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Abstract— JOpenShowVar is a Java open-source cross-
platform communication interface to Kuka industrial robots.
This novel interface allows for read-write use of the controlled
manipulator variables and data structures. JOpenShowVar,
which is compatible with all Kuka industrial robots that use
Kuka Robot Controller version 4 (KR C4) and Kuka Robot
Controller version 2 (KR C2), runs as a client on a remote
computer connected with the Kuka controller via Transmission
Control Protocol/Internet Protocol (TCP/IP). Even though only
soft real-time applications can be implemented, JOpenShowVar
opens up to a variety of possible applications, making both
the use of various input devices and sensors as well as the
development of alternative control methods possible.

Four case studies are presented to demonstrate the poten-
tial of JOpenShowVar. The first two case studies are open-
loop applications, while the last two case studies describe the
possibility of implementing closed-loop applications. In the first
case study, the proposed interface is used to make it possible for
an Android mobile device to control a Kuka KR 6 R900 SIXX
(KR AGILUS) manipulator. In the second case study, the same
Kuka robot is used to perform a two-dimensional line-following
task that can be used for applications like advanced welding
operations and similar. In the third case study, a closed-loop
application is developed to control the same manipulator with a
Leap Motion Controller that supports hand and finger motions as
input without requiring contact or touching. In the fourth case
study, a bidirectional closed-loop coupling is established between
a Force Dimension omega.7 haptic device and the same Kuka
manipulator. Related experiments are carried out to validate
the efficiency and flexibility of the proposed communication
interface.

Index Terms— Robot interface, Kuka industrial robots, input
device.

I. INTRODUCTION

Industries that employ robots in a wide variety of ap-

plications are the main customers for robot manufacturers.

The manipulator market for research applications, on the

other hand, is simply too small for the robot manufacturing

industry to develop models specifically for such use. While

the hardware and mechanical requirements of developed

robots are often similar for both industry and research,

scientific software requirements are quite different and even

contradictory in many aspects [1], [2]. The goal of scientists

JOpenShowVar
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Fig. 1: The idea of realising a communication interface for

Kuka industrial robots that works as a middleware between

the user program and the Kuka Robot Language (KRL).

is to try to gain as much control over the robot as possible,

whereas industries seek safe and easy operational interfaces.

In particular, although software interfaces that are appropriate

for industrial use are available, it is difficult to find interfaces

that are applicable for research purposes. The disclosure of

the internal control architecture is also very hard to come

by. Many manufacturers are unwilling to publish internal

details regarding system architecture due to the high levels

of competition in the robot market. Consequently, it is not

possible to fully exploit many robotic platforms in a scientific

context.

Only a small number of industrial manipulators with an

open control interface has been released as far as robotics

is concerned. Focusing exclusively on Kuka industrial robots

[3], the Kuka Robot Language (KRL) is the standard pro-

gramming language [4]. It is a text based language that

offers data type declaration, specification of simple motions,

and interaction with tools and sensors via Input/Output (I/O)

operations. It is only possible to run KRL programs on the

Kuka Robot Controller (KRC), where program execution is

done in accordance with real-time constraints. While the

KRL offers an interface that is easy to use in industrial

applications, it is quite limited for research purposes. In

particular, the KRL is tailored to the underlying controller

and consequently, only a fixed, controller-specific set of

instructions is offered [5]. Advanced mathematical tools such

as matrix operations, optimisation or filtering methods are

not supported, thus making the implementation of novel

control approaches very difficult. There is no native way to

include third party libraries and as such, extending the KRL

to include new instructions and functionalities is an arduous

task. Moreover, it is not possible to directly use external input

devices. The standard workaround for partially expanding the

robot’s capabilities is to use supplementary software packages



provided by Kuka. Some examples of such packages are the

Kuka.RobotSensorInterface [6], which allows the manipulator

motion or program execution to be influenced by sensor

data, and the Kuka.Ethernet KRL XML [6], a module that

allows the connection of the robot controller with up to nine

external systems (e.g. sensors). However, several drawbacks

accompany these supplementary software packages: I/O is

limited, a narrow set of functions is present and major capital

investments are often required to actually purchase these

packages from Kuka.

To overcome these problems, JOpenShowVar was pre-

sented by our research group in [7]. JOpenShowVar is a Java

open-source cross-platform communication interface that al-

lows for reading and writing all the controlled manipulator

variables. Even though only soft real-time applications can

be implemented, this interface allows researchers to use

different input devices, sensors and to develop alternative

control methods. JOpenShowVar library is compatible with

all Kuka industrial robots that use KR C4 or KR C2. The

basic concept is shown in Fig. 1: JOpenShowVar works as a

middleware between the user program and the KRL. In this

work, more details about JOpenShowVar architecture are pro-

vided. Several new, more flexible and efficient, procedures are

introduced in the latest release of the library to replace the old

fundamental reading and writing method that is now marked

as deprecated. In addition to these new methods, some other

high-level functions are also provided to enable angles and

torques readings of the controlled manipulator. This feedback

signal is very important to improve the manipulator dexter-

ity and to achieve crucial functions like sensitive collision

detection and compliant control actions. Some guidelines for

allowing the user implementing new high-level procedures

are discussed. JOpenShowVar is an open-source project and

it is available on the Internet at https://github.com/

aauc-mechlab/jopenshowvar, along with several de-

tailed class diagrams, documentation and demo videos.

