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The Mackey–Glass equation is the representative example of delay induced chaotic behavior. Here,

we propose various control mechanisms so that otherwise erratic solutions are forced to converge to

the positive equilibrium or to a periodic orbit oscillating around that equilibrium. We take advantage

of some recent results of the delay differential literature, when a sufficiently large domain of the

phase space has been shown to be attractive and invariant, where the system is governed by

monotone delayed feedback and chaos is not possible due to some Poincar�e–Bendixson type results.

We systematically investigate what control mechanisms are suitable to drive the system into such a

situation and prove that constant perturbation, proportional feedback control, Pyragas control, and

state dependent delay control can all be efficient to control Mackey–Glass chaos with properly

chosen control parameters. Published by AIP Publishing. https://doi.org/10.1063/1.5006922

The Mackey–Glass equation, which was proposed to illus-
trate nonlinear phenomena in physiological control sys-
tems, is a classical example of a simple looking time delay
system with very complicated behavior. Here, we use a
novel approach for chaos control: we prove that with well-
chosen control parameters, all solutions of the system can
be forced into a domain where the feedback is monotone,
and by the powerful theory of delay differential equations
with monotone feedback, we can guarantee that the sys-
tem is not chaotic any more. We show that this domain
decomposition method is applicable with the most com-
mon control terms. Furthermore, we propose another
chaos control scheme based on state dependent delays.

I. INTRODUCTION

A. The Mackey-Glass equation

x0ðtÞ ¼ �lxðtÞ þ
pxðt� sÞ

1þ xðt� sÞn
; l; p; n; s > 0 (1.1)

was introduced in 1977 to illustrate some nonlinear phenom-

ena arising in physiological control systems.20 Here, 0

denotes the temporal derivative of a scalar state variable x(t),

and the function f ðnÞ ¼ pn
1þnn

represents a feedback mecha-

nism with time delay s. The interesting situation is n being

large when the function f has a distinctive unimodal shape,

and in this paper, we consider only this case (at least n> 2).

The Mackey–Glass equation provides a benchmark for the

application of new techniques for nonlinear delay differential

equations as it can generate diverse dynamics, from conver-

gence to oscillations with different characteristics and even

chaotic behavior. Despite intensive research over the decades

with a number of analytical,4,17,25 numerical,2,8,22 and even

experimental studies,1,10 the emergence of such complexity

is not fully understood yet.

Recent decades showed a growing interest towards chaos

control, and several methods have been proposed and

applied.26 In this paper, we use another strategy, which we

think is novel in the context of chaos control: instead of con-

trolling a particular unstable periodic orbit, we drive all solu-

tions into a domain where the system is governed by

monotone feedback.6,15,23,24

B. The delay differential equation

x0ðtÞ ¼ �lxðtÞ þ f ðxðt� sÞÞ (1.2)

with monotone feedback (where f 0ðxÞ < 0 for all x or f 0ðxÞ
> 0 for all x) has been widely studied in the mathematical

literature, and a comprehensive description is available on its

global dynamic behaviors for some classes of monotone non-

linearities.11 There have been some further interesting new

developments as well recently.13,14

One important result is a Poincar�e–Bendixson type theo-

rem of Mallet-Paret and Sell,21 which implies that in the

case of monotone feedback, bound solutions converge either

to an equilibrium or to a periodic orbit, and hence, chaotic

trajectories are not possible.

The complexity of the Mackey–Glass equation stems

from the combination of time delay and the non-monotonicity

of the feedback, and in fact, chaotic behavior has been proven

for a special class of equations with non-monotone delayed

feedback.16 A domain decomposition method has been pro-

posed for unimodal feedback functions,25 which provides suf-

ficient conditions such that all solutions eventually enter a

domain where f is either increases or decreases, and in this

case, the complicated behavior is excluded. In this paper, we

take advantage of this idea and propose various schemes that

can impose such a situation. After describing the mathemati-

cal background in Sec. II, in Sec. III, we propose additive

control terms and consider the following equation:

x0ðtÞ ¼ �lxðtÞ þ
pxðt� sÞ

1þ xðt� sÞn
þ uðtÞ (1.3)
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with control term u(t). We investigate three typical cases,

namely, constant perturbation u(t)¼ k, proportional feedback

control uðtÞ ¼ kxðtÞ, and the delayed feedback controller

uðtÞ ¼ k½xðtÞ � xðt� sÞ�. We shall say that the chaos is con-

trolled if the system shows complicated behavior for k¼ 0,

but all solutions eventually enter and remains in some mono-

tone domain of f for some k 6¼ 0, in which case convergence

to an equilibrium or to a periodic orbit is guaranteed. In Sec.

