic in NYC (and neighboring counties) on April 18, 2020, and solve the planner’s
decision problem. Note that, on the aforementioned date, the total number of infections in
NYC was nontrivial; hence, to study the planner’s decision problem we used the formulation
given in Section 2.2. Recall that this formulation is based on the size of each of the disease
compartments. Thus, we need to estimate the sizes of these components on April 18. We
next describe how we do so. In what follows, we refer to April 18 as the target date, and
denote it by T⋆. We also focus on April 21 and April 15, and denote these dates respectively
by T+ and T−.

For the nodes of our network, we can extract the number of confirmed cases on a given
date using the data provided (NYC Health, 2020; The New York Times, 2020). On the other
hand, recent studies suggest that in addition to the confirmed cases, there is a large number
of individuals who have the disease but do not show any symptoms. In fact, the antibody
studies suggest that in NYC about 24.7% of the individuals may have experienced the disease
(as of April 27) (CBSN, 2020) – a much larger number than the number of confirmed cases.4

To bridge the gap between the confirmed cases and the total infections implied by the
antibody studies, we define an identification rate. We first describe how this quantity and
the compartment sizes are obtained for the ZCTAs in NYC, and we then briefly discuss the
extension of the approach to the neighboring counties.

We assume that on T⋆ 24.7% of NYC have had the disease.5 We also compute the total
number of confirmed infections in NYC by T⋆ (at all locations) using the dataset in NYC
Health (2020). Dividing the latter number by the former, we obtain an identification rate,
which is the fraction of actual infections that become confirmed cases. We assume that the
identification rate is the same in all neighborhoods.

The data in NYC Health (2020) includes the daily numbers of confirmed cases by ZCTA
for NYC. We analyze the data under the assumption that individuals spend 3 days in the
exposed compartment and 3 days in the infected compartment (see our discussion above on
the disease-specific parameters). We focus on the cumulative number of confirmed cases on
dates T⋆ and T−, in each ZCTA, and interpret the difference as the number of active identified
infections on T⋆. By dividing this quantity by our identification rate, we obtain the number
of infections that are active in each ZCTA of NYC on T⋆. Note that these active infections
may be clinical or subclinical; thus, the aforementioned quantity is Ici + Isci for ZCTA i. We
use the clinical rate ρ reported above to solve for Ici and Isci (where ρ = Ici /(I

c
i + Isci )) on T⋆.

Similarly, we focus on the cumulative number of confirmed cases in each ZCTA on T⋆

and T+. Subtracting the former number from the latter one yields the number of new

4Similarly, Hortaçsu et al. (2020) estimate that 4%–14% of actual infections had been reported in the US
up to March 16.

5The antibodies appear with some delay after the infection. According to Wölfel et al. (2020), half
of the infected mild cases developed antibodies within a week of the onset of the symptoms, whereas the
rest developed antibodies in the second week. Even though 24.7% was reported on April 27, due to the
aforementioned delay as well as the time spent surveying the patients, it is reasonable to expect a similar
infection rate earlier as well, consistent with our assumption on T⋆.
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infections by T+. Before being identified as infected, these individuals were in the exposed
compartment. Thus, this difference is interpreted as the number of exposed individuals on
T⋆ who are eventually identified as infected. Dividing this quantity by the identification rate
at each ZCTA, we obtain {Ei}.

Finally, all of the confirmed cases on T− move to the recovered compartment by T⋆ (under
the assumption that individuals spend 3 days in the diseased compartment). Dividing the
relevant number at each ZCTA by the identification rate yields {Ri} on T⋆.

Consider location i, and the compartment sizes Ei/I
c
i /I

sc
i /Ri described above. We com-

pute the difference between Ni and the sum of these quantities to obtain the size of the
susceptible compartment, Si, for all ZCTAs i.

