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1. Foreword

This  study  is  based  on  the  paper  ”Controlling  for  Common Method  Variance  with 

Partial Least Squares Path Modelling” that Mikko Rönkkö and I submitted for review to 

European Journal of Information Systems, Special  Issue of Quantitative Methods on 

September 2009. My responsibilities  with the paper involved mostly  developing the 

presented approach, designing and implementing Monte Carlo simulation, and analysis 

of the obtained results. This report extends the existing analysis and includes additional 

information regarding, for example, structural equation modeling, partial-least squares 

path modeling, and Monte Carlo simulation.
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2. Introduction

Use  of  structural  equation  modeling  (SEM)  has  become  pervasive  among  social, 

behavioral, and educational scientists as well as biologists, economists, marketing, and 

medical researchers during the recent years  (Raykov & Marcoulides, 2006). The most 

well-known  SEM  techniques  are  methods  related  to  covariance-based  structural 

equation modeling (CBSEM), and some researchers use them interchangeably with the 

term SEM (Chin, 1998a). Besides covariance-based methods, partial least squares (PLS) 

path  modeling  has  seen  increased  use  among  information  systems  (IS)  researchers 

(Marcoulides,  Chin,  & Saunders,  2009;  Marcoulides  & Saunders,  2006).  Due to  its 

historical roots in principal component analysis (Wold, 1978), PLS is often also called 

component based approach to structural equation modeling (e.g., Qureshi & Compeau, 

2009). Both of these approaches are commonly used to to estimate path models of latent 

variables within the IS research domain. 

Analysis  approaches  and  techniques  have  several  fundamental  differences  between 

CBSEM and PLS. Due to these differences in model estimation, analyses approaches 

developed for CBSEM are not always directly applicable to PLS. Consequently, several 

contributions  have  recently  been  seen  on  how various  structural  equation  modeling 

techniques can be adapted to or implemented with PLS. These include, for example, 

interaction effects (Chin, Marcolin, & Newsted, 2003), models with hierarchical latent 

constructs (Martin Wetzels, Odekerken-Schröder, & van Oppen, 2009), and multi-group 

models (Qureshi & Compeau, 2009). 

Common method variance refers to  variance that  is  attributable to the measurement 

method rather than to the constructs the measures are supposed to represent. Method 

biases are one of the main sources of measurement error, and most researchers agree 

that  common method variance  is  a  potential  problem in  behavioral  research  (P.  M. 

Podsakoff,  MacKenzie,  Jeong-Yeon  Lee,  &  N.  P.  Podsakoff,  2003).  For  CBSEM, 

several  techniques  exist  for  controlling  for  this  variance,  but  so  far  few  of  these 

approaches are directly applicable to PLS. The purpose of this study is to present a PLS 
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approach for controlling common method variance similar to single measured method 

factor  design  (P.  M.  Podsakoff  et  al.,  2003) or  confirmatory  factor  analysis  (CFA) 

marker variable design in CBSEM  (Richardson, Simmering, & Sturman, 2009). The 

approach is tested by using Monte Carlo simulation.

After  the  introduction,  this  study continues  by introducing  reader  in  more  detail  to 

structural equation modeling and both CBSEM and PLS approaches. This section is 

followed by a review of techniques for controlling common method variance. During 

this review, a model for controlling method variance in PLS is conceptually developed. 

After that, the proposed approach is tested using Monte Carlo simulation and compared 

to  method  factor  design  implemented  with  structural  equation  modeling.  In  these 

analyses, the technology acceptance model and the results of a recent meta-analysis by 

Schepers and Wetzels (2007) are used as the basis for the research model. The report is 

concluded  by  discussing  several  aspects,  strengths,  weaknesses  of  the  proposed 

approach  and  by  presenting  further  guidelines  for  diagnosing  and  controlling  for 

common method variance with PLS. 
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3. Structural equation modeling

Structural equation modeling is a family of statistical models that seek to explain the 

relationships  among  multiple  variables.  In  doing  so,  it  examines  the  structure  of 

interrelationships  expressed  in  a  series  of  equations,  similar  to  a  series  of  multiple 

regression  equations  (Hair,  Black,  Babin,  Anderson,  &  Tatham,  2006).  Structural 

equation  modeling  is  an  extension  of  the  general  linear  model,  and  it  has  several 

common statistical  methods  as  special  cases,  for  example  multiple  regression,  path 

analysis, factor analysis, time series analysis, and analysis of covariance (Maula, 2001). 

The variables used in structural models are divided into observed and latent variables 

(Kline, 2005). Observed variables are those that can be directly measured. These can 

include  variables  like  revenue,  amount  of  personnel,  and  profit  of  the  firm.  Latent 

variables, on the other hand, cannot be directly measured: their values are estimated in 

the model from observed variables, called indicator variables. Latent variables are of 

major importance in many areas of science, and they can include factors like growth 

motivation of entrepreneur  or goodness of firm's  strategy.  Both of these variables – 

observed and latent – are  further divided into exogenous and endogenous variables. 

