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Abstract

Background: Modern biotechnologies often result in high-dimensional data sets with many more variables than

observations (n ≪ p). These data sets pose new challenges to statistical analysis: Variable selection becomes one of

the most important tasks in this setting. Similar challenges arise if in modern data sets from observational studies, e.g.,

in ecology, where flexible, non-linear models are fitted to high-dimensional data. We assess the recently proposed

flexible framework for variable selection called stability selection. By the use of resampling procedures, stability

selection adds a finite sample error control to high-dimensional variable selection procedures such as Lasso or

boosting. We consider the combination of boosting and stability selection and present results from a detailed

simulation study that provide insights into the usefulness of this combination. The interpretation of the used error

bounds is elaborated and insights for practical data analysis are given.

Results: Stability selection with boosting was able to detect influential predictors in high-dimensional settings while

controlling the given error bound in various simulation scenarios. The dependence on various parameters such as the

sample size, the number of truly influential variables or tuning parameters of the algorithm was investigated. The

results were applied to investigate phenotype measurements in patients with autism spectrum disorders using a

log-linear interaction model which was fitted by boosting. Stability selection identified five differentially expressed

amino acid pathways.

Conclusion: Stability selection is implemented in the freely available R package stabs (http://CRAN.R-project.org/

package=stabs). It proved to work well in high-dimensional settings with more predictors than observations for both,

linear and additive models. The original version of stability selection, which controls the per-family error rate, is quite

conservative, though, this is much less the case for its improvement, complementary pairs stability selection.

Nevertheless, care should be taken to appropriately specify the error bound.

Keywords: Boosting, Error control, Variable selection, Stability selection

Background
Variable selection is a notorious problem in many appli-

cations. The researcher collects many variables on each

study subject and then wants to identify the variables that

have an influence on the outcome variable. This prob-

lem becomes especially pronounced with modern high-

throughput experiments where the number of variables
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p is often much larger than the number of obser-

vations n (e.g., genomics, transcriptomics, proteomics,

metabolomics, metabonomics and phenomics; see, [1-6])

or in complex modeling situations with many potential

predictors, where the aim is to find a meaningful non-

linear model (see e.g., [7]). One of the major aims in the

analysis of these high-dimensional data sets is to detect

the signal variables S, while controlling the number of

selected noise variables N. Stepwise regression models

are a standard approach to variable selection in settings

with relatively few variables. However, even in this case

this approach is known to be very unstable (see e.g.,
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[8-10]). Recent approaches that try to overcome this

problem and can also be used in high-dimensional settings

with n ≪ p include penalized regression approaches such

as the lasso [11,12], elastic net [13], and boosting [14],

or tree based approaches such as random forests [15,16].

More recently, Meinshausen and Bühlmann [17] proposed

stability selection, an approach based on resampling of the

data set which can be combined with many selection pro-

cedures and is especially useful in high-dimensional set-

tings. Shah and Samworth [18] extended the framework

by using complementary pairs subsampling and derived

less conservative error bounds (“complementary pairs sta-

bility selection”). Stability selection has since been widely

used, e.g. for gene regulatory network analysis [19,20],

in genome-wide association studies [21], graphical mod-

els [22,23] or even in ecology [24]. In most publications,

stability selection is used in combination with lasso or

similar penalization approaches. Here, we discuss the

combination of stability selection with component-wise

functional gradient descent boosting [25]. Boosting can be

easily applied to many data situations: It can be applied

to Gaussian regression models, models for count data or

survival data, and equally easy to quantile or expectile

regression models (for an overview see, [26,27]). Further-

more, it allows one to specify competing effects, which

are subject to selection, more freely and flexibly. One can

specify simple linear effects, penalized effects for categor-

ical data [28], smooth effects [29], cyclic or monotonic

effects [30,31] or spatial effects [7] to name just a few.

All these effect types can be freely combined with any

type of model. For details on functional gradient descent

boosting, see [26,27].

We will provide a short, rather non-technical introduc-

tion to boosting in the next section. Stability selection,

which controls the per-family error rate, will be intro-

duced, and we also give an overview on common error

rates and some guidance on the choice of the parameters

in stability selection. An empirical evaluation of boost-

ing with stability selection is presented. In our case study

we will examine autism spectrum disorder (ASD) patients

Figure 1 Covariate effects. Effect types range from oscillating functions (f1), over quadratic functions (f2), arbitrary smooth function (f3 and f4),

cosine functions (f5), and piecewise linear functions (f6), to linear functions (f7 and f8). For two influential covariates we used f1 and f2 , for three

influential covariates we used f1 to f3 and for eight influential covariates we used all functions.
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and compare them to healthy controls using the boosting

approach in conjunction with stability selection. The aim

is to detect differentially expressed phenotype measure-

ments. More specifically, we try to assess which amino

acid pathways differ between healthy subjects and ASD

patients.