The compartment sizes for the 10 counties neighboring NYC are obtained following a
similar approach. The only difference is that the antibody tests suggest lower prevalence
in these counties than in NYC (CBSN, 2020). Thus, we replace the number 24.7% with a
county-specific number and repeat the same process (using the data from The New York
Times (2020) to compute the county-specific identification rates).

Baseline economic activity {ci}. Longitudinal Employer-Household Dynamics (LODES)
data (US Census Bureau, 2017) contains detailed information about the local economic ac-
tivity. We use this dataset to obtain the number of employees in each ZCTA of NYC. We use
the number of employees as a proxy for the baseline economic activity, and, in particular for
a given ZTA i, we set ci to be the number of employees in this ZCTA. Thus, the problem of
the planner can be alternatively formulated as the problem of curbing the spread of Covid-19
while incurring the minimum number of (temporary) job losses.

Edge weights {τij}. SafeGraph uses data from a number of mobile devices and appli-
cations to derive anonymized location data that provides insights into locations visited by
individuals as well as their movements across different locations. To preserve anonymity, the
data is aggregated at the census block group (CBG) level. More specifically, the SafeGraph
dataset identifies a “home” CBG for each device/individual and reports the median home
dwell time for each CBG. In addition, it reports the daily number of individuals who go from
their home CBG to various destination CBGs. Similarly to ZCTAs, each CBG consists of a
number of CBs. But, in general, CBGs neither contain nor are contained by ZCTAs. To get
around this difficulty, we first disaggregate the SafeGraph data at the CB level. In particu-
lar, we focus on all “trips” that originate from a home CBG i and that go to a destination
CBG j. We assume that the fraction of these trips that originate from a particular CB in
CBG i is simply given by the ratio of the population of this CB (obtained from the data in
US Census Bureau, 2010) to the total population of CBG i. Similarly, we assume that the
fraction of these trips that end at a particular CB in CBG j is given by the ratio of the area
of this CB to the area of CBG j.6 Under this assumption, we can break down the “flow”
of individuals between home/destination CBGs to the flow between home/destination CBs.

6Note that we distribute the origins according to the populations of the CBs whereas we distribute the
destinations according to the areas. This is because, the number of “homes” in a CB is naturally proportional
to the population of that CB, and hence when allocating origins of trips to CBs it is natural to focus on
populations. On the other hand, the destinations of the trips can be to nonresidential areas and focusing on
populations in that case could be misleading. Therefore, in the latter case, we focus on the areas of CBs.
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Then we aggregate these quantities at the ZCTA level for NYC (county level for the nodes
outside NYC) to define the flow of individuals from one node (ZCTA in NYC or a neighbor-
ing county) to another. Similarly we assume that all CBs in the same CBG share the same
home dwell time, and we define the home dwell time for a ZCTA as the average of these for
the CBs that are contained in the ZCTA (and similarly for the neighboring counties).

This construction allows us to obtain a representative home dwell time for each node.
Moreover, it allows us to capture the number of trips (in the dataset) from one node to
another. Given node i, we focus on the number of trips to a node j divided by the total
number of trips leaving i. We use this quantity to define the fraction of time the individuals
from i spend in j in aggregate, i.e., the parameter τij in our model. More precisely, if the
home dwell time at node i is hi hours, and the number of trips from i to ℓ is kiℓ, we let
τij =

(
1− hi

24

)
× kij∑

ℓ kiℓ
.

3.2 Large Infection Regime (NYC)

In this section, we explore the solutions of (P1) for the problem primitives defined in the
previous section. In both cases, we consider a planner who can control the economic activity
at the nodes that correspond to the NYC ZCTAs. Note that these correspond to some of the
nodes in our network, while the remaining nodes correspond to neighboring counties. We
assume that the economic activity level in these counties is exogenously fixed at some level
y. In our optimization formulations, we capture this by imposing an additional constraint
xi = y for i that corresponds to a neighboring county. We analyze different scenarios
with y ∈ {0, 0.4, 0.8, 1} and discuss how the planner’s optimal targeting solution changes
depending on the activity level in the neighboring counties.

