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S
oft robots (SRs) represent one of the most signi
ficant recent evolutions in robotics. Designed to 
embody safe and natural behaviors, they rely on 
compliant physical structures purposefully designed 
to embody desirable and sometimes variable 

impedance cha  racteristics. This article discusses the pro 
blem of controlling SRs. We start by observing that most of 
the standard methods of robotic control—e.g., highgain 
robust control, feedback linearization, backstepping, and 
active impedance control—effectively fight against or even 
completely cancel the physical dynamics of the system, re 
placing them with a desired model. This defeats the purpose 

of introducing physical compliance. After all, what is the 
point of building soft actuators if we then make them 
stiff by control?

An alternative to such approaches can be conceived by 
observing humans, who can obtain good motion accuracy 
and repeatability while maintaining the intrinsic softness 
of their bodies. In this article, we show that an anticipa
tive model of human motor control, using a feedforward 
action combined with lowgain feedback, can be used to 
achieve humanlike behavior. We present an implementa
tion of such an idea that uses iterative learning control. 
Finally, we present the experimental results of the applica
tion of such learned anticipative control to a physically com
pliant robot. The control application achieves the desired 
behavior much better than a classical feedback controller 
used for comparison. 
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Quest for Good SR Performance
The term SR refers to a robotic system that exhibits compliant 
interactions with the external world. SRs are often designed 
to embody natural behaviors, such as smooth movements, 
energy efficiency, resilience, and safety. Often, the design of 
an SR is inspired by natural human or animal models. The 
 development of this new generation of robots explicitly tar
gets two main problems: 1) guaranteeing optimized perfor
mance and increased effectiveness in the accomplishment of 
tasks, e.g., very dynamic tasks, and 2) enabling a safe interac
tion with the environment and with coexisting humans. The 
formal framework for the solution of the latter problem was 
notoriously established by Hogan in [15]. To achieve these 
goals, it is crucial that the robot exhibit a high degree of com
pliance, elasticity, and damping—i.e., a suitable mechanical 
impedance. This can be achieved actively, e.g., through torque 
control at the joint level, or passively, i.e., via the physical char
acteristics of the robot’s component materials. The latter 
approach has attracted growing attention in recent years for a 
number of advantages it offers. Examples are serial elastic 
actuators (SEAs) [34] and variablestiffness actuators (VSAs) 
[40]. Another large class of SRs comprises those that incorpo
rate continuously deformable mechanical structures, such as 
trunks or tentacles (for an extensive review of these systems, 
see, e.g., [22]).

From a control point of view, much effort has been 
devoted to developing SR control strategies to guarantee 
optimized performance. For instance, in [1] a numerical 
framework for simultaneous optimization of torque and 
stiffness incorporating realworld constraints is proposed. 
In [11], the problem of optimizing motion and stiffness to 
maximize the impact of a VSAactuated hammer is ana
lytically addressed and experimentally demonstrated. As 
previously mentioned, physically compliant elements are 
deliberately introduced in SR designs to achieve desirable 
behaviors. This approach can often be regarded as socalled 
intelligence embodying in robots’ physical structure. Alterna

tively, it can be described as providing a degree of morpho
logical computation [33].

When it comes to compliant control systems, however, it 
turns out that achieving performance is not at all easier. This 
fact is intuitive for such measures of performance as position
al accuracy, which is the reason industrial robots have tradi
tionally been built for maximum rigidity. It is also true for 
other tasks, however, including conventional force control, 
as illustrated with great simplicity by the classic results in, 
e.g., [9]. To achieve acceptable SR performance, approaches 
involving higher control authority (e.g., highgain robust con
trol) and/or more sophisticated control techniques (such as 
feedback linearization, backstepping, and active impedance 
control) could be used. However, in this article we show how 
these approaches deeply affect the behavior of the robot, 
replacing their natural dynamics with a different desired 
model that makes them stiffer. 

