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1. Foreword

This study is based on the paper “Controlling for Common Method Variance with
Partial Least Squares Path Modelling” that Mikko Ronkkd and I submitted for review to
European Journal of Information Systems, Special Issue of Quantitative Methods on
September 2009. My responsibilities with the paper involved mostly developing the
presented approach, designing and implementing Monte Carlo simulation, and analysis
of the obtained results. This report extends the existing analysis and includes additional
information regarding, for example, structural equation modeling, partial-least squares

path modeling, and Monte Carlo simulation.



2. Introduction

Use of structural equation modeling (SEM) has become pervasive among social,
behavioral, and educational scientists as well as biologists, economists, marketing, and
medical researchers during the recent years (Raykov & Marcoulides, 2006). The most
well-known SEM techniques are methods related to covariance-based structural
equation modeling (CBSEM), and some researchers use them interchangeably with the
term SEM (Chin, 1998a). Besides covariance-based methods, partial least squares (PLS)
path modeling has seen increased use among information systems (IS) researchers
(Marcoulides, Chin, & Saunders, 2009; Marcoulides & Saunders, 2006). Due to its
historical roots in principal component analysis (Wold, 1978), PLS is often also called
component based approach to structural equation modeling (e.g., Qureshi & Compeau,
2009). Both of these approaches are commonly used to to estimate path models of latent

variables within the IS research domain.

Analysis approaches and techniques have several fundamental differences between
CBSEM and PLS. Due to these differences in model estimation, analyses approaches
developed for CBSEM are not always directly applicable to PLS. Consequently, several
contributions have recently been seen on how various structural equation modeling
techniques can be adapted to or implemented with PLS. These include, for example,
interaction effects (Chin, Marcolin, & Newsted, 2003), models with hierarchical latent
constructs (Martin Wetzels, Odekerken-Schroder, & van Oppen, 2009), and multi-group
models (Qureshi & Compeau, 2009).

Common method variance refers to variance that is attributable to the measurement
method rather than to the constructs the measures are supposed to represent. Method
biases are one of the main sources of measurement error, and most researchers agree
that common method variance is a potential problem in behavioral research (P. M.
Podsakoff, MacKenzie, Jeong-Yeon Lee, & N. P. Podsakoff, 2003). For CBSEM,
several techniques exist for controlling for this variance, but so far few of these

approaches are directly applicable to PLS. The purpose of this study is to present a PLS



approach for controlling common method variance similar to single measured method
factor design (P. M. Podsakoff et al., 2003) or confirmatory factor analysis (CFA)
marker variable design in CBSEM (Richardson, Simmering, & Sturman, 2009). The

approach is tested by using Monte Carlo simulation.

After the introduction, this study continues by introducing reader in more detail to
structural equation modeling and both CBSEM and PLS approaches. This section is
followed by a review of techniques for controlling common method variance. During
this review, a model for controlling method variance in PLS is conceptually developed.
After that, the proposed approach is tested using Monte Carlo simulation and compared
to method factor design implemented with structural equation modeling. In these
analyses, the technology acceptance model and the results of a recent meta-analysis by
Schepers and Wetzels (2007) are used as the basis for the research model. The report is
concluded by discussing several aspects, strengths, weaknesses of the proposed
approach and by presenting further guidelines for diagnosing and controlling for

common method variance with PLS.



3. Structural equation modeling

Structural equation modeling is a family of statistical models that seek to explain the
relationships among multiple variables. In doing so, it examines the structure of
interrelationships expressed in a series of equations, similar to a series of multiple
regression equations (Hair, Black, Babin, Anderson, & Tatham, 2006). Structural
equation modeling is an extension of the general linear model, and it has several
common statistical methods as special cases, for example multiple regression, path

analysis, factor analysis, time series analysis, and analysis of covariance (Maula, 2001).

The variables used in structural models are divided into observed and latent variables
(Kline, 2005). Observed variables are those that can be directly measured. These can
include variables like revenue, amount of personnel, and profit of the firm. Latent
variables, on the other hand, cannot be directly measured: their values are estimated in
the model from observed variables, called indicator variables. Latent variables are of
major importance in many areas of science, and they can include factors like growth
motivation of entrepreneur or goodness of firm's strategy. Both of these variables —
observed and latent — are further divided into exogenous and endogenous variables.
Exogenous latent variables are those variables that are not predicted by other latent
variables in the model. Thus exogenous latent variables appear only as independent
variables in the model equations. Endogenous latent variables, on the other hand, are
predicted by some other latent variables in the model, and therefore appear as dependent
variables in some of the model equations. Observed variables are divided into
exogenous and endogenous variables according to which latent variables they are

assigned to load on.

3.1. Covariance-based structural equation modeling

Two current main approaches to structural equation modeling are covariance-based
structural equation modeling (CBSEM) and partial least squares (PLS) path modeling.
Both approaches start by first specifying a path model of latent variables and then



assigning a set of indicators for each latent variable. After this step, these two
approaches depart. In CBSEM, the researcher traces the hypothesized factor loadings
and regression paths to arrive in a set of equations describing the expected covariance
structures in the data (Loehlin, 1987; Meehl & Waller, 2002). The set of equations is
then used to derive a model implied covariance matrix and free parameters in the
equations are estimated by minimizing the differences of the implied and observed

covariance matrices.