The optimal solutions for (P1) and the three scenarios described above are depicted in
Figure 1. In this as well as the subsequent figures, we shade the ZCTAs with different
colors that capture the value the quantity of interest takes in each ZCTA. The color bar
summarizes the mapping between the colors and the values. We also report the ratio of the
optimal objective value to the total baseline economic value

∑

i ci. We refer to this quantity
as efficiency, and note that this quantity is less than or equal to one, and it is close to one
only if the economic restrictions are very mild.

A number of important observations are worth pointing out, and we highlight these below
(O1–O4).

Figure 1 shows that the optimal solution of (P1) and the associated efficiency level are
sensitive to the economic activity level in the neighboring counties. When the economic
activity in the neighboring regions is completely suspended (y = 0), a targeted restriction
policy can guarantee 48.8% efficiency, while achieving the policy goal of having reductions
in the number of infections in all neighborhoods. On the other hand, when the economic
activity level in the neighboring counties is y = 0.4, 0.8 or 1, the efficiency reduces to 45.0%,
40.0% and 37.2%, respectively. In the last case, the economic activity almost completely
ceases in Manhattan. Moreover, relative to the y = 0 case, the reduction in the efficiency
is 23.8%. This observation highlights the necessity of coordination between states or other
governing bodies to ensure low economic losses when achieving the policy goal of guaranteeing
reductions in infections in all neighborhoods.
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Figure 1: Optimal economic activity levels {xi} in different ZCTAs.
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O1: Coordination between governing bodies of different states/counties is nec-
essary to limit economic losses while achieving the policy goals.

When the economic activity in the neighboring counties is relatively low, the optimal
solution involves having some economic activity in Midtown Manhattan, while restricting
economic activity substantially (and in some cases completely) almost elsewhere in Man-
hattan. This is partly due to the fact that the Midtown ZCTAs have the largest amount
of baseline economic activity in the city (see Figure 6 in the appendix). It is worth noting
that other neighborhoods, such as Lower Manhattan also have substantial baseline economic
activity, yet the permitted economic activity at the optimal solution is zero. This is due to
the fact that if the permitted economic activity in those neighborhoods was increased, then
due to the spatial nature of the epidemic, in order to achieve the policy goals the economic
activity level in other locations (such as Midtown) would need to be reduced. The cost of the
latter reduction outweighs the benefit of increasing economic activity in Lower Manhattan.

O2: In Manhattan, some economic activity is permitted in Midtown, driven by
the economic value of this location. To achieve the policy goal, the impact of this
location is balanced by severely restricting economic activity almost elsewhere
in Manhattan.

It is worth highlighting that the restrictions can change drastically even between adjacent
neighborhoods (e.g., those in Staten Island). More interestingly, even among neighborhoods
with similar baseline economic activity levels, the ones with higher levels of permitted eco-
nomic activity, are not necessarily those with lower levels of infection. For instance, in Staten
Island, the neighborhoods that are permitted to continue economic activity have higher in-
fection rates than the adjacent neighborhoods that are completely shut down (see Figure 7
and Figure 8 in the appendix). This is because in deciding how much economic activity to
allow, in addition to location-specific metrics (such as the infection rate in a neighborhood),
the spillovers across neighborhoods also matter (i.e., whether allowing economic activity in
a neighborhood will import/export the disease to other neighborhoods substantially).

O3: The spatial aspect of disease spread and spillovers across neighborhoods
plays a key role in deciding where to resume economic activity.

Note that the targeted policies obtained from the solution of (P1) suggest drastic differ-
ences in permitted economic activity levels even in adjacent ZCTAs (e.g., with one ZCTA
having full economic activity and the other one having zero). This may be undesirable due
to fairness concerns. A conceptually more fair alternative is to permit the same level of
economic activity in all neighborhoods. The fairness requirement restricts the policies that
the planner can use and reduces efficiency. How does the efficiency of the optimal policy
change due to this requirement?

