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Background. Planning for a possible influenza pandemic is an extremely high priority, as social and economic effects of an
unmitigated pandemic would be devastating. Mathematical models can be used to explore different scenarios and provide
insight into potential costs, benefits, and effectiveness of prevention and control strategies under consideration. Methods and

Findings. A stochastic, equation-based epidemic model is used to study global transmission of pandemic flu, including the
effects of travel restrictions and vaccination. Economic costs of intervention are also considered. The distribution of First
Passage Times (FPT) to the United States and the numbers of infected persons in metropolitan areas worldwide are studied
assuming various times and locations of the initial outbreak. International air travel restrictions alone provide a small delay in
FPT to the U.S. When other containment measures are applied at the source in conjunction with travel restrictions, delays
could be much longer. If in addition, control measures are instituted worldwide, there is a significant reduction in cases
worldwide and specifically in the U.S. However, if travel restrictions are not combined with other measures, local epidemic
severity may increase, because restriction-induced delays can push local outbreaks into high epidemic season. The per annum
cost to the U.S. economy of international and major domestic air passenger travel restrictions is minimal: on the order of 0.8%
of Gross National Product. Conclusions. International air travel restrictions may provide a small but important delay in the
spread of a pandemic, especially if other disease control measures are implemented during the afforded time. However, if
other measures are not instituted, delays may worsen regional epidemics by pushing the outbreak into high epidemic season.
This important interaction between policy and seasonality is only evident with a global-scale model. Since the benefit of travel
restrictions can be substantial while their costs are minimal, dismissal of travel restrictions as an aid in dealing with a global
pandemic seems premature.
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INTRODUCTION
Planning for a possible influenza pandemic is obviously an

extremely high priority for the U.S. government. Less obvious,

perhaps, is the fact that, in the well-connected world of the 21st

century, no country is isolated from the potential spread of

infection. Therefore, there is a pressing need to study the global

spread of flu to understand the impact of the global epidemic on

U.S. preparedness.

Rvachev and Longini [1] developed a deterministic, equation-

based SEIR model to study the role of global air travel in the

1968–1969 influenza pandemic. Recently, others have extended

that model to update population levels [2,3], incorporate more

recent air travel patterns [2,3], adjust seasonality parameters [2,3],

add stochasticity to the model [4], and extend it to more cities [4].

In general, these models found that, as compared to 1968,

epidemics would spread faster and that the order of cities impacted

would change under current air travel patterns. In contrast to

Colizza, et al. [5], Cooper, et al. [4] concluded that international

travel restrictions do little to reduce the rate of spread globally.

Rather, local interventions aimed at reducing transmission are

more likely to reduce the rate of spread. Hollingsworth, et al. [6],

using a simplified global model, reached similar conclusions.

Here, we argue that international air travel restrictions some-

times could be useful to slow the progression of pandemic flu and

sometimes could be harmful. While travel restrictions alone do

little to directly ameliorate the pandemic, they can buy time to

develop and deliver vaccine and institute a range of powerful

nonpharmaceutical interventions (e.g., social distancing, public

education, staging of medical equipment), all of which could

sharply reduce cases. Of course, travel restrictions can directly

decrease the influx of new infected persons into an area. More

importantly, the restrictions reduce the probability of an infected

individual leaving the area in which an outbreak is developing.

Consequently, travel restrictions are one among a range of

strategies that could be used to address a global pandemic. In

a recent paper, Brownstein, et al. [7] have presented supporting

evidence, showing that the grounding of airplanes in the United

States after September 11, 2001 delayed the dynamics of influenza

during the 2001–2002 season by approximately 2 weeks. While air

travel restrictions in the United States might have a small impact

on domestic disease dynamics due to ground transportation, the

global spread, such as a transfer of pandemic flu from Asia or

Europe to the United States, could be delayed more significantly

by international travel restrictions.
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From a public health perspective, it becomes clear that the main

purpose of travel restrictions is to delay dissemination of the

disease until targeted medical and other interventions can be

developed and deployed. Even a couple weeks of additional delay

is important for the deployment of national and local containment

strategies which might not necessarily be related to vaccination

per se.

To estimate this delay, we model the distribution of first passage

times (FPT) for infected persons to the United States. We define

the start of the epidemic as the day on which the first 100

individuals are exposed in a single city, and we define the FPT as

the number of days from the epidemic start until the first infected

individual crosses the United States border. Seemingly small

increases in FPT can translate into significant delays in peak

incidence times and values. In all pandemic plans, local social

interaction restrictions are recommended. Once these are imple-

mented, the course of the epidemic will be altered. In this model,

both simultaneous, global restrictions and sequential, city by city

restrictions were tested. The impact of the travel restrictions on

both the mean FPT to the United States and the full course of the

epidemic are considered, as well as the costs of the intervention.

METHODS

The model
The initial version of our model was based on (and calibrated to)

the global influenza model of Rvachev and Longini [1], which was

based on an earlier model of Baroyan, Mironov, and Rvachev [8].

We have substantially extended and further developed it by adding

seasonality in the disease transmission rate, stochasticity, and

several possible disease interventions, such as travel restrictions

and vaccination. These interventions can be implemented separ-

ately or in combination, and either globally or on a city-by-city

basis, to test the effectiveness of different intervention scenarios. In

addition, populations are made more detailed by including

a nonsusceptible class for those individuals who acquired disease

immunity either from exposure during previous epidemics to

a similar virus or from vaccination.

