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1. INTRODUCTION

A major concern in the specialization of functional (e.g., see Consel and Danvy
[1993], Jones et al. [1993], and Turchin [1986]) as well as logic programs (e.g., see
Lloyd and Shepherdson [1991], Komorowski [1992], Gallagher [1993], Pettorosii
and Prooietti [1994], and De Schreye et al. [1995]) has been the issue of control:
how can the transformation process be guided in such a way that termination is
guaranteed and results are satisfactory?

This problem has been tackled from two (until now) largely separate angles: the
so-called off-line versus on-line approaches. Partial evaluation of functional pro-
grams [Consel and Danvy 1993; Jones et al. 1993] has mainly stressed the former,
while supercompilation of functional programs [Turchin 1986; 1988; Søensen and
Glück 1995] and partial deduction of logic programs [Bol 1993; Bruynooghe et al.
1992; Gallagher and Bruynooghe 1991; Martens and De Schreye 1996 Martens
and Gallagher 1995; Sahlin 1993] have concentrated on on-line control. (Some ex-
ceptions are the works of Weise et al. [1991], Mogensen and Bondorf [1992],
Leuschel [1994], Jørgensen and Leuschel [1996], and Bruynooghe et al. [1998].)

The concrete setting of the present article concerns logic program partial de-
duction. We are, however, convinced that its contribution is not limited to that
particular field. Indeed, its techniques and ideas are also relevant to the control of
supercompilation and on-line partial evaluation of functional (and perhaps also im-
perative) languages. Moreover, even abstract interpretation can benefit from them.
We return to these points in Section 4.7.

In partial deduction of logic programs, one distinguishes two levels of control
[Gallagher 1993; Martens and Gallagher 1995]: the local and the global level. In a
nutshell, the local level decides on how SLD(NF)-trees for individual atoms should
be built. The (branches of the) resulting trees allow us to construct specialized
clauses for the given atoms [Benkerimi and Lloyd 1990; Lloyd and Shepherdson
1991]. At the global level on the other hand, one typically attends to the over-
all correctness of the resulting program (satisfying the closedness condition in
Lloyd and Shepherdson [1991]) and strives to achieve the “right” amount of poly-
variance, producing sufficiently many (but not more) specialized versions for each
predicate definition in the original program. At both levels, in the context of pro-
viding a fully automatic tool, termination is obviously of prime importance.

In this article, it is to the global level that we turn our attention. The con-
cept of characteristic trees has been proposed as a basis for the global control of
partial deduction in Gallagher and Bruynooghe [1991] and Gallagher [1991]. The
main idea is, instead of using the syntactic structure to decide upon polyvariance,
to examine the specialization behavior of the atoms to be specialized: only if this
behavior is sufficiently different from one atom to the other should different special-
ized versions be generated. However, the approaches based on characteristic trees
have been, up to now, ridden by two major problems. First, they failed to preserve
the characteristic trees upon generalization: two atoms with identical specialization
behavior may be generalized by one with a completely different specialization be-
havior. This may lead to significant losses in specialization, as well as to problems
for the termination of the partial deduction process. Second, the characteristic
trees have always been limited by some ad hoc depth bound, possibly leading to
very undesirable specialization results (as we will show later in the article).
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In the present article, we solve these two problems. After presenting some re-
quired background about partial deduction and characteristic trees in Section 2, we
address the first problem in Section 3 by developing the ecological partial deduc-
tion principle, ensuring the preservation of characteristic trees. In Section 4 we then
solve the second problem, blending the general framework in Martens and Gallagher
[1995] with the framework developed in Section 3. We thus obtain an elegant, so-
phisticated, and precise apparatus for on-line global control of partial deduction.
Benchmark results can be found in Section 5. Section 6 subsequently concludes the
article.

Finally, we would like to mention that two workshop papers address part of the
material in a preliminary form:

—Leuschel [1995] describes how to impose characteristic trees and perform set-
based partial deduction with characteristic atoms,

—while Leuschel and Martens [1996] elaborates the former approach into one using
global trees, and thus not requiring any depth bound.

2. PRELIMINARIES AND MOTIVATIONS

Throughout this article, we suppose familiarity with basic notions in logic program-
ming [Lloyd 1987] and partial deduction [Lloyd and Shepherdson 1991]. Notational
conventions are standard and self-evident. In particular, in programs, we denote
variables through (strings starting with) an uppercase symbol, while the notations
of constants, functions, and predicates begin with a lowercase character. Unless
stated explicitly otherwise, the terms “(logic) program” and “goal” will refer to a
normal logic program and goal, respectively. By an expression we mean either a
term, an atom, a literal, a conjunction, a disjunction, or a program clause. Expres-
sions are constructed using the language LP which we implicitly assume underlying
the program P under consideration. LP may contain additional symbols not occur-
ring in P , but, unless explicitly stated otherwise, LP contains only finitely many
constant, function, and predicate symbols. To simplify the presentation we also
assume that, when talking about expressions, predicate symbols and connectives
are treated like functors which cannot be confounded with the original functors
and constants (e.g., ∧ and ← are binary functors distinct from the other binary
functors). As common in partial deduction, the notion of SLDNF-trees is extended
to allow incomplete SLDNF-trees which may contain leaves where no literal has
been selected for a further derivation step. Leaves of the latter kind will be called
dangling [Martens and De Schreye 1996].

2.1 Partial Deduction

In contrast to (full) evaluation, a partial evaluator is given a program P along with
a part of its input, called the static input. The remaining part of the input, called
the dynamic input, will only be known or given at some later point in time. Given
the static input S, the partial evaluator then produces a specialized version PS of P
which, when given the dynamic input D, produces the same output as the original
program P .

In the context of logic programming, full input to a program P consists of a goal
G, and evaluation corresponds to constructing a complete SLDNF-tree for P ∪{G}.
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Partial input then takes the form of a partially instantiated goal G′. One often uses
the term partial deduction to refer to partial evaluation of pure logic programs (see
Komorowski [1992]), a convention we will adhere to in this article. So, given this
goal G′ and the original program P , partial deduction produces a new program P ′

which is P “specialized” to the goal G′: P ′ can be called for all instances of G′,
producing the same output as P , but often much more efficiently.

In order to avoid constructing infinite SLDNF-trees for partially instantiated
goals, partial deduction is based on constructing finite, but possibly incomplete
SLDNF-trees for a set of atoms A. The derivation steps in these SLDNF-trees cor-
respond to the computation steps performed (beforehand) by the partial deducer ,
and the specialized program is extracted from these trees by constructing one spe-
cialized clause per branch. The incomplete SLDNF-trees are obtained by applying
an unfolding rule, defined as follows:

Definition 2.1.1. An unfolding rule U is a function which, given a program P
and a goal G, returns a finite and possibly incomplete SLDNF-tree for P ∪ {G}.

For reasons to be clarified later, Definition 2.1.1 is so general as to even allow a
trivial SLDNF-tree, i.e., one whose root is a dangling leaf.

Specialized clauses are extracted from the SLDNF-trees as follows:

Definition 2.1.2. Let P be a program and A an atom. Let τ be a finite, incom-
plete, and nontrivial1 SLDNF-tree for P∪{← A}. Let← G1, . . . ,← Gn be the goals
in the (nonroot) leaves of the nonfailing branches of τ . Let θ1, . . . , θn be the com-
puted answers of the derivations from ← A to ← G1, . . . ,← Gn respectively. Then
the set of resultants resultants(τ) is defined to be {Aθ1 ← G1, . . . , Aθn ← Gn}.

Partial deduction, as defined for example by Lloyd and Shepherdson [1991] and
Benkerimi and Lloyd [1990], uses the resultants for a given set of atoms A to con-
struct the specialized program and for each atom in A a different specialized predi-
cate definition is generated, replacing the original definition in P . Under the condi-
tions stated in Lloyd and Shepherdson [1991], namely closedness and independence,
correctness of the specialized program is guaranteed. Independence requires that no
two atoms in A have a common instance. This ensures that no two specialized pred-
icate definitions match the same (run-time) call. Usually this condition is satisfied
by performing a renaming of the atoms in A (see Gallagher and Bruynooghe [1990]
and Benkerimi and Hill [1993]). Closedness (as well as the related notion of cov-
eredness in Benkerimi and Lloyd [1990]) basically requires that every atom in the
body of a resultant is matched by a specialized predicate definition. This guar-
antees that A forms a complete description of all possible computations that can
occur at run-time of the specialized program.

The main practical difficulty of partial deduction is the control of polyvariance
problem, which reduces to finding a terminating procedure to produce a finite set
of atoms A which satisfies the above correctness conditions while at the same time
providing as much potential for specialization as possible.

1To avoid the problematic resultant A← A.
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2.2 Abstraction

Termination is usually obtained by using a suitable abstraction operator, defined
as follows:

Definition 2.2.1. Let A and A′ be sets of atoms. Then A′ is an abstraction of
A if and only if every atom in A is an instance of an atom in A′. An abstraction
operator is an operator which maps every finite set of atoms to a finite abstraction
of it.

The following generic scheme, based on a similar one in Gallagher [1991] and
Gallagher [1993], describes the basic layout of practically all algorithms for control-
ling partial deduction.

Algorithm 2.2.2 (Standard Partial Deduction).

Input: A program P and a goal G
Output: A specialized program P ′

Initialization: i = 0 , Ai = {A | A is an atom in G }

repeat

for each Ak ∈ Ai, compute a finite SLDNF-tree τk for P ∪ {← Ak}
by applying unfolding rule U ;

let A′i := Ai∪ {Bl|Bl is an atom in a leaf of some tree τk, such that
Bl is not an instance 2 of any Aj ∈ Ai} ;

let Ai+1 := abstract(A′i) where abstract is an abstraction operator
let i := i + 1;

until Ai+1 = Ai

Apply a renaming transformation to Ai to ensure independence and

then construct P ′ by taking resultants.

In itself the use of an abstraction operator does not yet guarantee global termi-
nation. But if the above algorithm terminates then independence and coveredness
are ensured. With this observation we can reformulate the control of polyvariance
problem as one of finding an abstraction operator which maximizes specialization
while ensuring termination.

The abstraction operator examines the set of atoms to be partially deduced and
then decides which atoms should be abstracted and which ones should be left un-
modified. A very simple abstraction operator, which ensures termination, can be
obtained by imposing a finite maximum number of atoms in Ai and using the most
specific generalization (msg)3 to stick to that maximum. This approach is however
unsatisfactory. First, it involves an ad hoc maximum number, which might lead to
either too much or too little polyvariance, depending on the context. Second, the
msg is just based on the syntactic structure of the atoms to be specialized. This is
generally not such a good idea. Indeed, two atoms can be unfolded and specialized
in a very similar way in the context of one program P1, while in the context of
another program P2 their specialization behavior can be drastically different. The

2One can also use the variant test to make the algorithm more precise.
3Also known as antiunification or least general generalization; see for instance Lassez et al. [1988].
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← append([a], X, Y ) ← append(X, [a], Y )

✷ ← append(X ′, [a], Y ′)

(1) (2)

← append([], X, Y ′)

✷

(1)

(2)

Fig. 1. SLD-trees τB and τC for Example 2.2.3.

syntactic structure of the two atoms is of course unaffected by the particular con-
text, and an operator like the msg will perform exactly the same abstraction within
P1 and P2, although different generalizations might be called for.

A better candidate for an abstraction might be to examine the SLDNF-trees
generated for these atoms. These trees capture (to some depth) how the atoms be-
have computationally in the context of the respective programs. They also capture
(part of) the specialization that has been performed on these atoms. An abstrac-
tion operator which takes these trees into account will notice their similar behavior
in the context of P1 and their dissimilar behavior within P2, and can therefore take
appropriate actions in the form of different generalizations. The following example
illustrates these points.

Example 2.2.3. Let P be the append program:

(1) append([], Z, Z)←

(2) append([H |X ], Y, [H |Z])← append(X, Y, Z)

Note that we have added clause numbers, which we will henceforth take the liberty
to incorporate into illustrations of SLD-trees in order to clarify which clauses have
been resolved with. To avoid cluttering the figures we will also sometimes drop the
substitutions in such figures.

Let A = {B, C} be a dependent set of atoms, where B = append([a], X, Y ) and
C = append(X, [a], Y ). Typically a partial deducer will unfold the two atoms of A
in the way depicted in Figure 1, returning the finite SLD-trees τB and τC . These
two trees, as well as the associated resultants, have a very different structure. The
atom append([a], X, Y ) has been fully unfolded, and we obtain for resultants(τB)
the single fact

append([a], X, [a|X ])←

while for append(X, [a], Y ) we obtain for resultants(τC) the following set of clauses:

append([], [a], [a])←

append([H |X ], [a], [H |Z])← append(X, [a], Z)

So, in this case, it is vital to keep separate specialized versions for B and C and
not abstract them for example by their msg.

However, it is very easy to come up with another context in which the specializa-
tion behaviors of B and C are almost indiscernible. Take for instance the following
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✷

← append∗([a], X, Y ) ← append∗(X, [a], Y )

✷ ← append∗(TX , [], E)

(1∗) (2∗)

← append∗([], TX , E)

fail fail

(1∗) (2∗)

Fig. 2. SLD-trees τ∗

B
and τ∗

C
for Example 2.2.3.

program P ∗ in which append∗ no longer appends two lists, but finds common ele-
ments at common positions:

(1∗) append∗([X |TX ], [X |TY ], [X ])←

(2∗) append∗([X |TX ], [Y |TY ], E)← append∗(TX , TY , E)

The associated finite SLD-trees τ∗B and τ∗C , depicted in Figure 2, are now almost
fully identical. In that case, it is not useful to keep different specialized versions for
B and C because the following single set of specialized clauses could be used for B
and C without specialization loss:

append∗([a|T1], [a|T2], [a])←

This illustrates that the syntactic structures of B and C alone provide insufficient
information for a satisfactory control of polyvariance and that a refined abstraction
operator should also take the associated SLDNF-trees into consideration.

2.3 Characteristic Paths and Trees

Above we have illustrated the interest of examining the SLDNF-trees generated
for the atoms to be partially deduced and for example only abstract atoms if their
associated trees are “similar enough.” A crucial question is of course which part
of these SLDNF-trees should be taken into account to decide upon similarity. If
we take everything into account, i.e., only abstract two atoms if their associated
trees are identical, this amounts to performing no abstraction at all. So an ab-
straction operator should focus on the “essential” structure of an SLDNF-tree and
for instance disregard the particular substitutions and goals within the tree. The
following two definitions, adapted from Gallagher [1991], do just that: they char-
acterize the essential structure of SLDNF-derivations and trees.

Definition 2.3.1 (Characteristic Path). Let G0 be a goal, and let P be a normal
program whose clauses are numbered. Let G0, . . . , Gn be the goals of a finite,
possibly incomplete SLDNF-derivation D of P ∪ {G0}. The characteristic path of
the derivation D is the sequence 〈l0 : c0, . . . , ln−1 : cn−1〉, where li is the position
of the selected literal in Gi, and ci is defined as follows:

—if the selected literal is an atom, then ci is the number of the clause chosen to
resolve with Gi.

—if the selected literal is ¬p(t̄), then ci is the predicate p.
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The set containing the characteristic paths of all possible finite SLDNF-derivations
for P ∪ {G0} will be denoted by chpaths(P, G0).

For example, the characteristic path of the derivation associated with the only
branch of the SLD-tree τB in Figure 1 is 〈1 : 2, 1 : 1〉.

Recall that an SLDNF-derivation D can be either failed, incomplete, successful,
or infinite. As we will see below, characteristic paths will only be used to char-
acterize finite and nonfailing derivations of atomic goals. Once the top-level goal
is known, the characteristic path is sufficient to reconstruct all the intermediate
goals as well as the final one. So, using p in the second point of Definition 2.3.1
instead of a unique symbol to signal the selection of a negative literal is a matter
of convention rather than necessity.

Now that we have characterized derivations, we can characterize goals through
the derivations in their associated SLDNF-trees.

Definition 2.3.2 (Characteristic Tree). Let G be a goal, P a normal program,
and τ a finite SLDNF-tree for P ∪{G}. Then the characteristic tree τ̂ of τ is the set
containing the characteristic paths of the nonfailing SLDNF-derivations associated
with the branches of τ . τ̂ is called a characteristic tree if and only if it is the
characteristic tree of some finite SLDNF-tree.

Let U be an unfolding rule such that U(P, G) = τ . Then τ̂ is also called the
characteristic tree of G (in P ) via U . We introduce the notation chtree(G, P, U) =
τ̂ . We also say that τ̂ is a characteristic tree of G (in P ) if it is the characteristic
tree of G (in P ) via some unfolding rule U .

Note that the characteristic path of an empty derivation is the empty path 〈〉,
and the characteristic tree of a trivial SLDNF-tree is {〈〉}.

Although a characteristic tree only contains a collection of characteristic paths,
the actual tree structure is not lost and can be reconstructed without ambigu-
ity. The “glue” is provided by the clause numbers inside the characteristic paths
(branching in the tree is indicated by differing clause numbers).

Example 2.3.3. The characteristic trees of the finite SLD-trees τB and τC in
Figure 1 are {〈1 : 2, 1 : 1〉} and {〈1 : 1〉, 〈1 : 2〉} respectively. The characteristic
trees of the finite SLD-trees τ∗B and τ∗C in Figure 2 are both {〈1 : 1∗〉}.

The characteristic tree captures all the relevant aspects of specialization, attained
by the local control for a particular atom:

—The branches that have been pruned through the unfolding process (namely those
that are absent from the characteristic tree).

—How deep ← A has been unfolded and which literals and clauses have been
resolved with each other in that process. This captures the computation steps
that have already been performed at partial deduction time.

—The number of clauses in the resultants of A (namely one per characteristic path)
and (implicitly) which predicates are called in the bodies of the resultants. As
we will see later, this means that a single predicate definition can (in principle)
be used for two atoms which have the same characteristic tree.
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❅
❅❅❘
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❅❅❘
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��✠

❄

(2)(1)

← member(a, [a])

✷ ← member(a, [])

(2)(1)

fail

← member(a, [a, b])

✷ ← member(a, [b])

← member(a, [])

(2)

fail

Fig. 3. SLD-trees for Example 2.3.4.

A specialization aspect that does not materialize within a characteristic tree is
how the atoms in the leaves of the associated SLDNF-tree are further specialized,
i.e., the global control and precision are not captured.

By examining only the nonfailing branches we do not capture how exactly some
branches were pruned. The following example illustrates why this is adequate and
even beneficial.

Example 2.3.4. Let P be the following program:

(1) member(X, [X |T ])←

(2) member(X, [Y |T ])← member(X, T )

Let A = member(a, [a, b]) and B = member(a, [a]). Suppose that A and B are un-
folded as depicted in Figure 3. Then both these atoms have the same characteristic
tree τ = {〈1 : 1〉} although the associated SLDNF-trees differ by the structure of
their failing branches. However, this is of no relevance, because the failing branches
do not materialize within the resultants (i.e., the specialized code generated for the
atoms), and furthermore the single resultant member(a, [a|T ])← could be used for
both A and B without loosing any specialization.

In summary, characteristic trees seem to be an almost ideal vehicle for a refined
control of polyvariance, a fact we will try to exploit in the following.

2.4 An Abstraction Operator Using Characteristic Trees

The following abstraction operator represents a first attempt at using characteristic
trees for the control of polyvariance. Basically it classifies atoms according to their
associated characteristic tree. Generalization, in this case the msg , is then only
applied on those atoms which have the same characteristic tree.

Definition 2.4.1 (chabsP,U). Let P be a normal program, U an unfolding rule
and A a set of atoms. For every characteristic tree τ , let Aτ be defined as Aτ =
{A | A ∈ A ∧ chtree(← A, P, U) = τ}. The abstraction operator chabsP,U is then
defined as chabsP,U (A) = {msg(Aτ ) | τ is a characteristic tree}.

Unfortunately, although for a lot of practical cases chabsP,U performs quite well,
it does not always preserve the characteristic trees, entailing a sometimes quite
severe loss of precision and specialization.

We first illustrate the possible specialization losses in the following example.
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Example 2.4.2. Let us return to Example 2.3.4 and specialize the member pro-
gram for A = member(a, [a, b]) and B = member(a, [a]). First we put the atoms into
A0: A0 = {member(a, [a, b]),member(a, [a])}. For both atoms the associated char-
acteristic tree is τ = {〈1 : 1〉}, given for example a determinate unfolding rule with
lookahead (see Figure 3). Thus chabsP,U , as well as the method of Gallagher [1991],
abstracts the two atoms and produces the generalized set A1 = {member(a, [a|T ])}.
Unfortunately, the generalized atom member(a, [a|T ]) has a different characteristic
tree τ ′, independently of the particular unfolding rule. For a determinate unfolding
rule with lookahead we obtain τ ′ = {〈1 : 1〉, 〈1 : 2〉}.

This loss of precision leads to suboptimal specialized programs. At the next step
of the algorithm the atom member (a, T ) will be added to A1. This atom also has
the characteristic tree τ ′ under U . Hence the final set A2 equals {member(a, L)}
(containing the msg of member(a, [a|T ]) and member(a, T )}), and we obtain the
following specialization, suboptimal for ← member(a, [a, b]),member(a, [a]):

(1’) member(a, [a|T ])←

(2’) member(a, [X |T ])← member(a, T )

So, although partial deduction was able to figure out that member(a, [a, b]) as
well as member(a, [a]) have only one nonfailing resolvent, this information has
been lost due to an imprecision of the abstraction operator, thereby leading to
a suboptimal residual program in which the determinacy is not explicit (and re-
dundant computation steps occur at run-time). Note that a “perfect” program
for ← member(a, [a, b]),member(a, [a]) would just consist of (a filtered version of)
clause (1’).

As explained by Leuschel and De Schreye [1998], these losses of precision can
also lead to nontermination of the partial deduction process, further illustrating
the importance of preserving characteristic trees upon generalization.

3. PARTIAL DEDUCTION WITH CHARACTERISTIC ATOMS

We now present a way to preserve characteristic trees during abstraction. The basic
idea is to simply impose characteristic trees on the generalized atoms.

3.1 Characteristic Atoms

We first introduce the crucial notion of a characteristic atom.

Definition 3.1.1. A characteristic atom is a couple (A, τ) consisting of an atom
A and a characteristic tree τ .

Note that τ is not required to be a characteristic tree of A in the context of the
particular program P under consideration.

Example 3.1.2. Let τ = {〈1 : 1〉} be a characteristic tree. Then the couples
CA1 = (member (a, [a, b]), τ) and CA2 = (member(a, [a]), τ) are characteristic
atoms. CA3 = (member(a, [a|T ]), τ) is also a characteristic atom, but for ex-
ample in the context of the member program P from Example 2.3.4, τ is not a
characteristic tree of its atom component member(a, [a|T ]) (cf. Example 2.4.2). In-
tuitively, such a situation corresponds to imposing the characteristic tree τ on the
atom member(a, [a|T ]). Indeed, as we will see later, CA3 can be seen as a precise
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generalization (in P ) of the atoms member(a, [a, b]) and member (a, [a]), solving the
problem of Example 2.4.2.

A characteristic atom will be used to represent a possibly infinite set of atoms,
called its concretizations. This is nothing really new: in standard partial deduction,
an atom A also represents a possibly infinite set of concrete atoms, namely its
instances. The characteristic tree component of a characteristic atom will just act
as a constraint on the instances, i.e., keeping only those instances which have a
particular characteristic tree. This is captured by the following definition.

Definition 3.1.3 (Concretization). Let (A, τA) be a characteristic atom and P a
program. An atom B is a precise concretization of (A, τA) (in P )4 if and only if B
is an instance of A and, for some unfolding rule U , chtree(← B, P, U) = τA. An
atom is a concretization of (A, τA) (in P ) if and only if it is an instance of a precise
concretization of (A, τA) (in P ). We denote the set of concretizations of (A, τA) in
P by γP (A, τA).