An Elementary Example
Consider one of the simplest soft mechanisms, consisting of 
an elastic element connecting a link of mass m to an actuator 
(Figure 1). Assume for simplicity that the actuator is accu
rately controlled, so that its reference position i  can be 
assumed to be the actual input to the series elastic connection. 
The dynamic model for the link motion q(t) is thus simply

 ,mq q kq k distb i x+ + = +p o  (1)

where b  and k  are the physical damping and stiffness of the 
elastic element, respectively, while the force distx  represents 
nonmodeled dynamics and external disturbances. To com
pensate for distx  and regulate the link position q, a basic con
trol law is ,K q K qp di =- - o  from which directly comes the 
closedloop dynamics 

 ( ) ( ) .mq k K q k K q1 1d p distb
b

x+ + + + =p o  (2)

As is to be expected from elementary control consider
ations, the performance of this regulator for promptness and 
disturbance rejection (both at steady state and in H3  norm) 
monotonically increases with gain K p  (Figure 2). However, 
from (2), it is also clear that with this feedback action the 
natural stiffness and damping are amplified by factors 

K1 p+  and ,/k K1 db+  respectively (compare Figure 2). In 
other words, regulation (and tracking) performance is 
obtained in feedback at the price of stiffening the SR. In the 
following section, we generalize the idea illustrated in this 
elementary example for a nonlinear mechanical system, 
controlled through a generic nonlinear controller.

Feedback Control of SRs
Here, we consider the effect of a generic feedback control 
action on the stiffness of an SR. We first consider algebraic 
state feedback methods, which include, e.g., proportional
derivative control, linear quadratic regulator (LQR), comput
ed torque, active impedance control, feedback linearization, 

Effect of

Proportional

Feedback

k KP

m
τdist

q

k

θ

Figure 1. An elementary model of an SEA used to illustrate how 
feedback alters designed softness. In an open loop, the interface 
with the environment has the same stiffness k as the physical 
spring. Closed-loop control with proportional feedback action 

,KP  however, is tantamount to introducing a second spring of 
stiffness kKP  in parallel.
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and Lyapunov control. For a general overview of the applica
tion to robots of many of these control methods, refer to [36]. 
Applications of these techniques to SRs are discussed in, e.g., 
[32] and [38].

It is intuitively clear that many of these control techniques 
strongly modify the mechanical stiffness, since most of them 
operate a cancellation of the system dynamics. However, we 
provide a more detailed analytic argument. Consider a gener
ic Lagrangian mechanical system, with the simplifying 
assumptions that the motor dynamics are negligible and that 
the spring characteristics depend on the deflection (i.e., the 
difference between the actual position q and the reference 
position i) and possibly on an additional parameter, denoted 
here as ,v  to represent, e.g., the command used in VSAs to set 
joint stiffness.

Let ( , )T q i v-  denote the vector collecting the torques 
due to compliant elements at different joints. Considering that 
stiffness, in a general nonlinear elastic system, can be defined 
only locally, we take stiffness to be the derivative of torque 
with regard to the Lagrangian variables, i.e., / .T q2 2  To for
malize the idea of minimizing the physical compliance altera
tion is to require that the stiffness value in closed loop 
remains in a dneighborhood of the value in the open loop all 
along the nominal system trajectories, i.e., when the deflec
tion is null ,q i=  as follows: 

( , ) ( ( , , , , ), )
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(3)

where ( , , , , )q q t r} vo  is a generic algebraic controller, qr  is a 
fixed point of }  (i.e., ( )q q} =r r ), and the matrix 2norm is 
used. Note that the considered control can comprehend, 
e.g., any combination of feedback (thanks to the ,q qo  
dependence) and feedforward (thanks to the , ,t rv  depen
dence). Notice also that the same holds for a more general a 
torque characteristic of type ( , ) ( ),T q r G qv- +  with G q^ h 
being a generic function of ,q  e.g., describing gravity effects 
on stiffness [16]. Furthermore, impedance can be consid
ered instead of stiffness by adding the derivatives with 
regard to , .q qo p

The following sufficient condition to fulfill (3) can be 
derived as
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where ( / )q2 2}  is the proportional component of the control 
action, and ( / ( , ))T q 02 2 v  is the natural stiffness along system 
trajectories, playing the role of a normalization constant.