The model consists of a set of stochastic difference equations

describing the disease dynamics within each city and air travel by

individuals from one city to another. Time is measured in discrete

units of 1 day. The population of each city is divided into mutually

exclusive nonsusceptible (NS), susceptible (S), exposed (E), infec-

tious (I), and recovered (R) classes. We do not estimate deaths,

although readers can easily compute them by multiplying our

infection levels by any assumed case fatality rate. The exposed

period is assumed to coincide with the viral incubation period, and

the infectious period is assumed to coincide with the symptomatic

period. Infectious persons are assumed not to travel. Within each

city, individuals are assumed to be well-mixed. Parameter values

are the same for all cities. The parameter values used in the model

are given in Table S1. Model equations are given in Text S1.

The model includes 155 major cities around the world, includ-

ing the cities with the 100 busiest airports, the 100 largest cities

worldwide, and the 52 cities in the Rvachev-Longini model. The

155 cities modeled include 34 major U.S. cities. The population

and transportation data have been updated to include year 2000–

2004 values. Population data are taken from the U.S. Census

Bureau, the United Nations Department of Economic and Social

Affairs, the Instituto Brasileiro de Geografia e Estatı́stica, and

several other sources [9–15].

Travel data are taken from OAG statistics on flight schedules

provided by L. Amaral [16]. The travel network is made more

realistic by allowing asymmetric travel between cities. We have

also created a modified travel matrix in which we model travel

patterns including more than one leg of travel. The methodology

for creating this matrix is described in Text S2.

Natural history parameters for the H5N1 influenza virus align

with those used previously [17–20]. In particular, the value of R0

has been chosen to be 1.7. We have also studied a range of R0

values but specifically focused on the values of 2.0 and 1.4, which

in combination with 1.7, correspond to the world pandemics of

1918, 1957, and 1968. Seasonality was implemented based on the

assumptions that cities within the tropics have peak viral trans-

mission year round, while in cities outside the tropics, trans-

missibility varies sinusoidally, with peak transmission occurring on

January 1 in the northern hemisphere and on July 2 in the

southern hemisphere. To avoid abrupt pattern changes at the

boundaries of the tropics, we modeled a smooth latitudinal varia-

tion of the amplitude by implementing a corresponding sine wave.

In Figures 1A–D for the world and U.S. metropolitan areas we

show the dependence of the unmitigated epidemic shapes and the

totals for the three values of R0. Full details are provided in

Text S1.

Deterministic models can be effective in describing the mean

behavior of a stochastic epidemic, particularly when the number of

persons in each disease class is large enough to model the system

behavior in terms of population proportions, rather than numbers

of individuals. However, in the early stages of an outbreak in a city,

when very few exposed or infectious individuals are present,

individual actions are important and random factors may easily

affect the course of the outbreak. In our model, the realized

number of newly infected persons each day within each city is

drawn from a Poisson distribution with the mean calculated from

the numbers of susceptible and infectious persons in that city

and the local, seasonally-adjusted, infectious contact rate. The

numbers of individuals in a particular disease state traveling from

one city to each of the other cities directly connected to it on

a particular day are drawn from a multinomial distribution based

on the average daily numbers of travelers from that city and the

proportion of the city’s population in that disease state on that day.

Interventions
Travel restrictions are implemented in the model as a reduction in

the probability of travel between cities that occurs after a threshold

cumulative number of infectious influenza cases has been reached.

Sequential restrictions are applied to travel to and from a city that

has crossed the threshold of 1,000 cumulative infectious cases.

Note that because travel restrictions reduce the travel both into

and out of a city, those cities directly connected to a restricted city

are also affected by the restrictions, even if they have not yet

reached the intervention threshold. We have also considered

simultaneous, worldwide interventions, in which travel restrictions

are applied to all cities after 1,000 infectious cases have occurred in

the initially exposed city. Obviously, one could assume thresholds

proportional to city sizes and many other variations.

Vaccination is implemented as a transfer of a percentage of the

susceptible population to the permanently nonsusceptible popula-

tion, and can be implemented as an initial vaccination at time zero

(i.e., prevaccination), or as an ongoing, daily vaccination of the

population during the epidemic. Daily vaccinations are imple-

mented either simultaneously or sequentially, similar to the

imposition of travel restrictions. To more closely parallel travel

restrictions, vaccination is implemented at the same time in those

cities directly connected to cities which have crossed the interven-

tion threshold. Note, however, that we use the term ‘‘vaccination’’

broadly, to denote simply the product of the number of vaccine

courses administered and the effectiveness per course, so that the
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nonsusceptible population consists of those who have been

effectively removed from the susceptible population before

becoming infected. Our baseline value for vaccination is that

0.1% of the susceptible population is vaccinated daily.