Exogenous latent variables are  those variables that  are not  predicted by other  latent 

variables in the model.  Thus exogenous latent  variables appear  only as independent 

variables in the model equations. Endogenous latent variables, on the other hand, are 

predicted by some other latent variables in the model, and therefore appear as dependent 

variables  in  some  of  the  model  equations.  Observed  variables  are  divided  into 

exogenous  and  endogenous  variables  according  to  which  latent  variables  they  are 

assigned to load on.

3.1. Covariance-based structural equation modeling

Two current  main  approaches  to  structural  equation  modeling  are  covariance-based 

structural equation modeling (CBSEM) and partial least squares (PLS) path modeling. 

Both  approaches  start  by first  specifying  a  path  model  of  latent  variables  and then 

4



assigning  a  set  of  indicators  for  each  latent  variable.  After  this  step,  these  two 

approaches depart. In CBSEM, the researcher traces the hypothesized factor loadings 

and regression paths to arrive in a set of equations describing the expected covariance 

structures in the data  (Loehlin, 1987; Meehl & Waller, 2002). The set of equations is 

then  used  to  derive  a  model  implied  covariance  matrix  and  free  parameters  in  the 

equations  are  estimated  by  minimizing  the  differences  of  the  implied  and observed 

covariance matrices. 

The general CBSEM model consists of two parts: a measurement model and a structural 

model  (Bollen, 1989). The measurement model specifies the relations of observed to 

latent variables. It is used to evaluate the appropriateness of the chosen indicators for 

estimating the latent variables, thus assessing the validity of the latent constructs. In 

case  of  a  model  with  p endogenous  and  q exogenous  observed  variables  and  n 

endogenous and  m exogenous latent  variables,  the  measurement  part  of  the general 

structural equation model is of the form

y= y

x= x
 , (1)

where y is p � 1 and x is q  1 vector of � observed variables, η is n  1 vector of latent�  

endogenous variables, ξ is m  1�  vector of latent exogenous variables, and є is p  1 and�  

δ is q  1 vector containing the � errors of measurement (Bollen, 1989). The Λy and Λx 

are p � n and q  � m matrices containing the coefficients linking the latent and observed 

variables. The errors of measurement are assumed to be uncorrelated with η and ξ and 

with  each  other,  and  E(є)  =  E(δ)  =  0.  For  simplicity,  η, ξ,  y,  and  x are  generally 

considered  as  centered,  that  is,  written  as  deviations  from their  means.  The  above 

equations actually equivalent to confirmatory factor analyses of observed variables to 

their latent variables. Therefore  Λy and  Λx can be interpreted as matrices containing 

factor loadings. 

The  structural  model  encompasses  the  structural  equations  that  summarize  the 

relationships between latent variables. It shows the influence of latent variables on each 

other and defines exogenous and endogenous variables in the model:
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=B   . (2)

Here  B is  n  � n matrix containing the coefficients of latent endogenous variables on 

each other, Γ is n  � m matrix of coefficients between endogenous and exogenous latent 

variables,  and  ζ is  the  disturbance  vector.  It  is  assumed  that  E(ζ)  =  0  and  ζ is 

uncorrelated with ξ.

The basic hypothesis of the general CBSEM model is 

=    , (3)

where Σ is population covariance matrix of y and x and Σ(θ) is the covariance matrix 

written as a function of the free model parameters in θ. This implies that each element 

of the covariance matrix is a function of one or more model parameters. The estimation 

of the model thus concerns choosing the unknown parameters in θ so that Σ(θ) matches 

the covariance matrix of the observed variables as well as possible. Model equations in 

(1) and (2) are necessary to construct  Σ(θ) according to the hypothesized model  (for 

more details, see Bollen, 1989).

3.2. Partial least-squares path modeling

Partial  least-squares  (PLS)  path  modeling  is  a  family  of  alternating  least  squares 

algorithms,  or  ‘‘prescriptions,’’  which  extend  principal  component  and  canonical 

correlation analysis (Henseler, Ringle, & Sinkovics, 2008). While in CBSEM the focus 

was on constructing a model implied covariance matrix and choosing the parameter 

estimates that minimize the difference between this and the observed covariance matrix, 

in PLS the purpose is to apply an iterative algorithm to directly estimate values for the 

latent variables.

In  PLS,  there  are  formally  two  model  parts:  the  inner  and  outer  model.  These 

correspond  to  the  structural  and  measurement  models  in  CBSEM:  the  inner  model 

specifies the relationships between latent variables, whereas the outer model specifies 

the  relationships  between  latent  variables  and  observed  variables.  There  are  two 

different kinds of outer models in PLS: formative and reflective. In the reflective mode, 
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each observed variable in a certain measurement model is assumed to be generated as a 

linear function of its latent variables and the residual, while the formative mode has 

causal relationships from the observed variables to the latent variable. Due to reasons 

explained later, only reflective models are considered in this study. 

PLS model equations can be written similarly to CBSEM using equations (1) and (2). 