IV, we use a different approach: instead of an additive term,

we construct a state dependent delay s¼ s[x(t)] in a proper

way so that our domain decomposition method is still appli-

cable. It is important to stress that in this case, the form of

the controlled equations is of (1.1) instead of (1.3), and the

delay itself will be the subject to the control. In Sec. V, we

illustrate our control mechanisms with a set of numerical

simulations, and we conclude this paper with a summary and

discussion of the interpretation of our results.

II. MATHEMATICAL BACKGROUND

Let C ¼ Cð½�s; 0�;RÞ denote the Banach space of con-

tinuous functions / : ½�s; 0� ! R with the usual sup norm

jj/jj ¼ max�s�s�0j/ðsÞj. Given its biological interpretation,

traditionally, only non-negative solutions of (1.1) are stud-

ied, and hence, we restrict our attention to the cone

Cþ ¼ f/ 2 C : /ðsÞ � 0;�s � s � 0g

and define the corresponding order intervals

/;w½ � :¼ ff 2 C : w� f 2 Cþ; f� / 2 Cþg:

Every / 2 Cþ determines a unique continuous function

x ¼ x/ : ½�s;1Þ ! R, which is differentiable on (0,1), and

satisfies (1.1) for all t> 0, and xðsÞ ¼ /ðsÞ for all s 2 ½�s; 0�.
It is easy to see that the cone Cþ is positively invariant, i.e., a

solution x/(t) with a non-negative initial function / remains

non-negative for all t� 0. Existence and uniqueness extend to

(1.3) too when u(t) has the usually required smoothness; how-

ever, non-negativity should be checked in each specific case.

The segment xt 2 C of a solution is defined by the relation

xtðsÞ ¼ xðtþ sÞ, where s 2 [–s, 0] and t� 0, and thus, x0¼/

and xt(0)¼ x(t). The family of maps

U : 0;1Þ � Cþ�ðt;/Þ 7! xtð/Þ :¼ Utð/Þ 2 Cþ½

defines a continuous semiflow on Cþ. For any n 2 R, we write

n* for the element of C satisfying n�ðsÞ ¼ n for all s 2 ½�s; 0�.
The equilibria n* of (1.1) are given by the solutions of

ln¼ f(n). The trivial equilibrium is 0*, and in addition, there

exists at most one positive equilibrium K* given by K ¼ ðp=
l� 1Þ1=n. Note that f 0ðnÞ ¼ pð1� ðn� 1ÞnnÞð1þ nnÞ�2

, so

f 0ð0Þ ¼ p, and there is a unique n0 ¼ ðn� 1Þ�1=n
such that

f 0ðn0Þ ¼ 0. The function f increases on [0, n0], have its maxi-

mum f ðn0Þ ¼ pðn� 1Þ1�1=n
n�1, and decreases on [n0, 1)

with limx!1 f ðxÞ ¼ 0. Depending on the parameters, there are

three fundamental situations:

(a) if l � p, then only the zero equilibrium exists;

(b) if l < p � lð1þ ðn� 1Þ�1Þ, then there is a positive

equilibrium K* on the increasing part of f (i.e., K � n0);

(c) if p > lð1þ ðn� 1Þ�1Þ, then there is a positive equi-

librium K* on the increasing part of f (i.e., K > n0 or

equivalently l < f ðn0Þ=n0).

It is well known25 that in case (a) all solutions converge

to 0 and in case (b) all positive solutions converge to K,

regardless of the delay. Thus, here we consider only the

interesting case (c), when the following numbers

b :¼
f ðn0Þ

l
; a :¼

f ðbÞ

l
¼

f
f ðn0Þ

l

� �

l

also play a crucial role in characterizing the nonlinear

dynamics of Eq. (1.1). A cornerstone of this paper is the fol-

lowing result, which combines Theorem 3.5 (R€ost and Wu25)

and Theorem 8 (Liz and R€ost17), ensuring that the long term

dynamics is governed by a monotone part of the feedback

function.

Theorem II.1. Let gðxÞ ¼ l�1f ðxÞ, and assume g0ð0Þ > 1

and K> n0. Then, if either condition

g2ðn0Þ > n0 (L)

or

h2ðn0Þ > n0; where hðxÞ ¼ ð1� e�lsÞgðxÞ þ e�lsK (T)

holds, then every solution eventually enters and remains in

the domain where f 0 is negative, hence converging to K or to

a periodic solution oscillating around K.