Simulation scenarios
We have run a number of scenarios varying the origin of the

infection (Hong Kong, London, Sydney), the origination date

(January 1, July 1), the level of travel restriction (90%, 95%, 99%),

the vaccination strategy (sequential, simultaneous), the initial

vaccination level (0%, 10%, 20%), the daily vaccination rate

(0.05%, 0.1%, 1%), and the severity of flu transmission (R0 = 1.4,

1.7, 2.0). Note that the value of R0 that we routinely report in this

paper corresponds to a baseline value that is further modified by

seasonal variations and latitude. The actual value of R0 depends

on the location and the season, and thus may be lower than the

baseline value. In this paper we illustrate our point by using the

most commonly published parameters and scenarios [4,17–22]. In

particular, the base set of comparison scenarios uses an epidemic

starting in January in Hong Kong with no previously immune

individuals, with or without interventions of 95% travel restriction,

0.1% daily vaccination, or a combination of the two. For each

scenario, 100 replicates were run to analyze the statistical behavior

of the stochastic process. We also present sensitivity to the

seasonality by varying the time and location of the origin, leaving

the discussion of other scenarios to subsequent manuscripts. We

have done a brief sensitivity analysis for the case of a pandemic

Days since July 1 (epidemic start)

C
as

es

0 100 200 300 400 500 600 700 800

0E+0

10E+6

20E+6

30E+6

40E+6

50E+6
R0 = 1.4
R0 = 1.7
R0 = 2.0

A

Days since July 1 (epidemic start)

C
as

es

0 100 200 300 400 500 600 700 800

0E+0

100E+6

200E+6

300E+6

400E+6

500E+6
R0 = 1.4
R0 = 1.7
R0 = 2.0

B

Days since July 1 (epidemic start)

C
as

es

0 100 200 300 400 500 600 700 800

0E+0

4E+6

8E+6

12E+6

16E+6

20E+6
R0 = 1.4
R0 = 1.7
R0 = 2.0

C

Days since July 1 (epidemic start)

C
as

es

0 100 200 300 400 500 600 700 800

0E+0

20E+6

40E+6

60E+6

80E+6

100E+6

120E+6
R0 = 1.4
R0 = 1.7
R0 = 2.0

D

Figure 1. Epidemic severity vs. R0 value. The severity and the speed of an epidemic both increase as the value of R0 increases. Results are shown for
an epidemic starting in Hong Kong on July 1. The actual values of R0 are modified by seasonal and geographical factors. (A) Worldwide daily number
of infected individuals. (B) Worldwide cumulative number of influenza cases. (C) U.S. daily number of infected individuals. (D) U.S. cumulative number
of influenza cases. (green: R0 = 1.4, blue: R0 = 1.7, red: R0 = 2.0)
doi:10.1371/journal.pone.0000401.g001
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originating in Hong Kong, in which we assumed that 33% of

infectious individuals were asymptomatic, and whose relative

infectiousness was 50% of that of symptomatic infectious indivi-

duals. These choices are in line with other modeling groups’

published assumptions [5,18,20]. After adjusting the infectious

contact rate in the model to obtain the same effective value of

R0 = 1.7 as in our main analysis without asymptomatic individuals,

we observed no significant qualitative differences in results. We

recognize that a more detailed exploration of parameter space

may yield more information, and such an analysis may be part of

future research.

The model was implemented in AnyLogicTM, a Java-based

modeling platform developed by XJ Technologies Company Ltd.

(www.xjtek.com). Instantaneous model results can be displayed in

an animation screen for immediate review and time series results

can be written to an external file for further analysis. More details

can be found in Text S1 and in the comprehensive model user

manual (which is available from the authors upon request). An

applet demonstration version of the model can be found on the

National Institutes of Health MIDAS (Models of Infectious Disease

Agent Study) portal, at www.midasmodels.org. For particular runs,

this model offers a number of visualizations: the global spread

displayed on a world map (see Figure S1), city-specific levels of

infection, and a global time series of epidemic waves.

RESULTS
Consistent with previous work [4,6,17,18], our study shows that

international travel restrictions per se do not provide an effective

way to contain the epidemic. In Figure 2 we show that to signifi-

cantly reduce the total number of cases worldwide, it is necessary

to implement drastic restriction measures, by reducing the flight

volume by at least 95%. As expected, we did not see a significant

difference between sequential and simultaneous travel restriction

(differences in the total numbers of cases were less than 5%).

Before the virus reaches a given region, travel restrictions within

that region have no effect on the spread of the epidemic, and thus

would be unnecessary. Once cities in a region have passed the

epidemic threshold for implementing sequential travel restrictions,

implementation is the same in that region whether the restrictions

are sequential or simultaneous. Thus, travel conditions for infected

persons in given cities would be different in the two scenarios only

during the time between the initial arrival of the virus and the

crossing of the travel restriction implementation threshold. There-

fore we will focus on the more realistic and feasible sequential travel

restriction policy. This approach is also far less disruptive

economically than simultaneous closures. Thus, here is a policy

choice where two approaches (simultaneous and sequential) are

indistinguishable epidemiologically but are quite distinct economi-

cally, and we chose the less disruptive. This type of result argues for

more explicit inclusion of economic considerations in the compar-

ison of mitigation strategies.

Table 1 shows that 95% travel restrictions can delay the initial

spread of the epidemic, as measured by the number of cases after

6 months. The difference between the cumulative numbers of

cases reflects the fact that, because of the high growth rate of the

epidemic, a delay of even few weeks can cause a large difference in

the cumulative number of cases at 6 or 12 months. The values of

the total numbers of cases at the end of the epidemic are less

dependent on the effect of travel restriction and may, in fact,

increase. The total number of epidemic cases is more dependent

on the interaction of the delay (due to travel restrictions) and

seasonality, as discussed further below. Note that because we used

only the largest metropolitan areas, the results presented in figures

and tables of this paper reflect the population only in those

metropolitan areas, and not in the entire United States or the

world.

