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Controlling frustrated liquids and solids with
an applied field in a kagome Heisenberg
antiferromagnet
Satoshi Nishimoto1, Naokazu Shibata2 & Chisa Hotta3

Quantum spin-1/2 kagome Heisenberg antiferromagnet is the representative frustrated

system possibly hosting a spin liquid. Clarifying the nature of this elusive topological phase is

a key challenge in condensed matter; however, even identifying it still remains unsettled. Here

we apply a magnetic field and discover a series of spin-gapped phases appearing at five

different fractions of magnetization by means of a grand canonical density matrix renor-

malization group, an unbiased state-of-the-art numerical technique. The magnetic field dopes

magnons and first gives rise to a possible Z3 spin liquid plateau at 1/9 magnetization. Higher

field induces a self-organized super-lattice unit, a six-membered ring of quantum spins,

resembling an atomic orbital structure. Putting magnons into this unit one by one yields three

quantum solid plateaus. We thus find that the magnetic field could control the transition

between various emergent phases by continuously releasing the frustration.
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I
t is widely accepted that condensed matter orders at low
temperatures by spontaneously breaking some sort of
symmetry—translational symmetry in crystalline solids, time

reversal and rotational symmetries in magnets, gauge symmetry
in superconductors and so on. Whether they can escape from
ordering and instead bear emergent states is a question that
recurred over decades. A possible strategy to remove trivial orders
is to design a model with fine balance of microscopic interactions,
where the low-energy states are frustrated and a macroscopic
number of quasi-degenerate states compete with each other.
When quantum fluctuations between these states prevent a
selection of particular order, one ends up with quantum-
disordered spin liquids. Modern theories have brought us new
insight by identifying spin liquids as topological phases of
matter1,2. Even if such topological phases are not formed, the
resultant phase would also be non-trivial; its smallest disentangled
unit could consist of several degrees of freedom—pairs of spins in
spin ladders or valence bond solids and so on. Thus,
characterizing the regime of such liquids and relevant non-
trivial phases is now becoming an important challenge.

In reality, spin liquids are quite elusive3. There are experimental
studies on the several materials, suggesting the existence of a spin
liquid, k-(BEDT-TTF)2Cu2(CN)3 (ref. 4), BaCu3V2O8(OH)2
(ref. 5) and ZnCu3(OD)6Cl2 (ref. 6). In theories, few candidates
include a triangular lattice Mott insulator7 and spin-1/2 kagome
antiferromagnet8–11, represented by the Hubbard and the
Heisenberg models, respectively. However, theoretical information
directly compared with the experimental data is still severely
lacking.

Therefore, to find realistic theoretical models that could realize
several non-trivial phases and could provide information relevant
to experiments is essential. The phase transitions should better be
controlled by the experimentally tunable parameter.

Here we show that quantum spin-1/2 kagome Heisenberg
antiferromagnet in an applied field could be an ideal playground,
providing numbers of exotic quantum liquid and solid phases
under field control. The model itself is already known as a
representative frustrated system that embodies fine balance of
interaction by the use of lattice geometry, and, more importantly,
it is experimentally relevant. It is defined by the following
Hamiltonian:

H ¼
X

hi;ji
JSi � Sj �H

XN

i¼1

SZi

where Si is a spin-1/2 operator at the i-th lattice site (Siz is the
z-component), and J and H are the interaction coupling constant
and the external magnetic field, respectively. The first summation
denoted by hi; ji runs over nearest-neighbour pairs of sites of the
kagome lattice of size N. The ground state at H¼ 0 is possibly a
spin liquid, but its detailed identification still suffers numerical
difficulty.

A key numerical problem in quantum many-body models
on two-dimensional frustrated lattices is the lack of method
that affords sizable results. The quantum Monte-Carlo method
suffers from the sign problem, and the exact diagonalization
requires unbiased size scaling, which is unavailable at present.
Regarding the kagome antiferromagnet, the multiscale entangle-
ment renormalization supported a valence bond crystal ground
state with a hexagonal unit cell of 36 spins11, which was taken
over by a Z2 gapped spin liquid lower in energy in the latest
two-dimensional density matrix renormalization group (DMRG)
studies on a long cylinder8,9. In addition, there is a recent
study predicting a gapless U(1) liquid10, and the issue remains
unsettled.