A characteristic atom with a nonempty set of concretizations in P will be called
well-formed in P or a P -characteristic atom. We will from now on usually restrict
our attention to P -characteristic atoms. In particular, the partial deduction algo-
rithm presented later on in Section 3.4 will only produce P -characteristic atoms,
where P is the original program to be specialized.

Example 3.1.4. Take the characteristic atom CA3 = (member(a, [a|T ]), τ) with
τ = {〈1 : 1〉} from Example 3.1.2 and the member program P from Example 2.3.4.
The atoms member(a, [a]) and member(a, [a, b]) are precise concretizations of CA3

in P (see Figure 3). Also, neither member(a, [a|T ]) nor member(a, [a, a]) are con-
cretizations of CA3 in P . Finally, observe that CA3 is a P -characteristic atom
while for instance (member(a, [a|T ]), {〈2 : 5〉} or even (member(a, [a|T ]), {〈1 : 2〉}
are not.

Example 3.1.5. Let P be the following simple program:

(1) p(a, Y )←

(2) p(X, Y )← ¬q(Y ), q(X)

(3) q(b)←

Let τ = {〈1 : 1〉, 〈1 : 2, 1 : q, 1 : 3〉} and CA = (p(X, Y ), τ). Then p(X, a) and
p(X, c) are precise concretizations of CA in P and neither p(b, b), p(X, b), p(a, Y ),
nor p(X, Y ) are concretizations of CA in P . Also p(b, a) and p(a, a) are both
concretizations of CA in P , but they are not precise concretizations. Observe that
the selection of the negative literal ¬q(Y ), corresponding to 1 : q in τ , is unsafe for
← p(X, Y ), but that for any concretization of CA in P the corresponding derivation
step is safe and succeeds (i.e., the negated atom is ground and fails finitely).

Note that by definition the set of concretizations associated with a characteristic
atom is downward closed (or closed under substitution).This observation justifies
the following definition.

4If P is clear from the context, we will not explicitly mention it.
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Definition 3.1.6 (Unconstrained Characteristic Atom). A P -characteristic atom
(A, τA) with A ∈ γP (A, τA) is called unconstrained (in P ).

The concretizations of an unconstrained characteristic atom (A, τA) are identical
to the instances of the ordinary atom A (because the concretizations are downward
closed, and γP (A, τ) contains no atom strictly more general than A). So, character-
istic atoms along with Definition 3.1.3 provide a proper generalization of the way
atoms are used in the standard partial deduction approach.

3.2 Generating Resultants

We now address the generation of resultants for characteristic atoms. We need the
following definition in order to formalize the resultants associated with a charac-
teristic atom.

Definition 3.2.1. A generalized SLDNF-derivation is either composed of ordi-
nary SLDNF-derivation steps or of derivation steps in which a nonground negative
literal is selected and removed. Generalized SLDNF-derivations will be called un-
safe if they contain steps of the latter kind and safe if they do not.

Most of the definitions for ordinary SLDNF-derivations, like the associated char-
acteristic path and resultant, carry over to generalized derivations.

We first define a set of possibly unsafe generalized SLDNF-derivations associated
with a characteristic atom:

Definition 3.2.2 (DP (A, τ)). Let P be a program and (A, τ) a P -characteristic
atom. If τ 6= {〈〉} then DP (A, τ) is the set of all generalized SLDNF-derivations of
P ∪ {← A} such that their characteristic paths are in τ . If τ = {〈〉} then DP (A, τ)
is the set of all nonfailing SLD-derivations of P ∪ {← A} of length 1.5

Note that the derivations in DP (A, τ) are necessarily finite and nonfailing (be-
cause (A, τ) is a P -characteristic atom; see also Lemma B.2.9, in the electronic
appendix to this article).

We will call a P -characteristic atom (A, τ) safe (in P ) if and only if all derivations
in DP (A, τ) are safe. An unconstrained characteristic atom in P is safe in P .6

Using the definition of DP (A, τ), we can now define the resultants, and hence
the partial deduction, associated with characteristic atoms:

Definition 3.2.3 (Partial Deduction of (A, τ)). Let P be a program and (A, τ) a
P -characteristic atom. Let {D1, . . . , Dn} be the generalized SLDNF-derivations in
DP (A, τ), and let ← G1, . . . ,← Gn be the goals in the leaves of these derivations.
Let θ1, . . . , θn be the computed answers of the derivations from← A to← G1, . . . ,←
Gn respectively. Then the set of resultants {Aθ1 ← G1, . . . , Aθn ← Gn} is called
the partial deduction of (A, τ) in P . Every atom occurring in some of the Gi will
be called a leaf atom (in P ) of (A, τ). We will denote the set of such leaf atoms by
leavesP (A, τ).

5Just like in ordinary partial deduction, we want to construct only nontrivial SLDNF-trees for
P ∪ {← A} to avoid the problematic resultant A← A.
6Because A must be a precise concretization of (A, τ), we have that τ is a characteristic tree of
A, and thus all derivations in DP (A, τ) are ordinary SLDNF-derivations and therefore safe.
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Example 3.2.4. The partial deduction of (member(a, [a|T ]), {〈1 : 1〉}) in the pro-
gram P of Example 2.3.4 is {member(a, [a|T ]) ←}. Note that it is different from
any set of resultants that can be obtained for the ordinary atom member(a, [a|T ]).
However, as we will prove below, the partial deduction is correct for any concretiza-
tion of (member (a, [a|T ]), {〈1 : 1〉}).

Example 3.2.5. The partial deduction P ′ of (p(X, Y ), τ) with τ = {〈1 : 1〉,
〈1 : 2, 1 : q, 1 : 3〉} of Example 3.1.5 is

(1’) p(a, Y )←

(2’) p(b, Y )←

Note that using P ′ instead of P is correct for the concretizations p(b, a) or p(X, a)
of (p(X, Y ), τ) but not for p(b, b) or p(X, b), which are not concretizations of
(p(X, Y ), τ).

We can now generate partial deductions not for sets of atoms, but for sets of
characteristic atoms. As such, the same atom A might occur in several charac-
teristic atoms, but with different associated characteristic trees. This means that
renaming, as a way to ensure independence, becomes even more compelling than
in the standard partial deduction setting.

In addition to renaming, we also incorporate argument filtering, leading to the
following definition.

Definition 3.2.6 (Renaming). An atomic renaming α for a set Ã of characteristic
atoms is a mapping from Ã to atoms such that

—for each (A, τ) ∈ Ã, vars(α((A, τ))) = vars(A);

—for CA, CA′ ∈ Ã, such that CA 6= CA′, the predicate symbols of α(CA) and
α(CA′) are distinct (but not necessarily fresh, in the sense that they can occur
in Ã).

Let P be a program. A renaming function ρα for Ã in P based on α is a mapping
from atoms to atoms such that

ρα(A) = α((A′, τ ′))θ for some (A′, τ ′) ∈ Ã with A = A′θ and A ∈ γP (A′, τ ′).

We leave ρα(A) undefined if A is not a concretization in P of an element in Ã. A
renaming function ρα can also be applied to a first-order formula, by applying it
individually to each atom of the formula.

Note that, if the sets of concretizations of two or more elements in Ã overlap,
then ρα must make a choice for the atoms in the intersection, and several renaming
functions based on the same α exist.

Definition 3.2.7 (Partial Deduction with respect to Ã). Let P be a program and
let Ã = {(A1, τ1), . . . , (An, τn)} be a finite set of P -characteristic atoms. Also, let
ρα be a renaming function for Ã in P based on the atomic renaming α. For each
i ∈ {1, . . . , n}, let Ri be the partial deduction of (Ai, τi) in P . Then the program
{α((Ai, τi))θ ← ρα(Bdy) | Aiθ ← Bdy ∈ Ri ∧ 1 ≤ i ≤ n ∧ ρα(Bdy) is defined} is
called the partial deduction of P with respect to Ã and ρα.

Example 3.2.8. Let P be the following program:
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(1) member(X, [X |T ])←

(2) member(X, [Y |T ])← member(X, T )

(3) t← member(a, [a]),member(a, [a, b])

Let τ = {〈1 : 1〉}, τ ′ = {〈1 : 3〉}, and let Ã = {(member(a, [a|T ]), τ), (t, τ ′)}.
Also let α((member (a, [a|T ]), τ)) = m1(T ) and α((t, τ ′)) = t. Because the con-
cretizations in P of the elements in Ã are disjoint there exists only one renam-
ing function ρα based on α. Notably ρα(← member(a, [a]),member (a, [a, b])) =
← m1([]), m1([b]) because both atoms are concretizations of (member(a, [a|T ]), τ).
Therefore the partial deduction of P with respect to Ã and ρα is7

(1’) m1(X)←

(2’) t← m1([]), m1([b])

Note that in Definition 3.2.7 the original program P is completely “thrown away.”
This is actually what a lot of practical partial evaluators for functional or logic
programming languages do, but is dissimilar to the Lloyd and Shepherdson [1991]
framework. However, there is no fundamental difference between these two ap-
proaches: keeping part of the original program can be simulated in our approach
by using unconstrained characteristic atoms of the form (A, {〈〉}) combined with a
renaming α such that α((A, {〈〉})) = A.

3.3 Correctness Results

Let us first rephrase the coveredness condition of ordinary partial deduction in the
context of characteristic atoms. This definition will ensure that the renamings,
applied for instance in Definition 3.2.7, are always defined.

Definition 3.3.1 (P-Covered). Let P be a program and Ã a set of characteristic
atoms. Then Ã is called P -covered if and only if for every characteristic atom in
Ã, each of its leaf atoms (in P ) is a concretization in P of a characteristic atom in
Ã. Also, a goal G is P -covered by Ã if and only if every atom A occurring in G is
a concretization in P of a characteristic atom in Ã.

The main correctness result for partial deduction with characteristic atoms is as
follows:

Theorem 3.3.2. Let P be a normal program, G a goal, Ã any finite set of P -
characteristic atoms, and P ′ the partial deduction of P with respect to Ã and some
ρα. If Ã is P -covered and if G is P -covered by Ã then the following hold:

(1 ) P ′ ∪ {ρα(G)} has an SLDNF-refutation with computed answer θ if and only if
P ∪ {G} does.

(2 ) P ′ ∪ {ρα(G)} has a finitely failed SLDNF-tree if and only if P ∪ {G} does.

The proof can be found in the (electronic) Appendix B and proceeds in three
successive stages.

7The FAR filtering algorithm of Leuschel and Sørensen [1996] can be used to further improve the
specialized program by removing the redundant argument of m1.
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(1) First, we restrict ourselves to unconstrained characteristic atoms. This allows
us to straightforwardly reuse the correctness results for standard partial deduc-
tion with renaming.

(2) We then move on to safe characteristic atoms. Their partial deductions can
basically be obtained from partial deductions for unconstrained characteristic
atoms by removing certain clauses. We show that these clauses can be safely
removed without affecting computed answers or finite failure.

(3) In the final step we allow any characteristic atom. The associated partial de-
ductions can be obtained from partial deductions for safe characteristic atoms,
basically by removing negative literals from the clauses. We establish correct-
ness by showing that, for all concrete executions, these negative literals will be
ground and succeed.

3.4 A Set-Based Algorithm and Its Termination

In this section, we present a simple (set-based) algorithm for partial deduction
through characteristic atoms.

We first define an abstraction operator which, by definition, preserves the char-
acteristic trees.

Definition 3.4.1 (chmsg(, )Ã|τ ). Let Ã be a set of characteristic atoms. Also
let, for every characteristic tree τ , Ã|τ be defined as Ã|τ = {A | (A, τ) ∈ Ã}. The
operator chmsg() is defined as

chmsg(Ã) = {(msg(Ã|τ ), τ) | τ is a characteristic tree }.

In other words, only one characteristic atom per characteristic tree is allowed
in the resulting abstraction. Given for example, Ã = {(p(a), {〈1 : 1〉}), (p(b), {〈1 :
1〉})}, we obtain the abstraction chmsg(Ã) = {(p(X), {〈1 : 1〉})}.

Definition 3.4.2 (chatom , chatoms). Let A be an ordinary atom, U an unfolding
rule, and P a program. We then define chatom :

chatom(A, P, U) = (A, τ), where τ = chtree(← A, P, U)

We extend chatom to sets of atoms:

chatoms(Ã, P, U) = {chatom(A, P, U) | A ∈ Ã}

Note that A is a precise concretization of chatom(A, P, U)
The following algorithm for partial deduction with characteristic atoms is para-

metrized by an unfolding rule U , thus leaving the particulars of local control un-
specified. Recall that leavesP (A, τA) represents the leaf atoms of (A, τA) (see Def-
inition 3.2.3).

Algorithm 3.4.3 (Ecological Partial Deduction).

Input: a program P and a goal G

Output: a specialized program P ′

Initialization: k := 0; Ã0 := chatoms({A | A is an atom in G}, P, U);

repeat

L̃k := chatoms({leavesP (A, τA) | (A, τA) ∈ Ãk}, P, U);

Ãk+1 := chmsg(Ãk ∪ L̃k); k := k + 1;
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until Ãk = Ãk+1 (modulo variable renaming)

Ã := Ãk;

P ′ := a partial deduction of P with respect to Ã and some ρα;

Let us illustrate the operation of Algorithm 3.4.3 on Example 2.3.4.

Example 3.4.4. Let G =← member(a, [a]),member(a, [a, b]), and P be the pro-
gram from Example 2.3.4. Also let chtree(← member(a, [a]), P, U) = chtree(←
member(a, [a, b]), P, U) = {〈1 : 1〉} = τ (see Figure 3 for the corresponding SLD-
trees). The algorithm operates as follows:

(1) Ã0 = {(member(a, [a]), τ), (member (a, [a, b]), τ)}

(2) leavesP (member(a, [a]), τ) = leavesP (member (a, [a, b]), τ) = ∅,
Ã1 = chmsg(Ã0) = {(member(a, [a|T ]), τ)}

(3) leavesP (member(a, [a|T ]), τ) = ∅, Ã2 = chmsg(Ã1) = Ã1 and we have reached
the fixpoint Ã.

A partial deduction P ′ with respect to Ã and ρα with α((member (a, [a|T ]), τ)) =
m1(T ) is

m1(X)←

Ã is P -covered, and every atom in G is a concretization of a characteristic atom
in Ã. Hence Theorem 3.3.2 can be applied: we obtain the renamed goal G′ =
ρα(G) =← m1([]), m1([b]), and P ′ ∪ {G′} yields the correct result.

The following theorem establishes the correctness of Algorithm 3.4.3, as well as
its termination under a certain condition.

Theorem 3.4.5. If Algorithm 3.4.3 generates a finite number of distinct char-
acteristic trees then it terminates and produces a partial deduction satisfying the
requirements of Theorem 3.3.2 for any goal G′ whose atoms are instances of atoms
in G.

Proof. See electronic Appendix C.

The method for partial deduction as described in this section, using the frame-
work of Section 3, has been called ecological partial deduction by Leuschel [1995]
because it guarantees the preservation of characteristic trees. A prototype par-
tial deduction system, using Algorithm 3.4.3, has been implemented, and experi-
mental results have been reported by Leuschel [1995] and Meulemans [1995]. We
will however further refine the algorithm in the next section and present extensive
benchmarks in Section 5.2.

Let us conclude this section with some comments on the relation with the work of
Leuschel and De Schreye [1998], which also solves the problem of preserving charac-
teristic trees upon generalization. In fact, Leuschel and De Schreye [1998] achieve
this by incorporating disequality constraints into the partial deduction process.
Note that in this section and article, the characteristic tree τ inside a character-
istic atom (A, τ) can also be seen as an implicit representation of constraints on
A. However, here these constraints are used only locally and are not propagated
to other characteristic atoms, while in the work of Leuschel and De Schreye [1998]
the constraints are propagated and thus used globally. Whether this has any sig-
nificant influence in practice remains to be seen. On the other hand, the method
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in this section is conceptually simpler and can handle any unfolding rule as well as
normal logic programs, while the work of Leuschel and De Schreye [1998] is cur-
rently limited to purely determinate unfoldings (without a lookahead) and definite
programs.

4. REMOVING DEPTH BOUNDS BY ADDING GLOBAL TREES

Having solved the first problem related to characteristic trees, their preservation
upon generalization, we now turn to the second problem: getting rid of the depth
bound, necessary to ensure termination of Algorithm 3.4.3.

4.1 The Depth Bound Problem

In some cases Algorithm 3.4.3 only terminates when imposing a depth bound on
characteristic trees. In this section we present some natural examples which show
that this leads to undesired results in cases where the depth bound is actually
required. (These examples can also be adapted to prove a similar point about
neighborhoods in the context of supercompilation of functional programs. We will
return to the relation of neighborhoods to characteristic trees in Section 4.7.)

When, for the given program, query, and unfolding rule, the above sketched
method generates a finite number of different characteristic trees, its global con-
trol regime guarantees termination and correctness of the specialized program as
well as “perfect” polyvariance: for every predicate, exactly one specialized version
is produced for each of its different associated characteristic trees. However, it
turns out that for a fairly large class of realistic programs (and unfolding rules),
the number of different characteristic trees generated is infinite. In those cases
Algorithm 3.4.3, as well as all earlier approaches based on characteristic trees
[Gallagher 1991; Gallagher and Bruynooghe 1991; Leuschel and De Schreye 1998],
terminates at the cost of imposing an ad hoc depth bound on characteristic trees.

We illustrate the problem through some examples, setting out with a slightly
artificial, but very simple one.

Example 4.1.1. The following is the well-known reverse with accumulating pa-
rameter where a list type check (in the style of Gallagher and de Waal [1992]) on
the accumulator has been added.

(1) rev([], Acc, Acc)←

(2) rev([H |T ], Acc, Res)← ls(Acc), rev (T, [H |Acc], Res)

(3) ls([])←

(4) ls([H |T ])← ls(T )

As can be noticed in Figure 4, unfolding (determinate [Gallagher 1991; Gallagher
Bruynooghe [1991]; Leuschel and De Schreye 1998] and well founded [Bruynooghe
et al. 1992; Martens and De Schreye 1996; Martens et al. 1994], among others) pro-
duces an infinite number of different characteristic atoms, all with a different char-
acteristic tree. Imposing a depth bound of say 100, we obtain termination; however,
100 different characteristic trees (and instantiations of the accumulator) arise, and
the algorithm produces 100 different versions of rev : one for each characteristic
tree. The specialized program thus looks like:

(1’) rev([], [], [])←
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❅
❅❘
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❄

(1)

✷

(2)

← rev(L, [], R)

← ls([]), rev(T, [H], R)

← rev(T, [H], R)

(3)

❅
❅❘

�
�✠

❄

❄

(1)

✷

(2)

← rev(T, [H], R)

← ls([H]), rev(T ′, [H′, H], R)

← rev(T ′, [H′, H], R)

(3)

← ls([]), rev(T ′, [H′, H], R)

(4)

❅
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�
�✠

❄

❄

❄

In general:

(1)

✷

(2)

(4)

← rev(T,

n︷︸︸︷
[...] , R)

← ls([...]), rev(T ′, [H′, ...],R)

← rev(T ′, [H′, ...],R)

(3)

← ls([]), rev(T ′, [H′, ...],R)

(4)

...





n

Fig. 4. SLD-trees for Example 4.1.1.

(2’) rev([H |T ], [], Res)← rev2(T, [H ], Res)

(3’) rev2([], [A], [A])←

(4’) rev2([H |T ], [A], Res)← rev3(T, [H, A], Res)

(1)
...

(197’) rev99([], [A1, . . . , A98], [A1, . . . , A98])←

(198’) rev99([H |T ], [A1, . . . , A98], Res)←
rev100(T, [H, A1, . . . , A98], Res)

(199’) rev100([], [A1, . . . , A99|AT ], [A1, . . . , A99|AT ]) ←

(200’) rev100([H |T ], [A1, . . . , A99|AT ], Res)←
ls(AT ), rev100(T, [H, A1, . . . , A99|AT ], Res)

(201’) ls([])←

(202’) ls([H |T ])← ls(T )

This program is certainly far from optimal and clearly exhibits the ad hoc nature
of the depth bound.

Situations like the above typically arise when an accumulating parameter in-
fluences the computation, because then the growing of the accumulator causes a
corresponding growing of the characteristic trees. With most simple programs, this
is not the case. For instance, in the standard reverse with accumulating parameter,
the accumulator is only copied in the end, but never influences the computation.
For this reason it was generally felt that natural logic programs would give rise to
only finitely many characteristic trees.
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Program:

(1) make non ground(GrTerm,NgTerm)←
mng(GrTerm,NgTerm, [], Sub)

(2) mng(var(N), X, [], [sub(N, X)])←
(3) mng(var(N), X, [sub(N, X)|T ], [sub(N, X)|T ])←
(4) mng(var(N), X, [sub(M, Y )|T ], [sub(M, Y )|T1])←

not(N = M), mng(var(N), X, T, T1)
(5) mng(struct(F, GrArgs), struct(F, NgArgs), InSub, OutSub)←

l mng(GrArgs,NgArgs, InSub, OutSub)
(6) l mng([], [], Sub, Sub)←
(7) l mng([GrH |GrT ], [NgH |NgT ], InSub, OutSub)←

mng(GrH,NgH, InSub, InSub1),
l mng(GrT, NgT, InSub1, OutSub)

Example query:

← make non ground(struct(f, [var(1), var(2), var(1)]), F )
❀ c.a.s. {F/struct (f, [Z, V, Z])}

Fig. 5. Lifting the ground representation.

However, among larger and more sophisticated programs, cases like the above
become more and more frequent, even in the absence of type-checking. For in-
stance, in an explicit unification algorithm, one accumulating parameter is the
substitution built so far. It heavily influences the computation because new bind-
ings have to be added and checked for compatibility with the current substitution.
Another example is the “mixed” metainterpreter of Hill and Gallagher [1994] and
Leuschel and De Schreye [1995] (called InstanceDemo in the former; part of it is
depicted in Figure 5) for the ground representation in which (operationally) the
goals are “lifted” to the nonground representation for resolution. To perform the
lifting, an accumulating parameter is used to keep track of the ground representa-
tion of variables that have already been encountered. This accumulator influences
the computation: upon encountering a new ground representation of a variable
(var (N) in clauses (2)–(4) of Figure 5), the program inspects the accumulator (the
incoming accumulator is represented in the third argument of the predicate mng;
the resulting accumulator is generated in the fourth argument).

Example 4.1.2. Let A = l mng(Lg, Ln, [sub(N, X)], S) and P be the program
of Figure 5 in which the predicate l mng transforms a list of ground terms (its first
argument) into a list of nonground terms (its second argument; the third and fourth
arguments represent the incoming and outgoing accumulator respectively). As can
be seen in Figure 6, unfolding A (e.g., using well-founded measures), the atom

l mng(Tg, Tn, [sub(N, X), sub(J, Hn)], S)

is added at the global control level. The third argument has grown, i.e., we have an
accumulator. When in turn unfolding l mng(Tg, Tn, [sub(N, X), sub(J, Hn)], S),
we obtain a deeper characteristic tree (because mng traverses the third argument
and thus needs one more step to reach the end) with

l mng(Tg′, Tn′, [sub(N, X), sub(J, Hn), sub(J ′, Hn′)], S)

as one of its leaves. An infinite sequence of ever-growing characteristic trees results,
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❍❍❍❍❥
✟✟✟✟✙

✟✟✟✟✙

❄

❍❍❍❍❥

❄

(6) (7)

✷ ← mng(Hg, Hn, [sub(N, X)], S1), l mng(Tg, Tn, S1, S)

(3) (5)
(4)

← l mng(Lg, Ln,

accumulator︷ ︸︸ ︷
[sub(N, X)], S)

← l mng(Ag, An, [sub(N, X)], S1),
l mng(Tg, Tn, S1, S)

← l mng(Tg, Tn, [sub(N, X)], S)

(2)

← not(J = N), mng(var(J), Hn, [], T1), l mng(Tg, Tn, [sub(N, X)|T1], S)

← not(J = N), l mng(Tg, Tn, [sub(N, X), sub(J, Hn)]︸ ︷︷ ︸
accumulator

, S)

Fig. 6. Accumulator growth in Example 4.1.2.