The assumption of this theorem means that we are in

case (c). Then, the interval [a*, b*] is attractive and invari-

ant,25 and condition (L) means a> n0. The results relating

attractive invariant intervals of the discrete map f to attrac-

tive invariant intervals for (1.1) originate from the study by

Ivanov and Sharkovsky7 and recently have been successfully

used for other problems as well.5,18 Note that this condition

is independent of s, and hence, in this situation, chaotic

behavior cannot appear by increasing the delay. The delay

dependent condition (T) is built on earlier works.4,19

III. CONTROLLING MACKEY-GLASS CHAOS WITH
ADDITIVE TERMS

Our aim is to choose our additive control term u(t) from

three common classes, in a way that some analogue of

Theorem II.1 holds for (1.3).

A. Constant perturbation control

For any k 2 R, we consider

x0ðtÞ ¼ �lxðtÞ þ
pxðt� sÞ

1þ xðt� sÞn
þ k: (3.1)

Theorem III.1. Assume that K> n but (L) is not satisfied,

that is, g2ðn0Þ � n0 in (1.1). Then, the following statements

hold:

(i) there is a k* < ln0 such that for all k � k*, (3.1) has

no complicated solution;
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(ii) there is an explicitly computable k1 such that for k < k1,

(3.1) has no equilibria and solutions become unfeasible;

(iii) for k1 < k < k2 :¼ ln0 � f ðn0Þ, there are two positive
equilibria K1 and K2, and solutions with initial func-

tion / 2 ½ðK1 þ k=lÞ�; n0�� converge to K2;

(iv) there exists a k3 such that for k2 < k < k3, (3.1) has

no complicated solutions.

Proof. After using the change of variable y ¼ x� k
l
,

(3.1) reads as

y0ðtÞ ¼ �lyðtÞ þ p

yðt� sÞ þ
k

l

1þ yðt� sÞ þ
k

l

� �n :

That is

y0ðtÞ ¼ �lyðtÞ þ fkðyðt� sÞÞ (3.2)

with fkðnÞ ¼ f nþ k
l

� �

, and thus, adding the constant pertur-

bation k has the same effect as shifting the graph of f by k/l.

Note that we are interested only in non-negative solutions

x(t) of (3.1), that is, yðtÞ � �k=l, and we call such solutions

feasible. Let n̂0 ¼ n0 �
k
l
; b̂ ¼ fkðn̂0Þ

l
; â ¼ fkðb̂Þ

l
: Clearly,

f 0kðn̂0Þ ¼ 0 and b̂ ¼ b, that is, â ¼ fkðf ðn0ÞÞ.

(i) For k > 0, the graph of f is shifted to the left and solu-

tions remain positive, and we also have â > 0, with

liminft!1 yðtÞ � â (analogously to Theorem 3.5 from

R€ost and Wu25). At k � ln0; n̂0 � 0 < â and by con-

tinuity, the relation n̂0 < â must hold on some inter-

val (k*, ln0) as well.

(ii) We shift the graph of f to the right until equilibria are

destroyed. In the critical case k ¼ k1, f is tangential to

ln, so first we find the unique nl > 0 such that

l ¼ f 0ðnlÞ ¼
pð1þð1�nÞnnlÞ

ð1þnnlÞ
2 . This is a quadratic equation

in nnl, and taking its positive root, we find

nl ¼
�2l� pðn� 1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4plnþ p2ðn� 1Þ2
q

2l

0

@

1

A

1
n

:

When the graph is shifted by k1/l, the tangent line of

the shifted graph fk1 with slope l is exactly the line

ln, so we must have f ðnlÞ ¼ lðnl � k1=lÞ, which

gives k1 ¼ f ðnlÞ � lnl. For k < k1; fkðnÞ < ln holds

on [–k/l, 1), where fk is defined. For a solution y(t),

let vðtÞ :¼ yðtÞ þ
Ð t

t�s
fkðyðsÞÞds, then v

0ðtÞ ¼ �lyðtÞ
þf ðyðtÞÞ < �minn��k=l½ln� fkðnÞ� < 0. This means

that v(t) becomes smaller than –k/l in finite time, but due

to yðtÞ < vðtÞ, each solution y(t) becomes unfeasible.