Methods
A short introduction to boosting

Consider a generalized linear model

E(y|x) = h(η(x)) (1)

with outcome y, appropriate response function h and

linear predictor η(x). Let the latter be defined as

η(x) = β0 +

p∑

j=1

βjxj, (2)

with covariates x = (x1, . . . , xp), and corresponding

effects βj, j = 0, . . . , p. Model fitting aims at minimiz-

ing the expected loss E(ρ(y, η(x))) with an appropriate

loss function ρ(y, η(x)). The loss function is defined by

the fitting problem at hand. Thus, for example, Gaussian

regression models, i.e. least squares regression models,

aim to minimize the squared loss ρ(y, η(x)) = (y−η(x))2.

Generalized linear models can be obtained by maximizing

the log-likelihood or, analogously, by minimizing the neg-

ative log-likelihood function. Logistic regression models

with binary outcome, for example, can be fitted by using

the negative binomial log-likelihood

ρ(y, η(x)) = − y log(P(y = 1|η(x)))

+ (1 − y) log(1 − P(y = 1|η(x)))

as loss function or a reparametrization thereof [26]. Fur-

ther extensions that are not based on a likelihood, such as

quantile or expectile regressionmodels [32,33], models for

the robust Huber loss [27,34] or survival models that are

fitted by directly optimizing the concordance index [35]

can be obtained by the use of an appropriate loss function.

In practice, one cannotminimize the expected loss func-

tion. Instead, we optimize the empirical risk function

R(y,X) = n−1
n∑

i=1

ρ(yi, η(xi)) (3)

with observations y = (y1, . . . , yn)
⊤ and X =

(
x⊤
1 , . . . ,

x⊤
n

)⊤
. This can be done for arbitrary loss functions

by component-wise functional gradient descent boosting

[25]. The algorithm is especially attractive owing to its

intrinsic variable selection properties [7,28].

Figure 2 True positives rates – Linear logistic regression model. Boxplots for the true positives rates (TPR) for all simulation settings with separate

boxplots for the correlation settings (independent predictor variables or Toeplitz design), PFERmax and the assumption used to compute the error

bound. Each observation in the boxplot is the average of the 50 simulation replicates. The open red circles represent the average true positive rates.
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One begins with a constant model η̂[0](xi) ≡ 0 and com-

putes the residuals u[1] = (u
[1]
1 , . . . ,u

[1]
n )⊤ defined by the

negative gradient of the loss function

u
[m]
i := −

∂ρ(yi, η)

∂η

∣∣∣∣
η=η̂[m−1](xi)

(4)

evaluated at the fit of the previous iteration η̂[m−1](xi)

(see, [25,26,36]). Each variable x1, . . . , xp is fitted sepa-

rately to the residuals u[m] by least squares estimation (this

is called the “base-learner”), and only the variable j∗ that

describes these residuals best is updated by adding a small

percentage ν of the fit β̂j∗ (e.g., ν = 10%) to the current

model fit, i.e.,

η̂[m] = η̂[m−1] + ν · β̂j∗ .

New residuals u[m+1] are computed, and the whole pro-

cedure is iterated until a fixed number of iterations m =

mstop is reached. The final model η̂[mstop](xi) is defined

as the sum of all models fitted in this process. Instead

of using linear base-learners (i.e., linear effects) to fit the

negative gradient vector u[m] in each boosting step, one

can also specify smooth base-learners for the variables

xj (see e.g. [29]), which are then fitted by penalized least

squares estimation. This allows to fit generalized addi-

tive models GAMs; [37,38]) with non-linear effects or

even very complex models such as structured additive

regression (STAR) models [31,39] with spatio-temporal

effects, models with smooth interaction surfaces, cyclic

effects, monotonic effects, and so on. In all these mod-

els, each modeling component is specified as a separate

base-learner. As we update only one base-learner in each

boosting iteration, variables or effect types are selected

by stopping the boosting procedure after an appropriate

number of iterations (“early stopping”). This number is

usually determined using cross-validation techniques (see

e.g., [40]).

Stability selection

A problem of many statistical learning approaches

including boosting with early stopping is that despite

regularization one often ends up with relatively rich

models [17,40]. A lot of noise variables might be erro-

neously selected. To improve the selection process and

to obtain an error control for the number of falsely

selected noise variables Meinshausen and Bühlmann [17]

proposed stability selection, which was later enhanced

Figure 3 True positives rates by the number of observations n – Linear logistic regression model. Boxplots for the true positives rates (TPR) for all

simulation settings with separate boxplots for different numbers of observations (n), the correlation settings (independent predictor variables or

Toeplitz design), and the assumptions used to compute the error bound. Each observation in the boxplot is the average of the 50 simulation

replicates. The open red circles represent the average true positive rates.
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by Shah and Samworth [18]. Stability selection is a

versatile approach, which can be combined with all high-

dimensional variable selection approaches. It is based on

sub-sampling and controls the per-family error rate E(V ),

whereV is the number of false positive variables (for more

details on error rates see Additional file 1, Section A.1).