The paper is organised as follows. A review of the related

research work is given in Section II. In Section III, we focus

on the description of JOpenShowVar architecture, analysing

the communication protocol, possible control approaches

and some high-level methods. In Section IV, four case

studies are presented. The first two case studies are open-

loop applications, while the last two case study describe the

possibility of implementing closed-loop applications. In the

first case study, JOpenShowVar is used to control a Kuka KR

6 R900 SIXX (KR AGILUS) robot with an Android [8] mobile

application. In the second case study, the same Kuka robot is

used to perform a two-dimensional line-following task that

can be used for applications like advanced welding operations

and similar. In the third case study, the same manipulator

is controlled in a closed-loop mode with a Leap Motion

Controller [9] that supports hand and finger motions as input

without requiring contact or touching. Finally, in the fourth

TABLE I: Currently available interfaces for Kuka robots

Interface
Support to
Kuka LBR

Support to Kuka
industrial robots

External
packages
required

OpenKC Yes No Yes
FRI Yes No No

KCT No
Yes (only small
and low-payload)

Yes

Robotics
APIs

Yes
Yes (safety
limitations)

No

ROS Yes No No
KUKASunrise.Connec-
tivity

Yes No Yes

case study, a bidirectional closed-loop coupling between a

Force Dimension omega.7 haptic device and the same Kuka

robot is established. A force feedback proportional to the

force that the robot’s end-effector is supporting is returned

by the haptic interface. Related experiments and results are

shown in Section V. In Section VI, conclusions and future

works are outlined.

II. RELATED RESEARCH WORK

The possibility of creating a software interface to Kuka

robots has been investigated by several research groups.

An open-source real-time control software for the Kuka

lightweight robot, OpenKC, was presented in [1]. This soft-

ware makes it possible to externally trigger and control all

of the features of the Kuka lightweight (LBR) manipulator.

This is done by using a simple set of routines that can

easily be integrated into existing software. As a result,

developers of robot applications have an edge in finding

solutions for a variety of different software scenarios. In

particular, force and torque readings as well as different

modes of operation can be remotely read and parametrised.

However, this software interface is restricted to a specific

model of Kuka robots, the Kuka lightweight manipulator, and

use of the Kuka.RobotSensorInterface package is required.

Another interface that is currently available for the Kuka

lightweight robots is the Fast Research Interface (FRI) [2].

The FRI provides direct low-level real-time access to the

KRC at high rates of up to 1 kHz. On the other hand,

all features, like teaching, motion script features, fieldbus

I/O and safety are provided. The FRI is based on the KR

C2. Without much installation efforts, access to different

controller interfaces of the Kuka system is provided including

joint position control, cartesian impedance control, and joint

position control. However, also this software interface is

restricted to a specific model of Kuka robots, the Kuka

lightweight manipulator. No support for the standard Kuka

industrial robots is provided.

Later on, the Kuka Control Toolbox (KCT), a collection

of MATLAB functions for motion control of Kuka industrial

robots, was introduced in [10] to offer an intuitive and

high-level programming interface for the user. This toolbox



is compatible with all small and low-payload Kuka robots

that have six degrees of freedom (DOFs). The KCT runs

on a remote computer connected to the KRC via TCP/IP.

A multi-thread server runs on the KRC and communicates

via Kuka.Ethernet KRL XML with a client whose job is

to manage the information exchange with the manipulator.

High transmission rates are guaranteed by this communi-

cation set-up, thus enabling real-time control applications.

Nonetheless, as in the previous work, this approach is still

tailored to the underlying controller and requires the use of

the Kuka.Ethernet KRL XML package.

A different approach has been tried by other researchers,

aimed at the disclosure of the Kuka industrial manipulator

internal control architecture. For instance, the reverse en-

gineering of the KRL was investigated in [5] and a set of

Java-based Robotics APIs was presented for programming

industrial robots on top of a general-purpose language. The

Robotics APIs implement robot commands like motions and

access to I/O calls. It was shown that KRL can be bridged

by batch-executing motions, under the assumption that ex-

ecuting control flow and calculation statements takes only

a small amount of time compared to the time it takes the

robot to complete a motion command. However, some safety

limitations are inherently present in the Robotics APIs set

because it is the result of a reverse engineering approach

and therefore does not include a way of specifying complex

triggers in contrast to the KRL.

In the last few years, the Robot Operating System (ROS)

[11], an open-source software toolbox for robotic devel-

opment, has become more and more popular among the

research community. The primary goal of ROS is to provide a

common platform to make the construction of capable robotic

applications quicker and easier. Some of the features it pro-

vides include hardware abstraction, device drivers, message-

passing and package management. ROS provides support

for different industrial robots including vendors like ABB,

Adept, Fanuc, Motoman and Universal Robots. Extensive

research work has also gone into creating ROS packages

for communicating with the Kuka lightweight robots but no

support is provided for the Kuka standard industrial robots

yet. One of the main reasons for this lack is the non-

disclosure of the KUKA Robot Controller (KRC) internal

architecture which currently makes it impossible to directly

interact with the robot to be controlled.

Recently, Kuka has shown more interest in the re-

search and education market. In particular, the KUKA Sun-

rise.Connectivity has been recently developed for Kuka

lightweight robots. This software provides a collection of

interfaces for influencing robot motion at various process

control levels. Third-party software can be easily integrated

into the user-specific application using the popular standard

programming language Java. Along with the quick update

of the target position directly from the robot application, it

KRCRemote Computer

KUKAVARPROXY

JopenShowVar

User Program

TCP/IP

Fig. 2: The proposed architecture for JOpenShowVar: a

client-server model is adopted.

is also possible to access the robot controller from external

computers in hard real-time mode. However, even in this last

case, the main limitation is that this software is restricted to

the Kuka lightweight manipulators.