(iii) For k1 < k < 0, there are always two equilibria of

(3.2); now, we are looking for another critical value

k2 that separates the cases when the larger equilibrium

is on the decreasing part of fk from when both are on

the increasing part. The critical case is characterized

by one of the equilibria being n̂0, that is, ln̂0 ¼ fkðn̂0Þ

¼ f ðn0Þ, and k2 ¼ lðn0 � f ðn0ÞÞ follows. For k1 < k

< k2, there are two equilibria, K̂1 and K̂2 < n̂0. It is

easy to see that there are initial functions / with

/ð0Þ ¼ �k=l; /ðhÞ small for h < 0 such that the

derivative of the solution is negative at zero, and thus,

unfeasible solutions exist. To avoid such situations,

we restrict our attention to the interval ½K̂1�; n̂0��,
where fk is monotone increasing. For solutions with

segments from this interval, yðtÞ ¼ K̂1 implies

y0ðtÞ � �lK1 þ fkðK̂1Þ ¼ 0, and yðtÞ ¼ n̂0 implies

y0ðtÞ � �ln̂0 þ fkðn̂0Þ < 0; therefore, this interval is

invariant. Now, we can apply Proposition 2 from R€ost

and Wu25 to show that all solutions in this interval

converge to K̂2. Transforming back to variable x, we

obtain (iii).

(iv) First notice that fk2ðfk2ðn̂0Þ=lÞ ¼ ln̂0. Our goal is to

show that

DðkÞ : ¼ fkðfkðn̂0Þ=lÞ � ln̂0 ¼ fkðf ðn0Þ=lÞ � ln0 þ k

¼ f ððf ðn0Þ þ kÞ=lÞ � ln0 þ k > 0

in an interval (k2, k3), and then, an analogue of

Theorem II.1 provides the result. Differentiating with

respect to k gives

D0ðkÞ ¼ f 0ððf ðn0Þ þ kÞ=lÞ=lþ 1;

and evaluating at k2 ¼ ln0 � f ðn0Þ, we arrive at

Dðk2Þ ¼ 0; D0ðk2Þ ¼ f 0ðn0Þ=lþ 1 ¼ 1 > 0:

�

B. Proportional feedback control

In this subsection, we consider u(t)¼ kx(t). The rearrangement

x0ðtÞ ¼ �ðl� kÞxðtÞ þ
pxðt� sÞ

1þ xðt� sÞn
(3.3)

shows that the control has no effect on the key properties of

the nonlinearity in (1.1).

With w ¼ l – k, Theorem II.1 can be directly applied.

Theorem III.2. Assume a < n0<K. Then, the follow-

ing holds:

(i) there is a k* < 0 such that for k 2 ðl� f ðn0Þ=n0; k�Þ,
(3.3) has no complicated solutions;

(ii) if l� p < k < l� f ðn0Þ=n0, then all solutions con-

verge to ðp=ðl� kÞ � 1Þ1=n;
(iii) if k � l – p, then all solutions converge to 0;

(iv) if k > l, all solutions converge to infinity.

Proof. (i) For a given k, let

~b ¼
f ðn0Þ

l� k
¼

pðn� 1Þ
n�1
n

nðl� kÞ
;

~a ¼
f ð~bÞ

l� k
¼

p2ðn� 1Þ
n�1
n nnðl� kÞn

nðl� kÞ2 nnðl� kÞn þ pnðn� 1Þn�1
� � ;

(3.4)
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and ~g ¼ f=ðl� kÞ. Notice that k ¼ l� f ðn0Þ=n0 means that

~a ¼ ~b and ~g2ðn0Þ ¼ n0. Hence, to apply (L) to (3.3), we

want to show that

~a
1

n0
¼

p2ðn� 1Þnn�1ðl� kÞn�2

nnðl� kÞn þ pnðn� 1Þn�1
� � > 1

for some k. For simplicity, we write w ¼ l � k, and let

SðwÞ ¼
p2ðn� 1Þnn�1wn�2

nnwn þ pnðn� 1Þn�1
� �

and w0 ¼
pðn�1Þ

n
. It is easy to check that S(w0)¼ 1.

Furthermore,

S0ðwÞ ¼ p2ðn� 1Þ
n�1
n nn

pnðn� 1Þn�1ðn� 2Þwnþ1 � 2nnw2nþ1

nw4 nnwn þ pnðn� 1Þn�1
� �2

;

hence

S0ðw0Þ ¼ p2ðn� 1Þ
n�1
n nn

pðn� 1Þ

n

� �nþ1

ðn� 2nÞ

nw4 nnwn þ pnðn� 1Þn�1
� �2

< 0

and S0ðŵÞ ¼ 0 only for ŵ ¼ pðn�1Þ
n

ffiffiffiffiffiffiffiffi

n�2
2n�2

n

q

< w0. These,

together with the facts S(0)¼ 0 and S0ðwÞ > 0 for

w 2 ð0; ŵÞ, imply the existence of a unique w*<w0, satisfy-

ing S(w*)¼ 1. That is for ðl� kÞ 2 ðw�;w0Þ, every solution

enters the interval ½~a; ~b�, where f monotonically decreases,

prohibiting the existence of chaotic solutions. Shifting back,

ðl� kÞ 2 ðw�;w0Þ is equivalent to k 2 ðl� w0; l� w�Þ,
and with k� ¼ l� w� and noting that w0 ¼ f ðn0Þ=n0, we