Clarifying the nature of the model in an applied field also
demands a severe numerical challenge; the magnetization process
appears not as a curve but as a staircase of height B1/N owing to
finite size effect. Thus, what is known so far is the highly possible
presence of a spin-gapped phase called plateau at a 1/3
magnetization12–14 and a jump of the magnetization from 7/9
to 1 at the saturation field15,16. Whereas whether a 1/3 plateau is
really a plateau12,13 or something else14 was not really concluded.

In the present article, we determine the bulk magnetization
process of the kagome Heisenberg antiferromagnet by means of a
grand canonical analysis17,18. The system turns out to have five
different plateau phases, and the magnetic field controls the
successive phase transitions between these plateau phases and the
gapless liquids in a strikingly analogous manner to the Hall
conductivity of the quantum Hall effect19–21. Two of the plateaus
at the lower fields are the possible spin liquids, which are
characterized by the finite topological dimensions. The latter
three at the higher fields form a long-range order in a particular
unit, a hexagonal plaquette consisting of a six-membered ring of
spins. This unit resembles a quantum mechanical atomic orbital
that accommodates several magnons in its discrete energy levels.
The magnetic field thus transforms the system from the highly
frustrated liquid phases to the moderately frustrated solid ones.

Results
Magnetization curve. To overcome the numerical finite size
effect, we apply the grand canonical DMRG, which was developed
very recently17, and was successfully applied to two dimensions18.
This method gives us a numerically exact and unbiased
magnetization curve in the thermodynamic limit (see Methods).
For example, if we choose the cylinder of a finite circumference
and of length L, which is larger than B10–20 lattice spacing, and
perform a grand canonical analysis, we obtain a magnetization
curve of an infinitely long cylinder of that fixed circumference
(see Supplementary Fig. S1). As we need a result of a bulk system,
equivalently spanned along three different directions of a kagome
lattice, we choose a hexagonal cluster for the present calculation
rather than a long cylinder.

Figure 1 shows the whole magnetization curve of the kagome
antiferromagnet. Without ambiguity, one finds plateau structures
at fractions, M/Msat¼ 0, 1/9, 1/3, 5/9 and 7/9, as well as a jump
from the 7/9 plateau to the saturation value at exactly Hsat/J¼ 3.0,
where Msat is the full magnetization. To verify the accuracy of our
grand canonical curve, we perform a set of conventional DMRG
calculation, both on a long cylinder with open ends (see
Supplementary Fig. S1) and on an open hexagonal cluster. By
comparing these results, we confirm that the grand canonical
analysis successfully gives the magnetization curve within the
typical accuracy of 10� 3 (see Supplementary Note 1).

Singlet–triplet spin gap. The value of the singlet–triplet spin gap
of the kagome antiferromagnet at zero field is still unsettled8,9,22.
The evaluated spin gaps after the size scaling in the three latest
DMRG studies are not fully consistent; as for the cylindrical
DMRG, ref. 9 has D¼ 0.13(1) (the numerical data of refs 8 and 9
at various fixed circumferences are basically consistent). There,
the size scaling is basically given first along the long leg of a
cylinder and the extrapolation is given along the circumference of
Lr20. As for ref. 22, they increased the size within N¼ 36–108
by keeping the cluster to the square-like shape with periodic
boundaries and obtained D¼ 0.055±0.005. In fact, we checked
these results carefully with the similar scaling and found that the
results depend much on the way the size scaling is performed23

(see Supplementary Notes 1 and 2).
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By contrast, in our grand canonical calculation the size
dependence becomes negligible (less than 10� 3 in two dimen-
sions, see Methods) once we enter a cluster size of the proper
system length. Therefore, one could evaluate the spin gap by the
onset value of H/J in the magnetization curve near zero field. In
Fig. 1, we find D¼ 0.05±0.02 (see the red shaded region), which
is obtained on a hexagonal cluster.