Consider a data set with p predictor variables xj, j =

1, . . . , p and an outcome variable y. Let S ⊆ {1, . . . , p}

be the set of signal variables, and let N ⊆ {1, . . . , p}/S

be the set of noise variables. The set of variables that are

selected by the statistical learning procedure is denoted

by Ŝn ⊆ {1, . . . , p}. This set Ŝn can be considered to be an

estimator of S, based on a data set with n observations. In

short, for stability selection with boosting one proceeds as

follows:

1. Select a random subset of size ⌊n/2⌋ of the data,

where ⌊x⌋ denotes the largest integer ≤ x.

2. Fit a boosting model and continue to increase the

number of boosting iterationsmstop until q

base-learners are selected. Ŝ⌊n/2⌋, b denotes the set

of selected variables.

3. Repeat the steps 1) and 2) for b = 1, . . . ,B.

4. Compute the relative selection frequencies

π̂j :=
1

B

B∑

b=1

I
{j∈Ŝ⌊n/2⌋, b}

(5)

per variable (or actually per base-learner).

5. Select all base-learners that were selected with a

frequency of at least πthr, where πthr is a

pre-specified threshold value. Thus, we obtain a

set of stable variables Ŝstable := {j : π̂j ≥ πthr}.

Meinshausen and Bühlmann [17] show that this selec-

tion procedure controls the per-family error rate (PFER).

An upper bound is given by

E(V ) ≤
q2

(2πthr − 1)p
(6)

where q is the number of selected variables per boosting

run, p is the number of (possible) predictors and πthr is the

threshold for selection probability. The theory requires

two assumptions to ensure that the error bound holds:

(i) The distribution
{
I
{j∈Ŝstable}

, j ∈ N
}
needs to be

exchangeable for all noise variables N.

Figure 4 True positives rates by the number of influential variables pinfl – Linear logistic regression model. Boxplots for the true positives rates (TPR)

for all simulation settings with separate boxplots for different numbers of influential variables (pinfl), the correlation settings (independent predictor

variables or Toeplitz design), and the assumptions used to compute the error bound. Each observation in the boxplot is the average of the 50

simulation replicates. The open red circles represent the average true positive rates.
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(ii) The original selection procedure, boosting in our

case, must not be worse than random guessing.

In practice, assumption (i) essentially means that each

noise variable has the same selection probability. Thus, all

noise variables should, for example, have the same cor-

relation with the signal variables (and the outcome). For

examples of situations where exchangeability is given see

Meinshausen and Bühlmann [17]. Assumption (ii) means

that signal variables should be selected with higher prob-

ability than noise variables. This assumption is usually

not very restrictive as we would expect it to hold for any

sensible selection procedure.

Complementary pairs stability selection Shah and

Samworth [18] introduced a modification of the original

stability selection approach. First, they use complemen-

tary pairs, i.e., they split the sample B times in random

halves and each time use both subsamples. Second, they

derive an error bound which does not require assump-

tions (i) and (ii) to hold. This comes at the price that one

can only obtain error control for the expected number of

selected variables with low selection probability

E(|Ŝstable ∩ Lθ |), (7)

where Ŝstable denotes the set of variables selected by sta-

bility selection, and Lθ = {j : π̂j ≤ θ} denotes the set

of variables that have a low selection probability in one

boosting run on a subsample of size ⌊n/2⌋. (An inter-

pretation and a discussion of this error rate is given in

Additional file 1, Section A.2.1).

Finally, Shah and Samworth [18] derive stricter error

bounds given some assumptions on the selection proba-

bilities of the base-learners, which usually hold:

(E1) A worst case error bound without further

assumptions that equals the error bound given by

Meinshausen and Bühlmann [17].

(E2) A tighter error bound that assumes that the

simultaneous selection probabilities, i.e., the

probability that the base-learner is selected in both

complementary pairs, have a unimodal probability

distribution for all j ∈ Lθ .

(E3) The tightest error bound assumes that the

simultaneous selection probabilities have an

r-concave probability distribution with r = − 1
2

and that the selection probabilities π̂j have an

r-concave probability distribution with r = − 1
4 for

all j ∈ Lθ .

Figure 5 True positives rates by the number of selected variables per boosting run q – Linear logistic regression model. Boxplots for the true

positives rates (TPR) for all simulation settings with separate boxplots for different numbers of selected variables per boosting run (q), the correlation

settings (independent predictor variables or Toeplitz design), and the assumptions used to compute the error bound. Each observation in the

boxplot is the average of the 50 simulation replicates. The open red circles represent the average true positive rates.
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For a rigorous definition of the assumptions and the

derived error bounds as well as an interpretation see [18]

and Additional file 1, Section A.2.