conclude (i). To see (ii) and (iii), notice that in these cases,

(3.3) falls in the cases of (b) and (c) as described in Sec. II,

and thus, Proposition 3.2 and Proposition 3.1 from R€ost and

Wu25 give the result. To check (iv), from x0ðtÞ > ðk � lÞxðtÞ,
convergence to infinity is clear for k>l. �

Next, we give a delay dependent result.

Theorem III.3. Assume that K> n0 and (L) does not

hold for ~g with some k. Then, for sufficiently small delay, (T)

holds for ~h. Furthermore, the smaller the delay, the larger

the range of k that enables chaos control.

Proof. The first statement is obvious, since as s ! 0, (T)

becomes K> n0 regardless of k. For the second statement,

note that the control parameter does not change n0, but K

becomes ~K . Fix all the parameters but s such that ~K > n0,

and let w ¼ l – k and denote by ~hs the function in condition

(T) corresponding to Eq. (3.3), belonging to a given s. We

show that if s1< s2, then ~h
2

s1
ðn0Þ > ~h

2

s2
ðn0Þ. Since ~gðn0Þ

> ~K , we have ~hs2ðn0Þ > ~hs1ðn0Þ > ~K , and for n > ~K ; ~gðxÞ

< ~K implies ~hs2ðnÞ < ~hs1ðnÞ. Together with the monotone

decreasing property of ~h for n > ~K , we find

~h
2

s1
ðn0Þ ¼ ~hs1ð~hs1ðn0ÞÞ > ~hs2ð~hs1ðn0ÞÞ > ~hs2ð~hs2ðn0ÞÞ

¼ ~h
2

s2
ðn0Þ:

The conclusion is that for s1< s2, if ~h
2

s2
ðn0Þ > n0 holds, then

~h
2

s1
ðn0Þ > n0 also holds, and thus, if k is a good control for

some delay (in the sense that (T) holds), it is a good control

for all smaller delays as well. The consequence is that for

smaller delays, we always have a larger range of k such that

(T) still holds.

�

C. Pyragas control

A popular control mode is uðtÞ ¼ kðxðt� sÞÞ � xðtÞ, and
with such a term, (1.1) becomes

x0ðtÞ ¼ �ðlþ kÞxðtÞ þ
pxðt� sÞ

1þ xðt� sÞn
þ kxðt� sÞ;

that is

x0ðtÞ ¼ �ðlþ kÞxðtÞ þ Fkðxðt� sÞÞ (3.5)

with FkðnÞ ¼ f ðnÞ þ kn. Notice that while the Pyragas con-

trol changes the shape of the nonlinearity, it does not change

the equilibria of the system.

Theorem III.4. Assume K> n0 and g2ðn0Þ < n0. Then,

for k > pðn�1Þ2

4n
, all solutions of (3.5) converge to K.

Proof. (i) A straightforward calculation shows that

the function f 0ðnÞ ¼ pð1�ðn�1ÞnnÞ

ð1þnnÞ2
has a minimum when

nn ¼ nþ1
n�1

: let bðuÞ ¼ pð1�ðn�1ÞuÞ

ð1þuÞ2
, then b0ðuÞ ¼ pðnðu�1Þ�u�1Þ

ðuþ1Þ3
,

and b0ðuÞ ¼ 0 exactly at u ¼ ðnþ 1Þ=ðn� 1Þ. Therefore,

f 0ðnÞ � �np

ðnþ1
n�1

þ1Þ2
¼ �pðn�1Þ2

4n
, with equality at that point. Hence,

if k > pðn�1Þ2

4n
, then F0

kðnÞ ¼ f 0ðnÞ þ k > 0, and in this case,

(3.5) is governed by positive monotone feedback. Since

FkðnÞ < ðlþ kÞn for n>K, it is easy to see that any [0*, L*]

interval is invariant whenever L>K, and the same proof as

Proposition 3.2 from R€ost and Wu25 ensures that all positive

solutions converge to K.