The general CBSEM model consists of two parts: a measurement model and a structural
model (Bollen, 1989). The measurement model specifies the relations of observed to
latent variables. It is used to evaluate the appropriateness of the chosen indicators for
estimating the latent variables, thus assessing the validity of the latent constructs. In
case of a model with p endogenous and g exogenous observed variables and n
endogenous and m exogenous latent variables, the measurement part of the general

structural equation model is of the form

y=A n+e

x=A_&+6 (1
where y is p X 1 and x is ¢ X 1 vector of observed variables, 1 is n X 1 vector of latent
endogenous variables, & is m X 1 vector of latent exogenous variables, and € is p X 1 and
0 is ¢ X 1 vector containing the errors of measurement (Bollen, 1989). The A, and A
are p X n and g X m matrices containing the coefficients linking the latent and observed
variables. The errors of measurement are assumed to be uncorrelated with i and & and
with each other, and E(e) = E(d) = 0. For simplicity, n, &, y, and x are generally
considered as centered, that is, written as deviations from their means. The above
equations actually equivalent to confirmatory factor analyses of observed variables to
their latent variables. Therefore Ay, and Ay can be interpreted as matrices containing

factor loadings.

The structural model encompasses the structural equations that summarize the
relationships between latent variables. It shows the influence of latent variables on each

other and defines exogenous and endogenous variables in the model:



n=Bn+I'§+g . 2

Here B is n X n matrix containing the coefficients of latent endogenous variables on
each other, I is n X m matrix of coefficients between endogenous and exogenous latent
variables, and { is the disturbance vector. It is assumed that E({) = 0 and  is

uncorrelated with &.

The basic hypothesis of the general CBSEM model is

>=>(0) |, 3)

where X i1s population covariance matrix of y and x and X(0) is the covariance matrix
written as a function of the free model parameters in 0. This implies that each element
of the covariance matrix is a function of one or more model parameters. The estimation
of the model thus concerns choosing the unknown parameters in 0 so that £(0) matches
the covariance matrix of the observed variables as well as possible. Model equations in
(1) and (2) are necessary to construct X(0) according to the hypothesized model (for

more details, see Bollen, 1989).

3.2. Partial least-squares path modeling

Partial least-squares (PLS) path modeling is a family of alternating least squares
algorithms, or “prescriptions,” which extend principal component and canonical
correlation analysis (Henseler, Ringle, & Sinkovics, 2008). While in CBSEM the focus
was on constructing a model implied covariance matrix and choosing the parameter
estimates that minimize the difference between this and the observed covariance matrix,
in PLS the purpose is to apply an iterative algorithm to directly estimate values for the

latent variables.

In PLS, there are formally two model parts: the inner and outer model. These
correspond to the structural and measurement models in CBSEM: the inner model
specifies the relationships between latent variables, whereas the outer model specifies
the relationships between latent variables and observed variables. There are two

different kinds of outer models in PLS: formative and reflective. In the reflective mode,



each observed variable in a certain measurement model is assumed to be generated as a
linear function of its latent variables and the residual, while the formative mode has
causal relationships from the observed variables to the latent variable. Due to reasons

explained later, only reflective models are considered in this study.

PLS model equations can be written similarly to CBSEM using equations (1) and (2).
However, unlike in CBSEM, there is not necessarily need to distinguish between
endogenous and exogenous variables in PLS when considering model equations
(Henseler et al., 2008). Thus, if considering all variables as endogenous, the (reflective)

outer model can be written more simply as

y=A n+e | 4)

and the inner model as

n=Bn+t¢ . Q)

The PLS algorithm is essentially a sequence of regressions in terms of weight vectors
(Henseler et al., 2008). In contrast to CBSEM, the analysis starts by estimating a proxy
value for each latent construct as a summated scale of its indicator variables. These
proxy values are then used to run regression models for each latent variable in the
model. Then new proxy values are calculated based on the results of this inside
approximation and are used in regressing the latent constructs on each of their
indicators. The results of this outside approximation are used to calculate weights for
each indicator-latent variable -relationship after which a new set of proxy values are
used as a starting point for new round of inside approximation. These two steps are
repeated until the change in outer weights between two iterations drops below a

predefined limit (for more details, see Chin, 1998a).



4. Controlling for common method variance

4.1. Common method variance

Common method bias is a subset of method bias (Burton-Jones, 2009). It arises in
quantitative research when the covariance caused by the measurement approach rather
than the measured trait causes measured relationships between two constructs to either
inflate or attenuate compared to the true value (Williams & Brown, 1994). This is a
frequently encountered problem especially with survey studies. Classical test theory (cf.
Nunnally, 1967) that provides the theoretical foundations for much of the measurement
tools that IS researchers use assumes that each person or organization measured has a
true score and that any measured score is a function of this true score and measurement

€rror:

X,=T+S,+e (6)

where X; is a vector containing the measured scores in item i, T; is a vector of the true
scores, S; a vector of item specific but reliable error components, and e is a vector of
random errors. A problem with common method variance arises when the item specific
components of the measured scores correlate across items. In general, these unwanted
measurement effects can cause bias in the statistical analyses if present in the data and
not properly controlled. A key problem with common method bias is that these effects
that cause loss of construct validity are sometimes difficult to detect and are often not
detected with standard tests for discriminant and convergent validity (Straub, Boudreau,
& Gefen, 2004; Richardson et al., 2009). The problem of identifying method variance is
complicated because various sources of error variance can coexist and overlap.
Additionally, the variance resulting from method can be congeneric or noncongeneric,

that is, affecting each item either equally or differently (Richardson et al., 2009).

While it is generally agreed on that measurement results are affected by both the

measurement approach and the measured trait, opinions differ on how commonly the



variance caused by measurement approach causes significant bias in the results. In
addition, the research results relating to the existence and significance of common
method bias remain mixed (Richardson et al., 2009). While the evidence on the overall
impact of common method variance remains inconclusive, scholars generally agree that
common method variance can cause problems. However, only a minority of IS studies
explicitly address these concerns: For example, in their review, Woszczynski and
Whitman (2004) observed that only 12 of the reviewed 116 articles with potential
common method problem explicitly noted it and even fewer attempted to control for it.
While controlling the effects of common method variance can be done on multiple
levels starting from the study design and data collection, this study focuses only on

statistical remedies available after the data has been collected.