In Figures 1A–D for the world and U.S. metropolitan areas, we

show several unmitigated epidemic shapes and totals for three

values of R0. In Table 2, the mean FPT is given for a number of

scenarios, for an epidemic with R0 = 1.7. When travel restrictions

are imposed, the FPT increases by two to three weeks when the

outbreak originates in Hong Kong (from 18 days to 31 days) or

Sydney (from 7 days to 27 days). There is no delay in FPT when

the outbreak originates in London. These delays are larger for

smaller values of R0; for example, for an R0 = 1.4 the delay in FPT

from Hong Kong to the U.S. due to travel restrictions increases to

20–23 days (data not shown).

Vaccination alone, even at low rates, reduces the total number

of cases worldwide and in the United States (data not shown). As

expected, vaccination reduces the effective R0, which leads to the

reduction of the total number of cases, and also increases the

duration of the epidemics. The FPT, however, is little affected by

the vaccination-only intervention (see Table 2), primarily because

of the implementation schedule. Vaccination strategies might not

be very effective in the early stages of the epidemic because of poor

vaccine matching, lack of delivery methods, low public awareness,

etc.

Table 3 and Figures 3A–D illustrate the interaction of travel delay

and vaccination strategies in the United States. Parallel to Table 1, in

Table 3 we present the numbers of U.S. metropolitan cases at

6 months, at 12 months, and at the end of the epidemic. Both

vaccination and travel restrictions have a strong effect on the

reduction in the number of cases at 6 and 12 months. The reduc-

tion varies from 3 to 5 fold at 6 months. While vaccination truly

reduces the total numbers of cases, travel restrictions provide the

additional delay in epidemic growth and the potential to vaccinate

more individuals. The overall value of that delay in combination

with vaccination can be seen in the reduction of the total number of

epidemic cases. For example, for the case of an epidemic starting in

July in Hong Kong, the total number of metropolitan cases in the
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levels of international travel restrictions are necessary to reduce the
total number of infected individuals worldwide. There is little difference
in effect between sequential, city-by-city implementation of travel
restrictions and simultaneous, worldwide implementation. Results are
shown for an epidemic with R0 = 1.7 starting in Hong Kong on July 1.
(blue: sequential travel restrictions; red: simultaneous travel restrictions,
mean values shown, error bars = 95% confidence intervals)
doi:10.1371/journal.pone.0000401.g002
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United States is 102.4 million; 0.1% daily vaccination reduces this

number to 73.0 million, and adding sequential travel restriction to

the vaccination policy reduces it further, to 56.9 million.

Travel restrictions and seasonality
An important result of the model is that the delay of viral

introduction caused by travel restrictions may interact with

seasonality to cause a larger initial epidemic peak or total number

of infected individuals in a region such as the United States. This

can happen when the restrictions push the local epidemic outbreak

into a period of higher seasonal transmission of the virus, causing it

to spread more rapidly through the local population. By the same

token, depending on the timing of the initial outbreak in the world,

delays caused by travel restrictions can shift introduction of the

virus to a period of lower transmissibility, making the local

outbreak less severe. Thus travel restrictions alone may have either

a positive or a negative local effect. Tables 1 and 3 reflect such

interactions and Figures 4A and 4B provide visual illustration. In

the United States, the total cumulative number of cases for an

epidemic with 95% travel restrictions imposed is approximately

equal to that of the unmitigated epidemic, when the epidemic

begins in July, regardless of its initial location in the world.

However, if the epidemic is initiated in January, the delayed FPT

results in a slow disease introduction into the United States. As

a result, the spring epidemic is minor and is followed by a large

epidemic in the fall, during the beginning of the high contact rate

season. The resulting epidemic has substantially more cases, with

an increase of about 12%, 16%, or 21%, depending on whether

the initial source of infection is Sydney, Hong Kong, or London.

As shown in Figure 4A, the epidemic in the United States has 2

peaks: the first, small peak in summer and the second, large peak

in winter. With travel restrictions imposed, the first peak is smaller

and thus easier to contain than the first peak in an epidemic

without travel restrictions. However, if the small peak in the travel

restriction scenario is not managed, the following winter peak is

higher and the total number of infected persons is larger than in

Table 1. Worldwide metropolitan cases, with and without 95% travel restrictions implemented sequentially after the first 1,000
cases have been identified in each city, for an epidemic with R0 = 1.7.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Location and Time
of InitialCases

Travel Restrictions
Implemented

Total Metropolitan Cases Worldwide
after 6 Months

Total Metropolitan Cases Worldwide
after 12 Months

Total Metropolitan Cases Worldwide
at End of Epidemic1

mean sd mean sd mean sd

Hong Kong - Jan 1 no 193,609,206 4,345,032 293,636,107 3,096,894 358,390,361 1,342,560

yes 81,531,156 9,783,597 331,162,274 3,836,716 391,746,313 2,736,224

Hong Kong - July 1 no 323,819,238 4,071,117 414,093,710 255,211 414,198,937 244,499

yes 132,230,576 9,451,456 409,718,662 1,974,674 415,947,262 2,462,781

London - Jan 1 no 216,643,706 2,791,062 275,413,403 2,270,138 347,348,752 2,986,580