We briefly mention that our results are fully consistent with the
data of the previous conventional DMRG studies: in our grand
canonical DMRG on a cylinder with fixed small circumference
(see Supplementary Fig. S1), the spin gap gives more than twice as
large values as the value mentioned above. This value should be
compared with the data in ref. 9 on a long cylinder with the same
circumference. For a proper extrapolation of the cylindrical
results to a bulk two-dimension, one needs to enlarge both the
length and the circumferences simultaneously23. In fact, our
grand canonical spin gap on a hexagonal cluster is very close to
those of ref. 22 on a square cluster.

Zero and 1/9 plateaus. The zero plateau ranging at 0rH/Jr0.05
is the continuation of the zero-field ground state. Correspond-
ingly, in our calculation the spin structure in real space turned out
to be completely structureless (see Supplementary Fig. S2). One
way to identify the nature of the spin liquid is to calculate the von
Neumann entropy, S¼ �Tr(r ln r), defined on a subsystem of a
long open cylinder by the conventional DMRG, where r is the
reduced density matrix of the subsystem. The value should follow,
SBZ Ly� g, where Ly is the circumference, Z is a constant and
g¼ ln(D) is the topological entropy. In ref. 9, the topological
dimension, D, of the ground state is given as DB2, which
supports the gapped Z2 spin liquid.

In the 1/9-plateau state, the real space profile of the spin
structure is rather intriguing, several geometries breaking the

translational symmetry are quasi-degenerate (see Supplementary
Fig. S2 and Supplementary Note 3), and their stability is sensitive
to the shape and size of the cluster. We consider this to be the
good reason that the symmetry-breaking long order is absent.
Therefore, we perform the conventional DMRG and calculate the
entanglement entropy of the 1/9-plateau state in the same
manner as refs 2 and 9, as shown in Fig. 2; to have the 1/9
magnetization, we need to keep the system size at the multiple of
nine, and thus the choice of the clusters are limited compared
with the calculation on the M/N¼ 0 ground state. The
topological dimension obtained in the Ly¼ 0 limit seemingly
gives the value D¼ 3. Thus, the spin-gapped state at 1/9
magnetization is possibly a Z3 spin liquid, and is the first
example of a spin-liquid plateau induced by the magnetic field.
Even a Z3 spin liquid itself has so far been observed only in a
specified bosonic model24, and the present model gives a more
realistic setup. Further examination is required to identify the
detailed nature of this phase.

Long-range ordered plateaus. In contrast to the first two pla-
teaus, the rest of the plateaus have symmetry-breaking long-range
orders. Figure 3a–c shows the real space profiles of the magne-
tization density for 1/3, 5/9 and 7/9 plateaus. All of them are
based on a same unit of a hexagram, which holds nine lattice sites.
This magnetic (extended) unit cell is three times as large as the
original unit cell, namely, Qmag¼Q� 3¼ 9, with the spin density
shown in Fig. 3d. Such symmetry-breaking requires strong
interaction between bosons, and the emergence of three such
plateaus in a single system is already a quite unexpected matter to
happen.

Discussion
In spin-1/2 quantum magnets, a conventional (non-topological)
non-magnetic state basically comprises a singlet, a unit of
spin 0, often represented by the quantum fluctuation between two
spins, (|mkS–|kmS)/O2. A breaking of singlet yields a bosonic
elementary particle carrying spin 1, which is called a magnon.
The magnetic field controls the density of these bosons, serving as
a chemical potential. As in the Mott insulator, there are particular
values of the boson densities commensurate with the lattice
periodicity25, at which the gapped states are strongly pinned.
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Figure 1 | Magnetization curve of the spin-1/2 kagome Heisenberg

antiferromagnet in a uniform magnetic field. The saturation value of the

magnetization density per site is Msat/N¼ 1/2. The inset shows the

geometry of the kagome lattice. The shaded hexagon is the original lattice

unit cell including three sites (Q¼ 3). Data points are obtained by the grand

canonical analysis on a hexagonal cluster with N¼ 114 and 132, which

directly gives the curve of the thermodynamic limit without any size scaling.
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Figure 2 | Entanglement entropy of a 1/9 magnetization plateau. The

results here are calculated on a long cylinder by the conventional DMRG.