For examining the extent to which common method variance is present in the data, most
commonly used method is Harman's single factor test (cf. P. M. Podsakoft & Organ,
1986). In this technique exploratory factor analysis is utilized to evaluate the amount of
variance in observed variables that can be explained by a single factor. This is
determined by examining the first factor of the unrotated factor solution. If either a
single strong factor emerges or the first factor loads significantly on all items, common
method variance is most likely present in the data (P. M. Podsakoff & Organ, 1986).
However, there are three potential problems with this technique: it is very unreliable (cf.
Kemery & Dunlap 1986), no clear guidelines are available as to when this technique
indicate problematic amount of method variance, and it does nothing to actually control
the method variance. Besides Harman's test, another method has recently appeared in
the toolbox of IS researchers, called the marker variable technique (Lindell & Whitney,
2001). With this technique, a researcher includes a priori defined marker variable that
should be theoretically unrelated to the study wvariables and then calculates the
correlation between this variable and the study variables. Since the variables are not
theoretically related, the correlation is assumed to solely result from method variance

and can be partialed out from other correlations in the study.

Besides these general methods, several techniques have been developed for structural

equation modeling for explicitly modeling the common method variance in the models.



These techniques are generally developed for CBSEM. Two most commonly used
methods include various method factor design and correlated uniqueness designs.
Podsakoff and his colleagues (2003) provide a good overview of these methods:
Generally the idea is to add error correlations or factors to the analysis thus allowing
the covariance that results from the measurement to escape from the model rather than
affect the substantive regression or correlation relationships. Technically these methods
rely on partialing out the reliable error variance on the indicator level so that it does not
affect the parameter estimates in the structural part of the model. The method factor
designs can further be classified into two groups depending on whether only the
indicators of the study variables are used in the analysis or whether extra marker
variables are included as indicators for the method factor. While particularly these
designs have been adopted in previous studies (e.g. Ye, Marinova, & Singh, 2007; Alge,
Ballinger, Tangirala, & Oakley, 2006; Agustin & Singh, 2005), the effectiveness of the
method factor design has only recently been tested in a simulation setting: In their study,
Richardson and his colleagues (2009) provided evidence that the method factor design
with marker variables, the CFA marker technique, could in most cases effectively
reduce the bias caused by method variance even if the marker variables were non-ideal
by correlating with the study variables. In their analysis, the unmeasured latent method

construct approach often produced less accurate results.

4.2. Implementation to PLS path modeling

While several techniques exist for controlling common method variance in CBSEM,
they are generally not directly applicable to PLS path modeling. The reason for this is
that these techniques rely on partialing the variance to model variance and error
variance on an indicator level, but with PLS the indicators are only weighted and
summed without partialing variance. For example, if one third of the variance of each
indicator is congeneric measurement variance, the total variance of the latent variables
will consists of one third method variance regardless of how the indicators are weighted.
While introducing a method factor to a PLS model might provide an estimate of the

strength of the method variance, this approach does not prevent covariance caused by

10



the measurement approach affecting the inner model. While PLS path modeling has
been shown to be sensitive to various sources of method variance (A. Schwarz, C.
Schwarz, & Rizzuto, 2008), no methods for controlling for common method variance
have been developed in the PLS context. This far the users of PLS path modeling have
only had the option to partial out correlations between marker variable from the study
correlations and then use this corrected data for the main analyses (Lindell & Whitney,

2001).

The approach proposed in this study for controlling for method variance is to control it
during the inner estimation. A somewhat similar approach, although implicitly and only
for diagnostic purposes, has been previously adopted in recent PLS papers (e.g. Shutao
Dong et al. 2009; Pavlou et al. 2007). In these papers, a proxy for common method
variance was formed by conducting an explanatory factor analysis on all items in the
model, and using the first emerging unrotated factor as a control variable in the inner
model. Thus this approach is similar to using Harman's single factor test in obtaining a
proxy for common method variance. Similarly to these two mentioned papers, this study
suggests that a method factor is included as a predictor for all endogenous latent
constructs in the model. Thus the common method variance is controlled for in the inner
model rather than partialing it out during the outer estimation. Conceptually, this would
mean that the calculated values from the outer estimation for the latent constructs are a
result of the true relationships between the constructs and error variance caused by
measurement. This approach differs from the previously suggested ways by using a
directly measured method factor rather than building a proxy based on the substantive
items in the model. The indicators of the method factor should be theoretically unrelated
to any of the constructs of interest and preferably not correlated except for the
correlation caused by sharing the same method. Contrary to CBSEM based CFA marker
approach, the method factor should not load on the indicators of the study constructs
due to the fact that a construct loading on the items of another independent variable
would be severely collinear and shared items with the dependent variable would cause
the coefficients between method factor and endogenous constructs to be inflated. As a

joint effect, this would severely bias the estimates of the coefficients between the actual

11



model constructs. Figure 1 illustrates the proposed approach.

GG & G

Figure 1: Simplified example of the proposed approach
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5. Simulation

The proposed approach for controlling common method variance with PLS was tested
by using Monte Carlo simulation. Several PLS and CBSEM models with and without
measured method factor were compared under varying conditions of sample size, level
of method variance, and number of method indicators. Similar approach has been
previously used when testing new approaches for PLS modeling (Qureshi & Compeau,
2009; Chin et al., 2003) as well as more recently when testing the effectiveness of

different approaches for controlling common method variance (Richardson et al., 2009).

5.1. Monte Carlo simulation

Use of Monte Carlo simulation has become common when inspecting properties related
to structural equation modeling. Analytical statistical theory can address some research
questions, but finite sample properties of SEM estimators are often beyond the reach of
the established asymptotic theory (Paxton, Curran, Bollen, Kirby, & Chen, 2001). In
some cases the distributions are not known even asymptotically (e.g., several fit

measures).

Monte Carlo simulation concerns with using simulated random numbers in examining
the properties of the distributions of random variables (Paxton et al., 2001). It allows
researchers to assess the finite sampling performance of statistics by creating controlled
conditions from which sampling distributions of parameter estimates are produced.
Knowledge of the sampling distribution is the key to evaluation of the behavior of a

statistic.