To provide a more clear overview of the currently available

interfaces for Kuka robots, a table of comparison of all the

reviewed related works is shown in Table I.

To the best of our knowledge, a cross-platform commu-

nication interface that works with all Kuka industrial robots

without requiring any external packages has not been released

yet.

III. JOpenShowVar ARCHITECTURE

In this section, the authors initially describe the design

choices that characterise the proposed architecture. Succes-

sively, the architectural concept is presented, analysing the

communication protocol, possible control approaches and

some high-level methods.

The design of JOpenShowVar is based on the following

design choices:

• Low-cost: the developed architecture does not re-

quires any supplementary software packages provided

by Kuka such as the Kuka.RobotSensorInterface [6] or

the Kuka.Ethernet KRL XML [6]. Therefore, no major

capital investments are required to actually purchase

these packages from Kuka. This fact makes the proposed

solution very inexpensive;

• Flexibility: the system offers a virtually unlimited I/O

and the possibility of including third party libraries. This

allows for adding support for advanced mathematical

tools such as matrix operations, optimisation or filtering

methods, thus making it very simple to implement novel

control approaches;

• Reliability: the system is easy to maintain, modify and

expand by adding new components and features. In

addition the proposed interface is also open-source and

cross-platform;

• Integrability: the proposed system interface presents a

modular structure that can facilitate the integration with

ROS. Even though this integration is outside the scope

of this journal paper, it is considered as an important

future work which will surely improve the usefulness

of the proposed interface. The community of developers

at ROS is looking forward to the integration of JOpen-

ShowVar. The developers have confirmed the usefulness



of the proposed interface especially because there are

currently no other alternative offering similar features.

Hereafter, several specific functions, variables and config-

urations related to the KRL and the KRC are referred to

in order to introduce the architectural concept. For a more

detailed introduction to the KRL, the reader can refer to [4].

The proposed control system architecture is shown in Fig. 2.

It is a client-server architecture with JOpenShowVar running

as a client on a remote computer and KUKAVARPROXY act-

ing as a server on the KRC. JOpenShowVar locally interacts

with the user program and remotely communicates with the

KUKAVARPROXY server via TCP/IP.

In particular, KUKAVARPROXY is a multi-client server

that is written in Visual Basic 6.0 and can serve up to

10 clients simultaneously. KUKAVARPROXY implements the

Kuka CrossComm interface. This interface allows for the

interaction with the real-time control process of the robot

and makes it possible to perform several operations such as

selection or cancellation of a specific program, errors and

faults detection, renaming program files, saving programs,

resetting I/O drivers, reading variables and writing variables.

KUKAVARPROXY implements the reading and writing meth-

ods. All the variables that need to be accessed by these meth-

ods have to be declared as global variables in the predefined

global system data list $CONFIG.DAT. All kinds of variables

can be declared in this file from basic types such as INT,

BOOL and REAL to more complex structures like E6POS

and E6AXIS that allow for storing the robot configuration.

Moreover, several system variables can be accessed provided

there are no restrictions due to the type of data such as

for $PRO IP, $POS ACT, $AXIS ACT or $AXIS INC. For

example, the current robot position, $POS ACT, cannot be

written but only read. Restrictions of this nature are checked

by the controller.

As already mentioned, the interface of the Kuka Cross-

Comm class allows for the interaction with the real-time

control process of the robot to be controlled. However,

it should be noted that the Kuka CrossComm class can

only be remotely accessed via TCP/IP. Unfortunately, the

TCP/IP communication introduces inevitable delays, there-

fore JOpenShowVar cannot provide a real-time access to

the robot’s data. Only soft real-time applications can be

realised. In fact, it takes a non-deterministic time to access

a specific variable. Since Kuka does not offer any kind

of documentation on this topic, several experimental tests

were performed at our laboratory to asses this time interval.

According to our experiments, reported in Section V, the

average access time is about 5 ms. Moreover, this time

interval is not affected by the kind of access to be performed

(whether it is a reading or a writing operation) or by the

length of the message. For these reasons, it is advantageous to

aggregate several variables in logical structures when reading

or writing data. By using data structures it is possible to

readVariable
writeVariable

KRC

KUKAVARPROXY

sendRequest 
@Deprecated

KRC 
Kinematics

KRL Actuator Program

Custom 
Kinematics

High Level 
Functions

Kuka Robot 
Controller

Kuka-
Dependent 
Functions

Network

JOpenShowVar
CrossComClient

Application 
High-level 
functions

Application Code

Control 
Methods

Terminal GUI

Fig. 3: The architectural levels of JOpenShowVar.

simultaneously access several variables, thereby minimising

the access time. The only limitation to this approach is on

the length of the logical structures that cannot exceed 255

bytes.

JOpenShowVar provides a client, CrossComClient, which

is written in Java, thus making cross-platform support possi-

ble. The architectural details of the JOpenShowVar library

are shown in Fig. 3. As presented in our previous work

[7], the client initially provided only one low level method,

sendRequest. This method allows for both reading and writ-

ing variables. The sendRequest method returns a Callback

instance containing the updated value. However, in the latest

release of JOpenShowVar, starting from version v0.2, the

sendRequest is marked as a deprecated method, since two

new more flexible and efficient methods are introduced:

readVariable and writeVariable.