However,  unlike  in  CBSEM,  there  is  not  necessarily  need  to  distinguish  between 

endogenous  and  exogenous  variables  in  PLS  when  considering  model  equations 

(Henseler et al., 2008). Thus, if considering all variables as endogenous, the (reflective) 

outer model can be written more simply as 

y= y   , (4)

and the inner model as 

=B  . (5)

The PLS algorithm is essentially a sequence of regressions in terms of weight vectors 

(Henseler et al., 2008). In contrast to CBSEM, the analysis starts by estimating a proxy 

value for each latent construct as a summated scale of its  indicator variables. These 

proxy values are  then used to  run regression models for each latent  variable  in the 

model.  Then  new  proxy  values  are  calculated  based  on  the  results  of  this  inside 

approximation  and  are  used  in  regressing  the  latent  constructs  on  each  of  their 

indicators. The results of this outside approximation are used to calculate weights for 

each indicator-latent variable -relationship after which a new set of proxy values are 

used as a starting point for new round of inside approximation. These two steps are 

repeated  until  the  change  in  outer  weights  between  two  iterations  drops  below  a 

predefined limit (for more details, see Chin, 1998a). 
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4. Controlling for common method variance

4.1. Common method variance

Common method bias  is  a  subset  of  method bias  (Burton-Jones,  2009).  It  arises  in 

quantitative research when the covariance caused by the measurement approach rather 

than the measured trait causes measured relationships between two constructs to either 

inflate or attenuate compared to the true value  (Williams & Brown, 1994). This is a 

frequently encountered problem especially with survey studies. Classical test theory (cf. 

Nunnally, 1967) that provides the theoretical foundations for much of the measurement 

tools that IS researchers use assumes that each person or organization measured has a 

true score and that any measured score is a function of this true score and measurement 

error: 

X i=T iS ie  , (6)

where Xi is a vector containing the measured scores in item i, Ti is a vector of the true 

scores,  Si a vector of item specific but reliable error components, and  e is a vector of 

random errors. A problem with common method variance arises when the item specific 

components of the measured scores correlate across items. In general, these unwanted 

measurement effects can cause bias in the statistical analyses if present in the data and 

not properly controlled. A key problem with common method bias is that these effects 

that cause loss of construct validity are sometimes difficult to detect and are often not 

detected with standard tests for discriminant and convergent validity (Straub, Boudreau, 

& Gefen, 2004; Richardson et al., 2009). The problem of identifying method variance is 

complicated  because  various  sources  of  error  variance  can  coexist  and  overlap. 

Additionally, the variance resulting from method can be congeneric or noncongeneric, 

that is, affecting each item either equally or differently (Richardson et al., 2009).

While  it  is  generally  agreed  on  that  measurement  results  are  affected  by  both  the 

measurement approach and the measured trait, opinions differ on how commonly the 

8



variance  caused  by  measurement  approach causes  significant  bias  in  the  results.  In 

addition,  the  research  results  relating  to  the  existence  and  significance  of  common 

method bias remain mixed (Richardson et al., 2009). While the evidence on the overall 

impact of common method variance remains inconclusive, scholars generally agree that 

common method variance can cause problems. However, only a minority of IS studies 

explicitly  address  these  concerns:  For  example,  in  their  review,  Woszczynski  and 

Whitman  (2004) observed  that  only  12  of  the  reviewed  116  articles  with  potential 

common method problem explicitly noted it and even fewer attempted to control for it. 

While  controlling the  effects  of  common method variance can  be done on multiple 

levels starting from the study design and data collection, this study focuses only on 

statistical remedies available after the data has been collected. 

For examining the extent to which common method variance is present in the data, most 

commonly used method is Harman's single factor test  (cf. P. M. Podsakoff & Organ, 

1986). In this technique exploratory factor analysis is utilized to evaluate the amount of 

variance  in  observed  variables  that  can  be  explained  by  a  single  factor.  This  is 

determined by examining the first  factor of the unrotated factor solution.  If either a 

single strong factor emerges or the first factor loads significantly on all items, common 

method variance is most likely present in the data  (P. M. Podsakoff & Organ, 1986). 

However, there are three potential problems with this technique: it is very unreliable (cf. 

Kemery & Dunlap 1986), no clear guidelines are available as to when this technique 

indicate problematic amount of method variance, and it does nothing to actually control 

the method variance. Besides Harman's test, another method has recently appeared in 

the toolbox of IS researchers, called the marker variable technique (Lindell & Whitney, 

2001). With this technique, a researcher includes a priori defined marker variable that 

should  be  theoretically  unrelated  to  the  study  variables  and  then  calculates  the 

correlation between this variable and the study variables. Since the variables are not 

theoretically related, the correlation is assumed to solely result from method variance 

and can be partialed out from other correlations in the study. 

Besides these general methods, several techniques have been developed for structural 

equation modeling for explicitly modeling the common method variance in the models. 
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These  techniques  are  generally  developed  for  CBSEM.  Two  most  commonly  used 

methods  include  various  method  factor  design  and  correlated  uniqueness  designs. 