�

When k< 0, there is a n
^

such that Fkðn
^

Þ < 0, and then,

solutions with initial functions satisfying /(0)¼ 0 and

/ð�sÞ ¼ n
^

immediately become negative. Since the non-

negative cone is not invariant any more, here we do not dis-

cuss Pyragas control with negative k.

When 0 < k < pðn�1Þ2

4n
, then Fk(n) has a bimodal shape,

with local extrema q1< q2. The numbers q1 and q2 can be

found as the solutions of f 0ðnÞ ¼ �k, which is quadratic in

nn, so it is possible to find them explicitly, similar to case (ii)

of Theorem III.1. It is natural to try to apply an analogue of

the (L) condition in the bimodal case too, forcing all solu-

tions into the domain (q1, q2), where F is monotone decreas-

ing. Nevertheless, the required conditions q1< ak and

bk< q2 become analytically intractable, and one can find

parameter settings when they fail when k being near either

zero or
pðn�1Þ2

4n
. Another possibility is to force solutions to the

increasing part of Fk, thus expecting convergence to K again,

so we may require ak> q2, that is, FkðFkðq1Þ=ðlþ kÞÞ
> ðlþ kÞq2, but again that seems too involved to find a sim-

ply interpretable condition.
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IV. STATE DEPENDENT DELAY CONTROL

From Theorem II.1, it is clear that chaos can be con-

trolled by decreasing the delay to a small quantity, since as s

! 0, condition (T) becomes K> n0, and hence, for suffi-

ciently small s, (T) is satisfied. However, it may be impossi-

ble or very expensive to permanently keep s small, and thus,

here we explore how can we establish chaos control when

we modify the delay only temporarily, depending on the cur-

rent state. Thus, we consider equation

x0ðtÞ ¼ �lxðtÞ þ
pxðt� rðxðtÞÞÞ

1þ xðt� rðxðtÞÞÞn
(4.1)

with state dependent delay r(x(t)), where one can interpret

rðxðtÞÞ ¼ s� kðxðtÞÞ with baseline delay s and delay control

k(x(t)). It is reasonable to assume k(x(t))� 0 and k(x(t))< s,

and then r(x(t)) 2 (0, s]. We say that a solution is slowly

oscillatory, if x(t) – K has at most one sign change on each

time interval of length s.

Theorem IV.1. Assume K> n0 and let K̂ < n0 be

defined by f ðK̂Þ ¼ f ðKÞ. Let s� :¼ min s; K�n0
f ðn0Þ

; n0�K̂
f ðn0Þ

n o

, and

f ¼ ðs� s�Þðf ðn0Þ � ln0Þ.
The state dependent delay function is defined as follows:

r xð Þ ¼ s for x � n0 þ f;

r xð Þ ¼ s� for x � n0;

r(x) is the C2-smooth and monotone on [n0, n0þ f] with

r0ðxÞ � ðf ðn0Þ � ln0Þ
�1
.

Then, solutions of (4.1) eventually enter the domain

where f 0 is negative, and slowly oscillatory complicated sol-

utions cannot exist.

Proof. The existence and uniqueness of solutions have

been discussed in the study by Krisztin and Arino.12 Since

s� � rðxðtÞÞ � s, we can deduce that [a*, b*] is attractive and

invariant analogously to the constant delay case Theorem 3.5

from R€ost and Wu.25 For solutions in this interval, jx0ðtÞj
< f ðn0Þ holds. Now, we claim that positive solutions always

go beyond n0, i.e., limsupt!1 xðtÞ > n0. Assume the contrary,

then there is a solution x(t)> 0 such that xðtÞ < n0 þ � holds

for all t> t0 with some 0<�<K – n0. Define

zðtÞ ¼ xðtÞ þ

ðt

t�rðxðtÞÞ

f ðxðsÞÞds:

Then, zðtÞ < n0 þ �þ sf ðn0Þ, but z0ðtÞ ¼ �lxðtÞ þ f ðxðtÞÞ
> minn2½a;n0�ðf ðnÞ � lnÞ > 0 for all t> 0, which is a contra-

diction. Hence, for any positive solution, there is a t* such

that x(t*)> n0. Next, we show that for all t � t�; xðtÞ > n0
also holds. Assuming the contrary, there exists a t* such that

x(t*)¼ n0 and x0ðt�Þ � 0. Note that

n0 ¼ xðt�Þ ¼ xðt� � rðn0ÞÞ þ

ðt�

t��rðn0Þ

x0ðsÞds

> xðt� � rðn0ÞÞ � rðn0Þf ðn0Þ;

so xðt� rðn0ÞÞ < n0 þ rðn0Þf ðn0Þ < K. Similarly, xðt
�rðn0ÞÞ > n0 � rðn0Þf ðn0Þ > K̂ . But then, x0ðt�Þ ¼ �ln0