On top of the JOpenShowVar’s methods that implement the

low level communication protocol, another logic layer can be

added by the user developer allowing for the possibility of

implementing alternative control methods (custom kinemat-

ics) as well as some higher level functions. The application

code can run on top of this hierarchical architecture. In

addition a graphical user interface (GUI) and a terminal are

provided with JOpenShowVar to allow the user for monitor-

ing the robot’s state, visualising and manually setting all the

desired variables. It should be noted that the GUI still uses the

sendRequest method of JOpenShowVar for a practical reason,

since this old method does not require any knowledge on the

internal structure of the variables to be accessed compared to

the new methods. The low-level communication protocol, a

detailed reference explanation of the newly released methods,

the possibility of implementing custom control functions, as

well as some guidelines to develop high-level procedures will



TABLE II: Reading variables

Field Description
00 message ID
09 length of the next segment
0 type of desired function
07 length of the next segment
$OV PRO Variable to be read

TABLE III: Writing variables

Field Description
00 message ID
0b length of the next segment
1 type of desired function
09 length of the next segment
$OV PRO Variable to be written
50 value to be written

be discussed later in this section.

A. Communication protocol

The communication protocol relies on the TCP/IP pro-

tocol. In particular, on top of the TCP/IP layer, specially

formatted text strings are used for message exchanges.

KUKAVARPROXY actively listens on TCP port 7000. Once

the connection is established, the server is ready to receive

any reading or writing request from the client.

Reading variables: To access a variable, the client must

specify two parameters in the message: the desired type of

function and the variable name. To read a specific variable,

the type of function must be identified by the character “0”.

For instance, if the variable to be read is the system variable

$OV PRO, which is used to override the speed of the robot,

the message that the client has to send to the server will

have the format shown in Table II. In detail, the first two

characters of this string specify the message identifier (ID)

with a progressive integer number between 00 and 99. The

answer from the server will contain the same ID so that

it is always possible to associate the corresponding answer

to each request even if the feedback from the server is

delayed. The next two characters in the string specify the

length of the next segment in hexadecimal units. In this

specific case, 09 accounts for one character specifying the

function type, two characters indicating the length of the next

segment and seven characters for the variable length. The fifth

character 0 in the message represents the type of the desired

function, which in this case is reading. Subsequently, there

are two more characters indicating the variable length (in

hexadecimal units) and finally the variable itself is contained

in the last section of the message.

Writing variables: To write a specific variable, three pa-

rameters must be specified: the type of function, the name of

the desired variable and the value to be assigned. The writing

function is specified by the character “1”. For instance, if the

variable to be written is the system variable $OV PRO with

a value of 50 (50% override speed), the message that the

client has to send to the server will have the format shown

in Table III.

B. Variables, structures and methods

From the release version v0.2 of JOpenShowVar, several

new classes have been added to the library to improve the

usability. In particular, two abstract classes, KRLVariable and

KRLStruct (which extends KRLVariable), are provided to

allow the user to implement any KRL variable or structure,

respectively. In this way, it is possible to create and maintain

a local instance of all the desired variables and structures

on the client side. Based on these two abstract classes, the

most commonly used KRL variables and structures have

been implemented. Any other KRL variable or structure that

is not included in JOpenShowVar library yet can be easily

implemented by the user.

Since the release version v0.2 of JOpenShowVar, the

sendRequest is marked as a deprecated method. To replace

this old method, two new, more reliable methods, are added

to the CrossComClient:

• the readVariable method allows for reading any desired

remote variable or structure from the controlled robot

and store it locally. An exception is thrown if an error

in the communication protocol occurs;

• the writeVariable method allows for updating any de-

sired remote variable or structure of the controlled robot

with the value of the corresponding local variable or

structure, respectively. An exception is thrown if an error

in the communication protocol occurs.

The deprecated sendRequest method is being kept as part

of the JOpenShowVar library simply because the GUI still

uses it for a practical reason. In fact, this old method does

not require any knowledge on the internal structure of the

variables to be accessed compared to the newly introduced

methods. Moreover, it should be noted that the new method

writeVariable cannot handle arrays; this can only be done

by using the old sendRequest method. In the Algorithm 1

sketch box, a possible use-case example is shown to highlight

the differences between the new methods and the deprecated

sendRequest method.

C. Control methods

JOpenShowVar opens up to a variety of possible appli-

cations making it possible to use different input devices

and to develop alternative control methods. In particular, the

proposed interface provides the possibility of implementing

either a position or a velocity control approach. The user

experience is substantially different in each case. When using

the position control mode, the operator simply controls the

position of the robot’s end-effector with constant velocity;

when operating in velocity control mode, the operator also

sets the velocity of the robot tool. In the first case, when the
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Fig. 4: (a) The user program utilises JOpenShowVar to set the desired end-effector position and then the robot joints are

calculated by the KRC using the standard kinematic model, (b) a custom control algorithm can be implemented by the user

to calculate the joint values for the robot and then send these angles to the KRC to be actuated.

try (CrossComClient client = new CrossComClient("

robotIPaddress", 7000)) {

//JOpenShowVar v0.1 reading

Callback readRequest = client.sendRequest(new

Request(0, "$OV_JOG"));

System.out.println(readRequest);

//JOpenShowVar v0.1 writing

Callback writeRequest = client.sendRequest(new

Request(1, "$OV_JOG", "100"));

System.out.println(writeRequest);

//JOpenShowVar v0.2 reading

KRLReal jog = KRLVariable.OV_JOG();

client.readVariable(jog);

System.out.println(jog);

//JOpenShowVar v0.2 writing

jog.setValue(10);

client.writeVariable(jog);

System.out.println(jog);}

Algorithm 1: A use-case example that highlights the

differences between the new methods and the deprecated

sendRequest method.

operator releases the input device, the end-effector moves

back to its starting point, while in the second scenario, the

arm just stops moving but it keeps the last given position.