Podsakoff  and  his  colleagues  (2003) provide  a  good  overview  of  these  methods: 

Generally the idea is to add error correlations or factors to the analysis  thus allowing 

the covariance that results from the measurement to escape from the model rather than 

affect the substantive regression or correlation relationships. Technically these methods 

rely on partialing out the reliable error variance on the indicator level so that it does not 

affect the parameter estimates in the structural part of the model. The method factor 

designs  can  further  be  classified  into  two  groups  depending  on  whether  only  the 

indicators  of  the  study  variables  are  used  in  the  analysis  or  whether  extra  marker 

variables  are  included  as  indicators  for  the  method  factor.  While  particularly  these 

designs have been adopted in previous studies (e.g. Ye, Marinova, & Singh, 2007; Alge, 

Ballinger, Tangirala, & Oakley, 2006; Agustin & Singh, 2005), the effectiveness of the 

method factor design has only recently been tested in a simulation setting: In their study, 

Richardson and his colleagues (2009) provided evidence that the method factor design 

with  marker  variables,  the  CFA marker  technique,  could  in  most  cases  effectively 

reduce the bias caused by method variance even if the marker variables were non-ideal 

by correlating with the study variables. In their analysis, the unmeasured latent method 

construct approach often produced less accurate results.

4.2. Implementation to PLS path modeling

While several techniques exist for controlling common method variance in CBSEM, 

they are generally not directly applicable to PLS path modeling. The reason for this is 

that  these  techniques  rely  on  partialing  the  variance  to  model  variance  and  error 

variance  on  an  indicator  level,  but  with  PLS  the  indicators  are  only  weighted  and 

summed without partialing variance. For example, if one third of the variance of each 

indicator is congeneric measurement variance, the total variance of the latent variables 

will consists of one third method variance regardless of how the indicators are weighted. 

While introducing a method factor to a PLS model might provide an estimate of the 

strength of the method variance, this approach does not prevent covariance caused by 
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the measurement approach affecting the inner model.  While PLS path modeling has 

been  shown to be  sensitive  to  various  sources  of  method variance  (A.  Schwarz,  C. 

Schwarz, & Rizzuto, 2008), no methods for controlling for common method variance 

have been developed in the PLS context. This far the users of PLS path modeling have 

only had the option to partial out correlations between marker variable from the study 

correlations and then use this corrected data for the main analyses (Lindell & Whitney, 

2001). 

The approach proposed in this study for controlling for method variance is to control it 

during the inner estimation. A somewhat similar approach, although implicitly and only 

for diagnostic purposes, has been previously adopted in recent PLS papers (e.g. Shutao 

Dong et al. 2009; Pavlou et al.  2007). In these papers, a proxy for common method 

variance was formed by conducting an explanatory factor analysis on all items in the 

model, and using the first emerging unrotated factor as a control variable in the inner 

model. Thus this approach is similar to using Harman's single factor test in obtaining a 

proxy for common method variance. Similarly to these two mentioned papers, this study 

suggests  that  a  method  factor  is  included  as  a  predictor  for  all  endogenous  latent 

constructs in the model. Thus the common method variance is controlled for in the inner 

model rather than partialing it out during the outer estimation. Conceptually, this would 

mean that the calculated values from the outer estimation for the latent constructs are a 

result  of  the true relationships  between the constructs  and error  variance caused by 

measurement.  This  approach differs  from the previously suggested ways by using a 

directly measured method factor rather than building a proxy based on the substantive 

items in the model. The indicators of the method factor should be theoretically unrelated 

to  any  of  the  constructs  of  interest  and  preferably  not  correlated  except  for  the 

correlation caused by sharing the same method. Contrary to CBSEM based CFA marker 

approach, the method factor should not load on the indicators of the study constructs 

due to the fact that a construct loading on the items of another independent variable 

would be severely collinear and shared items with the dependent variable would cause 

the coefficients between method factor and endogenous constructs to be inflated. As a 

joint effect, this would severely bias the estimates of the coefficients between the actual 
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model constructs. Figure 1 illustrates the proposed approach. 

12

Figure 1: Simplified example of the proposed approach
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5. Simulation

The proposed approach for controlling common method variance with PLS was tested 

by using Monte Carlo simulation. Several PLS and CBSEM models with and without 

measured method factor were compared under varying conditions of sample size, level 

of  method  variance,  and  number  of  method  indicators.  Similar  approach  has  been 

previously used when testing new approaches for PLS modeling (Qureshi & Compeau, 

2009;  Chin et  al.,  2003) as  well  as more recently  when testing the effectiveness  of 

different approaches for controlling common method variance (Richardson et al., 2009).

5.1. Monte Carlo simulation

Use of Monte Carlo simulation has become common when inspecting properties related 

to structural equation modeling. Analytical statistical theory can address some research 

questions, but finite sample properties of SEM estimators are often beyond the reach of 

the established asymptotic theory  (Paxton, Curran, Bollen, Kirby, & Chen, 2001). In 

some  cases  the  distributions  are  not  known  even  asymptotically  (e.g.,  several  fit 

measures).

Monte Carlo simulation concerns with using simulated random numbers in examining 

the properties of the distributions of random variables  (Paxton et al., 2001). It allows 

researchers to assess the finite sampling performance of statistics by creating controlled 

conditions  from which  sampling  distributions  of  parameter  estimates  are  produced. 

Knowledge of the sampling distribution is the key to evaluation of the behavior of a 

statistic. 