Choice of parameters The stability selection proce-

dure mainly depends on two parameters: the number of

selected variables per boosting model q and the thresh-

old value for stable variables πthr. Meinshausen and

Bühlmann [17] propose to chose πthr ∈ (0.6, 0.9) and

claim that the threshold has little influence on the selec-

tion procedure. In general, any value ∈ (0.5, 1) is poten-

tially acceptable, i.e. a variable should be selected in more

than half of the fittedmodels in order to be considered sta-

ble. The number of selected variables q should be chosen

so high that in theory all signal variables S can be cho-

sen. If q was too small, one would inevitably select only a

small subset of the signal variables S in the set Ŝstable as

|Ŝstable| ≤ |Ŝ⌊n/2⌋, b| = q (if πthr > 0.5).

The choice of the number of subsamples B is of minor

importance as long as it is large enough. Meinshausen and

Bühlmann [17] propose to use B = 100 replicates, which

seems to be sufficient for an accurate estimation of π̂j in

most situations.

In general, we would recommend to choose an upper

bound PFERmax for the PFER and specify either q or πthr,

preferably q. The missing parameter can then be com-

puted from Equation (6), where equality is assumed. For a

fixed value q, we can easily vary the desired error bound

PFERmax by varying the threshold πthr accordingly. As we

do not need to re-run the subsampling procedure, this is

very easy and fast. In a second step, one should check that

the computed value is sensible, i.e. that πthr ∈ (0.5, 1),

or that q is not too small, or that PFERmax is not too

small or too large. Note that the PFER can be greater

than one as it resembles the tolerable expected number

of falsely selected noise variables. An overview on com-

mon error rates is given in Additional file 1 (Section

A.1), where we also give some guidance on the choice of

PFERmax.

The size of the subsamples is no tuning parameter but

should always be chosen to be ⌊n/2⌋. This an essential

requirement for the derivation of the error bound (6)

as can be seen in the proof of Lemma 2 [17], which is

used to prove the error bound. Other (larger) subsample

sizes would theoretically be possible but would require the

derivation of a different error bound for that situation.

Simulation study

To evaluate the impact of the tuning parameters q and

πthr, the upper bound PFERmax, and the assumptions

Figure 6 Number of false positives – Linear logistic regression model. Boxplots for the number of false positives (FP) for all simulation settings with

separate boxplots for the correlation settings (independent predictor variables or Toeplitz design), PFERmax and the assumption used to compute

the error bound. Each observation in the boxplot is the average of the 50 simulation replicates. The open red circles represent the average number

of false positives. The gray horizontal lines represent the error bounds.
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for the computation of the upper bound on the selec-

tion properties, we conducted a simulation study using

boosting in conjunction with stability selection. Addition-

ally, we examined the impact of the characteristics of the

data set on the performance. We considered two scenar-

ios: First, we used a logistic regression model with linear

effects. Second, we used a Gaussian regression model

with non-linear effects, i.e., a generalized additive model

(GAM).

Linear logistic regression model We considered a clas-

sification problem with a binary outcome variable. The

data were generated according to a linear logistic regres-

sion model with linear predictor η = Xβ and

Y ∼ Binom

(
exp(η)

1 + exp(η)

)
.

The observations xi = (xi1, . . . , xip), i = 1, . . . , n were

independently drawn from

x ∼ N (0,	),

and gathered in the design matrix X. We set the num-

ber of predictor variables to p ∈ {100, 500, 1000}, and the

number of observations to n ∈ {50, 100, 500}. The number

of influential variables varied within pinfl ∈ {2, 3, 8}, where

βj was sampled from {−1, 1} for an influential variable and

set to zero for all non-influential variables. We used two

settings for the design matrix:

1. independent predictor variables, i.e. 	 = I,

2. correlated predictor variables drawn from a Toeplitz

design with covariance matrix

	kl = 0.9|k−l|, k, l = 1, . . . , p.

For each of the data settings we used all three error

bounds in combination with varying parameters q ∈

{4, 8, 12, 16, 20}, and PFERmax ∈ {0.05, 1, 2, 5}. We used

B = 50 complementary pairs, i.e., 2B subsamples in total.

Each simulation setting was repeated 50 times.

Gaussian additive regression model We considered a

regression problem with linear and smooth covariate

effects. The data were generated according to a Gaussian

additive model with additive predictor η =
∑

i fi(xi) and

Y ∼ N
(
η, σ 2

)
,

Figure 7 Number of false positives by the number of observations n – Linear logistic regression model. Boxplots for the number of false positives

(FP) for all simulation settings with separate boxplots for different numbers of observations (n), the correlation settings (independent predictor

variables or Toeplitz design), the PFER, and the assumptions used to compute the error bound. Each observation in the boxplot is the average of the

50 simulation replicates. The open red circles represent the average number of false positives.
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where the variance σ 2 was chosen for each setting such

that explained variation R2 ≈ 0.33. The observations

xi = (xi1, . . . , xip), i = 1, . . . , n were independently drawn

from a uniform distribution x ∼ U(−2, 2), and gathered in

the design matrix X. We used two settings for the design

matrix:

1. independent uniform predictor variables,

2. correlated uniform predictor variables drawn from a

Toeplitz design with correlation matrix

ρkl = 0.9|k−l|, k, l = 1, . . . , p.