To control the robot motion according to the desired op-

erational scenario, JOpenShowVar allows researchers to use

the standard kinematics provided with the KRC. However, it

is also possible to implement alternative control algorithms

according to current needs. This is illustrated in Fig. 4-a and

in Fig. 4-b, respectively. It should be noted that the KRL does

not provide a native way to obtain velocity control. When

using the KRC kinematics, this limitation can be overcome

by expressing the target position as:

xt = xd , (1)

if operating in position control mode, or by:

xt = xa + ẋd∆t, (2)

if operating in velocity control mode, where ∆t is the esti-

mated time interval between two successive iterations. As al-

ready mentioned, JOpenShowVar cannot provide a real-time

access to the robot’s data. Only soft real-time applications

can be realised. It takes a non-deterministic time to access a

specific variable. According to our experiments, reported in

Section V, the average access time is about 5 ms. Therefore

∆t can be approximated to a slightly bigger factor of the

the average access time. To achieve better performance, the

average access time should be continuously monitored and

updated. Perhaps, this may be a price to high to pay for some

applications with real-time requirements but JOpenShowVar

still provides great advantages in terms of flexibility.

Alternatively, when a custom control algorithm is needed,

the target joint configuration is given by:

θt = θd , (3)

if operating in position control mode, or by:

θt = θa + θ̇d∆t, (4)

if operating in velocity control mode.

When the operator manoeuvres the manipulator, a vector

signal with no semantic, s, is sent from the input device

to the user program. Here, according to the operational

scenario, the vector signal is interpreted as the target position

xt . If the intent is to use the standard kinematics provided

with the KRC, the user program simply works as a driver

for the input device and uses the writeVariable method of

JOpenShowVar to forward xt to a KRL program where

the standard KRC kinematics is used to calculate the joint

angles θd . Alternatively, a custom control algorithm can be



implemented within the user program to calculate the joint

values for the robot according to xt . Essentially, the custom

control method has to implement classic inverse kinematic

functions that can be generalised as follows:

θd = f−1
p (xd), (5)

concerning position control, and

θ̇d = f−1
v (θa, ẋd), (6)

for velocity control, where θa is the the actual joint angles

vector that can be retrieved by using the readVariable method

of JOpenShowVar. These values are then forwarded to a

KRL program where the standard KRC functions are used

to actuate the robot.

Note that the possibility of implementing certain control

features does not influence the design for the presented

interface. Instead, JOpenShowVar extends the functionalities

of the KRL language.

D. Additional functions

To simplify the low level communication protocol and

improve reliability, some additional methods are provided

with the CrossComClient class:

• the simpleRead and the simpleWrite methods are simpler

versions of the sendRequest function. In particular, these

methods do not execute any data parsing as opposed to

the sendRequest method. They allow for an easier and

faster access, as shown in the Algorithm 2 sketch box.

The two new methods return a raw string without parsing

the information. The aim of these two new methods is

to provide an easy way to monitor the status of the robot

making it possible to print the raw information returned

from the KRC;

• the readJointAngles method uses the readVariable

method retrieve the actual joint angles vector, θa, of the

controlled robot, all at once;

• the readJointTorques method allows for monitoring the

load of each joint actuator by retrieving the current

torque of each axis of the arm, all at once. In particular,

readJointTorques retrieves the global KRL array variable

$TORQUE AXIS ACT and returns the current torque of

each axis. This feedback signal is very important in order

to improve manipulator dexterity and to achieve crucial

functions like sensitive collision detection and compliant

control actions. In the Algorithm 3 sketch box, a possible

use-case is shown.

In addition to these methods, some other high-level func-

tions can be implemented by the user on top of the JOpen-

ShowVar communication protocol. The implementation of

some other possible high-level applications is included as a

technical document in the public repository of JOpenShow-

Var.

try (CrossComClient client = new CrossComClient("

robotIPaddress", 7000)) {

System.out.println(client.simpleRead("$OV_JOG"));

System.out.println(client.simpleWrite("$OV_JOG",

"90"));}

Algorithm 2: Use-case for the new simpleRead and

simpleWrite methods.

try (CrossComClient client = new CrossComClient("

robotIPaddress", 7000)) {

double[] torques = client.readJointTorques();}

Algorithm 3: Reading the actual torque for each axis, Java

side.

E. Terminal and Graphical user interface

Another useful tool that comes with JOpenShowVar is a

console terminal that provides read-write text-based access

to the robot’s data. It is particularly useful for system

administration and debugging purposes. To read a variable,

it is sufficient to type the name of the desired variable and

press enter. From an implementation point of view, it uses the

new simpleRead and simpleWrite methods. Fig. 5-a shows a

simple use-case.

Besides, JOpenShowVar also offers a useful GUI that can

be used to monitor the robot’s state, visualise and manually

set variables. A screen shot of this convenient tool is shown

in Fig. 5-b. This interface is very intuitive for the user.

IV. CASE STUDIES

In this section, four case studies are presented to demon-

strate the potential of JOpenShowVar. The first two case

studies are open-loop applications, while the last two case

studies describe the possibility of implementing closed-loop

applications.