When performing Monte Carlo simulation in SEM context, the researcher first creates a 

model with known population parameters (i.e.,  the values are  set  by the researcher) 

(Paxton et al., 2001). Several repeated samples are drawn from that population, and the 

parameters of interest are estimated for each sample. After that, a sampling distribution 

is estimated for each population parameter by collecting the parameter estimates from 
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all  the  samples.  The  properties  of  the  sampling  distribution,  such  as  its  mean  or 

variance,  are  obtained from this  estimated sampling  distribution.  Thus Monte  Carlo 

simulation  can  be  considered  as  a  “brute  force”  approach to  empirically  evaluating 

statistics.

5.2. Simulation design

Simulation design was carried out by following the guidelines set by  Paxton, Curran, 

Bollen,  Kirby,  and  Chen (2001).  As stated above,  the first  step is  to  determine  the 

population model for data generation. Typically four aspects should be considered when 

choosing  the  model  (Hancock  &  Mueller,  2006):  model  type,  model  size,  model 

complexity, and model parameters. Based on these aspects, four criteria were set for an 

appropriate  population  model:  First,  the  model  must  have  both  measurement  and 

structural part. Thus, for example, a CFA model would be inappropriate because it only 

includes the measurement model. Second, the model needs to have a level of size and 

complexity that is frequently met in practice. The purpose of this criteria was to reflect 

the practical situations in IS as well as possible, thus increasing generalizability of these 

results.  In addition,  a  very simple model would decrease the validity of the results, 

whereas a too complex model would set high requirements for computing power and 

would also make interpretation of the results difficult.  Third, there must be a decent 

amount of previous research studies on the model. This criteria was necessary in order 

to set realistic and appropriate coefficient values for the population model before data 

generation.

Based on the above-mentioned criteria, the technology acceptance model (TAM) was 

chosen as the structural  part  of the population model.  This  model  has been used in 

several recent studies  (Sharma, Yetton, & Crawford, 2009; Malhotra, Kim, & Patil, 

2006). In order to meet the requirement of appropriate model complexity, the extended 

TAM model was chosen instead of the original TAM model. This extended model is 

presented in a meta-analysis paper by Schepers and Wetzels (2007) who also estimated 

the standardized structural coefficients for TAM on the basis of the correlation matrix 

obtained from an aggregation of several individual research studies. The model and the 

14



parameter  values  are presented  in  Figure  2.  Correlations  between  exogenous  latent 

variables were set to zero for two reasons: First, by allowing latent variable effects only 

through  the  regression  paths  the  model  remained  more  parsimonious.  Second,  the 

appropriate level of correlation would be difficult to determine, as it  varies between 

different research settings. Altogether, the chosen model consists of six latent variables 

and ten regression paths between them as  illustrated in Figure 2.

The next task after choosing the appropriate structural part of the population model was 

to define properties of the measurement model. The first question was whether to use 

reflective or formative indicators. Reflective indicators were chosen for three reasons: 

First, since the purpose was to compare the results of analysing the same set of data 

with PLS and CBSEM, difficulties in using formative indicators in CBSEM analysis 

was  a  concern  (Chin,  1998b) and  using  different  modes  of  measurement  would 

potentially  bias  the  results  (MacKenzie,  P.  M.  Podsakoff,  & Jarvis,  2005).  Second, 

survey research that is most commonly used to test TAM model predominantly uses 

reflective measurement. Third, formative measurement has been criticized lately in the 
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Figure 2: Structural part of the population model used in simulation
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methodological literature (Howell, Breivik, & Wilcox, 2007).

The amount of indicators was set to three for all latent variables in the model. This 

number was chosen for three reasons: First, some recent works have emphasized that 

three indicators per construct in confirmatory analyses is an optimal number (Little et 

al. 1999) 1. Second, three indicators is a fairly common amount in IS research (Chin et 

al., 2003). Third, it is also low enough to reduce the potential convergence issues due to 

over-identification of the CBSEM models that are fitted to the data. By choosing three 

indicators per latent variable,  the total  amount of indicator variables was 18 for the 

underlying TAM model.

As  the  purpose  was  to  inspect  the  effects  of  common  method  variance,  a  factor 

representing the source of variance due to common method was added to the population 

model. An additional latent variable was included for this purpose. This latent method 

factor was set to be uncorrelated with all the other latent variables, but had a loading on 

each of the indicator variables in the model.  These loadings were constrained to be 

equal  in  order  to  model  congeneric  method variance.  With this  approach,  the latent 

method  factor  produced  equal,  systematic,  variance  in  all  of  the  indicators,  thus 

simulating common method variance.

The proposed approach concerns using marker variables in controlling common method 

variance, and thus a set of marker variables was created. These indicators were designed 

to reflect the common method variance in the model, and they were set uncorrelated 

with  all  the  other  indicators  in  the  model  except  for  the  correlation  caused  by  the 

method factor. 18 such items were created to enable modeling the impact of varying 

number  of  marker  variables  in  the  model.  For  survey  research,  this  many  extra 

indicators are not uncommon, since often only a subset of data from a larger survey are 

used in analyses for one paper.