When performing Monte Carlo simulation in SEM context, the researcher first creates a
model with known population parameters (i.e., the values are set by the researcher)
(Paxton et al., 2001). Several repeated samples are drawn from that population, and the
parameters of interest are estimated for each sample. After that, a sampling distribution

is estimated for each population parameter by collecting the parameter estimates from

13



all the samples. The properties of the sampling distribution, such as its mean or
variance, are obtained from this estimated sampling distribution. Thus Monte Carlo
simulation can be considered as a “brute force” approach to empirically evaluating

statistics.

5.2. Simulation design

Simulation design was carried out by following the guidelines set by Paxton, Curran,
Bollen, Kirby, and Chen (2001). As stated above, the first step is to determine the
population model for data generation. Typically four aspects should be considered when
choosing the model (Hancock & Mueller, 2006): model type, model size, model
complexity, and model parameters. Based on these aspects, four criteria were set for an
appropriate population model: First, the model must have both measurement and
structural part. Thus, for example, a CFA model would be inappropriate because it only
includes the measurement model. Second, the model needs to have a level of size and
complexity that is frequently met in practice. The purpose of this criteria was to reflect
the practical situations in IS as well as possible, thus increasing generalizability of these
results. In addition, a very simple model would decrease the validity of the results,
whereas a too complex model would set high requirements for computing power and
would also make interpretation of the results difficult. Third, there must be a decent
amount of previous research studies on the model. This criteria was necessary in order
to set realistic and appropriate coefficient values for the population model before data

generation.

Based on the above-mentioned criteria, the technology acceptance model (TAM) was
chosen as the structural part of the population model. This model has been used in
several recent studies (Sharma, Yetton, & Crawford, 2009; Malhotra, Kim, & Patil,
2006). In order to meet the requirement of appropriate model complexity, the extended
TAM model was chosen instead of the original TAM model. This extended model is
presented in a meta-analysis paper by Schepers and Wetzels (2007) who also estimated
the standardized structural coefficients for TAM on the basis of the correlation matrix

obtained from an aggregation of several individual research studies. The model and the
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parameter values are presented in Figure 2. Correlations between exogenous latent
variables were set to zero for two reasons: First, by allowing latent variable effects only
through the regression paths the model remained more parsimonious. Second, the
appropriate level of correlation would be difficult to determine, as it varies between
different research settings. Altogether, the chosen model consists of six latent variables

and ten regression paths between them as illustrated in Figure 2.
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Figure 2: Structural part of the population model used in simulation

The next task after choosing the appropriate structural part of the population model was
to define properties of the measurement model. The first question was whether to use
reflective or formative indicators. Reflective indicators were chosen for three reasons:
First, since the purpose was to compare the results of analysing the same set of data
with PLS and CBSEM, difficulties in using formative indicators in CBSEM analysis
was a concern (Chin, 1998b) and using different modes of measurement would
potentially bias the results (MacKenzie, P. M. Podsakoff, & Jarvis, 2005). Second,
survey research that is most commonly used to test TAM model predominantly uses

reflective measurement. Third, formative measurement has been criticized lately in the
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methodological literature (Howell, Breivik, & Wilcox, 2007).

The amount of indicators was set to three for all latent variables in the model. This
number was chosen for three reasons: First, some recent works have emphasized that
three indicators per construct in confirmatory analyses is an optimal number (Little et
al. 1999) '. Second, three indicators is a fairly common amount in IS research (Chin et
al., 2003). Third, it is also low enough to reduce the potential convergence issues due to
over-identification of the CBSEM models that are fitted to the data. By choosing three
indicators per latent variable, the total amount of indicator variables was 18 for the

underlying TAM model.

As the purpose was to inspect the effects of common method variance, a factor
representing the source of variance due to common method was added to the population
model. An additional latent variable was included for this purpose. This latent method
factor was set to be uncorrelated with all the other latent variables, but had a loading on
each of the indicator variables in the model. These loadings were constrained to be
equal in order to model congeneric method variance. With this approach, the latent
method factor produced equal, systematic, variance in all of the indicators, thus

simulating common method variance.

The proposed approach concerns using marker variables in controlling common method
variance, and thus a set of marker variables was created. These indicators were designed
to reflect the common method variance in the model, and they were set uncorrelated
with all the other indicators in the model except for the correlation caused by the
method factor. 18 such items were created to enable modeling the impact of varying
number of marker variables in the model. For survey research, this many extra
indicators are not uncommon, since often only a subset of data from a larger survey are

used in analyses for one paper.

The indicator variables were set to be centered, and variances of all latent and indicator

variables were set to one. The factor loadings between the indicators and the model

1 There is also research that suggests that “more is better” when considering the amount of indicators

per latent variables. See for example Marsh et al. (1998)
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constructs were set to 0.70, since this value has been recommended as a minimum
standard in the IS literature and has been consequently used in prior Monte Carlo study
by Chin, Marcolin, and Newsted (2003). The loadings of indicators on the method
factor were included as a varying condition in the experimental design. These loadings
were, however, restricted to be equal with each other, thus reflecting the similar effect of

measurement method for each item.

After the population model for data generation was chosen, the next step was to
determine the conditions to vary in the simulation. In total, four varying conditions were
chosen: sample size, level of common method variance, amount of marker variables,

and the fitted model.

The first varying condition was sample size. In total, four sample sizes were used: 125,
250, 500, and 1000. The initial purpose was to set the smallest size close to 100, as it is
often considered as an important threshold (Paxton et al., 2001). However, the size of
the model and the decision to use CBSEM as a comparison technique prevented using
this small sample size since the CBSEM coefficient estimates cannot be determined if
the amount of estimated parameters exceeds the amount of observations. Due to this, the

minimum sample size was set to 125.