✟✟✟✟✟✙
✓

✓
✓

✓
✓✓✴

❙
❙

❙
❙

❙❙✇

❍❍❍❍❍❥

l mng(Tg, Tn, [sub(N, X), sub(J, Hn)], S) l mng(Ag, An, [sub(N, X)], S1)

l mng(Lg, Ln, [sub(N, X)], S)

l mng(Tg, Tn, S1, S)l mng(Tg, Tn, [sub(N, X)], S)

Fig. 7. Initial section of a global tree for Example 4.1.2 and the unfolding of Figure 6.

and again, as in Example 4.1.1, we obtain nontermination without a depth bound,
and very unsatisfactory ad hoc specializations with it.

Summarizing, computations influenced by one or more growing data structures
are not so rare after all, and they cause ad hoc behavior of partial deduction, where
the global control is founded on characteristic trees with a depth bound. In the
next section, we show how this depth bound can be removed without endangering
termination.

4.2 Partial Deduction Using Global Trees

A general framework for global control, not relying on any depth bounds, is pro-
posed by Martens and Gallagher [1995]. Marked trees (m-trees) are introduced to
register descendency relationships among atoms at the global level. These trees
are subdivided into classes of nodes, and associated measure functions map nodes
to well-founded sets. The overall tree is kept finite through ensuring monotonicity
of the measure functions, and termination of the algorithm follows, provided the
abstraction operator (on atoms) is similarly well-founded. It is to this framework
that we turn for inspiration on how to solve the depth bound problem described in
Section 4.1.

First, we have chosen to use the term “global tree” rather than “marked tree” in
the present article, because it better indicates its functionality. Moreover, global
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trees rely on a well-quasi-order (or well-quasi-relation) between nodes, rather than
a well-founded one, to ensure their finiteness. Apart from that, in essence, their
structure is similar: they register which atoms derive from which at the global
control level. The initial part of such a tree, showing the descendency relationship
between the atom in the root and those in the dangling leaves of the SLDNF-tree
in Figure 6, is depicted in Figure 7.8

Now, the basic idea will be to have just a single class covering the whole global
tree structure and to watch over the evolution of characteristic trees associated to
atoms along its branches. Obviously, just measuring the depth of characteristic
trees would be far too crude: global branches would be cut off prematurely, and
entirely unrelated atoms could be mopped together through generalization, result-
ing in unacceptable specialization losses. As can be seen in Figure 4, we need a
more refined measure which would somehow spot when a characteristic tree (piece-
meal) “contains” characteristic trees appearing earlier in the same branch of the
global tree. If such a situation arises—as it indeed does in Example 4.1.1—it seems
reasonable to stop expanding the global tree, generalize the offending atoms, and
produce a specialized procedure for the generalization instead.

However, a closer look at the following variation of Example 4.1.2 shows that
also this approach would sometimes overgeneralize and consequently fall short of
providing sufficiently detailed polyvariance.

Example 4.2.1. Reconsider the program in Figure 5, and suppose that determi-
nate unfolding is used for the local control. Take as starting point for partial deduc-
tion A = mng(G, struct(cl, [struct(f, [X, Y ])|B]), [], S). When unfolding A (see Fig-
ure 8), we obtain an SLD-tree containing the atom mng(H, struct(f, [X, Y ]), [], S1)
in one of its leaves. If we subsequently determinately unfold the latter atom, we
obtain a tree that is “larger” than its predecessor, also in the more refined sense.
Potential nontermination would therefore be detected and a generalization exe-
cuted. However, the atoms in the leaves of the second tree are more general than
those already met, and simply continuing partial deduction without generalization
will lead to natural termination without any depth bound intervention.

Example 4.2.1 demonstrates that only measuring growth of characteristic trees,
even in a refined way, does not always lead to satisfactory specialization. In fact,
whenever the unfolding rule does not unfold “as deeply” as would be possible using
a refined termination relation (for whatever reason, e.g., efficiency of the special-
ized program or because the unfolding rule is not refined enough), then a growing
characteristic tree might simply be caused by splitting the “maximally deep tree”
(i.e., the one constructed using a refined termination relation) in such a way that
the second part “contains” the first part. Indeed, in Example 4.2.1, an unfolding
rule based on well-founded measures could have continued unfolding more deeply
for the first atom, thus avoiding the fake growing problem in this case.

Luckily, the same example also suggests a solution to this problem: rather than
measuring and comparing characteristic trees, we will scrutinize entire characteris-

8The global tree in Figure 6 also contains two nodes which are variants of their parent node.
Usually, atoms which are variants of one of their ancestor nodes will not be added to the global
tree, as they do not give rise to further specialization.
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�
�✠

❅
❅❘

❄

← l mng(A, [struct(f, [X, Y ])|B]), [], S)✷

← mng(H, struct(f, [X, Y ]), [], S1)︸ ︷︷ ︸, l mng(T, B, S1, S)

(2) (5)

(7)

← mng(G, struct(cl, [struct(f, [X, Y ])|B]), [], S)

�
�✠

❅
❅❘

❄

❄

❄

✷

(2) (5)

(7)

← mng(H, X, [], S2), l mng(T, [Y ], S2, S1)

← l mng(A, [X, Y ], [], S1)

←
︷ ︸︸ ︷
mng(H, struct(f, [X, Y ]), [], S1)

(7)

← mng(H, X, [], S2), mng(H′, Y, S2, S3), l mng(T ′, [], S3, S1)

← mng(H, X, [], S2), mng(H′, Y, S2, S1)

(6)

Fig. 8. SLD-trees for Example 4.2.1.

tic atoms, comparing both the syntactic content of the ordinary atoms they contain
and the associated characteristic trees. Accordingly, the global tree nodes will not
be labeled by plain atoms as in the work of Martens and Gallagher [1995], but by
entire characteristic atoms. A growing of a characteristic tree not coupled with
a growing of the syntactic structure then indicates a fake growing caused by a
conservative unfolding rule.

The rest of this section contains the formal elaboration of this new approach.

4.3 Generalizing Characteristic Atoms

In this section we extend the notions of variants, instances, and generalizations,
familiar for ordinary atoms, to characteristic trees and atoms.

Henceforth, we will use symbols like ≺ and ≻ (possibly annotated by some sub-
script) to refer to strict partial orders (antisymmetric, antireflexive, and transitive
binary relations) and � and � to refer to quasi orders (reflexive and transitive bi-
nary relations). We will use either “directionality” as is convenient in the context.
Given a quasi order �, we will use the associated equivalence relation ≡ and strict
partial order ≺.

For ordinary atoms, A1 � A2 will denote that A1 is more general than A2. We
define a similar notion for characteristic atoms along with an operator to compute
the most specific generalization. In a first attempt one might use the concretization
function to that end, i.e., one could stipulate that (A, τA) is more general than
(B, τB) if and only if γP (A, τA) ⊇ γP (B, τB). The problem with this definition, from
a practical point of view, is that this notion is undecidable in general, and a most
specific generalization is uncomputable. For instance, γP (A, τ) = γP (A, τ ∪ {δ})
holds if and only if for every instance of A, the last goal associated with δ fails
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finitely. Deciding this is equivalent to the halting problem. We will therefore
present a safe but computable approximation of the above notion, for which a most
specific generalization can be easily computed and which has some nice properties
in the context of a partial deduction algorithm (e.g., see Definition 4.4.8).

We first define an ordering on characteristic trees. In that context, the following
notation will prove to be useful: prefix(τ) = {δ | ∃γ such that δγ ∈ τ}.

Definition 4.3.1 (�τ ). Let τ1, τ2 be characteristic trees. We say that τ1 is more
general than τ2, and we denote this by τ1 �τ τ2, if and only if

(1) δ ∈ τ1 ⇒ δ ∈ prefix(τ2) and

(2) δ′ ∈ τ2 ⇒ ∃δ ∈ prefix ({δ′}) such that δ ∈ τ1.

Note that �τ is a quasi order on the set of characteristic trees and that τ1 �τ τ2

is equivalent to saying that τ2 can be obtained from τ1 by attaching subtrees to the
leaves of τ1.

Example 4.3.2. Given τ1 = {〈1 : 3〉}, τ2 = {〈1 : 3, 2 : 4〉}, and τ3 = {〈1 : 3〉,
〈1 : 4〉} we have that τ1 �τ τ2 and even τ1 ≺τ τ2, but not that τ1 �τ τ3 nor
τ2 �τ τ3. We also have that {〈〉} ≺τ τ1, but not that ∅ �τ τ1. In fact, {〈〉} �τ τ
holds for any τ 6= ∅, while ∅ �τ τ only holds for τ = ∅. Also τ �τ {〈〉} only holds
for τ = {〈〉}, and τ �τ ∅ only holds for τ = ∅.

The next two lemmas respectively establish a form of antisymmetry and transi-
tivity of the order relation on characteristic trees.

Lemma 4.3.3. Let τ1, τ2 be two characteristic trees. Then τ1 ≡τ τ2 if and only
if τ1 = τ2.

Proof. See electronic Appendix D

Lemma 4.3.4. Let τ1, τ2, and τ3 be characteristic trees. If τ1 �τ τ2 and τ2 �τ τ3

then τ1 �τ τ3.

Proof. Immediate from Definition 4.3.1.

We now present an algorithm to generalize two characteristic trees by computing
the common initial subtree. We will later prove that this algorithm calculates the
most specific generalization. The following notations will be useful in formalizing
the algorithm.

Definition 4.3.5. Let τ be a characteristic tree and δ a characteristic path. We
then define the notations τ ↓ δ = {γ | δγ ∈ τ} and top(τ) = {l : m | 〈l : m〉 ∈
prefix (τ)}.

Note that, for a nonempty characteristic tree τ , top(τ) = ∅ ⇔ τ = {〈〉}.

Algorithm 4.3.6 (msg of Characteristic Trees).

Input: two nonempty characteristic trees τA and τB

Output: the msg τ of τA and τB

Initialization: i := 0; τ0 := {〈〉};

while ∃δ ∈ τi such that top(τA ↓ δ) = top(τB ↓ δ) 6= ∅ do
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τi+1 := (τi \ {δ})∪ {δ〈l : m〉 | l : m ∈ top(τA ↓ δ)}; i := i + 1;
end while

return τ = τi

Example 4.3.7. Take the characteristic trees τA = {〈1 : 1, 1 : 2〉} and τB = {〈1 :
1, 1 : 2〉, 〈1 : 1, 1 : 3〉}. Then Algorithm 4.3.6 proceeds as follows:

(1) τ0 = {〈〉},

(2) τ1 = {〈1 : 1〉} as for 〈〉 ∈ τ0 we have top(τA ↓ 〈〉) = top(τB ↓ 〈〉) = {1 : 1}.

(3) τ = τ1 as top(τA ↓ 〈1 : 1〉) = {1 : 2} and top(τB ↓ 〈1 : 1〉) = {1 : 2, 1 : 3} and
the while loop terminates.

Lemma 4.3.8. Algorithm 4.3.6 terminates and produces as output a character-
istic tree τ such that if chtree(G, P, U) = τA (respectively τB), then for some U ′,
chtree(G, P, U ′) = τ . The same holds for any τi arising during the execution of
Algorithm 4.3.6.

Proof. See electronic Appendix E.

Proposition 4.3.9. Let τA, τB be two nonempty characteristic trees. Then the
output τ of Algorithm 4.3.6 is the unique most specific generalization of τA and τB.

For τA 6= ∅ and τB 6= ∅ we denote by msg(τA, τB) the output of Algorithm 4.3.6.
If both τA = ∅ and τB = ∅ then ∅ is the unique most specific generalization, and we
therefore define msg(∅, ∅) = ∅. Only in case one of the characteristic trees is empty
while the other is not, do we leave the msg undefined.

Example 4.3.10. Given τ1 = {〈1 : 3〉}, τ2 = {〈1 : 3, 2 : 4〉}, τ3 = {〈1 : 3〉, 〈1 : 4〉},
τ4 = {〈1 : 3, 2 : 4〉, 〈1 : 3, 2 : 5〉}, we have that msg(τ1, τ2) = τ1, msg(τ1, τ3) =
msg(τ2, τ3) = {〈〉}, and msg(τ2, τ4) = τ1.

Lemma 4.3.8 and Proposition 4.3.9 can also be used to prove an interesting
property about the �τ relation.

Corollary 4.3.11. Let τ1 and τ2 be characteristic trees such that τ1 �τ τ2. If
chtree(G, P, U) = τ2 then for some U ′, chtree(G, P, U ′) = τ1.

Proof. First we have that Algorithm 4.3.6 will produce for τ1 and τ2 the out-
put τ = τ1 (because Algorithm 4.3.6 computes the most specific generalization by
Proposition 4.3.9). Hence we have the desired property by Lemma 4.3.8.

Definition 4.3.12 (�ca). A characteristic atom (A1, τ1) is more general than
another characteristic atom (A2, τ2), denoted by (A1, τ1) �ca (A2, τ2), if and only
if A1 � A2 and τ1 �τ τ2. (A1, τ1) is said to be a variant of (A2, τ2) if and only if
(A1, τ1) ≡ca (A2, τ2).

The following proposition shows that the above definition safely approximates the
optimal but impractical “more general” definition based on the set of concretiza-
tions.

Proposition 4.3.13. Let (A, τA) and (B, τB) be two characteristic atoms. If
(A, τA) �ca (B, τB) then γP (A, τA) ⊇ γP (B, τB).

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998.



232 · M. Leuschel et al.

Proof. See electronic Appendix D.

The converse of the above proposition does of course not hold. Take the member
program from Example 2.3.4, and let A = member(a, [a]), τ = {〈1 : 1〉, 〈1 : 2〉}
and τ ′ = {〈1 : 1〉}. Then γP (A, τ) = γP (A, τ ′) = {member(a, [a])} (because
the resolvent ← member(a, []) associated with 〈1 : 2〉 fails finitely), but neither
(A, τ) �ca (A, τ ′) nor (A, τ ′) �ca (A, τ) hold.

The following is an immediate corollary of Proposition 4.3.13.

Corollary 4.3.14. Let P be a program and CA, CB be two characteristic
atoms such that CA �ca CB. If CB is a P -characteristic atom then so is CA.

Finally, we extend the notion of most specific generalization (msg) to character-
istic atoms:

Definition 4.3.15. Let (A1, τ1), (A2, τ2) be two characteristic atoms such that
their msg is defined. Then msg((A1, τ1), (A2, τ2)) = (msg(A1, A2),msg(τ1, τ2)).

Note that the above msg for characteristic atoms is indeed a most specific general-
ization (because msg(A1, A2) and msg(τ1, τ2) are most specific generalizations for
the atom and characteristic tree parts respectively) and is still unique up to vari-
able renaming. Its further extension to sets of characteristic atoms (rather than
just pairs) is straightforward and will not be included explicitly.

4.4 Well-Quasi Ordering of Characteristic Atoms.

We now proceed to introduce another order relation on characteristic atoms. It
will be instrumental in guaranteeing termination of the refined partial deduction
method to be presented.

Definition 4.4.1. A relation ≤V on V is called a well-quasi relation (WQR) on V
if and only if for any infinite sequence of elements e1, e2, . . . in V there are i < j such
that ei ≤V ej. A well-quasi relation ≤V is also called a well-quasi order (WQO)
on V if it is a quasi order.

An interesting WQO is the homeomorphic embedding relation ✂. It has been
adapted from the work of Dershowitz [1987] and Dershowitz and Jouannaud [1990],
where it is used in the context of term-rewriting systems, for use in supercompilation
by Sørensen and Glück [1995]. Its usefulness as a stop criterion for partial evalua-
tion is also discussed and advocated by Marlet [1994]. Some complexity results can
be found in the works of Stillman [1988] and Gustedt [1992] (also summarized by
Marlet [1994]).

Recall that expressions are formulated using the alphabet AP which we implicitly
assume underlying the programs and queries under consideration. Remember that
it may contain symbols occurring in no program and query but that it contains only
finitely many constant, function, and predicate symbols. The latter property is of
crucial importance for some of the propositions and proofs below. In Section 5.1
we will present a way to lift this restriction.

The following is the definition of Sørensen and Glück [1995], which adapts the
pure homeomorphic embedding of Dershowitz and Jouannaud [1990] by adding a
rudimentary treatment of variables.
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Definition 4.4.2 (✂). The (pure) homeomorphic embedding relation ✂ on ex-
pressions is defined inductively as follows:

(1) X ✂ Y for all variables X, Y

(2) s ✂ f(t1, . . . , tn) if s ✂ ti for some i

(3) f(s1, . . . , sn) ✂ f(t1, . . . , tn) if ∀i ∈ {1, . . . , n} : si ✂ ti.

Example 4.4.3. We have that p(a)✂p(f(a)), X ✂X , p(X)✂p(f(Y )), p(X, X)✂

p(X, Y ), and p(X, Y ) ✂ p(X, X).

Proposition 4.4.4. The relation ✂ is a WQO on the set of expressions over a
finite alphabet.

Proof. See electronic Appendix D.

The intuition behind Definition 4.4.2 is that when some structure reappears
within a larger one, it is homeomorphically embedded by the latter. As is argued by
Marlet [1994] and Sørensen and Glück [1995], this provides a good starting point
for detecting growing structures created by possibly nonterminating processes.

However, as can be observed in Example 4.4.3, the homeomorphic embedding
relation ✂ as defined in Definition 4.4.2 is rather crude with respect to variables.
In fact, all variables are treated as if they were the same variable, a practice which
is undesirable in a logic programming context. Intuitively, in the above example,
p(X, Y ) ✂ p(X, X) is acceptable, while p(X, X) ✂ p(X, Y ) is not. Indeed p(X, X)
can be seen as standing for something like and(eq(X, Y ), p(X, Y )), which clearly
embeds p(X, Y ), but the reverse does not hold.

To remedy the problem (as well as another one related to the msg which we
discuss later), we refine the above introduced homeomorphic embedding as follows:

Definition 4.4.5 (✂∗). Let A, B be expressions. Then B (strictly homeomorphi-
cally) embeds A, written as A ✂∗ B, if and only if A ✂ B and A is not a strict
instance of B.

Example 4.4.6. We now still have that p(X, Y ) ✂∗ p(X, X) but not p(X, X) ✂∗

p(X, Y ). Note that still X ✂∗ Y and X ✂∗ X .

An alternate approach might be based on numbering variables using some map-
ping #(.) and then stipulating that X ✂# Y if and only if #(X) ≤ #(Y ). For
instance Marlet [1994] proposes a de Bruijn numbering of the variables. Such an
approach, however, has a somewhat ad hoc flavor to it. Take for instance the
terms p(X, Y, X), and p(X, Y, Y ). Neither term is an instance of the other and
we thus have p(X, Y, X) ✂∗ p(X, Y, Y ) and p(X, Y, Y ) ✂∗ p(X, Y, X). Depend-
ing on the particular numbering we will have either p(X, Y, X) 6✂#p(X, Y, Y ) or
p(X, Y, Y ) 6✂#p(X, Y, X), while there is no apparent reason why one expression
should be considered smaller than the other.9

9Marlet [1994] also proposes to consider all possible numberings, but (leading to n! complexity,
where n is the number of variables in the terms to be compared). It is unclear how such a relation
compares to ✂∗ of Definition 4.4.5.
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Theorem 4.4.7. The relation ✂∗ is a well-quasi relation on the set of expres-
sions over a finite alphabet.

Proof. See electronic Appendix F.

Observe that ✂∗ is not a WQO because it is not transitive. We now extend
the embedding relation of Definition 4.4.5 to characteristic atoms. Notice that the
relation �τ is not a WQR on characteristic trees, even in the context of a given
fixed program P . Take for example the infinite sequence of characteristic trees
depicted in Figure 4. None of these trees is an instance of any other tree.

One way to obtain a WQR is to first define a term representation of characteristic
trees and then apply the embedding relation ✂∗ to this term representation.

Definition 4.4.8 (⌈.⌉). By ⌈.⌉ we denote a total mapping from characteristic
trees to terms (expressible in some finite alphabet) such that

—τ1 ≺τ τ2 ⇒ ⌈τ1⌉ ≺ ⌈τ2⌉ (i.e., ⌈.⌉ is strictly monotonic) and

—⌈τ1⌉✂∗ ⌈τ2⌉ ⇒ msg(τ1, τ2) is defined.

The conditions of Definition 4.4.8 are essential for the termination of a Algo-
rithm 4.6.1.

The following proposition establishes that such a mapping ⌈.⌉ actually exists.

Proposition 4.4.9. A function ⌈.⌉ satisfying Definition 4.4.8 exists.

Proof. See electronic Appendix G.

From now on, we fix ⌈.⌉ to be a particular mapping satisfying Definition 4.4.8.
The mapping developed in Appendix G is actually a good candidate, as it has
the desirable property that the structure of a characteristic tree τ is reflected in
the treestructure of the term ⌈τ⌉, thus ensuring that the usefulness of ✂ for spot-
ting nonterminating processes (e.g., see Marlet [1994]) carries over to characteristic
trees.

Definition 4.4.10 (✂∗ca). Let (A1, τ1), (A2, τ2) be characteristic atoms. We say
that (A2, τ2) embeds (A1, τ1), denoted by (A1, τ1)✂

∗
ca(A2, τ2), if and only if A1✂∗A2

and ⌈τ1⌉✂∗ ⌈τ2⌉.

Proposition 4.4.11. Let Ã be a set of P -characteristic atoms. Then ✂∗ca is a
well-quasi relation on Ã.

Proof. See electronic Appendix D.

4.5 Global Trees and Characteristic Atoms

In this section, we adapt and instantiate the m-tree concept presented by Martens
and Gallagher [1995] according to our particular needs in this article.

Definition 4.5.1 (Global Tree). A global tree γP for a program P is a (finitely
branching) tree where nodes can be either marked or unmarked, and where each
node carries a label which is a P -characteristic atom.

In other words, a node in a global tree γP looks like (n,mark , CA), where n is the
node identifier, mark an indicator that can take the values m or u, designating
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whether the node is marked or unmarked, and the P -characteristic atom CA is the
node’s label. Informally, a marked node corresponds to a characteristic atom which
has already been treated by the partial deduction algorithm.

In the sequel, we consider a global tree γ partially ordered through the usual
relationship between nodes: ancestor node >γ descendent node. Given a node
n ∈ γ, we denote by Ancγ(n) the set of its γ ancestor nodes (including itself).

We now introduce the notion of a global tree being well-quasi-ordered, and we
subsequently prove that it provides a sufficient condition for finiteness. Let γP be
a global tree. Then we henceforth denote as LblγP

the set of its labels. And for a
given node n in a tree γ, we refer to its label by lbln.

Definition 4.5.2 (Label Mapping). Let γ be a global tree. Then we define its
associated label mapping fγ as the mapping fγ : (γ, >γ) → (Lblγ , ✂∗ca) such that
n 7→ lbln. fγ will be called quasi-monotonic if and only if ∀n1, n2 n1 >γ n2 ⇒
lbln1 6✂

∗
calbln2 .

Definition 4.5.3. A global tree γ is well-quasi-ordered if fγ is quasi-monotonic.

Theorem 4.5.4. A global tree γ is finite if it is well-quasi-ordered.

Proof. Assume that γ is not finite. Then it contains (König’s Lemma) at
least one infinite branch n1 >γ n2 >γ . . . . Consider the corresponding infinite
sequence of elements lbln1 , lbln2 , . . . ∈ Lblγ , ✂∗ca. From Proposition 4.4.11, we know
that ✂∗ca is WQR on Lblγ , and therefore there must exist lblni

, lblnj
, i < j in the

above-mentioned sequence such that lblni
✂∗ca lblnj

. But this implies that fγ is not
quasi-monotonic.