To analyze this, we resolve (P1) by imposing the additional constraint that xi = xj for
i, j that correspond to the ZCTAs in NYC. In Figure 2, we show the efficiency in the optimal
solutions of this LP as well as the original one for different values of the permitted economic
activity y in the neighboring counties.
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Figure 2: Efficiency vs. permitted economic activity y in the neighboring counties.

In this figure, we use solid lines to illustrate the efficiency levels obtained with the optimal
targeted/uniform policies when the disease parameters take their median values reported
in Table 1. In addition, we fit Weibull distributions to the median values and the 95%
CIs (see Table 1) of these parameters. We then sample the relevant parameters from the
corresponding distributions and create 100 problem instances. In each of these problem
instances we obtain optimal policies as well as the corresponding efficiency levels (for different
y). In Figure 2 we shade the 95 % CI associated with the induced optimal efficiency levels
under the two policies. The results for the 95% CI are consistent with those associated with
the median parameter values, thereby indicating the robustness of our conclusions to the
exact values of the disease parameters.

Figure 2 establishes that there are drastic gains to targeting different neighborhoods
under the policy goal of reducing infections in all neighborhoods. The gains due to targeting
are large (they are roughly fourfold or more where the exact multiplier depends on y).

O4: Targeting achieves policy goals at a much lower economic cost.

3.3 Small Infection Regime (NYC)

We next analyze the asymptotic stability of the disease-free equilibrium in NYC. To this
end, we assume that all of the model primitives but the compartment sizes are as given in
Section 3.1. Since our focus is on the disease-free equilibrium, we assume that initially all
of the agents are in the susceptible compartment. As discussed earlier, asymptotic stability
is equivalent to having Re < 1 and qualitatively it guarantees that if a small number of
infections are introduced to the population, the infections will disappear without a large
number of individuals getting infected.
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As in Section 3.2, we focus on the problem of the planner who can control economic
activity at the nodes that correspond to the NYC ZCTAs. For the remaining nodes (i.e.,
in counties neighboring NYC), we assume that the economic activity level is exogenously
set equal to y ∈ {0, 0.4, 0.8}. Observe that this boils down to formulating (P2) with the
additional case xi = y for any node i that is not a ZCTA of NYC. We note that for y ≥ 0.85
the planner’s problem becomes infeasible. That is, if the neighboring counties have 85% or
more economic activity, due to the infections that take place there regardless of the policy
NYC follows, then the infections could impact a substantial number of agents in the system
and the disease-free equilibrium would not be stable.

We show the optimal targeted reduction in the economic activity levels in Figure 3, where
we also report the efficiency of the solution. The results suggest that the solutions and the
optimal objectives of the first two scenarios are fairly close. This suggests that in the regime
where the permitted economic activity in the neighboring counties is inherently small (i.e.,
y ≤ 0.6), the impact of these counties on NYC is also relatively small. Hence, the optimal
solution is relatively insensitive to the exact value of y (for as long as it remains small).

The optimal policy of the planner (in all three scenarios) involves permitting almost
full economic activity in some regions, e.g., a few ZCTAs in Midtown Manhattan, Lower
Manhattan, and the airports.7 Note that these locations are places where many employees
from different neighborhoods mix together. So, arguably, the infections here could quickly
spread and trigger a contagion. On the other hand, these locations are also very important
economically. In particular, Figure 6 in the appendix shows that these locations also have
substantially higher baseline economic activity levels than the remaining locations. Thus,
it is optimal for the planner to keep the economic activity continuing at these locations as
much as possible, while suspending or reducing the economic activity elsewhere.