The second condition was to vary the level of common method variance in the
population model. Four different levels for common method variance were decided:
None, Little, Moderate, and High. The level of common method variance was controlled
in data generation by varying the factor loadings of the indicators on the method factor.
The respective values were set as 0.001, 0.1, 0.3, and 0.5. The reason for setting the
loading for Nomne level as 0.001 instead of 0 was that choosing a non-zero value
simplified the data generation and analysis, and the difference is yet insignificant in

practice.

The third condition to vary was the amount of marker variables. The number of method
indicators was included as a varying condition since the random intercorrelations
between marker variables reduce the ability of these items to accurately reflect method

variance and increasing the number of markers was a simple way to reduce the effect of
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each individual random correlation between the items. Moreover, four levels for
comparison were chosen: 3, 6, 9, and 18. These were chosen to reflect the amount of
indicators in the underlying model. Three indicators per latent variable were chosen for
data generation, and thus three was chosen as the first method indicator amount. The
total amount of indicators in the model was 18, and thus it was chosen as the upper limit
for method indicators. Amounts of 6 and 9 were added from between the above decided
values in order to estimate the necessary amount of indicators that is sufficient for the

suggested method to function correctly.

The fourth varying condition was the fitted model. In total, four different models were
used: First, a PLS model was included that was formulated according to the population
model with the exception of omitting the common method factor. Thus this model was
misspecified for analysing data with common method variance. The purpose of this
model was to act as a control to enable evaluating the effect of common method
variance on parameter estimates in an uncontrolled model, and thus to function as a
reference point when evaluating the efficiency of the suggested approach. Second, a
PLS model was chosen with modification to account for common method variance. As
described in the previous section, this model includes an additional latent construct
utilizing only method indicators that are theoretically not related with other indicators in
the model. This construct was added as a predictor for endogenous variables in the inner
model to control for common method variance. The results of this model were
compared to the misspecified PLS model described above. Third, a maximum
likelihood estimated CBSEM model was added. This model is formulated similarly to
the first, misspecified PLS model, that is, without correction for the method variance.
The purpose of this CBSEM model was primarily to provide a comparison point for the
PLS models to asses the well-know feature of PLS to overestimate factor loadings and
underestimate latent path coefficients (Chin et al., 2003). The fourth model is a CBSEM
model with correction for common method variance with measured latent method
factor. In this technique, items are allowed to load on their theoretical constructs, as well
as on a latent method factor that has also its own method indicators reflecting the

presumed cause of the method bias. In the present study, this model was included as a
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control model that effectively controls for method variance (Richardson et al., 2009)
further enabling us to asses the merits of the proposed PLS based approach. Figure 3
and Figure 4 show the CBSEM and PLS models where corrections for common method

variance are utilized.
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Figure 3: CFA marker variable with CBSEM
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Figure 4: Latent marker variable with PLS

In total, the combination of these four factors resulted in 256 (4 x 4 x 4 x 4) unique
modeling conditions. The amount of replications for each condition was set to 500 as it
is often used in SEM Monte Carlo studies (Hancock & Mueller, 2006). As there are
possibly non-converged or improper solutions (such as including negative variances)
when estimating CBSEM models, the suggestions of Paxton et al. (2001) was utilized to
use the correctly specified CBSEM model to evaluate the quality of each replication and

thus replications were generated until 500 “good” replications were obtained.

In total, four data sets of each containing 500 separate replications were generated, one
for each of the four chosen levels of common method variance. Different sample sizes
were analysed by limiting the amount of observations from each sample. The amount of
method indicators was set to the maximum level for data generation, that is, to 18. Since
the method indicators were not correlated with the other indicators except for method
variance, the amount of these items did not affect any other items in the data generation.
Only the necessary subset of these items were used for for each modeling condition. In

order to achieve convergence as quickly as possible for each replication, the population
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parameters were used as starting values when estimating the CBSEM models, as

suggested by Paxton et al. (2001).

Data were generated from multivariate normal distribution by using Mplus 5.1
structural equation modeling software. The same software was used for estimation of
the CBSEM models. For PLS modeling, version 0.1-4 of plspm-package of the R
statistical software environment was used. This software was chosen instead of some of
the more popular graphical tools because it is one of the very few PLS modeling tools
that are currently available that provide support for command line usage, which was

required for efficient Monte Carlo simulation.
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6. Results

Before using any explicit controls for common method variance, its presence should be
tested (Richardson et al., 2009). As Harman's single factor test is currently the most
popular test for detecting common method variance, it was applied to the generated data
before proceeding to the main analyses. Although Harman's single factor test is widely
used, some confusion seems to exist in which factor extraction method should be used.
Two different methods are generally used: Principal axis factoring (PAF) and principal
component factoring (PCF). The former of these two considers only the variance that is
shared between items and ignores the variance considered as random error. As the
purpose of Harman's single factor method is to identify the amount of reliable error
variance that is correlated between items, PAF seems more appropriate. However, PCF
is also used by some researchers (e.g. Pavlou & El Sawy, 2006). Therefore results are

reported by using both of these methods.

The results of Harman's single factor test for different data are presented in Table 1. As
stated earlier in section 4.1. some researchers have found this method to be unreliable,
and the results here corroborate these findings. The figures in the table are percentages
describing the amount of variance explained by the first unrotated factor. The first factor
tends to explain over half of the variance even in the case where common method
variance does not exist in reality. Another observation is that the differences in figures
between different common method variance levels are relatively small. Thus Harman's
test clearly does not provide reliable estimates for the level of common method variance
in this case. A potential explanation for the apparently overestimated amount of
common variance in data is that no error correlations were included in data generation.
Heterogeneous, pairwise error correlations often encountered in practice would decrease
the amount of variance shared by all of the variables in the model, and thus reduce the
eigenvalue of the first factor in Harman's test. Another reason for these results is that no
correlations were allowed between exogenous latent variables in data generation due to

reasons explained in the previous chapter. Adding this correlation would potentially
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reduce the amount of common variance through the same mechanism as adding

pairwise error correlations to the model.