4.6 A Tree-Based Algorithm

We now present the actual refined partial deduction algorithm where global control
is imposed through characteristic atoms in a global tree.

Please note that the algorithm is parametrized by an unfolding rule U , thus
leaving the particulars of the local control unspecified. As for Algorithm 3.4.3,
we need the notation chatom(A, P, U) (see Definition 3.4.2). Also, without loss of
generality, we suppose that the initial goal contains just a single atom (otherwise
we get a global forest instead of a global tree).

Algorithm 4.6.1 (Partial Deduction with Global Trees).

Input: a normal program P and goal ←A

Output: a set of characteristic atoms Ã

Initialization: γ := {(1, u, (A, τA))};

while γ contains an unmarked leaf do

let n be such an unmarked leaf in γ: (n, u, (An, τAn
));

mark n;

B̃ := {chatom(B, P, U) |B ∈ leavesP (An, τAn
)};

while B̃ 6= ∅ do

select CAB ∈ B̃; remove CAB from B̃;

if H̃ = {CAC ∈ Ancγ(n)|CAC ✂∗ca CAB} = ∅ then
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add (nB, u, CAB) to γ as a child of n;
else if 6 ∃CAD ∈ Lblγ such that CAD ≡ca CAB then

add msg(H̃ ∪ {CAB}) to B̃;
end while

end while

return Ã := Lblγ

As in, for example, Gallagher [1993] and Martens and Gallagher [1995] (but un-
like Algorithm 3.4.3), Algorithm 4.6.1 does not output a specialized program, but
rather a set of (characteristic) atoms from which the actual code can be generated
in a straightforward way. Most of the algorithm is self-explanatory, except perhaps
the inner while-loop. In B̃, all the characteristic atoms are assembled, correspond-
ing to the atoms occurring in the leaves of the SLDNF-tree built for An according
to τAn

. Elements of B̃ are subsequently inserted into γ as (unmarked) child nodes
of L if they do not embed the label of n or any of its ancestor nodes. If one does,
and it is a variant of n’s label or that of another node in γ, then it is simply not
added to γ. (Note that one can change to an instance test by simply replacing ≡ca

by �ca.) Finally, if a characteristic atom CAB ∈ B̃ does embed an ancestor label,
but there is no variant to be found in γ, then the most specific generalization M of
CAB and of all embedded ancestor labels H̃ is reinserted into B̃. The latter case
is of course the most interesting: simply adding a node labeled CAB would violate
the well-quasi ordering of the tree and thus endanger termination. Calculating the
msg M (which always exists by the conditions of Definition 4.4.8) and trying to
add it instead secures finiteness, as proven below, while trying to preserve as much
information as seems possible (see however Sections 4.8 and 5).

We obtain the following theorems:

Theorem 4.6.2. Algorithm 4.6.1 always terminates.

Proof. Upon each iteration of the outer while-loop in Algorithm 4.6.1, exactly
one node in γ is marked, and zero or more (unmarked) nodes are added to γ. More-
over, Algorithm 4.6.1 never deletes a node from γ, neither does it ever “unmark”
a marked node. Hence, since all branchings are finite, nontermination of the outer
while-loop must result in the construction of an infinite branch. It is therefore suf-
ficient to argue that the inner while-loop terminates and that after every iteration
of the outer loop, γ is a WQO global tree.

First, this holds after initialization. Also, obviously, a global tree will be con-
verted into a new global tree through the outer while-loop. Now, a while-iteration
adds zero or more, but finitely many, child nodes to a particular leaf n in the tree,
thus creating a (finite) number of new branches that are extensions of the old branch
leading to n. We prove that on all of the new branches, fγ is quasi-monotonic. The
branch extensions are actually constructed in the inner while-loop, at most one for
every element of B̃. So, let us take an arbitrary characteristic atom CAB ∈ B̃; then
there are three cases to consider:

(1) Either CAB does not embed any label on the branch up to (and including) n.
It is then added in a fresh leaf. Obviously, fγ will be quasi-monotonic on the
newly created branch.
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(2) Or some such label is embedded, but there is also a variant (or more general
respectively, in case an instance test is used) label already in some node of the
tree γ. Then, no corresponding leaf is inserted in the tree, and there is nothing
left to prove.

(3) Or, finally, some labels on the branch are embedded, but no variants (or more
general characteristic atoms respectively) are to be found in γ. We then calcu-
late the msg M of CAB and all10 the labels H̃ = {L1, . . . , Lk} on the branch
it embeds. In that case, M must be strictly more general than CAB. Indeed,
if M would be a variant of CAB then CAB must be more general than all the
elements in H̃ (by property of the msg), and even strictly more general because
no label was found of which it was a variant (or instance respectively). This
is in contradiction with the definition of ✂∗, which requires that each Li is
not a strict instance of CAB for Li ✂∗ CAB to hold. (More precisely, given
Li = (Ai, τi) and CAB = (AB , τB), Li ✂∗ CAB implies that Ai is not a strict
instance of AB and that ⌈τi⌉ is not a strict instance of ⌈τB⌉; the latter implies,
by strict monotonicity11 of ⌈.⌉, that τi is not a strict instance of τB, and thus
by Definition 4.3.12 we have that Li is not a strict instance of CAB .) So in
this step we have not modified the tree (and it remains WQO), but replaced
an atom in B̃ by a strictly more general one, which we can do only finitely
many times,12 and thus termination of the inner while-loop is ensured (as in
the other two cases above an element is removed from B and none are added).
Note that, when using the ✂ relation instead of ✂∗, M would not necessarily
be more general than CAB, i.e., the algorithm could loop. For example, take
a global tree having the single node (p(X, X), τ) and where we try to add
B̃ = {(p(X, Y ), τ)}. Now we have that p(X, X) ✂ p(X, Y ), and we calculate
msg({(p(X, X), τ), (p(X, Y ), τ)}) = (p(X, Y ), τ).

We have thus established termination of Algorithm 4.6.1.

Theorem 4.6.3. Let P be a program, input to Algorithm 4.6.1, and let Ã be the
corresponding set of characteristic atoms produced as output. Then Ã is P -covered.

Proof. First, it is straightforward to prove that throughout the execution of
Algorithm 4.6.1, any unmarked node in γ must be a leaf. It therefore suffices to
show, because the output contains only marked nodes, that after each iteration
of the outer while-loop, only unmarked leaves in γ possibly carry a noncovered
label.13 Trivially, this property holds after initialization. Now, in the outer while-
loop, one unmarked leaf n is selected and marked. The inner while-loop then
precisely proceeds to incorporate (unmarked leaf) nodes into γ such that all leaf
atoms of n’s label are concretizations of at least one label in the new, extended
γ.

The correctness of the specialization now follows from Theorem 3.3.2.

10The algorithm would also terminate if we only pick one such label at every step.
11Note that the proof also goes through if ⌈.⌉ is not strictly monotonic, but just satisfies that
whenever τi is a strict instance of τB then τi 6✂

∗τB .
12See for example Lemma C.2 in electronic Appendix C.
13That is, a label with at least one leaf atom (in P ) that is not a concretization of any label in γ.
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4.7 Further Discussion

One might wonder whether, in a setting where the characteristic atoms are struc-
tured in a global tree, it would not be sufficient to just test for homeomorphic
embedding on the atom part. The intuition behind this would be that a growth
of the structure of an atom part would, for reasonable programs and unfolding
rules, lead to a growth of the associated characteristic tree as well—so, using char-
acteristic trees for deciding when to abstract would actually be superfluous. For
instance, in Example 4.1.1 we observe that rev(L, [], R) ✂∗ rev(T, [H ], R) and, in-
deed, for the corresponding characteristic trees ⌈{〈1 : 1〉, 〈1 : 2, 1 : 3〉}⌉ ✂∗ ⌈{〈1 : 1〉,
〈1 : 2, 1 : 4, 1 : 3〉}⌉ holds. Nonetheless, the intuition turns out to be incorrect. The
following examples illustrate this point.

Example 4.7.1. Let P be the following normal program searching for paths with-
out loops:

(1) path(X, Y, L)← ¬member (X, L), arc(X, Y )

(2) path(X, Y, L)← ¬member (X, L), arc(X, Z), path(Z, Y, [X |L])

(3) arc(a, b)←

(4) arc(b, a)←

(5) member(X, [X |T ])←

(6) member(X, [Y |T ])← member(X, T )

Let A = path(a, Y, []) and B = path(a, Y, [b, a]), and let U be an unfolding rule
based on ✂∗ (i.e., only allow the selection of an atom if it does not embed a covering
ancestor). The SLDNF-tree accordingly built for ← A is depicted in Figure 9. B
occurs in a leaf (A ✂∗ B) and will hence descend from A in the global tree. But
the (term representation of) the characteristic tree τA = {〈1 : 1, 1 : member , 1 : 3〉,
〈1 : 2, 1 : member , 1 : 3, 1 : 1, 1 : member , 1 : 4〉, 〈1 : 2, 1 : member , 1 : 3,
1 : 2, 1 : member , 1 : 4〉} is not embedded in (the representation of) τB = ∅, and no
danger for nontermination exists (more structure resulted in this case in failure and
thus less unfolding). A method based on testing only ✂∗ on the atom component
would abstract B unnecessarily.

Example 4.7.2. Let P be the following definite program:

(1) path([N ])←

(2) path([X, Y |T ])← arc(X, Y ), path([Y |T ])

(3) arc(a, b)←

Let A = path(L). Unfolding ← A (using an unfolding rule U based on ✂∗) will
result in lifting B = path([b|T ]) to the global level. The characteristic trees are

—τA = {〈1 : 1〉, 〈1 : 2, 1 : 3〉}, and

—τB = {〈1 : 1〉}.

Again, A ✂∗ B holds, but not ⌈τA⌉✂∗ ⌈τB⌉.

In recent experiments, it also turned out that characteristic trees might be a vital
asset when trying to solve the parsing problem [Martens 1994], which appears when
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✟✟✟✟✙
❍❍❍❍❥

❍❍❍❍❥
✟✟✟✟✙

❄ ❄

❄ ❄

❄ ❄

❄ ❄

←

A︷ ︸︸ ︷
path(a, Y, [])

(1) (2)

(2)(1)

✷

← arc(a, Y )

(3) (3)

✷

← ¬mem(a, []), arc(a, Y ) ← ¬mem(a, []), arc(a, Z), path(Z, Y, [a])

← arc(a, Z), path(Z, Y, [a])

← path(b, Y, [a])

← arc(b, Y )

(4) (4)

← path(a, Y, [b, a])︸ ︷︷ ︸
B

← ¬mem(b, [a]), arc(b, Z′), path(Z′, Y, [b, a])

← arc(b, Z′), path(Z′, Y, [b, a])

← ¬mem(b, [a]), arc(b, Y )

Fig. 9. SLDNF-tree for Example 4.7.1.

unfolding metainterpreters with nontrivial object programs. In such a setting a
growing of the syntactic structure also does not imply a growing of the characteristic
tree.

Example 4.7.3. Take the vanilla metainterpreter with a simple family database
at the object level:

(1) solve(empty)←

(2) solve(A&B)← solve(A), solve(B)

(3) solve(A)← clause(A, B), solve(B)

(4) clause(anc(X, Y ), parent(X, Y ))←

(5) clause(anc(X, Z), parent(X, Y )&anc(Y, Z))←

(6) clause(parent(peter, paul), empty)←

(7) clause(parent(paul, mary), empty)←

Let A = solve(anc(X, Z)) and B = solve(parent(X, Y )&anc(Y, Z)). We have A✂∗

B and without characteristic trees these two atoms would be generalized (supposing
that both these atoms occur at the global level) by their msg solve(G). If however,
we take characteristic trees into account, we will notice that the object-level atom
anc(Z, X) within A has more solutions than the object-level atom anc(Y, Z) within
B (because in the latter one Y will get instantiated through further unfolding), i.e.,
the characteristic tree of B does not embed the one of A, and no unnecessary
generalization will occur. See also Vanhoof and Martens [1997].

Returning to the global control method as laid out in Section 4, one can observe
that a possible drawback might be its considerable complexity. Indeed, first, en-
suring termination through a well-quasi relation or order is structurally much more
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costly than the alternative of using a well-founded ordering. The latter only re-
quires comparison with a single “ancestor” object and can be enforced without any
search through “ancestor lists” (see Martens and De Schreye [1996]). Testing for
well-quasi-ordering, however, unavoidably does entail such searching and repeated
comparisons with several ancestors. Moreover, in our particular case, checking ✂∗ca

on characteristic atoms is in itself a quite costly operation, adding to the innate
complexity of maintaining a well-quasi-ordering. But as the experiments in Sec-
tion 5 show, in practice, the complexity of the transformation does not seem to be
all that bad, especially since the experiments were still conducted with a prototype
which was not yet tuned for transformation speed.

As already mentioned earlier, the partial deduction method of Gallagher [1991]
was extended by de Waal [1994] by adorning characteristic trees with a depth-k
abstraction of the corresponding atom component. This was done in order to
increase the amount of polyvariance so that a (monovariant) postprocessing abstract
interpretation phase (detecting useless clauses) can obtain a more precise result.
However, this k parameter is of course yet another ad hoc depth bound. Our
method is free of any such bounds and (without the Section 4.8 postprocessing)
nevertheless obtains a similar effect.

The above corresponds to adding extra information to characteristic trees. Some-
times, however, characteristic trees carry too much information, in the sense that
different characteristic trees can represent the same local specialization behavior.
Indeed characteristic trees also encode the particular order in which literals are se-
lected and thus do not take advantage of the independence of the computation rule.
A quite simple solution to this problem exists: after having performed the local un-
folding we just have to normalize the characteristic trees by imposing a fixed (e.g.,
left-to-right) computation rule and delaying the selection of all negative literals to
the end. The results and discussions of this article remain valid, independently of
whether this normalization is applied or not. A similar effect can be obtained, in the
context of definite programs, via the trace terms of Gallagher and Lafave [1996].

Algorithm 4.6.1 can also be seen as performing an abstract interpretation on an
infinite domain of infinite height (i.e., the ascending chain condition of Cousot and
Cousot [1992] is not satisfied) and without a priori limitation of the precision
(i.e., if possible, we do not perform any abstraction at all and obtain simply the
concrete results). Very few abstract interpretations of logic programs use infi-
nite domains of infinite height (some notable exceptions are Bruynooghe [1991],
Janssens and Bruynooghe [1992], and Heintze [1992]), and to our knowledge all of
them have some a priori limitation of the precision, at least in practice. An adapta-
tion of Algorithm 4.6.1, with its non ad hoc termination and precise generalizations,
may provide a good starting point to introduce similar features into abstract inter-
pretation methods, where they can prove equally beneficial.

Next, there is an interesting relation between the control techniques presented
in this article and current practice in supercompilation [Glück and Sørensen 1996;
Sørensen and Glück 1995; Turchin 1986; Turchin 1988]. We already pointed out
that the inspiration for using ✂ derives from Marlet [1994] and Sørensen and Glück
[1995]. In the latter, a generalization strategy for positive supercompilation (no
negative information propagation while driving) is proposed. It uses ✂ to compare
nodes in a marked partial process tree: a notion originating from Glück and Klimov
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[1993] and corresponding to global trees in partial deduction. These nodes, however,
only contain syntactical information corresponding to ordinary atoms (or rather
goals; see Section 6). It is our current understanding that both the addition of
something similar to characteristic trees and the use of the refined ✂∗ embedding
can lead to improvements of the method proposed by Sørensen and Glück [1995].
It is also interesting to return to an observation already made in Section 4 of
Martens and Gallagher [1995]: neighborhoods of order “n,” forming the basis for
generalization in full supercompilation [Turchin 1988], are essentially the same as
classes of atoms or goals with an identical depth-n characteristic tree. Adapting
our technique to the supercompilation setting will therefore allow us to remove the
depth bound on neighborhoods.

Finally, we conjecture that the techniques presented in this article can fruitfully
be adapted to deal with program specialization and transformation in various other
settings. Indeed, partial evaluation of functional-logic programs [Alpuente et al.
1996; 1997; Lafave and Gallagher 1997] already features the use of homeomorphic
embedding and m-trees [Martens and Gallagher 1995]. On the other hand, the gen-
eralization strategy as well as the generation of polyvariance remains entirely based
on syntactic structure of the manipulated expressions. Taking into account compu-
tational behavior, as through characteristic trees or neighborhoods, will probably
allow significant improvements.

Similarly, on-line14 partial evaluation of full Prolog programs [Prestwich 1992b;
Sahlin 1991; Sahlin 1993], constraint logic programs [Smith 1991; Smith and Hickey
1990], functional programs [Sperber 1996; Weise et al. 1991], and indeed program
transformation in general [Bossi et al. 1990; Burstall and Darlington 1977;
Futamura et al. 1991; Pettorossi and Proietti 1994; Wadler 1990] is likely to ben-
efit from adapted versions of our techniques for ensuring termination, performing
generalization, and determining polyvariance. A further investigation of these con-
jectures will be the subject of future work. We can, however, already point out
that our methods were successfully adapted to automatically control the recently
developed conjunctive partial deduction (see Section 6).

4.8 Further Improvements

Unlike ecological partial deduction as presented in Section 3.4, Algorithm 4.6.1 will
obviously often output several characteristic atoms with the same characteristic
tree (each giving rise to a different specialized version of the same original predicate
definition). Such “duplicated” polyvariance is however superfluous (in the context
of simply running the resulting program) when it increases neither local nor global
precision. As far as preserving local precision is concerned, matters are simple: one
procedure per characteristic tree is what you want. The case of global precision
is slightly more complicated: generalizing atoms with identical characteristic trees
might lead to the occurrence of more general atoms in the leaves of the associated
local tree. In other words, we might loose subsequent instantiation at the global
level, possibly leading to a different and less precise set of characteristic atoms.

14Part of our techniques might also be useful in an off-line setting. For instance, one can imagine
off-line partial evaluation which memoizes not (only) syntactic structure but (also) the computa-
tional behavior of expressions (see Gallagher and Lafave [1996] for a first step in that direction).
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The polyvariance-reducing postprocessing that we propose in this section there-
fore avoids the latter phenomenon. In order to obtain the desired effect, it basically
collapses and generalizes several characteristic atoms with the same characteristic
tree only if this does not modify the global specialization. To that end we number
the leaf atoms of each characteristic atom and then label the arcs of the global tree
with the number of the leaf atom it refers to. We also add arcs in case a leaf atom is
a variant of another characteristic atom in the tree and has therefore not been lifted
to the global level. We thus obtain a labeled global graph. We then try to collapse
nodes with identical characteristic trees using the well-known algorithm for mini-
mization of finite-state automata [Aho et al. 1986; Hopcroft and Ullman 1979]: we
start by putting all characteristic atoms with the same characteristic tree into the
same class, and subsequently split these classes if corresponding leaf atoms fall into
different classes. As stated by Hopcroft and Ullman [1979], the complexity of this
algorithm is O(kn2), where n is the maximum number of states (in our case the
number of characteristic atoms), and k is the number of symbols (in our case the
maximum number of leaf atoms).

The following example illustrates the use of this minimization algorithm for re-
moving superfluous polyvariance.

Example 4.8.1. Let us return to the member program of Example 2.3.4, aug-
mented with one additional clause:

(1) member(X, [X |T ])←

(2) member(X, [Y |T ])← member(X, T )

(3) t(T )← member(a, [a, b, c, d|T ]),member(b, T )

Suppose that after executing Algorithm 4.6.1 we obtain the following set of char-
acteristic atoms:

Ã = {(member(b, L), τ), (member(a, [a, b, c, d|T ]), τ),
(member (a, [b, c, d|T ]), τ ′), (member(a, L), τ), (t(T ), {〈1 : 3〉})}

where τ = {〈1 : 1〉, 〈1 : 2〉} and τ ′ = {〈1 : 2, 1 : 2, 1 : 2〉}. Depending on the
particular renaming function, a partial deduction of P with respect to Ã will look
like

mema,[a,b,c,d](T )←

mema,[a,b,c,d](T )← mema,[b,c,d](T )

mema,[b,c,d](T )← mema(T )

mema([a|T ])←

mema([Y |T ])← mema(T )

memb([b|T ])←

memb([Y |T ])← memb(T )

t(T )← mema,[a,b,c,d](T ), memb(T )

The labeled graph version of the corresponding global tree can be found in Figure 10.
Adapting the algorithm from Aho et al. [1986] and Hopcroft and Ullman [1979] to
our needs, we start out by generating three classes (one for each characteristic tree)
of states:
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✛(member(a,L), τ )

#1

❄

❄
✛

(t(T ),{〈1 : 3〉})

❄

✛

#2

#1
(member(a, [a, b, c, d|T ]), τ )

(member(a, [b, c, d|T ]), τ ′)

#1

#1

(member(b, L), τ )

#1

Fig. 10. Labeled global graph of Example 4.8.1 before postprocessing.

—C1 = {(member(a, [a, b, c, d|T ]), τ), (member(a, L), τ),
(member(b, L), τ)},

—C2 = {(member(a, [b, c, d|T ]), τ ′)} and

—C3 = {(t(T ), {〈1 : 3〉})}.

The class C1 must be further split, because the state (member(a, [a, b, c, d|T ]), τ)
has a transition via the label #1 to a state of C2 while all the other states of
C1, (member(a, L), τ) and (member(b, L), τ), do not. This means that by actu-
ally collapsing all elements of C1 we would lose subsequent specialization at the
global level (namely, the pruning and precomputation that is performed within
(member(a, [b, c, d|T ]), τ ′)).

We now obtain the following 4 classes:

—C2 = {(member(a, [b, c, d|T ]), τ ′)},

—C3 = {(t(T ), {〈1 : 3〉})},

—C4 = {(member(a, [a, b, c, d|T ]), τ)} and

—C5 = {(member(a, L), τ), (member (b, L), τ)}.

The only class that might be further split is C5, but both states of C5 have tran-
sitions with identical labels leading to the same classes, i.e., no specialization will
be lost by collapsing the class. We can thus generate one characteristic atom per
class (by taking the msg of the atom parts and keeping the characteristic tree
component). The resulting, minimized program is

mema,[a,b,c,d](T )←

mema,[a,b,c,d](T )← mema,[b,c,d](T )

mema,[b,c,d](T )← memx(a, T )

memx(X, [X |T ])←

memx(X, [Y |T ])← memx(X, T )

t(T )← mema,[a,b,c,d](T ), memx(b, T )

A similar use of this minimization algorithm is made by Winsborough [1992] and
Puebla and Hermenegildo [1995]. The former aims at minimizing polyvariance in
the context of multiple specialization by optimizing compilers. The latter, in a
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❄

❄
✛

(t(T ), {〈1 : 3〉})

✚
✚

✚
✚

✚
✚

✚❂

✛

#2

#1
(member(a, [a, b, c, d|T ]), τ )

(member(a, [b, c, d|T ]), τ ′)

#1

#1

(member(X, L), τ )

#1

Fig. 11. Labeled global graph of Example 4.8.1 after postprocessing.

somewhat different context, studies polyvariant parallelization and specialization
of logic programs based on abstract interpretation.

One further possibility for improvement lies in refining the ordering relation
�ca on characteristic atoms and the related msg operator, so that they more
precisely capture the intuitive, but uncomputable order based on the set of con-
cretizations. Alternatively, one could try to use an altogether more accurate ab-
straction operator than taking an msg on characteristic atoms. For instance, one
can endeavor to extend the constraint-based abstraction operator proposed by
Leuschel and De Schreye [1998] to normal programs and arbitrary unfolding rules.
This would probably result in a yet (slightly) more precise abstraction, causing a
yet smaller global precision loss.

Finally, one might also try to incorporate more detailed efficiency and cost esti-
mates into the global control, e.g., based on the works of Debray and Lin [1993],
Debray et al. [1994], and Debray [1997], in order to analyze the trade-off between
improved specialization and increased polyvariance and code size.