Inequality (4) means that, to preserve the natural softness 
characteristic, the proportional component of the feedback 
has to be sufficiently small, or even null if we request no stiff
ness alteration ( ., ).0i.e d =

Condition (4) can be generalized to the class of nonlinear 
dynamical controller, considering a feedback action 

( , , , , , ),q q t r pi } v= o  where p is the state of the dynamic part, 

evolving according to ( , , , , , ) .p q q t r pvP=o o  Similar consider
ations as those above yield the condition
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where dependence of }  and p  is omitted for the sake  
of readability. Therefore, the dynamic feedback of the 
Lagrangian variables q also alters the mechanical stiffness of  
the system.

To clarify the contribution of the term ,/p qi2 2  we refer to 
control systems with linear dynamics. It is worth noticing that 
such a class of controllers includes many typically used in 
robotic control practice, such as proportional integrative 
derivative controller, ncontrol, and nonlinear output track
ing [28]. Since these controllers are integrable in closed form, 
the term can be expressed explicitly, obtaining
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where A is the dynamic matrix of the control system, B is its 
input matrix, and [ , , , , ]u q q t rv= o  is the controller input.

Therefore, in the dynamic case, the resulting closedloop 
stiffness becomes time varying. Note that ( ) /u qi2 2x  is a vec
tor with all elements equal to zero, except for the one corre
sponding to .qi  It follows that /p qi2 2  is the unitary step 
response of the control system.

To summarize, we have shown that there is a fundamen
tal link between feedback gain, tracking performance, and 
stiffness variation that applies to all feedback controllers.

Control with Limited Feedback
The results derived in the previous section illustrate that to 
obtain good tracking performance, feedback control imposes 
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Figure 2. With the growth of the proportional feedback 
action ,KP  the controlled SEA system improves its regulation 
performance but also increases its stiffness and energy transfer. 
Data are obtained with m = 1 kg, , ,Ns m N mk1 1b = =^ ^h h  
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de facto a reduction in the compliance of the controlled mech
anism. This contrasts with observations of human motor 

control. Indeed, the mus
culoskeletal structure of 
humans and most verte
brates is composed of con
siderably softer materials 
than most current robots. 
Humans do alter the stiff
ness of their body parts 
through cocontraction of 
groups of antagonistic 
muscles. However, we use 
this sparingly, mainly 
when we expect unpre
dictable external forces to 
disturb our equilibrium 
[25]. It has also been ob 

served that humans use higher stiffness in the learning phases 
of a new motor task [30], while with training we reduce 
cocontraction to a bare minimum.

Another interesting fact is that humans are able to rapidly 
learn new motor control patterns in changing environmental 
conditions, requiring different stiffness settings. This has 
been elucidated in a series of important papers (see, e.g., [21], 
[23], and [24]) that have shown how subjects adapt their 
motor control scheme to counter disturbing forces within 
only a few trials.

The observations of human motor control summarized 
here have prompted a wide interest in models that explain 
how humans are able to achieve very good accuracy without 
sacrificing the natural softness of their musculoskeletal sys
tem. A vast literature, reviewed, e.g., in [41], converges on the 
thesis that human motor performance is achieved through 
the interaction of two main components: one that is reactive 
and the other anticipatory. The reactive control component 
involves the use at different levels in the nervous  system of 
sensory inputs to update ongoing motor commands, which in 
control language can be referred as feedback action. The antic
ipatory component exploits the ability to predict the conse

quences of motor events, based on sensorimotor memory and 
internal models [21], to select in advance which motor com
mand will lead to accomplishing a given task under the fore
seeable conditions. The existence and roles of anticipatory 
and reactive control have been highlighted in many different 
motor control tasks, including grasping and manipulation 
([10], [18], [19], dynamic vision [13], ball catching [26], and 
locomotion [39].