(a) S(Lx, Ly) as a function of 1/Lx is given for Ly¼4, 6, 8, where Lx and Ly
denote the number of sites along the leg and the circumference of the

cylinder, respectively. (b) The value extrapolated for the infinite length,

Lx¼N, is given as a function of circumference Ly. The best fit to S¼ Z
Ly� g gives g¼ 1.18±0.3. We estimate the error in scaling S(Lx, Ly) to

Lx-N, which gives the uncertainty of linear scaling S(N, Ly) against Ly,

displayed by grey shading in b.
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At these fillings, a finite field range representing the spin gap is
formed, which is the magnetization plateau.

It is known that the magnetization plateau emerges only when
the quantity, Qmag S(1�M/Msat), is an integer26,27, where Qmag is
the number of sites included in the unit period of the ground
state and S is the spin quantum number, which is 1/2 for the
present case.

With this in mind, let us discuss the nature of our plateaus. We
first examine the magnetic structures of M/Msat¼ 0 and 1/9
plateaus, and find that they are possibly structureless in real space
(see Supplementary Note 3). Namely, the period of the ground
state is the same as that of the lattice unit cell, Qmag¼Q¼ 3,
which gives, Qmag S(1�M/Msat)¼ 3/2 and 4/3, respectively. As
they are not integers but fractional numbers, the above
conventional condition to have a plateau is not fulfilled. However,
in two dimensions there is another way to form a spin-gapped
state (plateau) other than the above mentioned interplay with the
lattice; it is to form a structureless spin liquid. The elementary
excitation of such spin liquids by the magnetic field is no longer a
magnon, but a deconfined spinon, carrying spin 1/2. Although
such exotic spin-liquid plateaus could emerge at a fractional value
of Qmag S(1�M/Msat), as discussed in field theoretical study28, it
had been observed neither in theoretical models nor in materials.
In fact, the calculations on the entanglement entropy indicate that
zero-th and the 1/9 plateau form the spin-liquid phases of
topological dimension D¼ 2 and 3, respectively.

In contrast, in the latter three plateaus we find Qmag S(1�M/
Msat)¼ 3, 2 and 1 (integers) for 1/3, 5/9 and 7/9 plateaus,
respectively, all of which clearly fulfill the above conventional
condition. Let us now discuss the origin of these solid
plateaus.

In the 1/3 plateau, each triangular unit should hold a net
magnetization of 1/2, which consists of one up spin 1/2 and two
spins forming a singlet (see Fig. 4a). Similar to the zero-field Ising
ground state, there are massive numbers of configuration of the
1/2-magnetized triangular units29, which is in fact a typical
characteristic of the frustrated system. If these configurations are
mixed-up quantum mechanically, a liquid phase should emerge.
To realize instead the solid state actually observed, one needs to
select a particular configuration, and the problem reduces to how
we pave this triangular unit on the kagome lattice to maximally
gain energy.

In each configuration, one could draw a string along the singlet
bonds of the triangular units as shown in the left panel of Fig. 4a.
As every triangle shares its corners with the neighbouring
triangles, the string never crosses with other strings, but continues
until it meets itself again (otherwise it will extend toward infinity).
In addition to the random configuration of strings, the
representative two regular patterns are shown in Fig. 4a: a long
string forming stripes and a shortest closed loop around the
hexagon. One then needs to know which gains the energy, the
longer string or the shorter loop, towing to the quantum
mechanical resonance of spins along the string. The answer
is the latter (see Supplementary Fig. S3a)—the kagome is fully
tiled with hexagrams—a symmetry-breaking plaquette order is
formed30.