5. EXPERIMENTAL RESULTS

5.1 Systems

In this section we present an implementation of the ideas of the preceding sections,
as well as an extensive set of experiments which highlight the practical benefits of
the implementation.

The system which integrates the ideas of this article, called ECCE, is publicly
available [Leuschel 1996] and is actually an implementation of a generic version of
Algorithm 4.6.1, which allows the advanced user to change and even implement for
example the unfolding rule as well as the abstraction operator and nontermination
detection method. For instance, by adapting the settings of ECCE, one can obtain
exactly Algorithm 4.6.1. But one can also simulate a (global tree-oriented) version
of Algorithm 3.4.3 using depth bounds to ensure termination.

All unfolding rules of ECCE were complemented by simple more specific resolu-
tion steps in the style of SP [Gallagher 1991]. Constructive negation (see Chan and
Wallace [1989] and Gurr [1994]) has not yet been incorporated, but the selection
of ground negative literals is allowed. Postprocessing removal of unnecessary poly-
variance, using the algorithm outlined in Section 4.8, determinate postunfolding,
and redundant argument filtering (see Leuschel and Sørensen [1996]) were enabled
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throughout the experiments discussed below.
The ECCE system also handles a lot of Prolog built-ins, e.g., =, is, <, =<, <,

>=, number , atomic, call , \==, \=. All built-ins are supposed to be declarative
and their selection delayed until they are sufficiently instantiated. The method
presented earlier is extended by also registering built-ins in the characteristic trees.
One problematic aspect is that, when generalizing calls to built-ins which generate
bindings (like is/2 or =../2 but unlike >/2 or </2) and which are no longer exe-
cutable after generalization, these built-ins have to be removed from the generalized
characteristic tree (i.e., they are no longer selected). With that, the concretization
definition for characteristic atoms scales up, and the technique will ensure correct
specialization. It should also be possible to incorporate the if-then-else into
characteristic trees.

Also, the homeomorphic embedding relation ✂ of Definition 4.4.2 (and the rela-
tions ✂∗ and ✂∗ca based on it) has to be adapted. Indeed, some built-ins (like = ../2
or is/2) can be used to dynamically construct infinitely many new constants and
functors, and thus ✂ is no longer a WQO. To remedy this, the constants and func-
tors are partitioned into static, occurring in the original program and the partial
deduction query, and dynamic ones. (This approach is also used by Sahlin [1991;
Sahlin [1993].) The set of dynamic constants and functors is possibly infinite, and
we will therefore treat it like the infinite set of variables in Definition 4.4.2 by adding
the following rule to the ECCE system:

f(s1, . . . , sm) ✂∗ g(t1, . . . , tn) if both f and g are dynamic

Some dynamic functors, which already have a natural WQR (or a well-founded
order, which can be turned into a WQR; e.g., see Lemma F.1 in Appendix F)
associated with them, might be treated in a more refined way. For instance for
integers we can define

i ✂ j if both i and j are integers and i ≤ j.

An even more refined solution (not implemented for the current experiments) might
be based on using the general homeomorphic embedding relation of Kruskal [1960],
which can handle infinitely many function symbols provided that a WQO � on
the function symbols is given.15 Furthermore, as proven by Leuschel [1997b], it is
possible to perform the “not strict instance test” for ✂∗ of Definition 4.4.5 not just
once at the top but recursively within the structure of the expressions, leading to
the rule (as a replacement of rule (3) of Definition 4.4.2):

f(s1, . . . , sm) ✂∗ g(t1, . . . , tn) if f � g and ∃1 ≤ i1 < . . . im ≤ n such
that ∀j ∈ {1, . . . , m} : sj ✂∗ tij

and 〈s1, . . . , sm〉 is not a strict instance
of 〈t1, . . . , tn〉.

For further details we refer to Leuschel [1997b].
We present benchmarks using three different settings of ECCE, hereafter called

ECCE-d, ECCE-x-10, and ECCE-x. The settings ECCE-d and ECCE-x use Al-
gorithm 4.6.1, with a different unfolding rule, while ECCE-x-10 uses a (global

15A simple one might be f � g if both f and g are dynamic or if f = g.
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tree-oriented) version of Algorithm 3.4.3 with a depth bound of 10 on characteris-
tic trees to ensure termination. We also include results for MIXTUS [Sahlin 1991;
Sahlin 1993], PADDY [Prestwich 1992a; Prestwich 1992b; Prestwich 1993] and SP
[Gallagher 1991; Gallagher 1993], of which the following versions have been used:
MIXTUS 0.3.3, the version of PADDY delivered with eclipse 3.5.1, and a version
of SP dating from September 25, 1995.

Basically, the above-mentioned systems use the following two different unfolding
rules:

—“MIXTUS-like” unfolding: This is the unfolding strategy explained by Sahlin
[1991; 1993], which in general unfolds deeply enough to solve the “fully unfold-
able” problems,16 but also has safeguards against excessive unfolding and code ex-
plosion. It requires, however, a number of ad hoc settings. (In the future, we plan
experiments with unfolding along the lines of Martens and De Schreye [1996]
which is free of such elements.) For instance, for ECCE-x and ECCE-x-10 we used
the settings (see Sahlin [1993]) max rec = 2, max depth = 2, maxfinite = 7,
maxnondeterm = 10 and only allowed nondeterminate unfolding when no user
predicates were to the left of the selected literal. For MIXTUS and PADDY we
used the respective default settings of the systems. Note that the “MIXTUS-
like” unfolding strategies of ECCE, MIXTUS, and PADDY differ slightly from
each other, probably due to some details not fully elaborated in Sahlin [1993]
and Prestwich [1992a] as well as the fact that the different global control regimes
influence the behavior of the “MIXTUS-like” local control.

—Determinate unfolding: Only (except once) select atoms that match a single
clause head. The strategy is refined with a “lookahead” to detect failure at a
deeper level. This approach is used by ECCE-d and SP. Note however that SP
seems to employ a refined determinate unfolding rule (as indicated for example
by the results for the benchmark depth.lam below).

Both of these unfolding rules actually ensure that neither the number nor the
order of the solutions under Prolog execution are altered. Also, termination un-
der Prolog will be preserved by these unfolding rules (termination behavior might
however be improved, as for example ← loop, fail can be transformed into ← fail).
For more details related to the preservation of (Prolog) termination we refer to
Proietti and Pettorossi [1991a], Bossi and Cocco [1994], and Bossi et al. [1995].

5.2 Experiments

The benchmark programs can be found in Leuschel [1996]; short descriptions are
presented in electronic Appendix A. In addition to the benchmarks by Lam and
Kusalik [1990] they contain a whole set of more involved and realistic examples, for
example, such as a model-elimination theorem prover and a metainterpreter for an
imperative language. For some of these new benchmark tasks it is impossible to get
(big) speedups—the goal of these tasks consists in testing whether no pessimization,
code explosion or nontermination occurs.

For the experimentation, we tried to be as realistic and practice-oriented as pos-
sible. In particular, we did not count the number of inferences, the cost of which

16i.e., those problems for which normal evaluation terminates.
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varies a lot, or some other abstract measure, but the actual execution time and
size of compiled code. The results are summarized in Tables I and II, while the
full details can be found in Tables III, IV, and V. Further details and explanations
about the benchmark results are listed below:

—Transformation times (TT): The transformation times of ECCE and MIXTUS
include the time to write the specialized program to file. Time for SP does not,
and for PADDY we do not know. We briefly explain the use of ⊥ in the tables:

—⊥, SP: this means “real” nontermination (based upon the description of the
algorithm in Gallagher [1991])

—⊥, MIXTUS: heap overflow after 20 minutes
—⊥, PADDY: thorough system crash after 2 minutes

In Tables III, IV, and V, the transformation times (TT) are expressed in seconds
while the total transformation time in Table II is expressed in minutes (on a Sparc
Classic running under Solaris, except for PADDY which for technical reasons had
to be run on a Sun 4). Each system was executed using the Prolog system it
runs on: ProLog by BIM for ECCE, SICStus Prolog for MIXTUS and SP, and
Eclipse for PADDY). So, except when comparing the different settings of ECCE,
the transformation times should only be used for a rough comparison.

—Relative run-times (RRT) of the specialized code: The timings are not obtained
via a loop with an overhead but via special Prolog files, generated automatically
by ECCE. These files call the original and specialized programs directly (i.e.,
without overhead), at least 100 times for the respective run-time queries, using
the time/2 predicate of ProLog by BIM 4.0.12 on a Sparc Classic under Solaris.
Sufficient memory was given to the Prolog system to prevent garbage collection.
Run-times in Tables III, IV, and V are given relative to the run-times of the
original programs. In computing averages and totals, the time and size of the
original program were taken in case of nontermination (i.e., we did not punish
MIXTUS, PADDY, and SP for the nontermination). The total speedups are
obtained by the formula

n∑n
i=1

speci

origi

where n is the number of benchmarks, and speci and origi are the absolute exe-
cution times of the specialized and original programs respectively. The weighted
speedups are obtained by using the code size sizei of the original program as a
weight for computing the average:

∑n
i=1 sizei∑n

i=1 sizei
speci

origi

In Table I the column for “FU” holds the total speedup for the fully unfoldable
benchmarks (see electronic Appendix A) while the column for “Not FU” holds
the total speedup for the benchmarks which are not fully unfoldable.
All timings were for renamed queries, except for the original programs and for

SP (which does not rename the top-level query—this puts SP at a disadvantage
of about 10% in average for speed, but at an advantage for code size). Note that
PADDY systematically included the original program, and the specialized part
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Table I. Short Summary of the Speedups

System Total Weighted Worst FU Not FU
Speedup Speedup Speedup Speedup Speedup

ECCE-d 1.90 2.16 0.85 2.57 1.74
ECCE-x-10 2.13 2.23 0.79 7.07 1.71

ECCE-x 2.51 2.75 0.92 8.36 2.02

MIXTUS 2.08 2.48 0.65 8.13 1.65
PADDY 2.08 2.31 0.68 8.12 1.65

SP 1.46 1.56 0.86 2.08 1.32

Table II. Short Summary of the Code Size and Transformation Times

System Total Code Size Total TT
in KB in min

ECCE-d 166.69 2.64
ECCE-x-10 224.35 112.72

ECCE-x 135.91 2.70

MIXTUS 152.26 ⊥+2.49
PADDY 196.19 ⊥+0.28

SP 182.02 3⊥+1.92

could only be called in a renamed style. We removed the original program when-
ever possible and added one clause which allows calling the specialized program
also in an unrenamed style (just like MIXTUS and ECCE). This possibility was
not used in the benchmarks, but avoids distortions in the code size figures (with
respect to MIXTUS and ECCE).

—Size of the specialized code: The compiled code size was obtained via statistics/4
and is expressed in units, where 1 unit = 4.08 bytes (in the current implementa-
tion of ProLog by BIM).

5.3 Analyzing the Results

The ECCE-based systems did terminate on all examples, as would be expected by
the results presented earlier in the article. To our surprise however, all the existing
systems, MIXTUS, PADDY and SP, did not (properly) terminate for at least one
benchmark each. (Apparently, a more recent version of MIXTUS does not exhibit
this nontermination, but we have not been able to verify this.) Even ignoring this
fact, the system ECCE-x clearly outperforms the others, for speed as well as for
code size, while having the best worst-case performance. Even though ECCE is
still a prototype, the transformation times are reasonable and usually close to the
ones of MIXTUS. ECCE can certainly be speeded up considerably, maybe even by
using the ideas of Prestwich [1993] which help PADDY to be (except for one glitch)
the fastest system overall.

Note that even the system ECCE-x-10 has a better total speedup than earlier
systems. Its transformation times, weighted speedup, and size of the specialized
code are not so good. Also note that for some benchmarks the depth bound of
10 was too shallow (e.g., relative) while for others it was too deep and resulted in
excessive transformation times (e.g., model-elim.app). But by removing the depth
bound (ECCE-x) we increase the total speedup from 2.13 to 2.51 (and the weighted
speedup from 2.23 to 2.75) while decreasing the size of the specialized code from
235KB down to 142KB. Also the total transformation time drastically decreases by

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998.



Controlling Generalization and Polyvariance · 249

Table III. Detailed Results for ECCE-x-10 and ECCE-x

ECCE-x-10 ECCE-x

Benchmark RRT Size TT RRT Size TT

advisor 0.32 809 1.01 0.31 809 0.78
contains.kmp 0.80 1974 11.53 0.09 685 4.48
depth.lam 0.06 1802 2.25 0.02 2085 1.91
doubleapp 0.95 216 0.59 0.95 216 0.53
ex depth 0.32 350 1.73 0.32 350 1.58
grammar.lam 0.14 218 2.27 0.14 218 1.90
groundunify.complex 0.53 4511 29.10 0.53 4800 0.75
groundunify.simple 0.25 368 0.83 0.25 368 22.03
imperative.power 0.56 1578 18.14 0.54 1578 27.42
liftsolve.app 0.53 4544 16.70 0.06 1179 6.57
liftsolve.db1 0.02 2767 22.15 0.02 1326 7.33
liftsolve.db2 0.47 11303 154.94 0.61 4786 34.25
liftsolve.lmkng 1.02 2385 3.44 1.02 2385 2.75
map.reduce 0.08 348 0.84 0.08 348 0.86
map.rev 0.13 427 1.02 0.11 427 0.89
match.kmp 0.70 669 1.24 0.70 669 1.23
memo-solve 1.26 2033 10.56 1.09 2241 4.31
missionaries 1.03 2927 26.67 0.72 2226 9.21
model elim.app 0.42 6092 5864.28 0.13 532 3.56
regexp.r1 0.29 435 6.77 0.29 435 0.98
regexp.r2 0.43 1373 8.63 0.51 1159 4.87
regexp.r3 0.48 2041 10.82 0.42 1684 14.92
relative.lam 0.02 709 506.89 0.00 261 4.06
rev acc type 0.99 2188 22.95 1.00 242 0.83
rev acc type.inffail 0.55 1503 21.47 0.60 527 0.80
ssuply.lam 0.14 426 7.84 0.06 262 1.18
transpose.lam 0.18 2312 8.75 0.17 2312 1.98

Average 0.47 2085 250.50 0.40 1263 6.00
Total 12.67 56308 6763.41 10.75 34177 161.96
Total Speedup 2.13 2.51

Weighted Speedup 2.23 2.75

a factor of 42. This clearly illustrates that getting rid of the depth bound is a very
good idea in practice.

The difference between ECCE-d and ECCE-x in the resulting speedups shows
that determinate unfolding, at least in the context of standard partial deduction,
is in general not sufficient for fully satisfactory specialization (see also Section 6).
The “MIXTUS-like” unfolding seems to be a good compromise for standard partial
deduction.

The weighted speedup of ECCE-x is 2.75, and the speedup for the fully unfold-
able benchmarks is 2.02, i.e., by partial deduction we were able to (more than)
halve execution times. Compared to speedups that are usually obtained by low-
level compiler optimizations, these figures are extremely satisfactory. Taken on its
own, however, these figures might look a bit disappointing as to the potential of
partial deduction. But, as already mentioned, for some benchmark tasks it is im-
possible to get significant speedups. Also, partial deduction is of course not equally
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Table IV. Detailed Results for ECCE-d and SP

ECCE-d SP

Benchmark RRT Size TT RRT Size TT

advisor 0.47 412 0.79 0.40 463 0.29
contains.kmp 0.83 1363 2.90 0.75 985 1.13
depth.lam 0.94 1955 1.53 0.53 928 0.99
doubleapp 0.98 277 0.61 1.02 160 0.11
ex depth 0.76 1614 2.78 0.27 786 1.35
grammar.lam 0.17 309 1.92 0.15 280 0.71
groundunify.complex 0.40 9502 25.04 0.73 4050 2.46
groundunify.simple 0.25 368 0.78 0.61 407 0.20
imperative.power 0.37 2401 61.28 0.97 1706 6.97
liftsolve.app 0.06 1179 5.42 0.23 1577 2.46
liftsolve.db1 0.01 1280 12.95 0.82 4022 3.95
liftsolve.db2 0.17 4694 14.95 0.82 3586 3.71
liftsolve.lmkng 1.07 1730 1.70 1.16 1106 0.37
map.reduce 0.07 507 0.84 0.09 437 0.23
map.rev 0.11 427 0.88 0.13 351 0.20
match.kmp 0.73 639 1.17 1.08 527 0.49
memo-solve 1.17 2318 4.22 1.15 1688 3.65
missionaries 0.81 2294 4.31 0.73 16864 82.59
model elim.app 0.63 2100 2.83 – – ⊥
regexp.r1 0.50 594 1.29 0.54 466 0.37
regexp.r2 0.55 629 1.29 1.08 1233 0.67
regexp.r3 0.50 828 1.74 1.03 1646 1.20
relative.lam 0.82 1074 1.92 0.69 917 0.35
rev acc type 1.00 242 0.70 – – ⊥
rev acc type.inffail 0.60 527 0.71 – – ⊥
ssuply.lam 0.06 262 1.18 0.06 231 0.52
transpose.lam 0.17 2312 2.56 0.26 1267 0.52

Average 0.53 1550 5.86 0.68 1903 4.81
Total 14.19 41837 158.29 18.48 45683 115.5
Total Speedup 1.90 1.46

Weighted Speedup 2.16 1.56

suited for all tasks; but for those tasks for which it is suited, partial deduction can
be even much more worthwhile. For instance for the benchmarks model elim.app,
liftsolve.app, and liftsolve.db1—which exhibit interpretation overhead—ECCE-x
obtains speedup factors of about 8, 17, and 50 respectively. Getting rid of higher-
order overhead also seems highly beneficial, yielding about one order of magnitude
speedup. Another area in which partial deduction might be very worthwhile is in
handling overly general programs, e.g., getting rid of unnecessary intermediate vari-
ables or making use of the hidden part of abstract data types. However, such opti-
mizations require a more powerful partial-deduction framework. Such a framework
is provided in Leuschel et al. [1996], Glück et al. [1996], and Leuschel [1997a], and
Jørgensen et al. [1996] show that the techniques elaborated in the present article
carry over to that context, leading to further improvements over prior techniques.
So, given the difficulty of the benchmarks (and the worst-case slowdown of only
8%), the speedup figures are actually very satisfactory, and we conjecture that it
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Table V. Detailed Results for MIXTUS and PADDY

MIXTUS PADDY

Benchmark RRT Size TT RRT Size TT

advisor 0.31 809 0.85 0.31 809 0.10
contains.kmp 0.16 533 2.48 0.11 651 0.55
depth.lam 0.04 1881 4.15 0.02 2085 0.32
doubleapp 1.00 295 0.30 0.98 191 0.08
ex depth 0.40 643 2.40 0.29 1872 0.53
grammar.lam 0.17 841 2.73 0.43 636 0.22
groundunify.complex 0.67 5227 11.68 0.60 4420 1.53
groundunify.simple 0.25 368 0.45 0.25 368 0.13
imperative.power 0.57 2842 5.35 0.58 3161 2.18
liftsolve.app 0.06 1179 4.78 0.06 1454 0.80
liftsolve.db1 0.01 1280 5.36 0.02 1280 1.20
liftsolve.db2 0.31 8149 58.19 0.32 4543 1.60
liftsolve.lmkng 1.16 2169 4.89 0.98 1967 0.32
map.reduce 0.68 897 0.17 0.08 498 0.20
map.rev 0.11 897 0.16 0.26 2026 0.37
match.kmp 1.55 467 4.89 0.69 675 0.28
memo-solve 0.60 1493 12.72 1.48 3716 1.70
missionaries – – ⊥ – – ⊥
model elim.app 0.13 624 5.73 0.10 931 0.90
regexp.r1 0.20 457 0.73 0.29 417 0.13
regexp.r2 0.82 1916 2.85 0.67 3605 0.63
regexp.r3 0.60 2393 4.49 1.26 10399 1.35
relative.lam 0.01 517 7.76 0.00 517 0.42
rev acc type 1.00 497 0.99 0.99 974 0.33
rev acc type.inffail 0.97 276 0.77 0.94 480 0.28
ssuply.lam 0.06 262 0.93 0.08 262 0.08
transpose.lam 0.18 1302 3.89 0.18 1302 0.43

Average 0.48 1470 5.76 0.48 1894 0.64
Total 13.00 38214 149.7 12.96 49239 16.7
Total Speedup 2.08 2.08

Weighted Speedup 2.48 2.31

will be beneficial to integrate the techniques, developed above, into a compiler.
In conclusion, the ideas presented in this article do not only make sense in theory

on accounts of elegance, generality, precision, and termination, but they also pay
off in practice. The resulting specializer improves significantly upon earlier work
with respect to speed and size of the specialized programs.

6. CONCLUSION AND FUTURE WORK

In the first part of this article we have presented a new framework and a new
algorithm for partial deduction. The framework and the algorithm can handle
normal logic programs and place no restrictions on the unfolding rule. We provided
general correctness results for the framework as well as correctness and termination
proofs for the algorithm. Also, the abstraction operator of the algorithm preserves
the characteristic trees of the atoms to be specialized and ensures termination
(when the number of distinct characteristic trees is bounded) while providing a

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998.



252 · M. Leuschel et al.

fine-grained control of polyvariance. All this is achieved without using constraints
in the partial deduction process.

In the second part of the article, we have first identified the problems of im-
posing a depth bound on characteristic trees (or neighborhoods for that matter)
using some practical and realistic examples. We have then developed an even more
sophisticated on-line global control technique for partial deduction of normal logic
programs. Importing and adapting m-trees of Martens and Gallagher [1995], we
have overcome the need for a depth bound on characteristic trees to guarantee ter-
mination of partial deduction. Plugging in a depth-bound-free local control strategy
(see Bruynooghe et al. [1992] and Martens and De Schreye [1996]), we thus obtain
a fully automatic, concrete partial-deduction method that always terminates and
produces precise and reasonable polyvariance, without resorting to any ad hoc tech-
niques. To the best of our knowledge, this is the very first such method. Moreover,
we believe it to be useful for on-line partial evaluation and transformation in other
programming paradigms as well (cf. Section 4.7).

Along the way, we have defined generalization and embedding on characteris-
tic atoms, refining the homeomorphic embedding relation ✂ of Dershowitz [1987],
Dershowitz and Jouannaud [1990], Marlet [1994], and Sørensen and Glück [1995]
into ✂∗, and showing that the latter is more suitable in a logic programming setting.
We have also touched upon a postprocessing intended to sift superfluous polyvari-
ance, possibly produced by the main algorithm. Extensive experiments with an
implementation of the method showed its practical value: outperforming existing
partial-deduction systems for speedup as well as code size while guaranteeing ter-
mination.

We believe that the global control proposed in this article is a very good one,
but the quality of the specialization produced by any fully concrete instance of
Algorithm 4.6.1 will obviously also depend heavily on the quality of the specific
local control used. At the local control level, a number of issues are still open: fully
automatic satisfactory unfolding of metainterpreters and a good treatment of truly
nondeterminate programs are among the most pressing.

Recent work brought a closer integration of abstract interpretation and par-
tial deduction [Leuschel and De Schreye 1996b], as well as an extension of par-
tial deduction [Glück et al. 1996; Leuschel et al. 1996] to incorporate more pow-
erful unfold/fold-like transformations [Pettorossi and Proietti 1994], allowing for
example to eliminate unnecessary variables from programs [Proietti and Pettorossi
1991b]. The latter extension basically reduces to the lifting of entire goals (in-
stead of separate atoms) to the global level, as for instance in supercompilation
(where nonatomic goals translate into nested function calls). This opens up a
whole range of challenging new control issues. It turned out that the global control
techniques presented in the current article can be extended and that they signifi-
cantly contribute in that context too (see Leuschel et al. [1996], Glück et al. [1996],
Leuschel [1997a], and Jørgensen et al. [1996]).