The indicator variables were set to be centered, and variances of all latent and indicator 

variables were set to one. The factor loadings between the indicators and the model 

1 There is also research that suggests that “more is better” when considering the amount of indicators 

per latent variables. See for example Marsh et al. (1998)
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constructs  were set  to  0.70,  since this  value has  been recommended as a  minimum 

standard in the IS literature and has been consequently used in prior Monte Carlo study 

by  Chin,  Marcolin,  and  Newsted  (2003).  The  loadings  of  indicators  on  the  method 

factor were included as a varying condition in the experimental design. These loadings 

were, however, restricted to be equal with each other, thus reflecting the similar effect of 

measurement method for each item.

After  the  population  model  for  data  generation  was  chosen,  the  next  step  was  to 

determine the conditions to vary in the simulation. In total, four varying conditions were 

chosen: sample size, level of common method variance, amount of marker variables, 

and the fitted model.

The first varying condition was sample size. In total, four sample sizes were used: 125, 

250, 500, and 1000. The initial purpose was to set the smallest size close to 100, as it is 

often considered as an important threshold (Paxton et al., 2001). However, the size of 

the model and the decision to use CBSEM as a comparison technique prevented using 

this small sample size since the CBSEM coefficient estimates cannot be determined if 

the amount of estimated parameters exceeds the amount of observations. Due to this, the 

minimum sample size was set to 125. 

The  second  condition  was  to  vary  the  level  of  common  method  variance  in  the 

population model.  Four different  levels  for common method variance were decided: 

None, Little, Moderate, and High. The level of common method variance was controlled 

in data generation by varying the factor loadings of the indicators on the method factor. 

The respective values were set as 0.001, 0.1, 0.3, and 0.5. The reason for setting the 

loading  for  None level  as  0.001  instead  of  0  was  that  choosing  a  non-zero  value 

simplified the data generation and analysis, and the difference is yet insignificant in 

practice.

The third condition to vary was the amount of marker variables. The number of method 

indicators  was  included  as  a  varying  condition  since  the  random  intercorrelations 

between marker variables reduce the ability of these items to accurately reflect method 

variance and increasing the number of markers was a simple way to reduce the effect of 
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each  individual  random  correlation  between  the  items.  Moreover,  four  levels  for 

comparison were chosen: 3, 6, 9, and 18. These were chosen to reflect  the amount of 

indicators in the underlying model. Three indicators per latent variable were chosen for 

data generation, and thus three was chosen as the first method indicator amount. The 

total amount of indicators in the model was 18, and thus it was chosen as the upper limit 

for method indicators. Amounts of 6 and 9 were added from between the above decided 

values in order to estimate the necessary amount of indicators that is sufficient for the 

suggested method to function correctly. 

The fourth varying condition was the fitted model. In total, four different models were 

used: First, a PLS model was included that was formulated according to the population 

model with the exception of omitting the common method factor. Thus this model was 

misspecified for analysing data  with common method variance.  The purpose of this 

model  was  to  act   as  a  control  to  enable  evaluating  the  effect  of  common method 

variance on parameter estimates in an uncontrolled model, and thus to function as a 

reference point when evaluating the efficiency of the suggested approach. Second, a 

PLS model was chosen with modification to account for common method variance. As 

described in  the  previous  section,  this  model  includes  an additional  latent  construct 

utilizing only method indicators that are theoretically not related with other indicators in 

the model. This construct was added as a predictor for endogenous variables in the inner 

model  to  control  for  common  method  variance.  The  results  of  this  model  were 

compared  to  the  misspecified  PLS  model  described  above.  Third,  a  maximum 

likelihood estimated CBSEM model was added. This model is formulated similarly to 

the first, misspecified PLS model, that is, without correction for the method variance. 

The purpose of this CBSEM model was primarily to provide a comparison point for the 

PLS models to asses the well-know feature of PLS to overestimate factor loadings and 

underestimate latent path coefficients (Chin et al., 2003). The fourth model is a CBSEM 

model  with  correction  for  common  method  variance  with  measured  latent  method 

factor. In this technique, items are allowed to load on their theoretical constructs, as well 

as  on a  latent  method factor  that  has  also its  own method indicators  reflecting  the 

presumed cause of the method bias. In the present study, this model was included as a 
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control model that effectively controls for method variance  (Richardson et al., 2009) 

further enabling us to asses the merits of the proposed PLS based approach.  Figure 3 

and Figure 4 show the CBSEM and PLS models where corrections for common method 

variance are utilized.
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Figure 3: CFA marker variable with CBSEM

Subjective 
Norm 
(SN)

Perceived 
Usefulness

(PU)

Perceived
Ease of Use

(PEU)

Attitude 
Towards

Use (ATU)

Behavioral
Intension to
Use (BIU)

Actual
System

Use (ASU)

Method



In total, the combination of these four factors resulted in 256 (4 x 4 x 4 x 4) unique 

modeling conditions. The amount of replications for each condition was set to 500 as it 

is often used in SEM Monte Carlo studies  (Hancock & Mueller, 2006). As there are 

possibly non-converged or improper solutions (such as including negative variances) 

when estimating CBSEM models, the suggestions of Paxton et al. (2001) was utilized to 

use the correctly specified CBSEM model to evaluate the quality of each replication and 

thus replications were generated until 500 “good” replications were obtained.