A. Case study 1: controlling the Kuka KR 6 R900 SIXX

manipulator with an Android mobile device

To show the potential of the presented interface in control-

ling a Kuka industrial robot from an alternative input device,

as a first case study, JOpenShowVar is used to control a

Kuka KR 6 R900 SIXX manipulator with an Android mobile

device. In this case, an open-loop application is implemented

by using the standard kinematics provided with the KRC. The

Kuka KR 6 R900 SIXX, shown in Fig. 6-a, is a 6 DOFs robotic

arm with a slim design and a small footprint.

According to the operational scenario, an Android mobile

application whose Graphic User Interface (GUI) is shown

in Fig. 6-b, is used to set the target position xt . By using

the writeVariable method of JOpenShowVar this vector is

forwarded to the KUKAVARPROXY and stored as a global

value in a data structure. Finally, a KRL actuator program

iteratively retrieves the new global data and uses the KRC

kinematics to actuate the robot. The code of the KRL

actuator program is shown in the Algorithm 4 sketch box.

For Kuka industrial robots, the idle time between motions



(a)

(b)

Fig. 5: (a) JOpenShowVar terminal can be used for debugging

purposes, (b) JOpenShowVar GUI can be used for monitoring

the robot’s state, visualise and manually set variables and

structures.

DEF ACTUATOR()

INI

PTP HOME Vel = 100 % DEFAULT

$ADVANCE=1

LOOP

PTP_REL MYPOS C_PTP

ENDLOOP

PTP HOME Vel = 100 % DEFAULT

END

Algorithm 4: KRL actuator program for the case study 1.

can be shortened by executing the time-consuming arithmetic

and logic instructions between motion commands while the

robot is moving, i.e. processing them during the advance run

(the instructions “run” in “advance” of the motion). Using

the system variable $ADVANCE, it is possible to define

the maximum number of motion blocks that the advance

run can process ahead of the main run (the motion block

currently being executed). Since the main loop of the Server

program consists of only one instruction, the system variable

$ADVANCE is initially set to 1 to avoid the unwanted

execution of the same line of code. Inside the main loop, a

relative movement is iteratively executed to the global vari-

able MYPOS, which is the one that stores the target position.

The key word C PTP is used to approximate the movement.

The approximate positioning instruction is executed in a time-

optimised manner: there is always at least one axis moving

with the programmed acceleration or velocity limits. The

(a) (b)

Fig. 6: Case study 1: (a) the Kuka KR 6 R900 SIXX manip-

ulator, (b) the GUI of the Android mobile application used

to control the arm.

system simultaneously ensures that the permissible gear and

motor torques for each axis are not exceeded. Furthermore,

the higher motion profile, set by default, ensures motion that

is optimised in terms of velocity and acceleration.

B. Case study 2: a two-dimensional line-following task with

the Kuka KR 6 R900 SIXX manipulator

In this case study, JOpenShowVar is adopted to perform

a two-dimensional line-following task with the same Kuka

robot used in the previous example. In this case, an open-

loop off-line application is implemented by using the standard

kinematics provided with the KRC. The considered task can

be used for applications like advanced welding operations

and similar. In this experiment, a camera is mounted on the

robot’s end-effector and can capture a photo of the desired

line to be followed on a plane. This vision feedback is

used for the off-line detection of the path before starting

the movement. In particular, once a photo of the line to be

followed is taken, the operator manually selects the desired

initial and final points. Then, the A* search algorithm [12]

is used to efficiently find a traversable path between these

two points within the region covered by the desired line.

The detected traversable path is sampled with a predefined

resolution and the resulting samples are stored in an array

variable. The same array is used as an off-line input for

the robot’s end-effector to be actuated point by point. The

experiment setup is shown in Fig. 7.

C. Case study 3: controlling the Kuka KR 6 R900 SIXX

manipulator with a Leap Motion Controller

In this case study, JOpenShowVar is used to control the

same robot (from the previous case studies) in a closed-

loop and with a custom control algorithm. This is done

to highlight the potential of the presented interface in de-

veloping alternative control methods that do not use the

standard kinematic model provided by Kuka. Moreover, a

Leap Motion Controller [9], shown in Fig. 8, is used as

alternative input device to control the robot. The Leap Motion
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Fig. 7: Case study 2: the experiment setup for a two-

dimensional line-following task with the Kuka KR 6 R900

SIXX manipulator.

Controller is a small USB input device that supports hand

and finger motions as input without requiring contact or

touching. This controller is designed to be placed on a

physical desktop, facing upwards. Using two monochromatic

infra-red (IR) cameras and three IR light-emitting diodes

(LEDs), the device observes a roughly hemispherical area,

to a distance of about 1 meter. The LEDs generate a 3D

pattern of dots of IR light and the cameras generate almost

300 frames per second of reflected data, which is then sent

through a USB cable to the host computer, where it is

analysed by the Leap Motion Controller software and can

be retrieved using the Leap Motion APIs. While the Leap

Motion Controller makes it possible to control all the joints

of human hands, in this specific case study, only the DOFs of

the wrist are used as an input signal to control the robot’s end-

effector. Each DOF of the wrist corresponds to a translational

axis in the workspace of the robot to be controlled. When

operating in position control mode, the input device works

as a position proportional replica so that the wrist motion

maps exactly to the motion of the robot’s end-effector with

constant speed, while, when operating in velocity control

Fig. 8: Case study 3: the Leap Motion Controller used to

operate the Kuka KR 6 R900 SIXX manipulator.

mode, a movement of the wrist in a particular direction will

produce a translational motion in the same direction at a

velocity proportional to the wrist displacement. In order for

small vibrations not to affect the motion of the robot’s end-

effector, a small spherical imaginary volume with a diameter

of about 8 cm is defined in the centre of the controller

monitoring space. As long as the operator’s wrist is located

within this volume, the robot’s end-effector does not move.