It is possible to obtain further intuition on the optimal solution by focusing on another
metric: the inflow-to-economic-activity ratio. For neighborhood i this metric is obtained by
dividing the total amount of time individuals from different neighborhoods spend at node i
(given by

∑

j τjiNj) by the baseline economic activity level ci. Intuitively, when this ratio
is small either the mixing (and hence the infection risk) in a node is small, or the economic
value of the relevant node is large. In either case, the planner should benefit from not
restricting the economic activity in the aforementioned neighborhoods too much. Figure 9
in the appendix suggests that this intuition has merit (despite the aforementioned metric
not capturing important features of the disease dynamics): the neighborhoods for which
this metric takes smaller values also experience limited reduction in the economic activity
according to the optimal solution given in Figure 3.

The type of targeted restriction of the economic activity described above may not be
ideal due to fairness concerns. We next explore how the optimal solution changes, if we, in
addition, we require the economic restrictions to apply uniformly to all the regions. This
corresponds to imposing the additional constraint xi = xj for i, j that correspond to the
ZCTAs of NYC in the optimization formulation (P2). In Figure 4, we plot the efficiency
under the optimal targeted vs. uniform policies (obtained by solving the relevant variants of

7Here the result about the airports should be interpreted cautiously, since we did not model diseases
“imported” due to incoming flights and accounting for them could change the optimal activity levels at
those locations.
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Figure 3: Optimal economic activity levels {xi} in different ZCTAs.
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Figure 4: Efficiency vs. permitted economic activity y in the neighboring counties.

(P2)) as a function of the economic activity level y in the neighboring counties. This figure
establishes that the reduction in the efficiency due to using uniform policies is about 14%.
Moreover, neither objective value seems very sensitive to small y, as observed earlier. Our
findings highlight the value of targeting different neighborhoods in efforts keep Re below 1.

4 Concluding Remarks

In this paper, we focus on a spatial model of epidemic spread, and investigate the problem
of a planner who can reduce the economic activity in different neighborhoods in a targeted
way in order to curb the spread of an epidemic. The intervention is costly, and optimal
targeting policies are discussed. The problem is relevant both in the regime where there is a
large number of infections in society and in the regime where only a few agents are infected.
In the first regime, we focus on the policy goal of reducing infections in each neighborhood
or in aggregate (while minimizing the induced economic cost), and, in the second regime, we
focus on ensuring that the small number of initial infections do not trigger an epidemic. We
provide tractable convex optimization formulations of the planner’s problem. We then use
these formulations to explore the planner’s optimal policies in fighting the Covid-19 epidemic
in NYC.

Our analysis of NYC reveals a number of important insights, some of which we high-
light here. First, targeting can enable achieving policy goals while ensuring a substantial
reduction in economic losses relative to uniform shutdown policies. Second, under various
scenarios, the planner finds it optimal to continue limited economic activity in Midtown
neighborhoods, while almost completely suspending economic activity almost elsewhere in
Manhattan. The reason for this is the significant economic value of the Midtown neigh-
borhoods, and the planner finds it optimal to trade off the economic activity in this region
with closures elsewhere in the city. Third, contrary to naive intuition, the neighborhoods
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where the economic activity should be reduced the most are not those with the highest in-
fection rates: even among adjacent neighborhoods with similar economic values, it may be
optimal to resume activity at those with higher infection rates depending on the structure
of the spatial spread patterns between these neighborhoods and the others. Fourth, in the
small infection regime, in order to achieve policy goals different governing bodies need to
coordinate closures. For instance, if NJ counties resume economic activities it may not be
possible for NYC to prevent an epidemic even with drastic closure decisions. Finally, when
there are a few infected agents, a relatively weaker reduction in economic activity may be
needed in order to ensure that Re < 1 and that the disease does not impact a large number
of individuals.

While we have striven to build a model consistent with epidemic, economic, and social
activity data, we made several assumptions that affect these results. We made a uniformity
assumption that restrictions on economic activity in a location would have the same relative
impact on social activity and inter-regional movement across all locations. If this is not true
(e.g., if Midtown economic activity has less of an effect on movement than other neighbor-
hoods’s economic activity), then many of the results may again be different. Finally, it is
conceivable that the economic activity in some neighborhoods is more amenable to remote
work. Thus, business closure may have less of an economic impact in these neighborhoods
than in others. Such heterogeneity across different neighborhoods is not modeled in the
paper, and could impact the optimal decisions of the planner.