yes 118,523,844 10,690,524 321,370,868 5,570,406 385,633,413 3,058,182

London - July 12 no 22,673,116 57,638,959 81,867,867 164,641,526 82,021,371 164,941,514

yes 7,134,433 19,098,146 61,749,309 141,663,297 67,074,165 149,098,629

Sydney - Jan 1 no 80,356,144 25,615,355 335,303,211 10,261,001 373,149,982 2,987,185

yes 33,068,217 18,255,000 327,274,492 10,724,921 406,597,417 5,940,327

Sydney - July 1 no 298,429,077 6,434,137 417,607,112 400,989 417,718,338 416,499

yes 94,823,730 13,494,412 406,339,496 2,846,810 412,396,914 3,138,013

1The end of the epidemic is determined when there are no further cases worldwide.
2These data represent means and standard deviations for all 100 runs, including the runs in which the disease did not develop a pandemic state and did not reach the
U.S.

Note: The data are presented for only the 155 major cities, not the entire world population.
doi:10.1371/journal.pone.0000401.t001..
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Table 2. Mean First Passage Times (in days) to the metropolitan U.S. under travel restriction and vaccination intervention scenarios.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Location and Time of Initial Cases No Intervention 95% Travel Restriction Only 0.1% Daily Vaccination Only Both Travel and Vaccination

mean sd mean sd mean sd mean sd

Hong Kong - Jan 1 17.58 7.23 31.12 12.44 17.75 5.02 30.40 13.17

Hong Kong - July 1 17.86 6.17 31.33 14.42 18.94 7.07 30.06 14.19

London - Jan 1 5.50 3.94 5.50 3.88 5.34 4.47 5.91 4.44

London - July 11 16.26 32.97 16.15 33.20 23.86 40.35 25.95 44.95

Sydney - Jan 1 34.91 17.80 62.03 33.50 32.96 15.85 69.07 33.79

Sydney - July 1 14.63 6.23 21.32 14.60 14.20 6.16 23.10 14.09

Base R0 = 1.7.
1These data represent means and standard deviations for all 100 runs, including the runs in which the disease did not develop a pandemic state and did not reach the
U.S.

doi:10.1371/journal.pone.0000401.t002..
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the unrestricted scenario. This result emphasizes the need to

implement other disease containment and reduction policies

during the achieved delay. It also highlights the utility of global

models in capturing the interaction of policies (such as travel

restrictions) and planetary scale dynamics (such as seasonality).

Disease transmission rates
A number of factors can modify the results of the simulations. For

example, with a higher value of R0, a global epidemic would be

more ‘‘synchronized’’ (individual cities’ peaks would be more

clustered) and the delay would be less pronounced. This might be

the case in the early stages of an epidemic, when the public is not

yet aware of basic contact reduction measures that reduce the

effective reproduction number of the virus. However, with the

implementation of such measures, the disease transmission rate

could be reduced and the delays would become more pronounced.

In Figures 5A and 5B we illustrate the temporal spread of the

global epidemic for the metropolitan areas under different values

of R0. For example, if the value of R0 is lowered from 1.7 to 1.4 by

either self-isolation or other means of reducing contact rates, the

delay due to travel restrictions will be increased to 20–23 days,

giving public health officials more time to prepare for the

upcoming epidemic. The value of R0 can be crudely calculated

from the early stage of the epidemic growth curve from an

equation such as

Infected(time~t)&Infected(time~0):

exp
1

MeanInfectiousPeriod
: R0{1ð Þ:t

� � ; ½23�:

If R0 is so estimated during the early stages of the epidemic,

then it would be possible to predict the amount of time available to

increase public health preparedness before the epidemic strikes the

United States.

Cost to the U.S. of air travel restrictions
In deciding whether to adopt a policy such as the imposition of

international air travel restrictions, one must compare benefits to

costs. The foregoing analysis suggests very strongly that restrictions

on international air passenger travel can be of substantial benefit

to the U.S. It is not widely appreciated that the associated cost is

minimal. To economists, a cost is the Gross National Product

Table 3. Mean cumulative number of cases in the metropolitan U.S. under travel restriction and vaccination intervention scenarios.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Location and Time of
Initial Cases Intervention1

Total Metropolitan U.S. Cases
6 Months after the Start of
the Epidemic

Total Metropolitan U.S. Cases
12 Months after the Start of
the Epidemic

Total Metropolitan U.S. Cases
at the End of the Epidemic2

mean sd mean sd mean sd

Hong Kong - Jan 1 N 18,245,753 1,657,562 62,118,714 2,517,623 82,833,403 318,722

TO 2,951,395 1,765,465 90,173,754 1,667,679 96,429,042 1,107,950

VO 6,017,992 820,342 13,231,241 238,007 16,386,410 494,161

TV 812,576 700,550 8,006,939 1,861,928 17,910,022 2,491,967

Hong Kong - July 1 N 83,701,712 1,004,370 102,368,352 76,848 102,368,456 76,846

TO 18,913,221 1,474,799 102,418,028 409,462 102,418,055 409,465

VO 32,642,187 992,303 72,958,924 216,288 73,008,133 247,663

TV 3,942,933 837,907 56,928,367 2,087,690 56,928,594 2,087,572

London - Jan 1 N 30,099,814 1,256,785 41,865,074 1,378,565 76,508,738 1,527,186

TO 13,591,127 2,772,253 77,390,536 4,173,168 92,464,670 994,422

VO 12,660,235 987,928 14,420,437 737,109 14,806,721 621,159

TV 4,344,538 1,311,592 8,600,742 968,822 12,602,370 524,534

London - July 13 N 5,277,589 16,653,990 20,382,433 40,984,845 20,382,469 40,984,918