The operator’s hand has to be moved more than 4cm from

the center of the monitoring space in order to generate a

motion. Thanks to the modularity of the architecture, any

other joystick or input device can be used without influencing

the effectiveness of the proposed interface.

The user program runs on a remote computer and uses the

Leap Motion APIs to retrieve the target position xt according

to the operational scenario. By using the readVariable method

of JOpenShowVar, the actual joint angles θa are received.

This data is used as input for the custom control algorithm.

In this specific case study, the classical kinematic functions

and the Jacobian method [13] are used to implement (5)

and (6). Then, by using the writeVariable method of JOpen-

ShowVar the target joint configuration θt is forwarded to the

KUKAVARPROXY and stored as a global value in a structure.

Finally, a KRL actuator program iteratively retrieves the new

global data and actuates the robot.

The code of the KRL actuator program is shown in the

Algorithm 5 sketch box. It should be noted that the variable

MYAXIS is initialised to default values inside the initialisa-

tion (INI) fold. The system variable $ADVANCE is initially

set to 1. Then the current joint values are assigned to a local

structure variable named LOCAL. Inside the main loop, the

desired joint angles are iteratively assigned to LOCAL, axis

by axis. Finally, a PTP movement with C PTP approximation

is executed.

D. Case study 4: controlling the Kuka KR 6 R900 SIXX ma-

nipulator with a omega.7 haptic device from Force Dimension

The aim of this fourth case study is to show the pos-

sibility of operating the robot and transferring the corre-



DEF EXT_MOVE_AXIS()

DECL AXIS LOCAL

INI

PTP HOME Vel = 100 % DEFAULT

$ADVANCE=1

LOCAL.A1 = $AXIS_ACT.A1

...

LOCAL.A6 = $AXIS_ACT.A6

LOOP

LOCAL.A1 = LOCAL.A1 + MYAXIS.A1

...

LOCAL.A6 = LOCAL.A6 + MYAXIS.A6

PTP LOCAL C_PTP

ENDLOOP

PTP HOME Vel = 100 % DEFAULT

END

Algorithm 5: KRL actuator program for the case study 3.

sponding force feedback to the operator. For this purpose, a

bidirectional coupling between a Force Dimension omega.7

[14] haptic device and the same Kuka robot used in the

previous sections is established. In this case, an closed-loop

application is implemented by using the standard kinematics

provided with the KRC. The omega.7 is a 7 DOF haptic

interface with high precision active grasping capabilities and

orientation sensing. Finely tuned to display perfect gravity

compensation, the force-feedback gripper offers extraordi-

nary haptic capabilities, enabling instinctive interaction with

complex haptic applications. In this case study, the principle

of virtual works [13] is applied. According to this principle,

the following equation is valid:

JT F = τ, (7)

where J is the Jacobian matrix of the arm, F is the vector of

forces exerted from the robot’s end-effector to the environ-

ment and τ is the vector of torques at the joints that can be

retrieved by using the readJointTorques method. By applying

this principle it is possible to simulate on the haptic device

a force feedback proportional to the force that the robot’s

end-effector is supporting. The experiment setup is shown in

Fig. 9.

V. EXPERIMENTAL RESULTS

Experiments related to the proposed case studies are car-

ried out to test the proposed communication interface in terms

of accuracy, performances and effectiveness.

Concerning the first and the third case studies, a demo

video is available on-line at:

https://youtu.be/fC8jb9MKgGw.

The first case study highlights the potential of JOpenShow-

Var in remotely controlling a Kuka industrial robot from an

Android mobile device. This possibility opens up to a variety

of useful purposes including human interface applications

and teleoperations. Nowadays, smartphones and tablets are

becoming computationally more and more powerful. In this

perspective, they are a perfect match with robots for devel-

oping alternative control systems. The use of smartphones

Fig. 9: Case study 4: controlling the Kuka KR 6 R900

SIXX manipulator with a omega.7 haptic device from Force

Dimension.

Fig. 10: Case study 2: the detected line and the actual path

followed by the robot’s end-effector respectively.

and tablets in research and development is also found in

other areas, as they represent a significant business oppor-

tunity for manufacturers, who need to consistently develop

better hardware and operating systems. For these reasons,

these applications are very interesting and appealing in the

forthcoming industrial applications.

A. Accuracy

Accuracy refers to the possibility of positioning the robot’s

end-effector at a desired target point within the workspace.

Concerning the second case study, the line-following exper-

iment is performed on a randomly generated line, drawn on

a table. Fig. 10 shows the detected line and the actual path

followed by the robot’s end-effector respectively. Once the

line is detected, the robot executes the movement off-line in

about 10s with a maximum position error less than 5 mm.
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Fig. 11: Case study 3: path tracking for (a) the X coordinate,

(b) the Y coordinate and (c) the Z coordinate.

This position error could be reduced even more by increasing

the sampling resolution of the detected traversable path.

B. Performances

Within the particular case study of the Leap Motion

Controller (case study 3), a real-time path tracking analysis of

the Cartesian paths for X , Y and Z coordinates is performed,

measuring the difference between the desired and actual

position of the robot’s end-effector. The results are shown

in Fig. 11.
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Fig. 12: Case study 3: time-delay analysis for the correspond-

ing Cartesian paths shown in Fig. 11.