In automatic control terminology, anticipatory and reac
tive control components translate directly to feedforward and 
feedback actions, respectively. While traditionally more 
attention has been focused on feedback control, feedforward 
policies have also been studied, in particular in the field of 
optimal control. In recent years, the availability of computa
tional power to rapidly recompute optimal feedforward plans 
in correspondence with sensed changes of state has enabled 
the application of model predictive control techniques [27]. 
The fundamental performance limitations of feedback con
trol in the presence of noisy channels have been thoroughly 
studied in [29]. Feedforward control has become an impor
tant tool to address problems in networked control with 
bandwidth limitations (compare [14]) and with packet
switching induced delays [12] as well as in applications 
where sensing is difficult, as in micro and nanoscale posi
tioning (see, e.g., [6]).

In [3] and [4], Roger Brockett proposed an interesting 
formulation of an optimal control problem that attempts to 
model how to merge feedforward and feedback compo
nents to achieve a minimum attention control (MAC). 
Indicating with ( , )u x t  the control function dependence 
from the current state x  and time ,t  an attention function is 
proposed as 

 ( ) ,
x

u

t

u
t x1 d d

0

2 2

R
n 2

2

2

2
h a a= - +

3##

with a  a relative weight of the feedforward component /u t2 2  
with respect to the feedback component / .u x2 2  To this for
mulation, a boundary constraint that ( , )u x t  stabilizes the sys
tem along the desired trajectory has to be added. A numerical 
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Figure 3. A representation of a typical human motor-control 
experiment. A subject is able to reach a series of points in space 
with a hand (trajectories in the left box). When a force field is 
imposed, e.g., through a haptic interface, the trajectories are 
deformed (right box). After repeating the reaching trials many 
times, the subject is able to restore the initial behavior.
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solution of the MAC problem for a robotic ballcatching 
example is described in [17]. While the general MAC prob
lem is very complex and a comprehensive solution has yet to 
be found, it does suggest a model of how a progressively bet
ter learned feedforward/anticipative action can relieve the 
need of a strong feedback/reactive action to achieve fast and 
accurate movements.

Leveraging such insights to overcome the limitations 
described in the “Feedback Control of SRs” section, we 
consider control of SRs combining relatively mild feed
back gains with a suitable feedforward action. Accord
ing to the latter section’s results, specifically (4), the 
anticipatory components of }  depend on , ,t rv  but not 
on ,q  so that / .q 0i i2 2 /}  Hence, feedforward control 
does not alter the natural robot softness.

Clearly, the usefulness of feedfor
ward actions depends on the availabili
ty of a good model of the system, 
including the robot and its environ
ment (see, e.g., [7]). Because such a 
model is rarely available in practice, 
alternative techniques for developing 
good anticipatory control are needed. 
A natural approach that is viable in 
some applications is to proceed by tri
als, i.e., by successive approximations 
of increasing  quality—in other words, 
by learning the controller using perfor
mance as a reward.

The machinelearning approach to 
feedforward design, which is attracting 
considerable attention in the literature 
(see, e.g., [35] for an extensive review), 
can be summarized as an attempt at 
reconstructing complete models of the 
robotic  system by collecting and re 
gressing large amounts of data. 
A somewhat different approach comes 
from the abovementioned human 
observations. The human nervous sys
tem appears to be able to learn the feed
forward action needed to control an 
unknown dynamic system along a tra
jectory through several repetitions of 
the same tracking task [37].  Figure 3 
represents a classical experiment in 
which the subject is asked to reach 
some points in the workspace. Then a 
force field is introduced. Initially, trajec
tories are strongly deformed by the 
field, but after repetitions of the same 
movement, the performance obtained 
before the introduction of the force 
field can again be achieved.