We set the number of predictor variables to p ∈

{50, 100, 200}, and the number of observations to n ∈

{100, 500, 1000}. The number of influential variables var-

ied within pinfl ∈ {2, 3, 8}. The effects of the influential

variables are depicted in Figure 1. All other effects were

set to zero.

As above, we considered for each of the data settings all

three error bounds in combination with varying parame-

ters q ∈ {4, 8, 12, 16, 20}, and PFERmax ∈ {0.05, 1, 2, 5}. We

used B = 50 complementary pairs, i.e., 2B subsamples in

total. Each simulation setting was repeated 50 times.

Case study: differential phenotype expression for ASD

patients versus controls

We examined autism spectrum disorder (ASD) patients

[41] and compared them to healthy controls. The aim was

to detect differentially expressed amino acid pathways,

i.e. amino acid pathways that differ between healthy sub-

jects and ASD patients [42]. We used measurements of

absorbance readings from Phenotype Microarrays devel-

oped by Biolog (Hayward, CA). The arrays are designed

so as to expose the cells to a single carbon energy source

per well and evaluate the ability of the cells to utilize this

energy source to generate NADH [43]. The array plates

were incubated for 48 h at 37°C in 5% CO2 with 20,000

lymphoblastoid cells per well. After this first incubation,

Biolog Redox Dye Mix MB was added (10 μL/well) and

the plates were incubated under the same conditions for

an additional 24 h. As the cells metabolize the carbon

source, tetrazolium dye in the media is reduced, produc-

ing a purple color according to the amount of NADH

generated. At the end of the 24 h incubation, the plates

were analyzed utilizing a microplate reader with readings

at 590 and 750 nm. The first value (A590) indicated the

Figure 8 Number of false positives by the number of influential variables pinfl – Linear logistic regression model. Boxplots for the number of false

positives (FP) for all simulation settings with separate boxplots for different numbers of influential variables (pinfl), the correlation settings

(independent predictor variables or Toeplitz design), the PFER, and the assumptions used to compute the error bound. Each observation in the

boxplot is the average of the 50 simulation replicates. The open red circles represent the average number of false positives.
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highest absorbance peak of the redox dye and the sec-

ond value (A750) gave a measure of the background noise.

The relative absorbance (A590−750) was calculated per

well.

Each row of the data set described the measurement of

one well per biological replicate. With n = 35 biological

replicates (17 ASD patients and 18 controls) and p = 4 ·

96 = 384 wells we thus theoretically got n · p = 13440

observations. Due to one missing value the data set finally

contained only 13439 observations. The data is available

as a supplement to Boccuto et al. [42] and in the R package

opm [44-46], which was also used to store, manage and

annotate the data set.

For all available biological replicates we obtained the

amino acid annotation for eachmeasurement in that repli-

cate, i.e. we set up an incidence vector per observation

for all available peptides. The incidence vector was one if

the peptide contained that amino acid and zero if it did

not. We ended up with 27 amino acid occurrence anno-

tations in total (including some non-proteinogenic amino

acids). In the next step, we modeled the differences of

the measured values between ASD patients and controls

to assess which amino acid pathways were differentially

expressed. Therefore we set up a model of the following

form:

log(y) = β0 + β1group + bid + β2,1IP1 + β2,2IP2 + . . . +

+ X(group) · b̃id +

+ X(group) · β3,1IP1+

+ X(group) · β3,2IP2 + . . . ,

where y was the measured PM value, β0 was an overall

intercept, β1 was the overall group effect (the difference

between ASD patients and controls irrespective of the

amino acid that the measurement belonged to). Addition-

ally, we used an random effect for the replicate (bID) to

account for subject-specific effects. The amino acid effects

β2,j represent the differences of the log(y) values between

amino acid, as IPj is an indicator function, which was 0 if

the well did not belong to amino acid j, and 1 if it did; this

means we obtained dummy-coded effect estimates from

the first line of the model formula.

The most interesting part was given by the second and

third line of the model: X(group) was a group-specific

Figure 9 Number of false positives by the number of selected variables per boosting run q – Linear logistic regression model. Boxplots for the

number of false positives (FP) for all simulation settings with separate boxplots for different numbers of selected variables per boosting run (q), the

correlation settings (independent predictor variables or Toeplitz design), the PFER, and the assumptions used to compute the error bound. Each

observation in the boxplot is the average of the 50 simulation replicates. The open red circles represent the average number of false positives.
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function which was either −1 for controls or 1 for ASD

cases. We used this sum-to-zero constraint in an interac-

tion with dummy-coded amino acid effects. The coeffi-

cients β3,j hence represented the deviation of the groups

from the global effect of the jth amino acid. If β3,j = 0,

no group-specific effect was present, i.e. the amino acid

did not differ between the groups. If β3,j �= 0, the dif-

ference between the two groups was twice this effect, i.e.