Moreover, to assess the communication delay of JOpen-

ShowVar, a time-delay analysis is carried out.

The considered time-delay represents the time for each

message to be received, performed and notified to the client

by the KRC. Particularly, this time-delay is obtained by

considering the exact instant in which the request is dis-

patched from the client and the exact instant in which

the information is received back from the client. It is not

possible to exactly determine the time-delay mainly because

Kuka has not released any information about it. During our

experiments, a deterioration of the time-delay has usually

been noticed when making the selection of a program and

when the robot is engaged in some movements or there are

several active interrupts. When considering the causes of the

delay, it is possible to distinguish two main components that

affect the access time for a variable to be either read or

written from the client side:

• the time interval that is required for the TCP/IP protocol

to transfer the information from the client to the server

and then back to the client. This time component is non-

deterministic;

• the time interval that is required for the Kuka controller

to acquire the information from the robot. Also this time

component is non-deterministic.

As already mentioned in Section III, the time-delay is not

affected by the kind of access to be performed (whether

it is a reading or a writing operation) or by the length of

the message. Therefore, it is beneficial to aggregate several

variables in logical structures when reading or writing data.

By using data structures it is possible to simultaneously

access several variables, thereby minimising the access time.

Considering the third case study, a time-delay analysis

is carried out for the same Cartesian paths as shown in

Fig. 12. Even though there are a few spikes with a larger

time interval, an average access time of 4.27 ms is obtained

in this case. It should be noted that all the considered case

studies are equally affected by similar communication delays

except for the second case study which is performed off-line

and therefore not presenting any run-time delays.

To further assess the performances of the proposed inter-



Fig. 13: Target and response of the adopted PID controller

for all the joints of the robot.

face with regard to the communication delay, an additional

experiment is performed. In particular, the possibility of

developing alternative control methods is considered (as

presented in case study 3). Any custom control algorithm

that does not use the standard KRC kinematics must calcu-

late the corresponding sampling point configurations for the

desired end-effectors positions. In other words, each control

algorithm works as a motion planner. To ensure smooth

movements for the manipulators it is necessary to generate

trajectories out of these given sampling points. A well-suited

trajectory is the basic prerequisite for the design of a high-

performance tracking controller and ensures that no kinematic

nor dynamic limits are exceeded. Such a controller guarantees

that the controlled robot will follow its specified path without

drifting away. Therefore, feedback control has to be applied

to be able to compensate external disturbances as well as

disturbances from communication time delays. Note that time

data is a free parameter because, as already mentioned, the

sampling time of the mapping algorithm is not constant.

A possible solution for generating well-suited trajectories

consists of using a Proportional Integral Derivative (PID)

controller for each joint. To tune the PID parameters, different

methods can be used, such as the one proposed in [15]. The

response of the adopted PID controller is shown in Fig. 13

for all the joints of the robot. The interface provided by

JOpenShowVar demonstrates a relatively fast reaction to the

inputs and reasonable output error for research purposes,

considering the dimension of the controlled model.

C. Effectiveness

Concerning the fourth case study, the aim is to show

the possibility of operating the robot and transferring the

corresponding force feedback to the operator. The plots in

Fig. 14-a and Fig. 14-b show the actual position for the X , Y

and Z axes as a result of the haptic input device’s movements,

operated by the user, and the corresponding joint angles,

respectively. In this particular case, the operator manoeuvres

the robot to lift the end effector up at first, then down again

with a displacement also in the X and Y axes. In this case

study, the input signal is not scaled to the robot’s workspace

since the haptic device is only used to set the direction of

movement for the robot and to transfer the corresponding

force feedback to the operator. Even though there is a delay

between the input signal and the actual position, the results

show that the system is quite responsive to the user’s inputs.

Fig. 14-c and Fig. 14-d show the torques applied to the

robot’s joints and the corresponding forces applied to the

robot’s end-effector, respectively. The operator also perceives

a force feedback that is proportional to forces applied to the

robot’s end-effector.

VI. CONCLUSIONS AND FUTURE WORK

This paper highlights the features of JOpenShowVar as

a cross-platform communication interface to Kuka industrial

robots. Even though JOpenShowVar only provides a soft real-

time access to the manipulator to be controlled, this middle-

ware package opens up to a variety of possible applications

making it feasible to use different input devices, sensors and

to develop alternative control methods. Special care has been

devoted to keep JOpenShowVar methods intuitive and easy

to use. The versatility and effectiveness of the interface have

been demonstrated through four case studies. The first two

case studies are open-loop applications, while the last two

case studies describe the possibility of implementing closed-

loop applications. Recently, our research group employed

JOpenShowVar to realise a framework that makes it possible

to reproduce the challenging operational scenario of control-

ling offshore cranes via a safe laboratory setup [16].

In the future, different control algorithms such as the

ones implemented in [17], [18] and [19] may be tested as

alternatives to the standard KRC. Finally, some effort should

be put in the standardisation process of JOpenShowVar to

make it even more reliable for both the industrial and the

academic practice. It is the opinion of the authors that the

key to maximising the long-term, macroeconomic benefits for

the robotics industry and for academic robotics research relies

on the closely integrated development of open content, open

standards and open source. In this perspective, the integration

of the proposed interface with ROS is of crucial importance

as a necessary future work. The community of developers at

ROS is looking forward to the integration of JOpenShowVar.
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