Once all the vertices of the hexagram (three sites/nine unit) are
filled with a fully polarized up-spin moment (Sz¼ 1/2) at
M/Msat¼ 1/3, a further simplified picture may work, focusing
on each hexagonal plaquette and isolating it by effectively
neglecting the quantum fluctuation between the plaquette and the
vertices of the hexagram, as shown in Fig. 4b. This approximation
is valid as far as the vertices of the hexagram are fully polarized.
The interactions (J Sz Sz-term) between the plaquette and vertices
work as an internal magnetic field, Hint¼ � J per site on a
plaquette. Figure 4c shows the magnetization process of the
isolated plaquette in an effective field, HþHint, namely the
doping of magnons by the effective chemical potential. Each step
of the big staircases corresponds to the increasing Sz-value or the
number of magnons in the isolated plaquette. Now, notice that
the point where the upshift of the staircases crosses the bulk
magnetization curve coincides with the inflection point of the
curve. This indicates the following scenario: if we condense the
massive numbers of hexagrams, the quantum fluctuations
between them become coherent throughout the system and
works to destroy the staircases from the edge toward the centre of
the step. The curve above/below the inflection point is the ruin of
the edge of upper/lower staircase. This result thus supports the
picture that a hexagon works as a self-organized pseudo atomic
orbital consisting of three discrete energy levels. Doping magnons
to each level yields a series of plateaus starting from 1/3.

At present, the only other quantum magnet that possibly
reveals comparably rich phase transitions is the SrCu2(BO3)2
(refs 31,32). However, the spin-gapped phases of this material are
based on a conventional singlet. In forming solids, they expand
the unit cell in several ways to allocate the singlets in a regular
period in a sea of doped magnons. In contrast, in our kagome a
single non-trivial unit based on a hexagram is self-organized by
the quantum many-body effect. The doped magnons come into
this cell in such a way that the electrons go into the quantum dots
in an artificial semiconductor device.

The above picture then gives a strategy to design a system that
could control the degree of frustration by the doping of particles;
First, prepare an unfrustrated unit that could store several numbers
of particles (in a kagome, this corresponds to a hexagon that could
hold three magnons). Then connect them by the frustrated bonds.
For example, this rule gives us a checkerboard lattice and its
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Figure 3 | Density plot of the magnetization in the long-range-ordered

plateau states. The diameter of the blue circle on each lattice site scales

the magnetization density. Hexagram consisting of nine sites indicate

the magnetic unit cell, extended from the original one by three times

(Qmag¼9). Hexagons in light yellow colour are the guide to the eye.

(d) Schematic alignment of spins on a hexagram, where the numbers

indicate the magnetic density (Sz) on each vertices and on hexagons.

Numerically, the exact magnetic density of the vertices of hexagram of a

and b are shrunk because of quantum fluctuation by about 2–5% from the

fractional values given in d, which is not the case for the 7/9 plateau in c.
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relevant pyroclore lattice. Their undoped ground states could be a
spin liquid as far as the microscopic interactions are finely
balanced. We predict that dopings will also give rise to interesting
states of matter similar to the one we find in the kagome.

We further pay attention to the fact that the bose-Hubbard
model at zero field33 and the projected quantum dimer model34,
both on the same kagome lattice, are considered to have Z2
liquids. Then, one may also expect the 5/9 and 7/9 plateaus to
undergo a solid-to-spin-liquid transition28 if the additional effect
enhancing the quantum fluctuation is added to the Hamiltonian.
The present findings will give some clue to find numbers of such
exotic state of matter in kagome and in the above mentioned
lattice models, many of which are still unexplored.