TO 1,030,904 5,350,070 15,484,489 35,542,037 16,277,110 36,239,497

VO 1,482,819 5,799,144 12,336,496 27,433,567 12,336,532 27,433,647

TV 757,059 2,828,242 10,225,818 22,137,451 10,231,246 22,140,760

Sydney - Jan 1 N 4,032,772 4,944,879 79,002,872 4,418,787 84,376,383 731,748

TO 1,646,404 2,792,800 82,209,426 6,160,091 101,034,551 3,632,634

VO 1,163,532 1,546,781 21,035,146 3,261,573 33,057,868 5,607,727

TV 248,120 622,647 6,055,356 2,372,328 26,395,864 7,881,035

Sydney - July 1 N 82,454,611 2,075,752 102,519,057 105,857 102,519,138 105,861

TO 17,977,729 1,887,605 101,981,636 556,065 101,981,640 556,065

VO 34,503,408 1,997,174 74,304,850 315,807 74,305,013 315,807

TV 4,954,351 1,428,691 58,365,274 2,605,232 58,365,422 2,605,185

Base R0 = 1.7.
1N: no intervention, TO: 95% travel restriction only, VO: 0.1% vaccination only, TV: both 95% travel restriction and 0.1% vaccination
2The end of the epidemic is determined when there are no further cases worldwide.
3These data represent means and standard deviations for all 100 runs, including the runs in which the disease did not develop a pandemic state and did not reach the
U.S.

doi:10.1371/journal.pone.0000401.t003..
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(GNP) loss of the control measure: the value of all economic

activity foregone because of its imposition. A central problem in

estimating these costs is that for many activities substitutions are

possible. So, if one were to close business air travel, the same

economic activity (e.g., trades, contracts) may take place

electronically, with no loss to total output. Likewise, people who

had planned to fly to leisure destinations may decide to drive or

take a train, or to substitute a new destination, again with no

welfare loss. To estimate the full cost in an orthodox fashion, one

could develop the full computable general equilibrium model of

the entire economy with specific sectors (notably transportation)

explicitly represented. One would run that model to equilibrium

with all airlines operative. One then would shut down the airlines

and rerun the model to (a presumably different) equilibrium. Then

one would compare the equilibria and assess the difference. For

our present purposes, this is neither feasible nor necessary. Rather,

we will develop a conservative upper bound on the cost of the

proposed intervention, and show that it is very modest in GNP

terms.

First, of the 155 international cities included in the analysis, 34

are U.S. cities with major airports. These account for the activity

of airlines classified in the Bureau of Transportation Statistics as

Major carriers. Ranked below them in size are the National, Large

Regional, Medium Regional, Small Certified, and Commuter
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Figure 3. Epidemic severity vs. intervention policy. The speed and severity of an epidemic can be reduced by implementation of travel restriction
and vaccination policies. Implementing both travel restrictions and vaccination can have a greater effect than implementing either policy alone.
Results are shown for an epidemic with R0 = 1.7 starting in Hong Kong on July 1. (A) Worldwide daily number of infected individuals. (B) Worldwide
cumulative number of influenza cases. (C) U.S. daily number of infected individuals. (D) U.S. cumulative number of influenza cases. (red: no
intervention, blue: sequential 95% restriction of international travel, green: daily vaccination of 0.1% of susceptible population, orange: both travel
restriction and vaccination)
doi:10.1371/journal.pone.0000401.g003
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carriers [24]. The Major carriers account for just over 85% of the

industry’s activity [24]. However, for our bounding calculation we

will assume that when they shut down, the entire system shuts

down for passenger travel, implicitly eliminating a variety of

alternative means of air travel (e.g., using multiple legs on smaller

carriers). This conservative assumption overstates the GNP loss.

We do assume that freight and cargo air continue to operate,

presumably with anti-viral prophylaxis and continuous screening

of pilots and crews. Even were air cargo to cease, there would be

shipping and land transportation as substitutes, so GNP loss would

again be minor. As for private flights for non-business purposes,

people may drive or take rail to leisure destinations, or may change

destinations. The true cost of an imposed closure is further

complicated by the fact that many people would endogenously

stop flying, as occurred during the SARS outbreak in 2003, so the

loss beyond this endogenous response is difficult to estimate with

precision.

With all of this information as background, we estimate the cost

of closing the Major airlines as if that were the equivalent of

shutting down the entire system, and we will cost it as

a simultaneous shutdown, although as discussed above, we model

a sequential shutdown. Under these worst case assumptions, the

estimated cost falls between $93 billion and $100 billion per annum,

extrapolating from the complete and immediate cessation that

occurred after 9/11 [25]. Thus, even under the worst case

assumption that this economic activity is simply sacrificed, the cost

is still around 0.8% of the $12 trillion U.S. GNP per year [26].

Labor deserves a separate discussion. First, the impact on labor

depends on whether the economy is operating at full employment.

If not (as in the U.S. at present), many workers (managers,

executives, baggage handlers, agents, mechanics, etc.) would find

alternative employment (i.e., there would be some factor mobility).