In total, four data sets of each containing 500 separate replications were generated, one 

for each of the four chosen levels of common method variance. Different sample sizes 

were analysed by limiting the amount of observations from each sample. The amount of 

method indicators was set to the maximum level for data generation, that is, to 18. Since 

the method indicators were not correlated with the other indicators except for method 

variance, the amount of these items did not affect any other items in the data generation. 

Only the necessary subset of these items were used for for each modeling condition. In 

order to achieve convergence as quickly as possible for each replication, the population 

20

Figure 4: Latent marker variable with PLS
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parameters  were  used  as  starting  values  when  estimating  the  CBSEM  models,  as 

suggested by Paxton et al. (2001). 

Data  were  generated  from  multivariate  normal  distribution  by  using  Mplus  5.1 

structural equation modeling software. The same software was used for estimation of 

the  CBSEM models.  For  PLS  modeling,  version  0.1-4  of  plspm-package  of  the  R 

statistical software environment was used. This software was chosen instead of some of 

the more popular graphical tools because it is one of the very few PLS modeling tools 

that are currently available that provide support for command line usage, which was 

required for efficient Monte Carlo simulation.
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6. Results

Before using any explicit controls for common method variance, its presence should be 

tested  (Richardson et al., 2009). As Harman's single factor test is currently the most 

popular test for detecting common method variance, it was applied to the generated data 

before proceeding to the main analyses. Although Harman's single factor test is widely 

used, some confusion seems to exist in which factor extraction method should be used. 

Two different methods are generally used: Principal axis factoring (PAF) and principal 

component factoring (PCF). The former of these two considers only the variance that is 

shared  between  items  and  ignores  the  variance  considered  as  random error.  As  the 

purpose of Harman's single factor method is to identify the amount of reliable error 

variance that is correlated between items, PAF seems more appropriate. However, PCF 

is also used by some researchers  (e.g. Pavlou & El Sawy, 2006). Therefore results are 

reported by using both of these methods.

The results of Harman's single factor test for different data are presented in Table 1. As 

stated earlier in section 4.1. some researchers have found this method to be unreliable, 

and the results here corroborate these findings. The figures in the table are percentages 

describing the amount of variance explained by the first unrotated factor. The first factor 

tends  to  explain over half  of  the variance even in  the case where common method 

variance does not exist in reality. Another observation is that the differences in figures 

between different common method variance levels are relatively small. Thus Harman's 

test clearly does not provide reliable estimates for the level of common method variance 

in  this  case.  A potential  explanation  for  the  apparently  overestimated  amount  of 

common variance in data is that no error correlations were included in data generation. 

Heterogeneous, pairwise error correlations often encountered in practice would decrease 

the amount of variance shared by all of the variables in the model, and thus reduce the 

eigenvalue of the first factor in Harman's test. Another reason for these results is that no 

correlations were allowed between exogenous latent variables in data generation due to 

reasons  explained in the previous chapter.  Adding this  correlation would potentially 
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reduce  the  amount  of  common  variance  through  the  same  mechanism  as  adding 

pairwise error correlations to the model.

Table 1: Harman's single factor tests for different data

The next step was to fit the four models – correctly specified and misspecified PLS and 

CBSEM models – to the generated data. These models were fitted to the each data set 

with different sample size, level of common method variance, and number of marker 

variables. Table 2 presents the results for the case where sample size was 250, loadings 

on the method factor were 0.3, and 9 marker variables were used. The results provide 

several interesting observations: First, CBSEM models can generally restore the original 

indicator  loadings  relatively  well,  whereas  PLS  models  tend  to  systematically 

overestimate these. The substantive indicator loadings were set to 0.7 in data generation, 

but PLS models tend to restore values closer to 0.8. These differences also turned out to 

be  statistically  significant.  However,  this  tendency of  PLS to overestimate  indicator 

loadings is a known feature of PLS  (Chin et al., 2003).
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Table 2: Results of model fitting when N=250, common method variance level is  
0.3, and 9 method indicators are used
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In  addition  to  overly  large  indicator  loadings,  PLS  also  tends  to  overestimate  the 

loadings of the method indicators on the method factor. The population values were 0.3 

for all of these loadings, but PLS tends to systemically restore values closer to 0.4. 

The third observation from Table 2 is related to the regression coefficients restored by 

different models. The correctly specified CBSEM model was generally able to restore 

the  correct  coefficients,  whereas  misspecified  CBSEM  model  had  a  tendency  to 

overestimate them. Both PLS models, on the other hand, tended to underestimate the 

coefficients.  The  deviation  from the  correct  values  was  worse  for  the  misspecified 

model whereas the correctly specified model provided slightly better estimates. This 

underestimation  of  the  regression  coefficients  is,  however,  a  previously  recognized 

feature of PLS. Thus it is more interesting that the correctly specified PLS model was 

able to provide lower estimates than the misspecified PLS model. Since the previous 

research shows that PLS modeling is not immune to common method bias  (A. Schwarz 

et al., 2008), this implies that the proposed approach provide results that are less biased 

than the results without controlling for common method variance. 

In the previously presented table only one level of common method variance was used. 