ONLINE-ONLY APPENDICES

A. BENCHMARK PROGRAMS

B. PROOF OF THEOREM 3.3.2
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C. PROOF OF THEOREM 3.4.5

D. ASSORTED SHORT PROOFS

E. PROOF OF PROPOSITION 4.3.9

F. PROOF OF THEOREM 4.4.7

G. PROOF OF PROPOSITION 4.4.9

Appendices A-G are available only online in a seperate document. You should be
able to get the online-only appendices from the citation page for this article:

http://www.acm.org/pubs/citations/journals/toplas/1998-20-1/p208-leuschel/

Alternative instructions on how to obtain online-only appendices are given on
the back inside cover of current issues of ACM TOPLAS or on the ACM TOPLAS
web page:

http://www.acm.org/toplas
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A. BENCHMARK PROGRAMS

The benchmark programs were carefully selected and/or designed in such a way
that they cover a wide range of different application areas, including: pattern
matching, databases, expert systems, metainterpreters (nonground vanilla, mixed,
ground), and more involved particular ones: a model-elimination theorem prover,
the missionaries-cannibals problem, a metainterpreter for a simple imperative lan-
guage. The benchmarks marked with a star (∗) can be fully unfolded. The size
of the compiled code (under ProLog by BIM 4.0.12) is given in parentheses. Full
descriptions can be found in Leuschel [1996].

advisor∗. (6810 bytes)
A very simple expert system which can be fully unfolded. A benchmark by Horváth
[1993].

contains.kmp. (2570 bytes)
A benchmark based on the “contains” benchmark by Lam and Kusalik [1990], but
with improved run-time queries. The program is a rather involved, but still ineffi-
cient (because highly nondeterministic), pattern matcher.

depth.lam∗. (4415 bytes)
A simple metainterpreter which keeps track of the maximum length of refutations.
It has to be specialized for a simple, fully unfoldable object program. A benchmark
from Lam and Kusalik [1990].

doubleapp. (653 bytes)
The double append example (see Leuschel et al. [1996], Glück et al. [1996], and
Leuschel [1997a]) in which three lists are appended by reusing the ordinary append
program. Tests whether deforestation can be done.

ex depth. (4741 bytes)
A variation of depth.lam with a more sophisticated object program (which cannot
be fully unfolded).

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 1998 ACM 0164-0925/98/0100-0208A $5.00
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grammar.lam. (9490 bytes)
A DCG (Definite Clause Grammar) parser which has to be specialized for a par-
ticular grammar. It is one of the benchmarks from Lam and Kusalik [1990].

groundunify.complex. (10106 bytes)
The task consists in specializing an explicit unification algorithm for the ground
representation. The full code can be found in Leuschel [1997a], where it is adapted
from de Waal and Gallagher [1991].

groundunify.simple∗. (10106 bytes)
The same unification algorithm as for groundunify.complex, but with a simpler
specialization query.

imperative.power. (9368 bytes)
An interpreter for a simple imperative language which stores values of variables
in an environment. It has to be specialized for a power subprocedure, calculating
BaseExp, for a known exponent Exp and base Base but an unknown environment.

liftsolve.app. (5194 bytes)
A metainterpreter for the ground representation which “lifts” the program to the
nonground representation for resolution. In Leuschel and De Schreye [1996a] and
Leuschel [1997a] this is called the mixed representation. A description along with
the code can be found in Leuschel and De Schreye [1996a] and Leuschel [1997a] (see
also Gallagher [1991]). The goal is to specialize this metainterpreter for append as
the object program.

liftsolve.db1∗. (5194 bytes)
The same metainterpreter as liftsolve.app with a simple, fully unfoldable object
program.

liftsolve.db2. (5194 bytes)
Again the same metainterpreter as liftsolve.app, but this time with a partially
specified object program.

liftsolve.lmkng. (5194 bytes)
The goal here consists in specializing part of the above “lifting” metainterpreter.
The specialization task is such that it may give rise to an∞ number of characteristic
trees.

map.reduce. (2868 bytes)
Specializing the higher-order map/3 (using the built-ins call/1 and =../2) for the
higher-order reduce/4 in turn applied to add/3.

map.rev. (2868 bytes)
Specializing the higher-order map for the reverse program.

match.kmp. (975 bytes)
A semi-naive pattern matcher; the goal is to obtain a Knuth-Morris-Pratt (see
Knuth et al. [1977]) pattern matcher by specialization for the pattern “aab.” The
benchmark is based on the “match” Lam and Kusalik [1990] benchmark, but uses
improved run-time queries (in order to detect whether a Knuth-Morris-Pratt matcher
has been obtained).

memo-solve. (5251 bytes)
A variation of the ex depth benchmark with a simple loop prevention mechanism
based on keeping a call stack.
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missionaries. (9221 bytes)
A program for the missionaries and cannibals problem.

model elim.app. (7948 bytes)
Specialize the model elimination prover of Poole and Goebel [1986] (also used by
de Waal and Gallagher [1994]) for the append program as the object-level theory.

regexp.r1. (1489 bytes)
A naive regular expression matcher which has to be specialized for the regular
expression (a+b)*aab.

regexp.r2. (1489 bytes)
Same program as regexp.r1 for ((a+b)(c+d)(e+f)(g+h))*.

regexp.r3. (1489 bytes)
Same program as regexp.r1 and regexp.r2 for the regular expression
((a+b)(a+b)(a+b)(a+b)(a+b)(a+b))*.

relative.lam∗. (3056 bytes)
A benchmark by Lam and Kusalik [1990] consisting of a fully unfoldable family
database.

rev acc type. (828 bytes)
The benchmark program consists of the “reverse with accumulating parameter”
program to which type-checking on the accumulator has been added. Without
abstraction, the benchmark will give rise to an∞ number of different characteristic
trees. See Section 4.1 for details (and the code).

rev acc type.inffail. (828 bytes)
The same benchmark program as rev acc type, but this time the specialization task
will give rise to infinite determinate failure at partial deduction time.

ssuply.lam∗. (8335 bytes)
Another benchmark by Lam and Kusalik [1990].

transpose.lam∗. (1599 bytes)
A benchmark program by Lam and Kusalik [1990] for transposing matrices. Also
used in Gallagher [1991].

B. PROOF OF THEOREM 3.3.2

B.1 Correctness for Unconstrained Characteristic Atoms

If Ã is a set of unconstrained characteristic atoms, a partial deduction with respect
to Ã can be seen as a standard partial deduction with renaming. We will make use
of this observation to prove the following theorem.

Theorem B.1.1. Let P ′ be a partial deduction of P with respect to Ã and ρα

such that Ã is a finite set of unconstrained P -characteristic atoms and such that
Ã is P -covered and G is P -covered by Ã. Then:

(1 ) P ′ ∪ {ρα(G)} has an SLDNF-refutation with computed answer θ if and only if
P ∪ {G} does.

(2 ) P ′ ∪ {ρα(G)} has a finitely failed SLDNF-tree if and only if P ∪ {G} does.

Proof. First note that the P -coveredness conditions on Ã and G ensure that the
renamings performed to obtain P ′ (according to Definition 3.2.7), as well as the re-
naming ρα(G), are defined (because all the atoms in G, as well as all the leaf atoms
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of Ã, are concretizations of elements in Ã). The result then follows in a rather
straightforward manner from the Theorems 3.5 and 4.11 of Benkerimi and Hill
[1993]. Benkerimi and Hill [1993] splits the renaming into 2 phases: one which does
just the renaming to ensure independence (called partial deduction with dynamic
renaming; correctness of this phase is proven in Theorem 3.5 of Benkerimi and Hill
[1993]) and one which does the filtering (called postprocessing renaming; the cor-
rectness of this phase is proven in Theorem 4.11 of Benkerimi and Hill [1993]).

To apply these results we simply have to notice that:

—P ′ corresponds to partial deduction with dynamic renaming and postprocessing
renaming for the multiset of atoms A = {A | (A, τ) ∈ Ã} (indeed the same atom
could in principle occur in several characteristic atoms; this is not a problem
however, as the results of Benkerimi and Hill [1993] carry over to multisets of
atoms—alternatively one could add an extra unused argument to P ′, ρα(G) and
A and then place different variables in that new position to transform the multiset
A into an ordinary set).

—P ′∪{ρα(G)} is A-covered because Ã is P -covered and G is P -covered by Ã (and
because the original program P is unreachable in the predicate dependency graph
from within P ′ or within ρα(G)).

Three minor technical issues have to be addressed in order to reuse the theorems
of Benkerimi and Hill [1993]:

—Theorem 3.5 of Benkerimi and Hill [1993] requires that no renaming be per-
formed on G, i.e., ρα(G) must be equal to G. However, without loss of generality,
we can assume that the top-level query is the unrenamed atom new(X1, . . . , Xk),
where new is a fresh predicate symbol and where vars(G) = {X1, . . . , Xk}.
We then just have to add the clause new(X1, . . . , Xk) ← Q, where G =← Q,
to the initial program. Trivially the query ← new(X1, . . . , Xk) and G are
equivalent with respect to c.a.s. and finite failure (see also Lemma 2.2 of
Gallagher and Bruynooghe [1990]).

—Theorem 4.11 of Benkerimi and Hill [1993] requires that G contains no variables
or predicates in A. The requirement about the variables is not necessary in our
case because we do not base our renaming on the mgu. The requirement about
the predicates is another way of ensuring that ρα(G) must be equal to G, which
can be circumvented in a similar way as for the point above.

—Theorems 3.5 and 4.11 of Benkerimi and Hill [1993] require that the predicates of
the renaming do not occur in the original P . Our Definition 3.2.6 does not require
this. This is of no importance as the original program is always “completely
thrown away” in our approach. We can still apply these theorems by using
an intermediate renaming ρ′ which satisfies the requirements of Theorems 3.5
and 4.11 of Benkerimi and Hill [1993] and then applying an additional one step
postprocessing renaming ρ′′, with ρα = ρ′ρ′′, along with an extra application of
Theorem 4.11 of Benkerimi and Hill [1993].

B.2 Correctness for Safe Characteristic Atoms

We first need the following adaptation of Lemma 4.12 from Lloyd and Shepherdson
[1991] (we just formalize the use of “corresponding SLDNF-derivation” from Lloyd
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and Shepherdson [1991] in terms of characteristic paths).

Lemma B.2.1. Let R be the resultant of a finite (possibly incomplete) SLDNF-
derivation of P ∪ {← A} whose characteristic path is δ. If ← Aθ resolves with
R giving the resultant RA then there exists a finite (possibly incomplete) SLDNF-
derivation of P ∪ {← Aθ} whose characteristic path is δ and whose resultant is
RA.

The following lemma is based upon Lemma B.2.1 and will prove useful later
on. It establishes a link between SLD+-derivations in the unrenamed specialized
program and the original one.

Lemma B.2.2. Let P be a program, G a goal, Ã a set of safe characteristic atoms
and P ′′ the union of partial deductions R(A,τ) (in P ), one for every element (A, τ)

of Ã. Let D be a finite SLD+-derivation of P ′′ ∪ {G} with computed answer θ and
resultant R and such that every selected atom A′, which is resolved with a clause
in R(A,τ), is a concretization of (A, τ). Then there exists a finite SLD+-derivation
of P ∪ {G} with computed answer θ and resultant R.

Proof. We do the proof by induction on the length of the SLD+-derivation D
of P ′′ ∪ {G}.

Induction Hypothesis: Lemma B.2.2 holds for SLD+-derivations of P ′′ ∪ {G}
with length ≤ k.

Base Case: Let D have length 0. Then, trivially, the empty derivation of P∪{G}
has the same resultant G← G and the same computed answer ∅.

Induction Step: Let D have length k + 1. Let D′′k be the SLD+-derivation of
P ′′ ∪ {G} consisting of the first k steps of D. Let θk be the computed answer of
D′′k and Rk its resultant. We can then apply the induction hypothesis to conclude
that there is a SLD+-derivation Dk of P ∪ {G} with the same resultant and com-
puted answer. This also means that the resolvent—which is just the body of the
resultant—of D′′k and Dk are the same. We denote this resolvent by RG. Let A′

be the atom selected at the last step of D in the resolvent RG. Let C ∈ P ′′ be
the clause with which A′ is resolved. We know that C is the resultant of a finite
SLDNF-derivation of an atom P ∪{A}, where (A, τ) ∈ Ã, because Ã contains only
safe characteristic atoms. We also know, by assumption, that A′ is a concretiza-
tion of (A, τ) and therefore an instance of A. We can thus apply Lemma B.2.1 for
the last derivation step of D to conclude that we can extend Dk in a similar way,
obtaining the same resolvent (the resolvent is just the body of the resultant), the
same overall computed answer θ (if the head of two resultants for the same goal
RG are identical then so are the c.a.s., and by composing with θk we obtain the
same overall computed answer) and thus also the same overall resultant (because,
conversely, if the c.a.s. and resolvent, for a derivation starting from the same goal
G, are the same then so are the resultants).

We will now extend Lemmas B.2.1 and B.2.2 and establish a more precise link
between derivations in the renamed (standard) partial deduction and derivations
in the original program. For that, the following concept will prove to be useful.

Definition B.2.3 (Admissible Renaming). Let F and F ′ be first-order formulas.
Let P be a program and α an atomic renaming for a set Ã of characteristic atoms.
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We call F ′ an admissible renaming of F under α in P if and only if there exists
some renaming function ρ′α for Ã in P based on α such that F ′ = ρ′α(F ).

Example B.2.4. Let P be the member program from Example 2.3.4 and let Ã
= {CA1, CA2} with CA1 = (member(a, L), {〈1 : 1〉}), CA2 = (member(a, L),
{〈1 : 1〉, 〈1 : 2〉}). Let α be an atomic renaming such that α(CA1) = mem1(L) and
α(CA2) = mem2(L). Then both mem1([a]) and mem2([a]) are admissible renam-
ings of member(a, [a]) under α in P . Now mem2([a, a]) is an admissible renaming of
member(a, [a, a]) under α in P , while mem1([a, a]) is not (because member(a, [a, a])
is not a concretization of CA1). Also, member(b, [a]) has no admissible renamings
under α in P .

The following lemma establishes a link between SLD+-derivation steps in the
(renamed) specialized program and the unrenamed specialized program.

Lemma B.2.5. Let P ′ be a partial deduction of P with respect to Ã and ρα such
that Ã is a finite set of safe P -characteristic atoms and such that Ã is P -covered
and G is P -covered by Ã.

Let C′ = α((A, τ))θ ← ρα(Body), with (A, τ) ∈ Ã, be a clause in P ′ and let
C = Aθ ← Body be the unrenamed version of C′. Let G′ be an admissible renaming
of G under α in P and let γ be a substitution (which e.g., standardises C′ apart
with respect to G′). If RG′ is derived from G′ and C′γ using θ′ then there exists a
goal RG such that:

(1 ) RG is derived from G and Cγ using θ′ and

(2 ) RG′ is an admissible renaming of RG under α in P .

Proof. Let L′ be the selected atom in G′ and let L be the corresponding atom
in G. Because G′ is an admissible renaming of G under α in P , we know that
for some renaming function ρ′α, we have ρ′α(G) = G′ and thus also ρ′α(L) = L′.
Furthermore, as L′ unifies with α((A, τ))θγ, we know that L ∈ γP (A, τ) and thus
also L = Aσ and L′ = α((A, τ))σ for some substitution σ.
Now, we know that θ′ is an idempotent and relevant mgu of L′ = α((A, τ))σ and
α((A, τ))θγ. Because vars(A) = vars(α(A, τ)) (cf. Definition 3.2.6), we have that
θ′ is also an idempotent and relevant mgu of L = Aσ and Aθγ. Hence, by selecting
L in G for resolution with Cγ, we obtain a goal RG which is derived from G and
Cγ using the same θ′.
Finally, RG′ is an admissible renaming of RG under α in P because:

—all atoms in Body are P -covered by Ã (because Ã is P -covered) and are therefore,
by Definition 3.2.6 of a renaming, admissible renamings under α in P .

—the resolvent RG′ will contain, in addition to instances of atoms in G′, instances
of the atoms in Body, all of which are still P -covered by Ã, because the set of
concretizations of characteristic atoms is downwards closed. RG′ is therefore still
an admissible renaming of RG under α in P .

Observe that if the substitution γ in the above lemma standardises C′ apart
with respect to G′, then it also standardises C apart with respect to G (because,
by Definition 3.2.6, vars(G) = vars(G′) as well as vars(C) = vars(C′)).
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Fig. 12. Illustrating Lemma B.2.6.

Usually one will call the specialized program with one specific renaming and
not just with an admissible one. So one might wonder why we only prove in
Lemma B.2.5 above that RG′ is an admissible renaming of RG under α in P and
not that RG′ = ρα(RG). The reason is that in the course of performing resolution
steps, atoms might become more instantiated and applying the renaming function
ρα on the more instantiated atom might result in a different renaming. Take for
example the set Ã = {(p(X), τ), (p(a), τ ′)} of unconstrained characteristic atoms,
the goal G =← p(X), p(X) and take α such that:

—α((p(X), τ)) = p′(X) and

—α((p(a), τ ′)) = pa.

Then ρα(G) =← p′(X), p′(X). Also assume that ρα(p(a)) = pa. Now suppose that
the clause C′ = p′(a)← is in the partial deduction P ′ with respect to an original P
and the set Ã. The clause C = p(a)← is then the unrenamed version of C′. Then
RG′ =← p′(a) is derived from ρα(G) and C′ using {X/a}. Similarly, RG =← p(a)
is derived from G and C using {X/a} (no matter which literal we select). Now
ρα(← p(a)) =← pa 6=← p′(a), i.e., RG′ 6= ρα(RG)! However, ← p′(a) is still an
admissible renaming of ← p(a) under α in P and Lemma B.2.5 holds.

We now combine Lemmas B.2.2 and B.2.5 to establish a link between entire
SLDNF-derivations in the renamed specialized program and original one. However,
for the time being, we have restricted ourselves to unconstrained characteristic
atoms in order to establish the result. An illustration of the following lemma can
be found in Figure 12.

Lemma B.2.6. Let P ′ be a partial deduction of P with respect to Ã and ρα such
that Ã is a finite set of unconstrained P -characteristic atoms and such that Ã is
P -covered and G is P -covered by Ã.

Let G′ be an admissible renaming of G under α in P . Let D′ be a finite SLDNF-
derivation of P ′ ∪ {G′} leading to the resolvent RG′ via the c.a.s. θ. Then there
exists a finite SLDNF-derivation of P ∪ {G} leading to a resolvent RG via c.a.s. θ
such that RG′ is an admissible renaming of RG under α in P and such that RG is
P -covered by Ã.

Proof. First note that, if RG′ is an admissible renaming of RG, RG must by
definition be P -covered by Ã.
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Also note that not all resolvents of P ∪ {G} are P -covered by Ã—there can be
some intermediate goals which have no correspondent goal in P ′ (because entire
derivation sequences can be compressed into one resultant of P ′). So it is only at
some specific points that a resolvent of P ∪{G} has a counterpart in P ′∪{G′}. We
will however show in the following that, as asserted by the lemma, every derivation
of P ′ ∪ {G′} has a counterpart in P ∪ {G}.

We first do the proof for SLD+-derivations, i.e., SLDNF-derivations in which no
negative literals are selected. Let P ′′ be the unrenamed version of P ′ (i.e., the
union of the partial deductions of the elements of Ã). We can now inductively
apply Lemma B.2.5 on every step of the SLD+-derivation D′ of P ′ ∪{G′} and thus
obtain a SLD+-derivation of P ′′∪{G} with the same computed answer θ and with a
resolvent RG, such that RG′ is an admissible renaming of RG. Furthermore, the so
obtained derivation of P ′′∪{G} will satisfy the conditions of Lemma B.2.2 (because
every intermediate goal of this derivation can be renamed into an intermediate goal
of D′ and is thus P -covered by Ã in P , i.e., every selected atom is a concretization
of an element of Ã). We can thus apply Lemma B.2.2 to conclude that an SLD+-
derivation of P ∪ {G} with the same c.a.s. θ and the same resolvent RG (which is
just the body of the resultant)—of which RG′ is an admissible renaming—exists.

So the lemma holds for SLDNF-derivations in which no negative literals are
selected.

Let us now allow the selection of a negative literal in the SLD+-derivation D′ (of
P ′ ∪ {G′} leading to the resolvent RG′). In that case we can apply the just estab-
lished result for the derivation leading up to the goal NG′, in which the selected
negative literal is selected and succeeds (because D′ is not a failed derivation as
it leads to a goal RG′). Then, because NG′ = ρ′α(NG) for some P -covered goal
NG and some renaming function ρ′α, and because Ã contains only unconstrained
characteristic atoms, we can apply Theorem B.1.1, to deduce that the negative
literal must also succeed in the original program (with the same computed answer,

namely the identity substitution ∅). The next resolvents, ÑG and ÑG
′
, are ob-

tained from NG and NG′ respectively, by simply removing a negative literal at the

same position. Therefore, ÑG
′
is still an admissible renaming of ÑG. We can thus

re-apply the above result for SLD+-derivations until the end of the derivation D′.
Finally, we can repeat this same reasoning inductively for any number of selected
negative literals.

In the proof of Lemma B.2.6, we used the fact that Ã contained only uncon-
strained characteristic atoms (to show that the behavior of the selected negative
literals was preserved). We will now move to safe characteristic atoms and show that
their partial deductions can be obtained from partial deductions of unconstrained
characteristic atoms by removing certain clauses. This means that Lemma B.2.6
can actually be used to show soundness of SLD+-derivations for partial deductions
of safe characteristic atoms. To be able to show completeness, as well as allowing
the selection of negative literals, we then show that these additional clauses can be
removed without affecting the finite failure behavior.

The following lemmas will prove useful later on.

Lemma B.2.7. Let τ be a characteristic tree. Let δ1 ∈ τ and δ2 ∈ τ . If δ2 is a
prefix of δ1 then δ1 = δ2.
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Proof. The property follows immediately from the definitions of SLDNF-trees
and characteristic trees.

Lemma B.2.8. Let A and B be atoms and τA a characteristic tree of A in the
program P . If B is an instance of A then there exists a characteristic tree τB of B
in P such that τB ⊆ τA.

Proof. By Definition 2.3.2, for some unfolding rule U we have that τA =
chtree(← A, P, U). Because B is more instantiated than A, all resolution steps
for← A are either also possible for← B or they fail. Therefore, for some unfolding
rule U ′, we have that τB = chtree(← B, P, U ′) ⊆ τA.

Lemma B.2.9. Let τ be a characteristic tree, P a program and (A, τ) a P -
characteristic atom. If (A, τ) is safe then there exists an unfolding rule such that
τ ⊆ chtree(← A, P, U).

Proof. As (A, τ) is a P -characteristic atom, we must have by definition at
least one precise concretization A′ whose characteristic path is τ in P . As all the
derivations in DP (A, τ) are safe, we can unfold ← A in a similar way as ← A′.
This will result in a characteristic tree τ ′ which contains all the paths in τ as well
as possibly some additional paths (which failed for ← A′).

The above Lemma B.2.9 (also) establishes that the partial deduction P(A,τ) of
a safe characteristic atom (A, τ) is a subset of a partial deduction PA of the or-
dinary atom A. The Lemma B.2.11 below shows that it is correct to remove the
resultants PA \ P(A,τ) for the concretizations of (A, τ). In the proof of this lemma
we need to combine characteristic paths. A characteristic path being a sequence,
we can simply concatenate two characteristic paths δ1, δ2. For this we will use
the standard notation δ1δ2 from formal language theory (cf. Aho et al. [1986] and
Hopcroft and Ullman [1979]).

We also need the following lemma from Lloyd and Shepherdson [1991], where it
is Lemma 4.10.

Lemma B.2.10(Persistence of Failure). Let P be a normal program and G
a normal goal. If P ∪ {G} has a finitely failed SLDNF-tree of height h and there is
an SLDNF-derivation from G to G1, then P ∪{G1} has a finitely failed SLDNF-tree
of height ≤ h.