X(ASD) ·β3,j − (X(Control) ·β3,j) = 1 ·β3,j − (−1 ·β3,j) =

2β3,j. Note that we also specified a group-specific random

effect b̃ID.

First, we fitted an offset model containing all main

effects, i.e. we modeled differences in the maximum curve

height with respect to different amino acids while neglect-

ing possible differences in amino acid effects between

groups. In a second step, we started from this offset

model and additionally allowed for interactions between

the group and the amino acids, while keeping the main

effects in the list of possible base-learners, and checked if

any interactions were present. These represent differential

PM expressions between groups.

In total, we ended up with 57 base-learners (group

effect, main amino acid effects, group-specific effects, and

an overall and a group-specific random effect). All models

were fitted using boosting. The selection of differentially

expressed amino acids was done using stability selection.

We set the number of selected variables per boosting

model to q = 10 and chose an upper bound for the

PFER ≤ 1. To judge the magnitude of the multiplicity

correction, we related the used PFER to the significance

level α, i.e. the standard PCER: The upper bound for the

PFER equaled α = 1/57 = 0.0175 in this setting. With the

unimodality assumption, this led to a cutoff πthr = 0.87.

With the r-concavity assumption, the error bound was

πthr = 0.69, while the error bound became πthr = 1 with-

out assumptions. Subsequently we used cross-validation

to obtain the optimal stopping iteration for themodel. The

code for model fitting and stability selection is given as an

electronic supplement [see Additional file 2].

Results and discussion
Simulation study

Linear logistic regression model Figure 2 displays the

true positive rates for different PFERmax bounds, the

three assumptions (E1) to (E3) and for the two correla-

tion schemes. Different sizes of the data set (n and p)

as well as different numbers of true positives (pinfl) were

not depicted as separate boxplots. For each upper bound

Figure 10 True positives rates – Gaussian additive regression model. Boxplots for the true positives rates (TPR) for all simulation settings with

separate boxplots for the correlation settings (independent predictor variables or Toeplitz design), PFERmax and the assumption used to compute

the error bound. Each observation in the boxplot is the average of the 50 simulation replicates. The open red circles represent the average true

positive rates.
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PFERmax and each data situation (uncorrelated/Toeplitz),

the true positive rate (TPR) increased with stronger

assumptions (E1) to (E3). The true positive rate was lower

when the predictors were correlated.

If the number of observations n increased, the TPR

increased as well with more extreme cases for uncorre-

lated predictors (Figure 3). With very few observations

(n = 50), the TPR was generally very small. Consider-

ing the size of the subsamples, which is equal to 25, this

is quite natural. Recently, [47] advocated to increase the

sample size of the subsamples from ⌊n/2⌋ to larger values

to avoid biased selection of base-learners due to too small

samples. Yet, as discussed above, this is currently not pos-

sible, as one would need to derive a different error bound

for that situation. Conversely, the TPR decreases with

an increasing number of truly influential variables pinfl
(Figure 4). The number of selected variables per boost-

ing run q is less important (Figure 5), as long as it is large

enough to result in enough variables q to be selected and

not too large so that too many variables would be selected

in each run.

The number of false positives, which is bounded by

the upper bound for the per-family error rate, is depicted

in Figure 6. Overall, the error rate seemed to be well

controlled with very few violations of the less conserva-

tive bounds in the settings with an error bound of 0.05

and r-concavity assumption. Especially the standard error

bound (E1) seemed to be conservatively controlled. The

average number of false positives increased with increas-

ing PFERmax and with stronger distributional assumptions

on the simultaneous selection probabilities. In general,

one should note that stability selection is quite conser-

vative as it controls the PFER. The given upper bounds

for the PFER corresponded to per-comparison error rates

between 0.05 and 0.00005.

If the number of observations n increased, the num-

ber of false positives stayed constant or increased slightly

and the variability increased as well (Figure 7). The num-

ber of false positives showed a tendency to decrease with

an increasing number of truly influential variables pinfl
(Figure 8). If the number of selected variables per boost-

ing run q was small, i.e., only highly frequently selected

variables were considered to be stable, the number of false

positives decreased (Figure 9). This observation is some-

how contrary to the optimal choices of q with respect

to the true positive rate. However, an optimal true pos-

itive rate is more important than a low number of false

positives as long as the error rate is controlled.

Figure 11 Number of false positives – Gaussian additive regression model. Boxplots for the number of false positives (FP) for all simulation settings

with separate boxplots for the correlation settings (independent predictor variables or Toeplitz design), PFERmax and the assumption used to

compute the error bound. Each observation in the boxplot is the average of the 50 simulation replicates. The open red circles represent the average

number of false positives. The gray horizontal lines represent the error bounds.
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Gaussian additive regression model The results of the

Gaussian additive model are essentially the same. Yet,

both the true positive rate (see Figure 10) and the num-

ber of false positives (see Figure 11) is usually smaller

than in the linear logistic regression model. If the num-

ber of influential variables increases, the TPR decreases

even stronger than in the linear logistic model (Figure 12).