This work opens up a number of interesting future directions. First, our focus has been
on myopic and static policies that a planner can use to achieve some policy goals at the
lowest possible costs. Such policies can be used to develop heuristic policies that control
the epidemic over time as well, e.g., by resolving the static problems over time to adjust
the interventions as the state of the epidemic evolves. Perhaps the most interesting (and
challenging) direction is to study truly dynamic policies (as opposed to heuristic ones) that
minimize total economic costs (over time and across neighborhoods) and that ensure a long-
term policy goal (e.g., ensuring that the infection numbers will be below a threshold by a
deadline). Such policies require carefully modeling the trajectory of the disease dynamics,
and induce nontrivial optimal control problems that have a spatial as well as a temporal
dimension. While the study of such dynamic epidemic control problems is challenging, it also
appears quite timely and potentially impactful. Second, for Covid-19 there is still uncertainty
about a number of disease-related parameters. A closer study of these as well as their impact
on optimal closure decisions is needed. Third, in settings where there is uncertainty about
the underlying parameters, the question of testing becomes important. How should the
decision maker prioritize testing to collect information about the uncertain parameters and
how could this be used to improve the overall objective? Fourth, other economic and social
costs (other than employment numbers) are of interest to study. For instance, it is often
argued that economic losses experienced by individuals can trigger loss of life, which could
be comparable to (or more than) the deaths due to the epidemic. It is of interest to develop
policies that minimize the total deaths by taking appropriate interventions. Finally, the
proposed optimization framework for studying spatial epidemic models seems to be novel in
the literature, and its applications to other problems in epidemiology could be of interest.
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A Counties with largest trip rates to NYC

Fairfield County, CT Bergen County, NJ
Essex County, NJ Hudson County, NJ Middlesex County, NJ Monmouth County, NJ
Union County, NJ Nassau County, NY Suffolk County, NY Westchester County, NY

Table 2: Counties/nodes outside NYC

B Additional NYC data

In this section, we provide additional data on various quantities related to our problem. In
particular, Figure 5 illustrates the population in different neighborhoods and Figure 6 shows
the number of employees. Figure 7 captures the relative number of infections in different
neighborhoods (Ici +Isci ) on T⋆, and Figure 8 shows the same quantity after dividing it by the
population of the relevant neighborhood (i.e., Ici + Isci divided by the population of i). All
of the figures show the normalized data; i.e., the value associated with each neighborhood is
divided by the maximum value associated with a neighborhood.

Figure 5: Normalized populations

Finally, we include another plot that seems to be closely related to our optimal solutions.
Consider the total amount of time individuals from different neighborhoods spend at node
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Figure 6: Normalized employment numbers

Figure 7: Normalized infection numbers
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Figure 8: Normalized infection-to-population ratio

i and divide this quantity by the baseline economic activity ci, i.e., the inflow-to-economic-
activity ratio.

∑

j Njτji/ci. This quantity, after normalization, is plotted in Figure 9.
The inflow-to-economic-activity ratio for neighborhood i is large, when the numerator is

large or the denominator is small. In the first case, i is a neighborhood where many agents
(possibly from different neighborhoods) mix. This can trigger the spread of the epidemic.
In the second case, the baseline economic activity in i is small, and hence the planner
can reduce economic activity without suffering a large loss. Thus, intuitively the planner
benefits from restricting economic activity when this ratio is large. While this crude metric
misses a number of important features of the epidemic spread process (e.g., the rates at
which individuals move between compartments), as discussed in Section 3 in some cases it
is aligned relatively well with our optimal solutions: the neighborhoods where this ratio is
the smallest (largest) often see larger (smaller) levels of permitted economic activity under
the planner’s policy.
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