Table 1: Harman's single factor tests for different data

Number of observations

125 250 500 1000
Method variance PAF PCF PAF PCF PAF PCF PAF PCF
none 522 213 583 208 633 20.7 66.5 206
Little 525 217 605 215 66.1 214 693 214
Medium 58.5 252 652 245 707 25.0 734 251
Large 65.5 31.0 733 310 T77.8 31.0 804 312

The next step was to fit the four models — correctly specified and misspecified PLS and
CBSEM models — to the generated data. These models were fitted to the each data set
with different sample size, level of common method variance, and number of marker
variables. Table 2 presents the results for the case where sample size was 250, loadings
on the method factor were 0.3, and 9 marker variables were used. The results provide
several interesting observations: First, CBSEM models can generally restore the original
indicator loadings relatively well, whereas PLS models tend to systematically
overestimate these. The substantive indicator loadings were set to 0.7 in data generation,
but PLS models tend to restore values closer to 0.8. These differences also turned out to
be statistically significant. However, this tendency of PLS to overestimate indicator

loadings is a known feature of PLS (Chin et al., 2003).
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Table 2: Results of model fitting when N=250, common method variance level is
0.3, and 9 method indicators are used

PLS path model Structural equation model True

Correct Misspesified Correct Misspesified  population
Path Mean SD Mean SD Mean SD Mean sD value
0 ASU ON BIU 0.410 0,052 0438 0049 0547 0127 0603 0.112 0.550
0 ATU ON PEU 0.191 0.058 0205 0058 0277 0162 0331 O0.158 0.260
0 ATU ON PU 0310 0.060 0322 0059 0457 0151 0462 0.149 0.460
0 ATU ON SN 0.084 0,057 0099 0056 0083 0149 0139 0.131 0.080
0 BIU ON ATU 0175 0,063 0.182 0062 01830 0142 0187 0.128 0.180
0 BIU ON PEU 0105 0.061 0116 0060 0116 0174 0.130 0.162 0.120
0 BIU ON PU 0.256 0061 0264 0060 0390 0163 0391 0157 0.330
0 BIU ON SN 0117 0034 0129 00534 0158 0153 0224 0,129 0.160
0 PU ON PEU 0.287 0.058 0311 0057 0480 0157 0.588 0.146 0.4580
0 PU ON 5N 0.194 0.057 0218 0056 0309 0139 0405 0.124 0.310
1 ASU BY ASUIL 0.792 0.038 0.792 0039 0686 0.093 0696 0.054 0.700
1 ASU BY ASU2 0.790  0.040 0790 0.040 0690 0.097 0.696 0.086 0.700
1 ASU BY ASU3 0.792 0,040 0792 0041 0693 0,097 0699 0.087 0.700
1 ATU BY ATU1L 0.794 0,039 0794 0039 0680 0.098 0686 0.085 0.700
1 ATU BY ATU2 0.792 0.040 0792 0040 0672 0.095 0683 0.086 0.700
1 ATU BY ATU3 0.793 0,038 0793 0038 0674 0,092 0683 0082 0.700
1 BIU BY EIU1 0.795 0,037 0795 0036 0675 0101 0674 0.080 0.700
1 BIU BY BIUZ2 0.795 0,037 0795 0037 0672 0.096 0674 0.080 0.700
1 BIU BY BIU3 0.793 0,035 0793 0035 0673 0,092 0671 0077 0.700
1 PEU BY PEU1 0.755 0.034 0735 0034 069 0115 0757 0.095 0.700
1 PEU BY PEU2 0.755 0.053 0.755 0053 0692 0118 0755 0.096 0.700
1 PEU BY PEU3 0.757 0.050 0.757 0050 0691 0118 0758 0.092 0.700
1 PU BY PU1 0.782 0.038 0.782 0.038 0681 0100 0686 0.084 0.700
1 PU BY PU2 0.786 0.038 0.786 0038 0687 0102 0692 0.088 0.700
1 PU BY PU3 0783 0.041 0783 0041 0683 0,097 0689 0.086 0.700
1 SN BY 5N1 0.756 0061 0756 0061 0692 0123 0757 0.094 0.700
1 SN BY SN2 0750 0070 0730 0070 0692 0126 0739 0.101 0.700
1 SN BY SN3 0.755 0,068 0.755 0068 0699 0120 0761 0.102 0.700
2 ASU ON METHOD 0,123 0.060
2 ATU ON METHOD 0087 0.062
2 BIU ON METHOD 0.078  0.058
2 PU ON METHOD 0.121  0.059
3 METHOD BY ASU1 0.302 0.132 0.300
3 METHOD BY ASU2 0.298  0.138 0.300
3 METHOD BY ASU3 0.299  0.134 0.300
3 METHOD BY ATUL 0.298 0.136 0.300
3 METHOD BY ATU2 0.308 0.137 0.300
3 METHOD BY ATU3 0.303  0.144 0.300
3 METHOD BY BIU1 0.306 0.139 0.300
3 METHOD BY BIU2 0310 0.133 0.300
3 METHOD BY BIU3 0.299  0.132 0.300
3 METHOD BY PEU1L 0.295  0.123 0.300
3 METHOD BY PEUZ 0.293  0.121 0.300
3 METHOD BY PEUS 0.299 0.126 0.300
3 METHOD BY PU1 0.301 0.133 0.300
3 METHOD BY PU2 0.300  0.134 0.300
3 METHOD BY PU3 0.304 0.137 0.300
3 METHOD BY SN1 0.301 0.120 0.300
3 METHOD BY SN2 0.301 0.122 0.300
3 METHOD BY SN3 0.297 0.116 0.300
4 METHOD BY M1 0.395  0.140 0.288 0.099 0.300
4 METHOD BY M2 03938 0.138 0.291  0.099 0.300
4 METHOD BY M3 0.401  0.142 0.293  0.103 0.300
4 METHOD BY M4 0.392  0.149 0287 0.097 0.300
4 METHOD BY M5 0.399  0.144 0.294  0.103 0.300
4 METHOD BY Ma 0.392 0.135 0.287  0.100 0.300
4 METHOD BY M7 0.405  0.142 0.297  0.101 0.300
4 METHOD BY M= 0.401  0.136 0.292  0.098 0.300
4 METHOD BY M9 0.404  0.140 0.299  0.097 0.300




In addition to overly large indicator loadings, PLS also tends to overestimate the
loadings of the method indicators on the method factor. The population values were 0.3

for all of these loadings, but PLS tends to systemically restore values closer to 0.4.