For conservatism’s sake, let us assume no such mobility. Roughly

60% of the airline industry remains non-unionized. These

individuals received no severance pay after the layoffs of 9/11

and would likely be treated similarly in a pandemic flu shutdown.

Severance packages are unlikely; hence, labor costs will not likely

weigh heavily on the calculation of costs. We are not condoning

this treatment of workers, merely reporting the likely GNP impact.

Indeed, a more generous labor policy is altogether feasible. The

Senate Joint Economic Committee estimates that ‘‘a government

funded severance package that covered 100 percent of wages and

benefits would cost roughly $500 million per month.’’ [25] That is

$6 billion per year. If this amount were added to the price tag of

our policy, the total would rise from $100 billion to $106 billion,

increasing the entire cost from 0.8% of GNP to perhaps 0.9%, still

very far from ruinous.

In summary, considering substitution possibilities, and even

including labor compensation, it is extremely difficult to drive the

cost of air travel restrictions beyond 1% of the U.S. GNP per

annum. (Rough private calculations communicated to the authors

by transportation economists using various estimation methods are

approximately half this magnitude, reinforcing our claim that this

is a plausible upper bound.)

DISCUSSION
We have presented a study of the impact of a number of

interventions on the mean first passage time of a pandemic virus to

the United States and on the total number of cases both worldwide

and in the U.S. We have shown that although international travel

restrictions alone will not contain a pandemic, they can buy time

in which to take important steps. Our results suggest that the delay

can be significant (about 2 to 3 weeks). Although this is not enough

time to develop and produce large quantities of a vaccine, from

a public health perspective, a delay of even 1 or 2 weeks can be

a big help in preparing for vaccination, developing public

awareness, instituting social distancing, organizing vaccination

centers, and preparing other means of disease containment. One

should also note that the effect of the travel restrictions is not
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Figure 4. Interaction between disease seasonality and travel restriction. The timing of an outbreak can greatly influence the effects of international
travel restrictions on the severity of the epidemic in a region such as the United States. Results are shown for epidemics with R0 = 1.7 beginning in
Hong Kong on either January 1 or July 1. For an epidemic beginning in January, the initial epidemic wave in the United States is suppressed, although
without other interventions, the second epidemic wave would be more severe. It is thus important to implement additional measures during the
time gained. For an epidemic beginning in July, the delay in the epidemic is much smaller, but the overall severity is reduced. (A) U.S. daily number of
infected individuals. (B) U.S. cumulative number of influenza cases. (red: January 1 epidemic start in Hong Kong with no intervention, blue: January 1
start in Hong Kong with sequential 95% restriction of international travel, green: July 1 epidemic start in Hong Kong with no intervention, orange:
July 1 start in Hong Kong with sequential 95% restriction of international travel)
doi:10.1371/journal.pone.0000401.g004
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Figure 5. Potential synchronization of local epidemics depending on the rate of disease transmission. Screenshots showing that with higher
values of R0, individual cities’ epidemic peaks are more clustered in time and the number of infected persons is much higher. (A) Time series diagram
for major metropolitan areas for an uncontrolled influenza epidemic with R0 = 1.4. (B) Time series diagram for an epidemic with R0 = 2.0.
doi:10.1371/journal.pone.0000401.g005
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limited to delaying the initial disease introduction. Restrictions also

help to limit continuous reintroduction of the disease to the United

States, and thus allow development of more efficient local

containment measures.

The impact of travel restrictions on the total number of cases in an

epidemic is roughly comparable to vaccination of a substantial

portion of the population. However, because of the delay in FPT, the

number of cases at intermediate time points such as 6 or 12 months

following the initial outbreak of the epidemic worldwide can be

substantially reduced when travel restrictions are used.

A number of factors could modify the effects of the delay caused

by travel restrictions. Seasonality is one of them. Seemingly

counterintuitively, due to the interaction with the global seasonality

of influenza, travel restrictions alone may lead to a higher number of

total cases in a given region than would an unmitigated epidemic.

This occurs because the increased FPT may delay the regional

introduction of the virus until the influenza season. For example, an

outbreak in Hong Kong occurring in January would lead to a slow

epidemic start in the United States in the spring, when the seasonal

transmission rate is low. As the seasonal transmission rate increases

around September, one would expect to see a large epidemic

outbreak. Any delay of the epidemic introduction in the United

States would only push the disease into a season with a higher

effective reproduction number. Conversely, when an epidemic starts

in Hong Kong in July and becomes visible in the United States

around October it peaks around February. Any delay in introduction

will push the epidemic out of the high transmissibility season and

thus reduce the total number of cases. The actual seasonality pattern

might vary slightly depending on how seasonality is introduced;

however, the general relationship between seasonality and the delay

will hold and is worth considering when planning prevention

measures.

Because of seasonality and travel patterns, first passage times

differ greatly depending on the location of the outbreak. For

instance, for January outbreaks, the mean FPT to the U.S. is

18 days from Hong Kong, 6 days from London, and 35 days from

Sydney. January is outside influenza season in Sydney, so the

outbreak requires more time to reach a level such that a number of

travelers would carry the infection to other cities. The short FPT

to the United States from London reflects the heavy volume of air

travel between London and the United States.

In the study we used a conservative operational estimate for the

imposition of intervention policies of 1,000 total infectious cases.