Regarding the laboratory systems of the kagome Heisenberg
antiferromagnet, there are several candidates, for example,
BaCu3V2O8(OH)2 (ref. 5), ZnCu3(OH)6Cl2 (ref. 6), Cu3V2O7

(OH)2 � 2H2O (ref. 35) and Rb2Cu3SnF12 (ref. 36), whereas they
are often distorted, anisotropic or include complicated inter-
actions, and the establishing of the ideal kagome Heisenberg
material is long awaited. Our bulk magnetization curve is the only
data numerically obtained in lattice models that could be
compared directly and quantitatively with experimental
measurements. Such comparison could be used to identify them
as an ideal kagome. Also, if a 1/9 plateau were to appear in the
experimental magnetization curve, one could examine, by
neutron measurements or some other local magnetic probe-like
nuclear magnetic resonance, whether the state is structureless in
reality. The magnetic-specific heat and thermal conductivity
measurements could further give theorists a hint to know what
kind of non-magnetic and magnetic elementary excitations are
possible for this newly emergent phase. Thus, our present
findings would provide, both in theories and in experiments,

a rich playground in search of open paradigms in quantum
many-body physics.

Methods
Grand canonical analysis. The technique is developed very recently by the
authors17,18, and gives the infinitesimally small response to the change in the
external field. The physical quantities we get mimic their thermodynamic limit
within the order of 10� 4 for one dimension and 10� 3 for two dimensions, even in
a relatively small cluster size of the order of NB10–100. We briefly summarize the
essential framework; the method smoothly divides the finite size cluster into the
centre part and the edges, and the main part reproduces the continuous bulk
response by using the nearly zero-energy edge state as a buffer. At a fixed system
size and shape, we introduce the modulation of the energy scale by an externally
given function, f(r), at a location r, which smoothly deforms the Hamiltonian from
the maximum at the centre of the system (r¼ 0) to zero energy at the open cluster
edges (r¼R). After we obtain the proper eigen wave function of the deformed
Hamiltonian, we evaluate the magnetization, hSZðrÞi. Now, remind that the total
magnetization, Mg ¼

P
r
hSZðrÞi, of the deformed Hamiltonian is a conserved

quantity given by hand. However, the expectation value of the local magnetic
density hSZðrÞi is no longer equal to Mg/N, but has a particular r-dependence: it
takes nearly a uniform value at the centre (though oscillating slightly, the mean
values are uniform) and then often takes a peak or valley at the edges (see
Suppplementary Fig. S4b and Suppplementary Note 5). This is because the system
optimizes the wave function so as to realize the centre value, /Sz(rB0)S, to its
thermodynamic limit, M/N, at a given magnetic field. The excess/deficient
magnetization, Mg�M, is absorbed/provided by the localized edge states of the
cluster, which has the measure zero energy as f(r¼R)B0. These edges serve as a
grand canonical bath.

The cluster and the function used in the present calculation are given in
Supplementary Fig. S4a. The numerical solver of the deformed Hamiltonian is not
necessarily restricted to DMRG.

The reason why such mechanism works is discussed in detail in ref. 18 in the
context of real space energy renormalization, together with applications to several
two-dimensional quantum spin systems and to the electronic systems.

Details of the DMRG calculation. We have used the DMRG37 as a solver of the
deformed Hamiltonian of the ground canonical analysis. The accuracy of the
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the isolated hexagon in an effective field, HþHint, where Hint¼ � J is from the surrounding six vertex sites indicated in red circles. Broken line is the bulk

magnetization curve of Fig. 1. See Supplementary Fig. S3 and Supplementary Note 4 for more details.
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results is systematically controlled by the number of basis states kept, m in the
DMRG calculation and the typical error in the energy of the present calculations is
around 10� 4 for m¼ 4,000. As discussed in the Results section, the aspect ratio
closer to 1 gives the results closer to the bulk limit. Therefore, we adopt the
hexagonal cluster of N¼ 114 and 132, instead of a long cylinder. More details,
including the numerical details of the results, are available in the Supplementary
Fig. S4 and Supplementary Note 5.

Regarding the calculation on the entanglement entropy in Fig. 2, we used
the conventional DMRG on a long cylinder with open edges and periodic
circumferences. There, the number of states kept are m¼ 2,000–10,000, and the
data points displayed in Fig. 2a are derived after the extrapolation to 1/m¼ 0.
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