The third observation from Table 2 is related to the regression coefficients restored by
different models. The correctly specified CBSEM model was generally able to restore
the correct coefficients, whereas misspecified CBSEM model had a tendency to
overestimate them. Both PLS models, on the other hand, tended to underestimate the
coefficients. The deviation from the correct values was worse for the misspecified
model whereas the correctly specified model provided slightly better estimates. This
underestimation of the regression coefficients is, however, a previously recognized
feature of PLS. Thus it is more interesting that the correctly specified PLS model was
able to provide lower estimates than the misspecified PLS model. Since the previous
research shows that PLS modeling is not immune to common method bias (A. Schwarz
et al., 2008), this implies that the proposed approach provide results that are less biased

than the results without controlling for common method variance.

In the previously presented table only one level of common method variance was used.
To examine how well the proposed approach is able to account for common method
variance, mean estimates for coefficients were calculated and compared across all levels
of common method variance. Table 3 illustrates the results in the case where the sample
size was 1000 and 9 marker variables were used. At the smallest level of common
method variance — that is, when none is present — the estimates does not significantly
differ between correct and misspecified models. However, as the level of common
method variance increases, the estimates in the misspecified model become inflated
considerably faster than in the correct model. Neither model is totally immune to the
common method variance, but the correct model seems to be able to scale down its
effect to some extent. The factor loadings, however, are not affected by the correction,
and are thus overestimated. In other words, the proposed approach can largely control
for the potential violations of internal validity caused by common method variance but
does not address concerns of estimates of construct validity being inflated. Another

interesting observation is that the loadings on the method factor confine the amount of
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common method variance in data relatively well. Thus they can potentially provide a
useful diagnostic test for the extent to which common method variance is present in

data.

26



Table 3: Average PLS estimates for different levels of common method variance, when
N=1000 and 9 method indicators are used

Mean PLS estimates for different levels of method varianee

Correct model Misspecified model
Path 0 1 3 5 0 A1 3 5
0 ASU ON BIU 0.381 0386 0411 0423 0386 0393 0438 0504
0 ATU ON PEU 0172 0178 0191 0204 0174 0180 0205 0238
0 ATU ON PU 0.305 0305 0312 0320 0310 0310 0323 0342
0 ATU ON SN 0.064 0073 0.084 0095 0065 0074 0098 0.131
0 BIU ON ATU 0168 0163 0475 0177 0171 0166 0182 0.191
0 BIU ON PEU 0.095 0098 0105 0113 009 0.100 0115 0.138
0 BIU ON PU 0.248 0253 0.258 0266 0252 0258 0265 0279
0 BIU ON SN 0107 0.108 0116 0126 0108 0110 0128 0.154
0 PU ON PEU 0.260 0267 0.287 0306 0266 0272 0311 0363
0 PU ON SN 0172 0179 0494 0213 0175 0182 0217 0270
1 ASU BY ASU1 0780 0.781 0.792 0810 0779 0.780 0791 0810
1 ASU BY ASU2 0776 0778 0.791 0811 0776 0.778 0.791 0811
1 ASU BY ASU3 0777 0779 0.793 0809 0777 0.780 0.793 0.809
1 ATU BY ATU1 0.781 0.782 0.794 0814 0781 0.782 0794 05814
1 ATU BY ATU2 0.781 0785 0.793 0815 0.781 0.785 0.793 0815
1 ATU BY ATU3 0.783 0.783 0.794 0813 0783 0.783 0794 0813
1 BIU BY BIU1 0.782 0.784 0.795 0813 0782 0.784 0795 0813
1 BIU BY BIU2 0.782 0.785 0.795 0815 0.782 0.785 0.795 0.815
1 BIU BY BIU3 0.784 0784 0.794 0814 0784 0.784 0794 05814
1 PEU BY FPEU1 0.738 0738 0.756 0785 0738 0.738 0.756 0.785
1 PEU BY PEU2 0.738 0740 0.555 0783 0.738 0740 0755 0.783
1 PEU BY PEU3 0.735 0.743 0.758 0784 0.735 0.743 0758 0.784
1 PUBY PU1 0771 0772 0.782 0806 0771 0.773 0.782  0.806
1 PUBY PU2 0.768 0.766 0.785 0802 0768 0.765 0.785 0802
1 PUBY PU3 0.769 0774 0.783 0805 0769 0.774 0783 0805
1 SN BY SN1 0.727  0.726  0.754 0782 0.727  0.726 0.754 0.782
1 SN BY SN2 0726 0.731 0.550 0781 0.727 0.v31 0.750 0.781
1 SN BY SN3 0729 0734 0.556 0784 0730 0.734 0756 0.784