However, this effect can be partially attributed to the

constant R2 value, which leads to a decreased signal per

variable with increasing number of influential variables.

The effect of the number of selected variables per boost-

ing run q on the TPR is similar to the setting above, yet,

with an earlier maximum selection frequency (Figure 13).

It seems that the additive model is more sensitive on q

as the linear logistic model. For further results consult

Additional file 1 (Sec. 3). Overall, one can conclude that

variable selection works well in the additive regression

model and the false positive rate is always controlled.

Case study: differential phenotype expression for ASD

patients versus controls

The stability paths resulting from the model for differen-

tial pathways in ASD patients can be found in Figure 14.

The maximum inclusion frequencies for all selected

base-learners and for the top scoring base-learners can

be found in Figure 15. Tyrosine (Tyr), tryptophan (Trp),

leucine (Leu) and arginine (Arg) all had a selection fre-

quency of 100%. Valine (Val) was selected in 97% of the

models. Without assumptions, only the amino acids with

100% selection frequency were considered to be stable.

Under the unimodality assumption, valine was addition-

ally termed stable. Together with the sharp decline in the

selection frequency, we would thus focus on these first five

amino acids.

The results of our analysis using stability selection

confirmed the abnormal metabolism of the amino acid

tryptophan in ASD cells reported by [42], who used Sig-

nificance Analysis ofMicroarrays (SAM) [48] to assess dif-

ferential expression. Additionally, the utilization of other

amino acids seemed to be affected, although on a milder

level. When weighted for the size of the effect, we noticed

in ASD patients an overall decreased utilization of tryp-

tophan (−0.273 units on the logarithmic scale), tyrosine

(−0.135), and valine (−0.054). On the other hand, we

registered an increased rate for the metabolic utiliza-

tion of arginine (+0.084) and leucine (+0.081). These

findings suggest an abnormal metabolism of large amino

acids (tryptophan, tyrosine, leucine, and valine), which

Figure 12 True positives rates by the number of influential variables pinfl – Gaussian additive regression model. Boxplots for the true positives rates

(TPR) for all simulation settings with separate boxplots for different numbers of influential variables (pinfl), the correlation settings (independent

predictor variables or Toeplitz design), and the assumptions used to compute the error bound. Each observation in the boxplot is the average of the

50 simulation replicates. The open red circles represent the average true positive rates.
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Figure 13 True positives rates by the number of selected variables per boosting run q – Gaussian additive regression model. Boxplots for the true

positives rates (TPR) for all simulation settings with separate boxplots for different numbers of selected variables per boosting run (q), the correlation

settings (independent predictor variables or Toeplitz design), and the assumptions used to compute the error bound. Each observation in the

boxplot is the average of the 50 simulation replicates. The open red circles represent the average true positive rates.

might be related to impaired transport of those molecules

across the cellular membrane. Separately, a screening by

Sanger sequencing was performed on the coding regions

of SLC3A2, SLC7A5, and SLC7A8, the genes coding the

subunits of the Large Amino acid Transporter (LAT) 1 and

2, in 107 ASD patients (including the ones reported in this

paper; Boccuto, unpublished data; primer sequences are

given as Additional file 3). Overall, potentially pathogenic

mutations were detected in 17/107 ASD patients (15.9%):

eight in SLC3A2, four in SLC7A5, and five in SLC7A8.

We also evaluated the transcript level for these genes

by expression microarray in 10 of the 17 ASD patients

reported in this paper and 10 controls. The results

showed that all the ASD patients had a significantly lower

expression of SLC7A5 (p value = 0.00627) and SLC7A8

(p value = 0.04067). Therefore, we noticed that 27/107

ASD patients (25.2%) had either variants that might affect

the LATs function or reduce the level of transcripts for the

transporters’ subunits. When we correlated the metabolic

data collected by the Phenotype Microarrays with those

findings, we noticed that all of these patients showed

reduced utilization of tryptophan. Additionally, eight out

of the twelve patients who were screened with the whole

metabolic panel showed significantly reduced tyrosine

utilization in at least 25 of the 27 wells containing this

amino acid, seven had a reduced utilization of valine in

at least 29/34 wells, and five had a reduced metabolism

of leucine in at least 27/31 wells. These data are concor-

dant with the present findings as they suggest an overall

problem with the metabolism of large amino acids, which

might have important consequences in neurodevelop-

ment and synapsis homeostasis, especially if one considers

that such amino acids are precursors of important com-

pounds, such as serotonin, melatonin, quinolinic acid, and

kynurenic acid (tryptophan), or dopamine (tyrosine).