Lemma B.2.11. Let P be a program and (A, τA), (A, τ∗A) be safe P -characteristic
atoms with τA ⊆ τ∗A. Let C ∈ resultants(τ∗A) \ resultants(τA) and let A′ ∈
γP (A, τA).

If ← A′ resolves with C to G′ then G′ fails finitely in P .

Proof. Let δC be the characteristic path associated in Definition 3.2.2 (defining
DP (A, τ)) with C, i.e., C is the resultant of the generalized SLDNF-derivation for
P ∪ {← A} whose characteristic path is δC . Because (A, τ∗A) is safe, C is even the
resultant of an SLDNF-derivation (and not of an unsafe generalized one). We can
therefore apply Lemma B.2.1 to deduce that:

(1) there exists a finite SLDNF-derivation of P ∪{← A′} whose characteristic path
is δC and whose resolvent is G′.
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Fig. 13. Illustrating the proof of Lemma B.2.11.

Because C ∈ resultants(τ∗A) \ resultants(τA) we know that δC ∈ τ∗A and δC 6∈ τA.
Furthermore A′ ∈ γP (A, τA) implies by Lemma B.2.8 that, for some unfolding rule
U , τ̂ = chtree(← A′, P, U) ⊆ τA.

If τ̂ = ∅ then ← A′ fails finitely. Therefore, because a finite SLDNF-derivation
from ← A′ to G′ exists, we can deduce by persistence of failure (Lemma B.2.10),
that G′ must also fail finitely.

If τ̂ 6= ∅ then the largest prefix δ′C of δC , such that for some γ̂ we have δ′C γ̂ ∈ τ̂ ,
must exist (the smallest one being 〈〉). By Lemma B.2.7 we know that no proper
prefix of δC can be in τ∗A (because δC ∈ τ∗A), and therefore neither in τA nor τ̂
(because τ̂ ⊆ τA ⊆ τ∗A). This means that γ̂ must be nonempty. We also know,
again by Lemma B.2.7, that δ′C is a proper prefix of δC (because δC ∈ τ∗A and
δ′C γ̂ ∈ τ∗A), i.e., δC = δ′C〈l : m〉δ′′C . We can also see that γ̂ 6= 〈l : m〉δ′′C because
δ′C γ̂ ∈ τ̂ while δC 6∈ τ̂ . This means that there is branching immediately after δ′C
(otherwise δ′C is not the largest prefix of δC such that an extension of it is in τ̂ ). We
even know that in δC = δ′C〈l : m〉δ′′C the selected literal at position l is a positive
literal (the selection of a negative literal can never lead to branching), that m is
therefore a clause number and also that γ̂ = 〈l : m̂〉γ̂′ with m̂ 6= m. The situation
is summarized in Figure 13.

Let G be the goal obtained from the finite SLDNF-derivation of P∪{← A′} whose
characteristic path is δ′C〈l : m〉 (this must exist because an SLDNF-derivation of
P ∪{← A′} with characteristic path δC exists by point (1) above). In order to arrive
at the characteristic tree τ̂ for← A′ the unfolding rule U also had to reach the goal
G, because τ̂ contains the characteristic path δ′C〈l : m̂〉γ̂′ and G is “reached” via
δ′C〈l : m〉, a step which cannot be avoided by U if it wants to get as far as δ′C〈l : m̂〉.
Furthermore, as neither δ′C〈l : m〉 nor any extension of it are in τ̂ (by definition of
δ′C) this means that ← G finitely fails.

Finally, as δC is an extension of δ′C〈l : m〉, we know that a finite (possibly
empty) SLDNF-derivation from G to G′ exists and therefore, by persistence of
failure (Lemma B.2.10), G′ must also fail finitely.

We now present a correctness theorem for safe characteristic atoms.

Theorem B.2.12. Let P be a normal program, G a goal, Ã a finite set of safe
P -characteristic atoms and P ′ the partial deduction of P with respect to Ã and
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some ρα. If Ã is P -covered and if G is P -covered by Ã then the following hold:

(1 ) P ′ ∪ {ρα(G)} has an SLDNF-refutation with computed answer θ if and only if
P ∪ {G} does.

(2 ) P ′ ∪ {ρα(G)} has a finitely failed SLDNF-tree if and only if P ∪ {G} does.

Proof. The basic idea of the proof is as follows.

(1) First, we transform the characteristic atoms in Ã so as to make them un-
constrained (which is possible by Lemma B.2.9). For the so obtained partial
deduction P ′′ we can reuse Theorem B.1.1 to prove that P ′′ is totally correct.

(2) By construction, P ′′ will be a superset of P ′, i.e., P ′′ = P ′ ∪ PNew, and we
will show, mainly using Lemma B.2.11, that the clauses PNew can be safely
removed without affecting the total correctness.

The details of the proof are elaborated in the following.
1. In order to make a characteristic atom (A, τ) in Ã unconstrained we have to

add some characteristic paths to τ . We have that, for every (A, τ) ∈ Ã, the set of
derivations DP (A, τ) is safe. By Lemma B.2.9 we then know that for some unfolding
rule U : τ ⊆ chtree(← A, P, U). Let τ ′ = chtree(← A, P, U) \ τ and let RNew be the
partial deduction of (A, τ ′) (i.e., the unrenamed clauses that have to be added to the
partial deduction of (A, τ) in order to arrive at a standard partial deduction of the
unconstrained characteristic atom (A, chtree(← A, P, U))). We denote by New(A,τ)

the following set of clauses {α((A, τ))θ ← ρα(Bdy) | Aθ ← Bdy ∈ RNew}. By
adding for each (A, τ) ∈ Ã the clauses New(A,τ) to P ′ we obtain a partial deduction

of P with respect to an unconstrained set Ã′17 and the renaming function ρα (where
we extend α so that α(A, τ∪τ ′) = α(A, τ)). Note that, every concretization of (A, τ)
is also a concretization of (A, τ ∪ τ ′) (because (A, τ ∪ τ ′) is unconstrained, and thus
any instance of A is a concretization).

Unfortunately, although G remains P -covered by Ã′, Ã′ is not necessarily P -
covered any longer. The reason is that new uncovered leaf atoms can arise inside
New(A,τ). Let UC be these uncovered atoms. To arrive at a P -covered partial
deduction we simply have to add, for every predicate symbol p of arity n occurring
in UC, the characteristic atom (p(X1, . . . , Xn), 〈〉) to Ã′, where X1, . . . , Xn are
distinct variables. This will give us the new set Ã′′ ⊇ Ã′ (and we extend α and ρα

in an arbitrary manner for the elements in Ã′′\Ã′). Let P ′′ be the partial deduction
of P with respect to Ã′′ and ρα. Now Ã′′ is trivially P -covered and we can apply
the correctness Theorem B.1.1 to deduce that the computations of P ′′ ∪ {ρα(G)}
are totally correct with respect to the computations in P ∪ {G}.

2. Note that, by construction, we have that P ′ ⊆ P ′′. We will now show that by
removing the clauses PNew = P ′′ \ P ′ we do not lose any computed answer nor do
we remove any infinite failure, i.e.:

—P ′′ ∪ {ρα(G)} has an SLDNF-refutation with computed answer θ if and only if
P ′ ∪ {ρα(G)} does.

17As in the proof of Theorem B.1.1, Ã′ might actually be a multiset. However, this poses no
problems, as all results so far also hold for multisets of characteristic atoms. Alternatively, one
could add an extra unused argument to all predicates and ensure that all elements in Ã have a
different variable in that position, thus guaranteeing that Ã′ is an ordinary set.
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—P ′′ ∪ {ρα(G)} has a finitely failed SLDNF-tree if and only if P ′ ∪ {ρα(G)} does.

Combined with point 1., this is sufficient to establish that P ′ is also totally
correct with respect to P . We do the proof by induction of the rank of the SLDNF-
derivations and trees.

Induction Hypothesis:

—if P ′′ ∪ {ρα(G)} has an SLDNF-refutation of rank k with computed answer θ
then P ′ ∪ {ρα(G)} has an SLDNF-refutation with computed answer θ.

—if P ′∪{ρα(G)} has an SLDNF-refutation of rank k with computed answer θ then
P ′′ ∪ {ρα(G)} has an SLDNF-refutation (of rank k) with computed answer θ.

—if P ′′∪{ρα(G)} has a finitely failed SLDNF-tree of rank k then P ′∪{ρα(G)} has
a finitely failed SLDNF-tree (of rank k).

—if P ′∪{ρα(G)} has a finitely failed SLDNF-tree of rank k then P ′′∪{ρα(G)} has
a finitely failed SLDNF-tree.

Base Case: Because P ′ ⊆ P ′′, we have that whenever P ′′ ∪ {ρα(G)} has a finitely
failed SLD+-tree so does P ′ ∪ {ρα(G)}, and whenever P ′ ∪ {ρα(G)} has a SLD+-
refutation with computed answer θ so does P ′′∪{ρα(G)}. We now show that every
SLD+-derivation of P ′′ ∪ {ρα(G)}, which uses at least a clause in P ′′ \ P ′, fails
finitely. This will ensure that P ′′ ∪ {ρα(G)} cannot have any additional computed
answer and that it fails finitely if and only if P ′ ∪ {ρα(G)} does.
Let D be an SLD+-derivation of P ′′ ∪ {ρα(G)} which uses at least one clause in
P ′′ \ P ′. Let D′ be the largest prefix SLD+-derivation of D such that D′ uses only
clauses within P ′. Let RG′ be the last goal of D′. We can apply Lemma B.2.6 to
deduce that there exists an SLD+-derivation of P ∪ {G} leading to RG such that
RG′ is an admissible renaming of RG under α in P and such that RG is P -covered
by Ã′′. Let RG′ = ρ′α(RG) and let ρ′α(p(t̄)) be the literal selected in RG′ by D
(i.e., the next step after performing D′).

❄

✛ ..........

❄❨
...

...
...

..RG′

P ′

ρα(G) G

RG

P

ρα

ρ′

α

Because RG′ is an admissible renaming of RG, we have p(t̄) ∈ γP (A, τ) where
ρ′α(p(t̄)) = α((A, τ))σ′ for some σ′, ρ′α and (A, τ). Furthermore, we now that
p(t̄) ∈ γP (A, τ ′) for some (A, τ ′) ∈ Ã with τ ′ ⊆ τ , because the elements in Ã′′ \ Ã′

cannot be reached from the clauses in P ′. We can therefore apply Lemma B.2.11
to deduce that ← p(t̄), and therefore also RG, fails finitely in P . We can now
apply the correctness Theorem B.1.1 for the goal ← p(t̄) (it is possible to apply
this theorem because ← p(t̄) is P -covered by Ã) to deduce that ← ρα(p(t̄)) also
fails finitely in P ′′.

Induction Step: Let us now prove the hypothesis for SLDNF-derivations and
trees of rank k + 1. Because P ′ ⊆ P ′′, and by the induction hypothesis (because
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all subderivations and subtrees for negative literals have rank ≤ k), we have that
whenever P ′′ ∪ {ρα(G)} has a finitely failed SLDNF-tree of rank k + 1 so does
P ′ ∪ {ρα(G)}, and whenever P ′ ∪ {ρα(G)} has a SLDNF-refutation or rank k + 1
with computed answer θ so does P ′′ ∪ {ρα(G)}. Similar to the base case, if we
show that every SLDNF-derivation D of rank k + 1 of P ′′ ∪ {ρα(G)} which uses at
least a clause in P ′′ \P ′ fails finitely, then P ′′∪{ρα(G)} cannot have any additional
computed answer (over P ) and it fails finitely if and only if P ′∪{ρα(G)} does. This
can be done in exactly the same manner as for the base case, because Lemmas B.2.6,
B.2.11 and Theorem B.1.1 hold for SLDNF-derivations and trees of any rank.

B.3 Correctness for Unrestricted Characteristic Atoms

We are finally in the position to prove the general correctness Theorem 3.3.2 for
partial deductions of safe and unsafe P -characteristic atoms.

Proof of Theorem 3.3.2. For every (A, τ) ∈ Ã let us remove the derivation
steps from τ which correspond to the selection of a nonground negative literal
in DP (A, τ), resulting in a modified characteristic tree τ ′. Note that, trivially,
any concretization of (A, τ) is also a concretization of (A, τ ′) (if we can build and
SLDNF-tree for P ∪ {← Aθ} with characteristic tree τ we can also construct an
SLDNF-tree with characteristic tree τ ′ by simply not selecting the offending neg-
ative literals). By substituting (A, τ ′) for (A, τ) in Ã we obtain a set Ã′ of safe
characteristic atoms.18 Every clause in the partial deduction with respect to Ã′ and
ρα can be obtained from a clause of P ′ by adding the negative literals which are
no longer selected. So, just like in the proof of Theorem B.2.12, we might have
to add characteristic atoms to Ã′ (to cover all these negative literals), in order to
arrive at a P -covered set, giving the new set of characteristic atoms Ã′′ ⊇ Ã′. As
in the proof of Theorem B.2.12 we also extend α so that α(A, τ ′) = α(A, τ) (and
we extend α and ρα in an arbitrary manner for the elements in Ã′′ \ Ã′).

Let P ′′ be the partial deduction of P with respect to Ã′′ and ρα. We can apply
Theorem B.2.12 to deduce that the computations of P ′′ ∪ {←ρα(G)} are totally
correct with respect to P ∪ {←G}.

We will now establish total correctness of P ′ (with respect to P ) by proving that:

—P ′′ ∪ {ρα(G)} has an SLDNF-refutation with computed answer θ if and only if
P ′ ∪ {ρα(G)} does.

—P ′′ ∪ {ρα(G)} has a finitely failed SLDNF-tree if and only if P ′ ∪ {ρα(G)} does.

We will do this proof by induction on the rank of the SLDNF-refutations and trees.

Induction Hypothesis:

—if P ′′ ∪ {ρα(G)} has an SLDNF-refutation of rank k with computed answer θ
then P ′ ∪ {ρα(G)} has an SLDNF-refutation (of rank k) with computed answer
θ.

18As in the proofs of Theorems B.1.1 and Theorem B.2.12, Ã′ might actually be a multiset.
Again, this poses no problems, as all results so far also hold for multisets of characteristic atoms.
Alternatively, one could add an extra unused argument to all predicates and ensure that all
elements in Ã have a different variable in that position, thus guaranteeing that Ã′ is an ordinary
set.
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—if P ′∪{ρα(G)} has an SLDNF-refutation of rank k with computed answer θ then
P ′′ ∪ {ρα(G)} has an SLDNF-refutation with computed answer θ.

—if P ′′∪{ρα(G)} has a finitely failed SLDNF-tree of rank k then P ′∪{ρα(G)} has
a finitely failed SLDNF-tree.

—if P ′∪{ρα(G)} has a finitely failed SLDNF-tree of rank k then P ′′∪{ρα(G)} has
a finitely failed SLDNF-tree (of rank k).

Base Case: For every SLD+-derivation in P ′ there exists a corresponding SLD+-
derivation in P ′′, with however many additional negative literals in the resolvent.
Thus, every computed answer of P ′′ ∪ {ρα(G)} (via an SLD+-refutation) is also a
computed answer of P ′ ∪ {ρα(G)} (via an SLD+-refutation). Also, if P ′ ∪ {ρα(G)}
has a finitely failed SLD+-tree then P ′′ ∪ {ρα(G)} also has a finitely failed SLD+-
tree. We will now show that these additional negative literals always succeed. Thus,
if for every derivation in P ′′ we impose the (fair) condition that the additional nega-
tive literals are immediately selected, we can establish a one to one correspondence
between derivations in P ′′ and P ′. Also, the clauses that had to be added for
coveredness are not reachable within P ′ and can therefore also be removed. So by
showing that the additional negative literals always succeed, we establish the base
case.

Let G′1 be a goal which is an admissible renaming (under α in P ) of a goal G1 for
P (i.e., G′1 = ρ′α(G1) for some ρ′α—only such goals can occur for derivations inside
P ′) which resolves with a clause Cδ (constructed for the characteristic path δ) in P ′

and with selected literal ρ′α(p(t̄)) leading to a resolvent RG′. Then G′1 also resolves
with a clause C′ in P ′′, under the same selected literal, leading to a resolvent RG′′

which has the same atoms as RG′ plus possibly some additional negative literals
N . Because G′1 is an admissible renaming of G1 we know that p(t̄) ∈ γP (A, τ)
where ρ′α(p(t̄)) = α((A, τ))σ′ for some σ′. Because p(t̄) is a concretization of an
element in Ã we know that it must be the instance of a precise concretization
A. For this concretization A there exists a characteristic tree which contains the
characteristic path δ and for which the negative literals corresponding to N are
ground and succeed. Therefore, because p(t̄) is an instance of A, the literals in
N are identical to the ones selected for P ∪ {← A} and are thus also ground and
succeed. We can thus immediately (by Theorem B.2.12) select them in P ′′ and can
thus construct a corresponding derivation in P ′.

Induction Step: The induction step is very similar to the base case and can
basically be obtained by replacing SLD+ by SLDNF of rank k + 1.

C. PROOF OF THEOREM 3.4.5

We recall the following well-founded measure function defined by Gallagher and
Bruynooghe [1991] (also in the extended version of Martens and Gallagher [1995]):

Definition C.1 (s(.), h(.)). Let Expr denote the sets of expressions. We define
the function s : Expr →IN counting symbols by:

—s(t) = 1 + s(t1) + . . . + s(tn) if t = f(t1, . . . , tn), n > 0

—s(t) = 1 otherwise

Let the number of distinct variables in an expression t be v(t). We now define the
function h : Expr →IN by h(t) = s(t)− v(t).
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The well-founded measure function h has the property that h(t) ≥ 0 for any
expression t and h(t) > 0 for any non-variable expression t. The following im-
portant lemma is proven for h(.) by Gallagher and Bruynooghe [1990] (see also
Martens and Gallagher [1995]).

Lemma C.2. If A and B are expressions such that B is strictly more general
than A, then h(A) > h(B).

It follows that, for every expression A, there are no infinite chains of strictly more
general expressions.

Definition C.3 (Weight Vector). Let Ã be a set of characteristic atoms and let
T = 〈τ1, . . . , τn〉 be a finite vector of characteristic trees. We then define the weight
vector of Ã with respect to T by hvecT (Ã) = 〈w1, . . . , wn〉 where

—wi =∞ if Ã|τi
= ∅

—wi =
∑

A∈Ã|τi
h(A) if Ã|τi

6= ∅

The set of weight vectors is quasi ordered by the usual order relation among
vectors: 〈w1, . . . , wn〉 ≤ 〈v1, . . . , vn〉 if and only if w1 ≤ v1, . . . , wn ≤ vn. Also,
given a quasi order ≤S on a set S, we assume that the associated equivalence
relation ≡S and the associated strict partial order >S are implicitly defined in the
following way:

—s1 ≡S s2 if and only if s1 ≤ s2 ∧ s2 ≤ s1 and s1 <S s2 if and only if s1 ≤ s2

∧ s2 6≤ s1.

The set of weight vectors is well founded (no infinitely decreasing sequences exist)
because the weights of the atoms are well founded.

Proposition C.4. Let P be a normal program, U an unfolding rule and let
T = 〈τ1, . . . , τn〉 be a finite vector of characteristic trees. For every pair of finite
sets of characteristic atoms Ã and B̃, such that the characteristic trees of their
elements are in T , we have that one of the following holds:

—chmsg(Ã ∪ B̃) = Ã (up to variable renaming) or

—hvecT (chmsg(Ã ∪ B̃)) < hvecT (Ã).

Proof. Let hvecT (Ã) = 〈w1, . . . , wn〉 and hvecT (chmsg(Ã ∪ B̃)) = 〈v1, . . . , vn〉.
Then for every τi ∈ T we have two possible cases:

—{msg(Ã|τi
∪B̃|τi

)} = Ã|τi
(up to variable renaming). In this case the abstraction

operator performs no modification for τi and vi = wi.

—{msg(Ã|τi
∪ B̃|τi

)} = {M} 6= Ã|τi
(up to variable renaming). In this case

(M, τi) ∈ chmsg(Ã ∪ B̃), vi = h(M) and there are three possibilities:
—Ã|τi

= ∅. In this case vi < wi =∞.
—Ã|τi

= {A} for some atom A. In this case M is strictly more general than
A (by definition of msg because M 6= A up to variable renaming) and hence
vi < wi.

—#(Ã|τi
) > 1. In this case M is more general (but not necessarily strictly

more general) than any atom in Ã|τi
and vi < wi because at least one atom is

removed by the abstraction.
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We have that ∀i ∈ {1, . . . , n} : vi ≤ wi and either the abstraction operator per-
forms no modification (and ~v = ~w) or the well-founded measure hvecT strictly
decreases.

Theorem 3.4.5. If the number of distinct characteristic trees is finite then Algo-
rithm 3.4.3 terminates and generates a partial deduction satisfying the requirements
of Theorem 3.3.2 for any goal G′ whose atoms are instances of atoms in G.

Proof. Reaching the fixpoint guarantees that all predicates in the bodies of
resultants are precise concretizations of at least one characteristic atom in Ãk, i.e.,
Ãk is P -covered. Furthermore chmsg() always generates more general character-
istic atoms (even in the sense that any precise concretization of an atom in Ãi is
a precise concretization of an atom in Ãi+1—this follows immediately from Def-
initions 3.1.3 and 3.4.1). Hence, because any instance of an atom in the goal G
is a precise concretization of a characteristic atom in Ã0, the conditions of Theo-
rem 3.3.2 are satisfied for goals G′ whose atoms are instances of atoms in G, i.e., G′

is P -covered by Ãk. Finally, termination is guaranteed by Proposition C.4, given
that the number of distinct characteristic trees is finite.

D. ASSORTED SHORT PROOFS

Lemma 4.3.3. Let τ1, τ2 be two characteristic trees. Then τ1 ≡τ τ2 if and only
if τ1 = τ2.

Proof. The if part is obvious because δ and δ′ can be taken as prefixes of
themselves for the two points of Definition 4.3.1.

For the only-if part, let us suppose that τ1 �τ τ2 and τ2 �τ τ1 but τ1 6= τ2. This
means that there must be a characteristic path δ in τ1 which is not in τ2 (otherwise
we reverse the roles of τ1 and τ2). We know however, by point 1 of Definition 4.3.1,
that an extension δx = δγ of δ must be in τ2, as well as, by point 2 of the same
definition, that a prefix δs of δ must be in τ2. Therefore τ2 contains the paths δx

and δs, where δx = δsγ
′γ and δx 6= δs (because δ 6∈ τ2). But this is impossible by

Lemma B.2.7.

Proposition 4.3.13. Let (A, τA) and (B, τB) be two characteristic atoms. If
(A, τA) �ca (B, τB) then γP (A, τA) ⊇ γP (B, τB).

Proof. Let C be a precise concretization of (B, τB). By Definition 3.1.3, there
must be an unfolding rule U such that chtree(← C, P, U) = τB . By Corollary 4.3.11
we can find an unfolding rule U ′, such that chtree(← C, P, U ′) = τA. Furthermore,
by Definition 4.3.12, B is an instance of A and therefore C is also an instance
of A. We can conclude that C is also a precise concretization of (A, τA). In
other words, any precise concretization of (B, τB) is also a precise concretization
of (A, τA). The result for general concretizations follows immediately from this by
Definition 3.1.3.

Proposition 4.4.4. The relation ✂ is a WQO on the set of expressions over a
finite alphabet.
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Proof. (Proofs similar to this one are standard in the literature. We include
it for completeness.) We first need the following concept from Dershowitz and
Jouannaud [1990]. Let ≤ be a relation on a set S of functors (of arity ≥ 0). Then
the homeomorphic embedding over ≤ is a relation≤emb on terms, constructed (only)
from the functors in S, which is inductively defined as follows:

(1) s ≤emb f(t1, . . . , tn) if s ≤emb ti for some i

(2) f(s1, . . . , sn) ≤emb g(t1, . . . , tn) if f ≤ g and ∀i ∈ {1, . . . , n} : si ≤emb ti.