2 ASU ON METHOD  -0.007 0.027 0.122 0218
2ATU ON METHOD  0.004 0.023 0.086 0.129
2 BIU ON METHOD  -0.008 0.029 0.075 0.107
2 PU ON METHOD -0.001 0,038 0119 0.176
4 METHOD BY M1 0.080  0.109  0.399  0.529
4 METHOD BY M2 0.086 0122 0401 0.533
4 METHOD BY M3 0.081 0.138 0401 0.532
4 METHOD BY M4 0.089 0119 0.393 0.535
4 METHOD BY M5 0.074 0128 0400 0.532
4 METHOD BY MG 0.084 0128 0395 0.533
4 METHOD BY M7 0.093 0.130 0405 0.535
4 METHOD BY M5 0.078 0129 0401 0.533
4 METHOD BY M9 0.084 0136 0407 0.534
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As the proposed approach seems to be able to scale down the bias caused by common
method variance, the next question is how many method indicators is necessary to
include in the model. This feature was examined by calculating average bias in
regression coefficients in several sample sizes, levels of common method variance, and
numbers of method indicators. These results are presented in Table 4. The figures in this
table are mean percentages of inflation of latent regression coefficients when comparing
the focal modeling condition to results that were produced with a model without
controlling for method variance using data uncontaminated with common method
variance. These results provide several observations: First, if no common method
variance is present, applying remedies for it tend to bias results downward. This finding
in line with previous studies (Richardson et al., 2009) and the key question is whether
this bias is sufficient to cause the interpretation of the results to change. The bias seems
to depend on both sample size and the amount of utilized method indicators: adding
more method indicators increases the bias, whereas increasing the sample size tensd to

decrease it.

Another observation is that if common method variance is present in data and no
controls are added, the coefficients tend to become upward biased resulting in Type I
error. The severity of this bias tend to increase as the level of common method variance
in data increases. When method controls are added to the data, the coefficients generally
become less inflated. Especially with high levels of common method variance, adding
more method indicators tend to decrease the bias considerably. The largest amount of
method indicators tested was 18, and up to that point the bias tended to scale down

when more method indicators were added.
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Table 4: Bias caused by presence of common method variance when varying sample
size, number of method indicators, and population common method variance

Mean bias for different Mean SD of path estimate for ditferent
number of method indicators number of method indicators

none 3 6 9 18 none 3 6 9 18
No method variance
125 00 -0.7 -1.9 -32 -7.3 0.0 07 1.2 1.2 1.8
250 -0.0 -03 -1.0 -1.6 -39 00 04 03 04 0.9
500 00 -02 -05 -09 -20 -00 00 0.0 -0.0 0.1
1000 00 -01 -03 -04 -10 -00 01 01 01 0.1
Little method variance
125 2.5 1.7 04 -1.0 -5.0 1.5 1.7 1.9 21 2.2
250 2.2 1.8 1.1 04 -1.8 -1.0 -09 -0.6 -0.6 -0.5
500 1.8 1.6 1.2 0.8 -0.5 14 14 1.4 15 1.5
1000 1.9 1.8 1.5 1.3 06 1.8 1.9 20 21 2.1
Medium method variance
125 13.4 9.9 6.6 4.0 -1.4 26 -14 -1.3 -0.7 0.3
250 13.8 108 8.2 6.2 23 -4.1 -33 -3.1 -29 -2.1
500 141 114 92 76 45 -1.5 -1.0 -0.8 -05 0.4
1000 145 119 9.9 8.5 5.7 -0.8 -03 -0.1 0.1 0.5
Large method variance
125 206 19.7 13.7 10.2 45 -54 -3.0 -21 -11 -0.2
250 30.3 204 15.1 11.9 6.6 -45 -19 -1.1 -0.5 0.3
500 304 206 154 124 74 -26 01 1.2 19 2.4
1000 31.1 214 164 133 85 -32 -08 05 12 2.0
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7. Discussion and conclusions

Common method variance is a commonly encountered source of bias especially when
analysing survey studies, and is continuously provoking attention among IS researchers.
In structural equation modeling several tools exist for controlling method bias, but most
of them are developed for CBSEM and are not directly applicable to other approaches.
This study introduces a method for controlling common method variance in PLS path
modeling context. The proposed approach was tested under several conditions using
Monte Carlo simulation. The results suggest that the proposed approach can
significantly decrease the bias caused by common method variance in estimates when
using PLS. The extent to which this approach is useful depends on the level of common
method variance present in data. If the suggested remedies are added when common
method variance does not exist in reality, the results tend to become biased. Therefore it
is recommended to diagnose the extent to which common method variance is present
before utilizing this approach and always running the model with and without the

method factor.

The amount of marker variables included should reflect the sample size and complexity
of the data: for large sample sizes and large method variance levels, more indicators
seem to produce better results. In some occasions, it is even reasonable to include as
many marker variables as there are substantive variables in the model. When using the
proposed approach, it is recommended to use marker variables that are correlated only
due to method effect. However, as this condition is seldom fulfilled in practice, it is
recommended to verify that no high correlations exist among marker variables, and if

necessary, exclude highly correlating variables from the data.

Although the presented approach for controlling common method variance using PLS
path modeling clearly shows positive results, there are some limitations: First of all, no
error correlations were included in data generation. These correlations often exist in
practice, and thus this approach should also be tested using data including, for example,

small, random, pairwise correlations between indicator variables. Second, exogenous
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latent variables were considered to be uncorrelated with each other in data generation,
although this situation seldom exist in practice. Third, in this analysis, marker variables
were “ideal” in a sense that they were correlated with all other variables in the model
only through method effect. Fourth, only “good” samples were used. This means that
only samples were used that did converge when using correctly specified CBSEM
models. Although this procedure is often used in SEM Monte Carlo studies, this means
that the results of this study can generalized only to cases where data is “well-behaving”

in a sense that it also converges when using CBSEM models instead.

Although the proposed approach is relatively easy to implement with a standard PLS
software, can to some extent control for common method variance, and did not produce
significant bias when applied to data that were clean of common method variance, more
work is needed before this approach can be recommend as an equal alternative to
CBSEM based CFA marker variable model for dealing with common method variance.
Particularly, the method should be tested with less-optimal Monte Carlo samples and

real world data to discover the limits of the approach.
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