Conclusion
Stability selection proves to work well in high-dimensional

settings with (many) more predictors than observations. It

adds an error control to the selection process of boosting

or other high-dimensional variable selection approaches.

Assumptions on the distribution of the simultaneous

selection probabilities increase the number of true pos-

itive variables, while keeping the error control in most

settings. As shown in our case study, complex log-linear

interaction models can be used as learners in conjunc-

tion with stability selection. Additionally, more complex

models such as generalized additive models or structured
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Figure 14 Stability selection paths. Stability selection paths, with the number of boosting iterations plotted against the relative selection frequency

of the base-learners up to that iteration. One can deduce that the number of iterations was sufficiently large, as all selection paths cease to increase

after approx. 150 iterations. The solid horizontal gray line is the threshold value with unimodality assumption (πthr = 0.87), the dashed gray lines

represent the threshold values with r-concavity assumption (πthr = 0.69) and without assumption (πthr = 1).

additive regression (STAR) models can also benefit from

the combination with stability selection if model or vari-

able selection (with a control for the number of false

positives) is of major interest.

However, one should keep in mind that stability selec-

tion controls the per-family error rate, which is very

conservative. Specifying the error rate such that α ≤

PFERmax ≤ mα, with significance level α and m hypoth-

esis tests, might provide a good idea for a sensible

error control in high-dimensional settings with FWER-

control (PFERmax = α) and no multiplicity adjustment

(PFERmax = mα) as the extreme cases.

Figure 15 Maximum selection frequency. The maximum selection frequency π̂ for all (selected) base-learners (left) and for the top 20 base-learners

(right) as determined by stability selection. The solid vertical gray lines depict the threshold value with unimodality assumption (πthr = 0.87), the

dashed gray lines represent the threshold values with r-concavity assumption (πthr = 0.69) and without assumption (πthr = 1).
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Furthermore, prediction models might not always ben-

efit from stability selection. If the error control is tight, i.e.

PFERmax is small, the true positive rate is usually smaller

than in a cross-validated prediction model without stabil-

ity selection and the prediction accuracy suffers (see also

[49]). Prediction and variable selection are two different

goals.

Availability of supporting data
The ASD data set is available as a supplement to Boccuto

et al. [42] and as boccuto_et_al in the R package opm

[44-46].

Implementation and source code

Stability selection is implemented in the add-on pack-

age stabs [50] for the statistical program environment R

[51]. One can directly use stability selection on a fitted

boostingmodel using the function stabsel(). One only

needs to additionally specify two of the parameters PFER,

cutoff and q. The missing parameter is then computed

such that the specified type of error bound holds (with-

out additional assumptions (assumption = "none"),

under unimodality (assumption = "unimodal") or

under r-concavity (assumption = "r-concave")). It

is very fast and easy to change eitherPFER,cutoff or the

assumptions for a given stability selection object if q is

kept fix, as we do not need to re-run the subsampling algo-

rithm but simply need to adjust the threshold πthr and the

error bound PFERmax. This fact is exploited by a special

stabsel() function, which we can re-apply to stability

selection objects.

Alternative stabsel() methods exist for various

other fitting approaches (e.g. Lasso). By specifying a func-

tion that returns the indices (and names) of selected

variables one can easily extend this framework. In general,

the function stabsel_parameters() can be used to

compute the missing parameter without running stabil-

ity selection itself to check if the value of the parameter

computed from the other two parameters is sensible in the

data situation at hand.

The component-wise, model-based boosting approach

is implemented in the R add-on package mboost [26,36,

52]. A comprehensive tutorial for mboost is given in [27].

The R package opm [44-46] is used to store, manage and

annotate the data set. Tutorials are given as vignettes.

Additional files

Additional file 1: Additional information. The electronic appendix

contains additional information to enhance the understanding of the

article. Section 1 gives a detailed definition and discussion of common

error rates (including the per-family error rate which is used here). It also

gives some guidance on how to choose a proper upper bound for the

per-family error rate in stability selection. Section 2 gives a detailed

explanation of complementary pairs stability selection, including the error

bounds for various assumptions and an interpretation of the expected

number of selected variables with low selection probability. Section 3 displays

further results from the simulation study for Gaussian additive regression

models.

Additional file 2: R source code. The exemplary R source code can be

used to analyze the ASD data. It shows how to obtain and pre-process the

data using the R package opm and how to fit the models using the R

package mboost. Based on the fitted model, the the R package stabs is

used to run stability selection and to depict the results. Please install the

latest versions of the packages opm, mboost and stabs before use.

Additional file 3: Primers. The file includes the sequences of the

oligonucleotide primers utilized for the Sanger sequencing of coding

regions and intron/exon boundaries of the three genes encoding the

protein subunits of the major tryptophan transporters: SLC3A2, SLC7A5, and

SLC7A8. Each sequence is also comprehensive of an M13 segment (in lower

cases).
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