þf ðxðt� rðn0ÞÞÞ � lðK � n0Þ > 0, a contradiction. We con-

clude that solutions enter the domain where f 0 < 0 and

remain there. To apply the Poincar�e–Bendixson type results

of Krisztin–Arino,12 we need to confirm the increasing prop-

erty of t 7! t� rðxðtÞÞ, cf. condition (H2) of Ref. 12. This is

equivalent to r0ðxÞx0ðtÞ < 1, which obviously holds outside

(n0, n0þ f). Within ðn0; n0 þ fÞ; x0ðtÞ < f ðn0Þ � ln0 is valid,

and hence, one can find a C2-smooth r(x) such that

rðn0Þ ¼ s�; rðn0 þ fÞ ¼ s, and meanwhile, r0ðxÞ � ðf ðn0Þ
�ln0Þ

�1
.

Then, we can apply Theorem 8.1. of Krisztin and

Arino,12 and thus, slowly oscillatory solutions converge to K

or to a periodic orbit. �

Remark IV.2. Some recent results of Kennedy,9 which

have not been published yet, suggest that Theorem IV.1. can

be extended from slowly oscillatory solutions to all solutions.

While the control scheme in this theorem may seem

complicated, what it really means is that when a solution

approaches n0 from above, we decrease the delay in a way

that the solution will turn back before reaching n0, hence

forcing it to stay in the domain where f 0 < 0. In particular,

k(x)¼ 0 for x � n0þ f and k(x)¼ s – s* for x � n0, and

some intermediate control k(x) is applied when the solution

is in the interval (n0, n0þ f). For such an equation with state

dependent delay, the Poincar�e–Bendixson type theorem was

proven only to the subset of slowly oscillatory solutions, and

hence, at the current state-of-the-art of the theory, we cannot

say more, but the applicability of this control scheme will be

illustrated in Sec. V, (see also Fig. 3).

V. APPLICATIONS, SIMULATIONS, AND DISCUSSION

We investigated a number of possible mechanisms so

that with a well-chosen control parameter, an otherwise cha-

otic Mackey–Glass system is forced to show regular behav-

ior. The Mackey–Glass equation was used to model the rate

of change of circulating red blood cells, and most of our

results have a meaningful interpretation in this context. For

example, u(t)¼ k with k> 0 may represent medical replace-

ment of blood cells at a constant rate, or u(t)¼ kx(t) with

negative k may represent the increased destruction rate of

blood cells, which can be achieved by administration of anti-

bodies.3 Our approach is different from typical chaos control

methods since our strategy is to choose a control such that

all solutions will be attracted to a domain where the feedback

function is monotone, and then, some Poincar�e–Bendixson

type results exclude the possibility of chaotic behavior. By

applying this domain decomposition method, which is based

on the study by R€ost and Wu,25 instead of stabilizing a par-

ticular orbit, we push the full dynamics into a non-chaotic

regime.

For u(t)¼ k, clearly k> 0 helps the cell population, and

as Theorem III.1 shows, with sufficiently large k, chaos can

always be controlled regardless of the delay. A somewhat

counterintuitive part of Theorem III.1 is that for some nega-

tive k, it is possible to force the system to converge to a posi-

tive equilibrium; however, one has to be careful as the

system will collapse if k is below the threshold k1. This is

illustrated in Fig. 1, where on the left, we can see how k> 0
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controls a chaotic solution into a periodic one, while in the

right, we can observe that decreasing k< 0 first regulate the

system into periodic behavior, then to convergence, and

finally to collapse (i.e., hitting zero in finite time).

The proportional feedback control u(t)¼ kx(t) again

helps the population when k> 0, and when it fully compen-

sates the baseline mortality (j> l), the population grows

and unbound (Theorem III.2, (iv)). Yet, controlling chaos is

best achieved with k< 0, when the destruction of cells is

increased, and then, with a fine tuning of k, the dynamics can

be made regular (Theorem III.2, (i) and (ii)), which is shown

on the left panel of Fig. 2. If cell destruction is too high, the

population goes extinct (Theorem III.2, (iii)). Theorem III.3

gives a delay dependent result, showing that even if the con-

dition (L) fails, chaos control can be achieved by satisfying

(T). We showed that the smaller the delay, the easier the con-

trol, in the sense that we can pick k from a larger range to

satisfy (T). On the right panel of Fig. 2, we illustrated this

delay dependent feature: when we switched on the control,

we decreased the delay temporarily to show that with this

smaller delay, it is a good control, but when we reset the

delay at some time later, the delay dependent condition (T)

fails and the solution goes back to the irregular mode with

the same control.