To examine how well the proposed approach is able to account for common method 

variance, mean estimates for coefficients were calculated and compared across all levels 

of common method variance.  Table 3 illustrates the results in the case where the sample 

size was 1000 and 9 marker  variables  were used.  At  the smallest  level  of common 

method variance – that is, when none is present – the estimates does not significantly 

differ  between  correct  and  misspecified  models.  However,  as  the  level  of  common 

method variance increases,  the estimates  in  the misspecified model  become inflated 

considerably faster than in the correct model. Neither model is totally immune to the 

common method variance, but the correct model seems to be able to scale down its 

effect to some extent. The factor loadings, however, are not affected by the correction, 

and are thus overestimated. In other words, the proposed approach can largely control 

for the potential violations of internal validity caused by common method variance but 

does  not  address  concerns  of estimates of  construct  validity  being inflated.  Another 

interesting observation is that the loadings on the method factor confine the amount of 
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common method variance in data relatively well. Thus they can potentially provide a 

useful diagnostic test for the extent to which common method variance is present in 

data. 
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Table 3: Average PLS estimates for different levels of common method variance, when 
N=1000 and 9 method indicators are used
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As the proposed approach seems to be able to scale down the bias caused by common 

method variance,  the  next  question  is  how many method indicators  is  necessary  to 

include  in  the  model.  This  feature  was  examined  by  calculating  average  bias  in 

regression coefficients in several sample sizes, levels of common method variance, and 

numbers of method indicators. These results are presented in Table 4. The figures in this 

table are mean percentages of inflation of latent regression coefficients when comparing 

the  focal  modeling  condition  to  results  that  were  produced  with  a  model  without 

controlling  for  method  variance  using  data  uncontaminated  with  common  method 

variance.  These  results  provide  several  observations:  First,  if  no  common  method 

variance is present, applying remedies for it tend to bias results downward. This finding 

in line with previous studies (Richardson et al., 2009) and the key question is whether 

this bias is sufficient to cause the interpretation of the results to change. The bias seems 

to depend on both sample size and the amount of utilized method indicators: adding 

more method indicators increases the bias, whereas increasing the sample size tensd to 

decrease it. 

Another  observation  is  that  if  common  method  variance  is  present  in  data  and  no 

controls are added, the coefficients tend to become upward biased resulting in Type I 

error. The severity of this bias tend to increase as the level of common method variance 

in data increases. When method controls are added to the data, the coefficients generally 

become less inflated. Especially with high levels of common method variance, adding 

more method indicators tend to decrease the bias considerably. The largest amount of 

method indicators tested was 18, and up to that point the bias tended to scale down 

when more method indicators were added.

28



29

Table 4: Bias caused by presence of common method variance when varying sample 
size, number of method indicators, and population common method variance



7. Discussion and conclusions

Common method variance is a commonly encountered source of bias especially when 

analysing survey studies, and is continuously provoking attention among IS researchers. 

In structural equation modeling several tools exist for controlling method bias, but most 

of them are developed for CBSEM and are not directly applicable to other approaches. 

This study introduces a method for controlling common method variance in PLS path 

modeling context.  The proposed approach was tested under several  conditions using 

Monte  Carlo  simulation.  The  results  suggest  that  the  proposed  approach  can 

significantly decrease the bias caused by common method variance in estimates when 

using PLS. The extent to which this approach is useful depends on the level of common 

method variance present in data. If the suggested remedies are added when common 

method variance does not exist in reality, the results tend to become biased. Therefore it 

is recommended to diagnose the extent to which common method variance is present 

before  utilizing  this  approach  and  always  running  the  model  with  and  without  the 

method factor.

The amount of marker variables included should reflect the sample size and complexity 

of the data: for large sample sizes and large method variance levels, more indicators 

seem to produce better results. In some occasions, it is even reasonable to include as 

many marker variables as there are substantive variables in the model. When using the 

proposed approach, it is recommended to use marker variables that are correlated only 

due to method effect. However, as this condition is seldom fulfilled in practice, it is 

recommended to verify that no high correlations exist among marker variables, and if 

necessary, exclude highly correlating variables from the data.

Although the presented approach for controlling common method variance using PLS 

path modeling clearly shows positive results, there are some limitations: First of all, no 

error correlations were included in data generation.  These correlations often exist  in 

practice, and thus this approach should also be tested using data including, for example, 

small,  random, pairwise correlations between indicator variables. Second, exogenous 
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latent variables were considered to be uncorrelated with each other in data generation, 

although this situation seldom exist in practice. Third, in this analysis, marker variables 

were “ideal” in a sense that they were correlated with all other variables in the model 

only through method effect. Fourth, only “good” samples were used. This means that 

only  samples  were  used  that  did  converge  when  using  correctly  specified  CBSEM 

models. Although this procedure is often used in SEM Monte Carlo studies, this means 

that the results of this study can generalized only to cases where data is “well-behaving” 

in a sense that it also converges when using CBSEM models instead. 

Although the proposed approach is relatively easy to implement with a standard PLS 

software, can to some extent control for common method variance, and did not produce 

significant bias when applied to data that were clean of common method variance, more 

work  is  needed  before  this  approach  can  be  recommend  as  an  equal  alternative  to 

CBSEM based CFA marker variable model for dealing with common method variance. 

Particularly, the method should be tested with less-optimal Monte Carlo samples and 

real world data to discover the limits of the approach.
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