The definition by Dershowitz and Jouannaud [1990] actually also allows functors
of variable arity, but we will not need this in the following. We define the relation
≤ on the set S = V ∪F of symbols, containing the (infinite) set of variables V and
the (finite) set of functors and predicates F , as the least relation satisfying:

—x ≤ y if x ∈ V ∧ y ∈ V

—f ≤ f if f ∈ F

This relation is a WQO on S (because F is finite) and hence by the results of
Higman [1952] and Kruskal [1960] (see also Dershowitz and Jouannaud [1990]), the
homeomorphic embedding ≤emb over ≤, which is by definition identical to ✂, is a
WQO on the set of expressions.

Proposition 4.4.11. Let Ã be a set of P -characteristic atoms. Then ✂∗ca is a
well-quasi relation on Ã.

Proof. Let E be the set of expressions over the finite alphabet AP . By Theo-
rem 4.4.7, ✂∗ is a WQR on E . Let F be the alphabet containing just one binary
functor ca/2 as well as all the elements of E as constant symbols. Let us extend ✂∗

from E to F by (only) adding that ca ✂∗ ca. ✂∗ is still a WQR on F , and hence,
by the results of Higman [1952; Kruskal [1960] (see also Dershowitz and Jouannaud
[1990]), the homeomorphic embedding ✂∗emb over ✂∗ (see proof of Proposition 4.4.4)
on terms constructed from F is also a WQR. Let us also restrict ourselves to terms
ca(A, T ) constructed by using this functor exactly once such that A is an atom and
T the representation of some characteristic tree. For this very special case, ✂∗emb

coincides with Definition 4.4.10 (i.e., ca(A1, ⌈τ1⌉) ✂∗emb ca(A2, ⌈τ2⌉) if and only if

(A1, τ1) ✂∗ca (A2, τ2)) and hence Ã, ✂∗ca is a well-quasi relation.

E. PROOF OF PROPOSITION 4.3.9

We first establish that Algorithm 4.3.6 indeed produces a proper characteristic tree
as output.

Lemma E.1. Any τi arising during the execution of Algorithm 4.3.6 satisfies the
property that δ ∈ τi ⇒ δ ∈ prefix(τA) ∩ prefix (τB).

Proof. We prove this by induction on i.

Induction Hypothesis: For i ≤ k ≤ max (where max is the maximum value
that i takes during the execution of Algorithm 4.3.6) we have that δ ∈ τi ⇒ δ ∈
prefix (τA) ∩ prefix(τB).

Base Case: For i = 0 we have τi = {〈〉} and trivially 〈〉 ∈ prefix (τA) ∩ prefix (τB)
because τA 6= ∅ and τB 6= ∅.
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Induction Step: Let i = k + 1 ≤ max. For δ ∈ τk+1 we either have δ ∈ τk,
and we can apply the induction hypothesis to prove the induction step, or we have
δ = δ′〈l : m〉 with l : m ∈ top(τA ↓ δ′)} and l : m ∈ top(τB ↓ δ′)}. By definition
this implies that δ′〈l : m〉γ ∈ τA for some γ, i.e., δ′〈l : m〉 ∈ prefix (τA). The same
holds for τB , i.e., δ′〈l : m〉 ∈ prefix(τB), and we have proven the induction step.

Lemma 4.3.8. Algorithm 4.3.6 terminates and produces as output a character-
istic tree τ such that if chtree(G, P, U) = τA (respectively τB), then for some U ′,
chtree(G, P, U ′) = τ . The same holds for any τi arising during the execution of
Algorithm 4.3.6.

Proof. Termination of Algorithm 4.3.6 is obvious as τA and τB are finite, τ
cannot grow larger (e.g., in terms of the sum of the lengths of the characteristic
paths) than τA or τB and τi+1 is strictly larger than τi. For the remaining part
of the lemma we proceed by induction. Note that Algorithm 4.3.6 is symmetrical
with respect to τA and τB and it suffices to show the result for τA.

Induction Hypothesis: For i ≤ k we have that if chtree(G, P, U) = τA then for
some U ′ chtree(G, P, U ′) = τi.

Base Case: τ0 = {〈〉} is a characteristic tree of every goal and the property
trivially holds.

Induction Step: Let i = k + 1 and let τk+1 = (τk \ {δ})∪ {δ〈l1 : m1〉, . . . , δ〈ln :
mn〉} where top(τA ↓ δ)} = {l1 : m1, . . . , ln : mn}. By Lemma E.1 we know that
δ〈lj : mj〉 ∈ prefix (τA). Because τA is a characteristic tree we therefore know
that l1 = . . . = ln = l. By the induction hypothesis we know that for some U ′

chtree(G, P, U ′) = τk. Let G′ be the goal of the SLDNF-derivation of P ∪ {G}
whose characteristic path is δ (which must exist because chtree(G, P, U ′) = τk)
and let T be the SLDNF-tree for P ∪ {G} whose characteristic tree is τk. If we
expand T by selecting the literal at position l in G we obtain a SLDNF-tree T ′

whose characteristic tree is τ ′ = (τk \ {δ})∪ {δ〈l : m1〉, . . . , δ〈l : mn〉}∪ {δ〈l :
m′1〉, . . . , δ〈l : m′q〉} (because δ〈lj : mj〉 ∈ prefix(τA) and because additional clauses
might match). If a negative literal is selected we have that n = 1, q = 0, τk+1 = τ ′

and the induction step holds. If a positive literal is selected then we can further
unfold the goals associated with derivations of P ∪ {G} whose characteristic paths
are δ〈l : m′j〉 and make them fail finitely (because δ〈l : m′j〉 6∈ τA). In both cases we
can come up with an unfolding rule U ′′ such that chtree(G, P, U ′′) = τk+1

Proposition 4.3.9. Let τA, τB be two nonempty characteristic trees. Then the
output τ of Algorithm 4.3.6 is the (unique) most specific generalization of τA and
τB.

Proof. We first prove that each τi arising while executing Algorithm 4.3.6 is a
generalization of both τA and τB. For this we have to show that the two points
of Definition 4.3.1 are satisfied; the fact that τ and all τi are proper characteristic
trees (a fact required by Definition 4.3.1) is already established in Lemma 4.3.8.

(1) We have to show that δ ∈ τi ⇒ δ ∈ prefix(τA)∩ prefix (τB). But this is already
proven in Lemma E.1.
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(2) We have to show that δ′ ∈ τA ∪ τB ⇒ ∃δ ∈ prefix({δ′}) such that δ ∈ τi. Again
we prove this by induction on i.

Induction Hypothesis: For i ≤ k ≤ max (where max is the maximum value
that i takes during the execution of Algorithm 4.3.6) we have that δ′ ∈ τA ∪ τB

⇒ ∃δ ∈ prefix({δ′}) such that δ ∈ τi.

Base Case: For all δ′ we have that 〈〉 ∈ prefix ({δ′}) and 〈〉 ∈ τ0.

Induction Step: Let i = k + 1 ≤ max and take a δ′ ∈ τA ∪ τB. Let δ ∈
prefix({δ′}) be such that δ ∈ τk, which must exist by the induction hypothesis.
Either we have that δ ∈ τk+1, and the induction step holds for δ, or δ〈l : m〉 ∈
τk+1 for every l : m ∈ top(τA ↓ δ) where also top(τA ↓ δ) = top(τB ↓ δ) 6= ∅.
Let γ be such that δ′ = δγ (which must exist because δ ∈ prefix ({δ′})). By
Lemma B.2.7 and because top(τA ↓ δ) top(τB ↓ δ) 6= ∅ we know that γ cannot
be empty and thus γ = 〈l : m〉γ′ where l : m ∈ top(τA ↓ δ). Hence, we have
found a prefix δ〈l : m〉 of δ′ such that δ〈l : m〉 ∈ τk+1.

We have thus proven that every τi, and thus also the output τ , is a generalization of
both τA and τB . We will now prove that τ is indeed the most specific generalization.
For this we will prove that, whenever τ∗ �τ τA and τ∗ �τ τB then τ∗ �τ τ . This is
sufficient to show that τ is a most specific generalization; uniqueness then follows
from Lemma 4.3.3. To establish τ∗ �τ τ we now show that the two points of
Definition 4.3.1 are satisfied.

(1) Let δ ∈ τ∗. We have to prove that δ ∈ prefix (τ). As τ∗ �τ τA and τ∗ �τ τB, we
have by Definition 4.3.1 that δ ∈ prefix (τA)∩prefix (τB). In order to prove that
δ ∈ prefix (τ) it is sufficient to prove that if δ = δ′〈l : m〉δ′′ then top(τA ↓ δ′) =
top(τB ↓ δ′) 6= ∅. Indeed, once we have proven this statement, we can proceed
by induction (starting out with δ′ = 〈〉) to show that for some i we have δ ∈ τi

(because top(τA ↓ δ′) = top(τB ↓ δ′) 6= ∅ and δ ∈ prefix(τA)∩prefix (τB) ensure
that if δ′ ∈ τj then δ′〈l : m〉 ∈ τj+k for some k > 0). From then on, the
algorithm will either leave δ unchanged or extend it, and thus we will have
established that δ ∈ prefix (τ).
(a) Let us first assume that top(τA ↓ δ′) = top(τB ↓ δ′) = ∅ and show that it

leads to a contradiction. By this assumption we know that no extension
of δ′ can be in τA or τB, which is in contradiction with δ = δ′〈l : m〉δ′′

∈ prefix (τA) ∩ prefix (τB).
(b) Now let us assume that top(τA ↓ δ′) 6= top(τB ↓ δ′). This means that, for

some l : m′, δ′〈l : m′〉 ∈ prefix (τA) and δ′〈l : m′〉 6∈ prefix (τB) (otherwise we
reverse the roles of τA and τB). We can thus deduce that, for any γ (even
γ = 〈〉), δ′〈l : m′〉γ 6∈ τ∗ (because otherwise, by point 1 of Definition 4.3.1,
τ∗ 6�τ τB). Thus, in order to satisfy point 2 of Definition 4.3.1 for τ∗ �τ τA,
we know that some prefix of δ′ must be in τ∗ (because δ′〈l : m′〉γ′ ∈ τA

for some γ′). But this is impossible by Lemma 4.3.3, because δ = δ′〈l :
m〉δ′′ ∈ τ∗.

So, assuming either top(τA ↓ δ′) = top(τB ↓ δ′) = ∅ or top(τA ↓ δ′) 6= top(τB ↓
δ′) leads to a contradiction and we have established the desired result.

(2) Let δ′ ∈ τ . We have to prove point 2 of Definition 4.3.1 (for τ∗ �τ τ), namely
that ∃δ′′ ∈ prefix ({δ′}) such that δ′′ ∈ τ∗. We have already proven that τ is
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a generalization of both τA and τB , and thus δ′ ∈ prefix(τA) ∩ prefix(τB). We
also know, by the while-condition in Algorithm 4.3.6, that either

(a) top(τA ↓ δ′) = top(τB ↓ δ′) = ∅ or
(b) top(τA ↓ δ′) 6= top(τB ↓ δ′).

Let us examine each of these cases.
(a) In that case we have δ′ ∈ τA ∩ τB which implies, by point 2 of Defini-

tion 4.3.1, that ∃δ′′ ∈ prefix({δ′}) such that δ′′ ∈ τ∗ because τ∗ �τ τA and
τ∗ �τ τB.

(b) In that case we can find δ′〈l : m〉γA ∈ τA and l : m 6∈ top(τB ↓ δ′)
(otherwise we reverse the roles of τA and τB). As τ∗ �τ τA, we know
by point 2 of Definition 4.3.1, that a prefix δ′′ of δ′〈l : m〉γA is in τ∗.
Finally, δ′′ must be a prefix of δ′ (otherwise δ′′ = δ′〈l : m〉γ′A ∈ τ∗ and,
as δ′〈l : m〉γ′A 6∈ prefix(τB) because l : m 6∈ top(τB ↓ δ′), we cannot have
τ∗ �τ τB by point 1 of Definition 4.3.1).

F. PROOF OF THEOREM 4.4.7

The following definitions and lemmas are needed to prove Theorem 4.4.7.
An order >S is called a well-founded order (WFO) on S if and only if there is no

infinite sequence of elements s1, s2, . . . in S such that si > si+1, for all i ≥ 1.

Lemma F.1 (WQR from WFO). Let <V be a well-founded order on V . Then
�V , defined by v1 �V v2 if and only if v1 6>V v2, is a WQR on V .

Proof. Suppose that there is an infinite sequence v1, v2, . . . of elements of V such
that, for all i < j, vi 6�V vj . By definition this means that, for all i < j, vi >V vj .
In particular this means that we have an infinite sequence with vi >V vi+1, for all
i ≥ 1. We thus have a contradiction with the definition of a well-founded order and
�V must be a WQR on V .

Lemma F.2. Let �V be a WQR on V and let σ = v1, v2, . . . be an infinite
sequence of elements of V .

(1 ) There exists an i > 0 such that the set {vj | i < j ∧ vi �V vj} is infinite.

(2 ) There exists an infinite subsequence σ∗ = v∗1 , v∗2 , . . . of σ such that for all i < j
we have v∗i �V v∗j .

Proof. The proof will make use of the axiom of choice at several places. Given
a sequence ρ, we denote by ρv′�V ◦ the subsequence of ρ consisting of all elements
v′′ which satisfy v′ �V v′′. Similarly, we denote by ρv′ 6�V ◦ the subsequence of ρ
consisting of all elements v′′ which satisfy v′ 6�V v′′.

Let us now prove point 1. Assume that such an i does not exist. We can
then construct the following infinite sequence σ0, σ1, . . . of sequences inductively as
follows:

—σ0 = σ

—if σi = v′i.ρ
i then σi+1 = ρi

v′

i
6�V ◦

All σi are indeed properly defined because at each step only a finite number of
elements are removed (by going from ρi to ρi

v′

i
6�V ◦

; otherwise we would have found an
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index i satisfying point 1). Now the infinite sequence v′1, v
′
2, . . . has by construction

the property that, for i < j, v′i 6�V v′j . Hence �V cannot be a WQR on V and we
have a contradiction.
We can now prove point 2. (This point is actually almost a corollary of point iv
of Theorem 2.1 in Higman [1952]. But as no formal proof is provided by Higman
[1952], we include one for completeness.) Let us construct σ∗ = v∗1 , v∗2 , . . . induc-
tively as follows:

—σ0 = σ

—if σi = r1, r2, . . . then v∗i+1 = rk and σi+1 = ρi
rk�V ◦

where k is the first index

satisfying the requirements of point 1 for the sequence σi (i.e., {rj | k < j∧rk �V

rj} is infinite) and where ρi = rk+1, rk+2,. . . .

By point 1 we know that each ρi
rk�V ◦

is infinite and σ∗ is thus an infinite sequence
which, by construction, satisfies v∗i �V v∗j for all i < j.

Lemma F.3 (Combination of WQR). Let �1
V and �2

V be WQR’s on V . Then
the relation �V defined by v1 �V v2 if and only if v1 �1

V v2 and v1 �2
V v2, is also

a WQR on V .

Proof. (This lemma is actually almost a corollary of Theorem 2.3 in Higman
[1952]. But as no formal proof is given in Higman [1952], we include one for com-
pleteness.) Let σ be any infinite sequence of elements from V . We can apply point 2
of Lemma F.2 to obtain the infinite subsequence σ∗ = v∗1 , v∗2 , . . . of σ such that for
all i < j we have v∗i �

1
V v∗j . Now, as �2

V is also a WQR we know that, for some

i < j, v∗i �
2
V v∗j holds as well. Hence, for these particular indices, v∗i �V v∗j and

�V satisfies the requirements of a WQR on V .

We can now actually prove Theorem 4.4.7.

Proof of Theorem 4.4.7. ✂∗ can be expressed as a combination of two rela-
tions on expressions: ✂ and �NotStrictInst where A �NotStrictInst B if and only if
B 6≺ A (i.e., B is not strictly more general than A or equivalently A is not a strict
instance of B). We know that ≺ is a well-founded order on expressions (see e.g.,
Lemma C.2 in Appendix C). Hence by Lemma F.1 �NotStrictInst is a WQR on
expressions. By Proposition 4.4.4 we also have that ✂ is a WQO on expressions
(given a finite underlying alphabet). Hence we can apply Lemma F.3 to deduce
that ✂∗ is also a WQR on expressions over a finite alphabet.

G. PROOF OF PROPOSITION 4.4.9

Recall that τ ↓ δ = {γ | δγ ∈ τ} and prefix(τ) = {δ | ∃γ such that δγ ∈ τ}. The
following lemma will prove useful to establish the existence of a mapping ⌈.⌉.

Lemma G.1. Let τ1 and τ2 be two characteristic trees and let δ ∈ prefix (τ1) be
a characteristic path. If τ1 �τ τ2 then τ1 ↓ δ �τ τ2 ↓ δ.

Proof. If δ′ ∈ τ1 ↓ δ then by definition δδ′ ∈ τ1. Therefore, by point 1 of
Definition 4.3.1, δδ′ ∈ prefix (τ2) because τ1 �τ τ2. Thus δ′ ∈ prefix (τ2 ↓ δ) and
point 1 of Definition 4.3.1 is verified for τ1 ↓ δ and τ2 ↓ δ.
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Secondly, if δ′ ∈ τ2 ↓ δ then δδ′ ∈ τ2 and we have, by point 2 of Defini-
tion 4.3.1, ∃δ̂ ∈ prefix({δδ′}) such that δ̂ ∈ τ1. Now, because δ ∈ prefix(τ1) we

know that δ̂ must have the form δ̂ = δγ (otherwise we arrive at a contradiction
with Lemma B.2.7) where γ ∈ prefix({δ′}). Thus γ ∈ τ1 ↓ δ (because δγ ∈ τ1) and
also point 2 of Definition 4.3.1 is verified for τ1 ↓ δ and τ2 ↓ δ.

Proof of Proposition 4.4.9. Within Definition 4.4.8, the strict monotonicity
condition is slightly tricky, but it can be satisfied by representing leaves of the
characteristic tree by variables. First, recall that top(τ) = {l : m | 〈l : m〉 ∈
prefix (τ)}. Let us now define the representation ⌈τ⌉ of a nonempty characteristic
tree τ inductively as follows (using a binary functor m to represent clause matches
as well as the usual functors for representing lists):

—⌈τ⌉ = X where X is a fresh variable if top(τ) = ∅

—⌈τ⌉ = [m(m1, ⌈τ ↓ 〈l : m1〉⌉), . . . , m(mk, ⌈τ ↓ 〈l : mk〉⌉)] if top(τ) = {l :
m1, . . . , l : mk} and where m1 < . . . < mk.

For example, using the above definition, we have

⌈{〈1 : 3〉}⌉ = [m(3, X)]

and

⌈{〈1 : 3, 2 : 4〉}⌉ = [m(3, [m(4, X)])].

Note that {〈1 : 3〉} ≺τ {〈1 : 3, 2 : 4〉} and indeed ⌈{〈1 : 3〉}⌉ ≺τ ⌈{〈1 : 3, 2 : 4〉}⌉.
Also note that, because there are only finitely many clause numbers, these terms
can be expressed using a finite alphabet.19

Note that if τ1 ≺τ τ2 we immediately have by Definition 4.3.1 that τ1 6= ∅ and
τ2 6= ∅. It is therefore sufficient to prove strict monotonicity for two nonempty
characteristic trees τ1 ≺τ τ2. We will prove this by induction on the depth of τ1,
where the depth is the length of the longest characteristic path in τ1. We also have
to perform an auxiliary induction, showing that ⌈τ1⌉ �τ ⌈τ2⌉ whenever τ1 �τ τ2.

Induction Hypothesis: For all characteristic trees τ1 of depth ≤ d we have that
⌈τ1⌉ ≺τ ⌈τ2⌉ whenever τ1 ≺τ τ2 and ⌈τ1⌉ �τ ⌈τ2⌉ whenever τ1 �τ τ2

Base Case: τ1 has a depth of 0, i.e., top(τ1) = ∅. This implies that ⌈τ1⌉ is a fresh
variable X . If we have τ1 ≺τ τ2 then top(τ2) 6= ∅ and ⌈τ2⌉ will be a strict instance
of X , i.e., ⌈τ1⌉ ≺ ⌈τ2⌉. If we just have τ1 �τ τ2 we still have ⌈τ1⌉ � ⌈τ2⌉.

Induction Step: Let τ1 have depth d + 1. This implies that top(τ1) 6= ∅ and,
because τ1 ≺τ τ2 or τ1 �τ τ2, we have by Definition 4.3.1 and Lemma B.2.7 that
top(τ1) = top(τ2) (more precisely, by point 1 of Definition 4.3.1 we have top(τ1) ⊆
top(τ2) and by point 2 of Definition 4.3.1 combined with Lemma B.2.7—the latter
affirming that 〈〉 6∈ τ1—we get top(τ1) ⊇ top(τ2)). Let top(τ1) = {l : m1, . . . , l :
mk}. Both ⌈τ1⌉ and ⌈τ2⌉ will by definition have the same top-level term structure—
they might only differ in their respective subterms {⌈τ1 ↓ 〈l : mi〉⌉ | 1 ≤ i ≤ k}

19We can make ⌈.⌉ injective (i.e., one-to-one) by adding the numbers of the selected literals. But
because these numbers are not a priori bounded we then have to represent them differently than
the clause numbers, e.g., in the form of s(. . . (0) . . .), in order to stay within a finite alphabet.
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and {⌈τ2 ↓ 〈l : mi〉⌉ | 1 ≤ i ≤ k}. We can now proceed by induction. First by
Lemma G.1 we have that τ1 ↓ 〈l : mi〉 �τ τ2 ↓ 〈l : mi〉. Furthermore, in case
τ1 ≺τ τ2, there must be at least one index j such that τ1 ↓ 〈l : mj〉 ≺τ τ2 ↓ 〈l : mj〉,
otherwise τ1 ≡τ τ2. For this index j we can apply the first part of the induction
hypothesis (because the depth of the respective subtrees is strictly smaller) to show
that ⌈τ1 ↓ 〈l : mj〉⌉ ≺ ⌈τ2 ↓ 〈l : mj〉⌉. For the other indexes i 6= j we can
apply the second part of the induction hypothesis to show that ⌈τ1 ↓ 〈l : mi〉⌉
� ⌈τ2 ↓ 〈l : mi〉⌉. Finally, because all variables used are fresh and thus distinct,
there can be no aliasing between the respective subterms and we can therefore
conclude that ⌈τ1⌉ � ⌈τ2⌉ if τ1 �τ τ2 as well as ⌈τ1⌉ ≺ ⌈τ2⌉ if τ1 ≺τ τ2.

Remember that msg(τ1, τ2) is defined unless one of the characteristic trees is
empty while the other one is not. Therefore, to guarantee that if ⌈τ1⌉✂∗ ⌈τ2⌉ holds
then msg(τ1, τ2) is defined, we simply have to ensure that

—⌈∅⌉✂∗ ⌈τ⌉ if and only if τ = ∅ and

—⌈τ⌉✂∗ ⌈∅⌉ if and only if τ = ∅.

This can be done by defining ⌈∅⌉ = empty where the functor empty is not used in
the representation of characteristic trees different from ∅.

The existence of such a mapping also implies, by Lemma C.2, that there are no
infinite chains of strictly more general characteristic trees. (This would not have
been true for a more refined definition of “more general” based on just the set of
concretizations.)

Also note that the inverse of the mapping ⌈.⌉, introduced in the proof of Propo-
sition 4.4.9, is not total but still strictly monotonic. We do not need this property
in the article however. But note that, because the inverse is not total, we cannot
simply apply the msg on the term representation of characteristic trees in order
to obtain a generalization. In other words, the definition of ⌈.⌉ does not make the
notion of an msg for characteristic trees, as well as Algorithm 4.3.6, superfluous.
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