One could use 500 total cases or even just a single case; however,

the use of a single case as a signal of an epidemic start might be

dramatically misleading because of the stochasticity at the small

size of the infectious population. As a modeling assumption, the

choice of a single fixed threshold was based on parsimony. It seems

likely that different countries would have different thresholds.

However, lacking detailed data to support city-specific estimates,

we chose not to add further model complexity based on

undocumented hypotheses. The base case value of 1000 infectious

cases as the threshold for implementation of travel restrictions was

meant as a conservative bound; that is, we chose a relatively high

number to ensure that the analysis was not biased in favor of travel

restrictions. Obviously, they look better the earlier they are

implemented. This threshold should not be confused with the

onset of local containment measures. Presumably these could

begin earlier, and after the first cases are reported anywhere,

vigilance will likely increase everywhere. That is, the country

response thresholds should fall as the disease spreads. This makes

our use of the constant threshold more conservative.

Our simulations show (see Figures 4A and 4B) that the delay

between the initial cases and the epidemic peak in the United

States is on the order of 150 days. However, at the beginning of

the epidemic the growth rate is almost exponential and the time

difference between 500 and 1000 cases is on the order of a few

days. This result emphasizes the importance of early surveillance

and the need to have a clear plan for public health officials to

implement in the first two or three weeks after initial detection,

before the epidemic reaches the United States. This is especially

important if an epidemic reaches the United States in spring or

summer, because if the disease is not eliminated until the high

season it could be disastrous. This is a significant period to

consider for public health planning.

In the simulations presented here, we have used a single-leg

travel matrix, primarily to be consistent with other authors [1–4].

However, we have also calculated a more realistic travel matrix

which accounts for the fact that only 60% of travelers travel one

leg to reach their final destination, 37% travel two legs, and only

3% travel three legs or more. Others have also developed a two-leg

travel matrix [5,21,22]. Although travel patterns change when

using the multileg travel matrix, the main transmission paths

remain the same as for the single-leg travel matrix. For example,

the most likely travel path from Hong Kong to the United States is

a direct flight to Los Angeles. The results for the two-leg travel

matrix remain qualitatively similar, with some modification of the

mean and total values. The mean FPT to the U.S. for a January

Hong Kong epidemic without travel restrictions is the same

(18 days), while with 95% travel restrictions the mean FPT is

2 days less (29 days vs. 31 days). This result is expected, because

the travel patterns have strong interactions with the travel

restrictions. For example, with multileg travel, the number of

connections for each city increases, because the matrix also

includes cities reachable in two steps. The longer the travel path,

the closer sequential travel restrictions become to simultaneous

travel restrictions. Since we have not observed a large difference in

effect between simultaneous and sequential restrictions, we should

not expect a large qualitative difference between using the single-

leg and the multileg travel matrices. Furthermore, many major

metropolitan areas are directly connected and therefore can be

reached with only one leg of travel. This fact justifies the selection

of the relatively small number of airports (155 out of 3,100) which

cover most of the connections between the regions.

Limitations
This mathematical model is focused on the description of the

disease spread across the continents and has a number of

limitations. The model is based on the largest metropolitan areas.

It does not include the heterogeneous populations around these

cities and in rural areas. Other types of heterogeneity, such as

population age structure or social networks and the consequent

differences in transmission probability are not considered. Further,

the model does not include ground transportation.

Our mathematical model does allow one to evaluate the impact of

travel restrictions combined with other types of interventions, such as

quarantine, self-isolation, wearing masks, closing schools, etc. We

have presented a number of scenarios illustrative of the interactions

between location, seasonal timing, travel restrictions, and vaccina-

tion. Our future work is focused on more complex scenarios

involving other disease characteristics and other factors effectively

reducing disease transmission beyond vaccination-type strategies.

Cost-benefit
Economically, a 1-year total ban on international and major U.S.

domestic air passenger travel is estimated to cost the United States

less than 1% of GNP. Because our model predicts that regionally

Controlling Pandemic Flu

PLoS ONE | www.plosone.org 10 May 2007 | Issue 5 | e401



implemented sequential travel restrictions may be just as effective as

simultaneous global restrictions, we expect the direct economic

impact would be even smaller. Given that the benefits of air travel

restrictions can clearly be substantial, while the costs are clearly

minimal, their dismissal is premature; the approach deserves serious

consideration as an adjunct to other direct disease control measures.

SUPPORTING INFORMATION

Text S1 Model Equations and Initial Conditions

Found at: doi:10.1371/journal.pone.0000401.s001 (0.31 MB

DOC)

Table S1 Parameters and Values for the Model that Do Not

Vary over Time

Found at: doi:10.1371/journal.pone.0000401.s002 (0.09 MB

DOC)

Text S2 Modifications to the Travel Matrix to Account for

Multiple Legs of Travel

Found at: doi:10.1371/journal.pone.0000401.s003 (0.16 MB

DOC)

Figure S1 A user can select one of three visualization screens:

a world map view, time series plots, or numeric tables for each of

the cities. Before running the model, one can choose to produce

stochastic or deterministic runs and choose the types of

intervention. Each spot on the map corresponds to a metropolitan

area. Clicking on a spot will display the city name and a snapshot

of the city disease status. Arrows link each infected city with its

initial source of infection.

Found at: doi:10.1371/journal.pone.0000401.s004 (0.45 MB TIF)
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