We also used the popular Pyragas control uðtÞ ¼ kðxðt
�sÞ � xðtÞÞ. The conclusion of our Theorem III.4 is that for

positive k, the unimodal shape of the nonlinearity turns into

a bimodal shape, and when k is large enough (our theorem

explicitly tells us how large), the nonlinearity is transformed

into a monotone feedback, as the control term overwhelms

the original unimodality. Once we achieved monotonicity,

we can use the results from the study by R€ost and Wu25 to

prove that solutions converge to the positive equilibrium.

Figure 3 (left) shows how such regulation occurs as we

increase k. For negative k, the non-negative cone is not

invariant anymore, so we do not consider this possibility. Let

us remark that the control of Mackey–Glass chaos has been

experimentally observed with Pyragas-type control,10 and

(a) (b)

FIG. 1. Constant perturbation control: illustrations to Theorem III.1. On the left, a numerical solution to (3.1) is plotted. For 0� t< 80, there is no control

(k¼ 0), and the solution is irregular. At t¼ 80, we switch on the constant control with k¼ 0.39. The initial function was 2þ 0:02 sin t. On the right, for

0� t< 50, k¼ 0, and the solution is irregular. At t¼ 50, k was decreased to –0.48, and the solution becomes periodic. At t¼ 100, k is set to –0.62, and the solu-

tion converges to K. From t¼ 150, we use k¼ –0.69, and the solution reaches 0 in finite time. The initial function was –1.2tþ 0.1et. In both cases, the parame-

ters were set to l¼ 1, s¼ 3, p¼ 2, and n¼ 9.65.

(a) (b)

FIG. 2. Proportional feedback control: illustrations to Theorems III.2 and III.3. Numerical solutions to (3.3) are plotted. On the left for 0� t< 80, there is no

control (k¼ 0), and the solution is irregular. At t¼ 80, we switch on the proportional control with k¼ –0.507. The other parameters were n¼ 20, l¼ 1.275,

s¼ 3.11, and p¼ 2. With these parameters, the condition in (i) of Theorem III.2 is satisfied, and the solution converges to a regular oscillation. The initial func-

tion was 0:5þ 0:01 cos 2t. On the right, for 0� t< 50, s¼ 3 and k¼ 0. At t¼ 50, to illustrate Theorem III.3, s is decreased to 0.125 and k is set to �0.022, so

(T) holds and the solution behaves regularly. From t¼ 100, s¼ 3, and while k is still �0.022, now (T) fails with this larger delay, and the solution becomes

irregular again. The other parameters were n¼ 27.9, l¼ 0.97, and p¼ 2. The initial function was 1þ 0.1t.
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here, our results give an analytic explanation how and why

this happens.

Finally, we considered a very different type of control,

taking advantage of some results from the theory of state

dependent delays. While it is clear from Theorem (II.1) that

chaos can be eliminated when the delay is sufficiently small,

in Theorem (IV.1), we constructed a state dependent delay

function that allows us to construct a delay control scheme

where the delay is reduced only in a part of the phase space.

This is illustrated in the right panel of Fig. 3, where we

applied delay reduction only in the region x<K, and this

was sufficient to drive the irregular solution into periodic

behavior.
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FIG. 3. Left: Pyragas control illustration to Theorem III.4. The numerical solution to (3.5) is plotted. For 0� t< 50, there is no control (k¼ 0), and the solution

is irregular. At t¼ 50, we switch on the Pyragas control with k¼ 0.08, which is too small to cease the irregularity of the solution, which becomes periodic after

t¼ 100 when the control was increased to k¼ 0.95. Finally, the solution converges K after t¼ 150 when the control increased further to k¼ 3.9, when the con-

dition of Theorem III.4 holds. The other parameters were set to l¼ 1.08, s¼ 3, p¼ 2, and n¼ 9.65. The initial function was 1þ 0.1e�t. Right: State dependent

delay control. A numerical solution to (4.1) is plotted. We switch on the delay function scheme at t¼ 31, which drives the solution to a periodic orbit. The hori-

zontal line shows the equilibrium, and it is also the boundary for delay reduction, where for the sake of simplicity, we used a step function for r[x(t)]: the delay

is 5 for x>K and 4 for x<K. In the lower part of the graph, it is shown when the delay control is on or off. Parameter values are n¼ 6, p¼ 2, and l¼ 1, and

the initial function is 2*.
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