In [8], Emken et al. present a model 
of this learning process by repetition 

Figure 5. The experimental setup: a two-degrees of freedom 
(DoF) horizontal VSA arm built using Qbmove Maker Pro servo 
motors and a bar as an environmental constraint. 

0 25 50 75 100 125 150

Iteration

0

0.02

0.04

0.06

0.08

0.1

E
rr

o
r 

(r
a
d
)

ILC Soft

ILC Stiff

FB Soft
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Figure 7. The evolution resulting from the application of the ILC algorithm with high 
stiffness: robot positions (without an obstacle) at (a) ,t 0 s=  (b) ,t 1 s=  and (c) 

,t 2 s=  and (with an obstacle) at (d) ,t 0 s=  (e) ,t 1 s=  and (f) .t 2 s=  With an 
obstacle present, the robot drops the bar. 



80 •  IEEE ROBOTICS & AUTOMATION MAGAZINE  •  SEPTEMBER 2017

of the same action, derived from a statistical model of error 
evolution over iterations:

 ,f ei i i1
i i a= +
+  (7)

where ,f a  are two constants, and : [ , )t t R
i

f
m

0 "i  and 
: [ , )e t t R
i

f
m

0 "  are the whole control action and error 
 evolution, respectively, at the ith iteration. In this way, an 

input sequence is iteratively found 
such that the output of the system is as 
close as possible to a desired output. 
Iterative Learning Control [2] (ILC) 
permits embedding this rule in a gen
eral theory. ILC exploits the error evo
lution of the whole interval [ , )t t f0  of a 
previous iteration to update a feedfor
ward command, according to the law

 ( ) ( ),Q R ei i i1
i i= +
+  (8)

where the function ( )R e
i  identifies the 

ILC algorithm, and ( )Q i
i  is a function 

that maps the old control in the new one 
(typically a smoothing function). It is 
interesting to note that there is evidence 
(e.g., reported in [20]) that in humans 
feedback motor correction plays a cru
cial role in motor learning. Hence, a 
more general algorithm able to merge all 
these contributions should be consid
ered. Leveraging this observation, we 
can take advantage of the ILC literature 
rewriting the  control law (8), as in the 
socalled currentiteration ILC [2],

 ( ) ( , ),Q R e ei i i i1 1
i i= +
+ +  (9)

where the presence of ei 1+  permits 
incorporating the feedback action in 
the same framework. In this manner, 
ILC can be used to design an appro
priate algorithm that permits learning 
the feedforward action in a human
like manner.

To illustrate the application of the 
ILC framework to an SR, we use in the 
following a combination of current
state ILC and LQR feedback. The con
trol law [of type (9)] is

( ) ,Q K e K ei i i i1 1
off oni i= + +

+ +

 (10)

where ,e
i i
i  are the control action and 

the error at the i-th iteration. (·)Q  is a 
suitable average mean filter, and ,Koff  

Konare two linear gains. Figure 4 shows the block diagram of 
the algorithm. For this control law, (4) becomes

 ( , ) .K
q
T

0
1

on
2

2
# d v

-

 (11)

Hence, it is always possible to choose Kon  such that (4) is sat
isfied. Here Kon  is the result of an LQR and Koff  is such that 

(a) (b) (c)

(d) (e) (f)

Figure 9. The evolution resulting from the application of the ILC algorithm with low 
stiffness: robot positions (without an obstacle) at (a) ,t 0 s=  (b) ,t 1s=  and (c) ,t 2 s=  
and (with an obstacle) at (d) ,t 0 s=  (e) ,t 1s=  and (f) .t 2 s=  With an obstacle present, 
the robot adapts to the external environment (i.e., the mechanical stiffness is preserved by 
the proposed anticipatory control). 

(a) (b) (c)

(d) (e) (f)

Figure 8. The evolution resulting from the application of high gain feedback with low 
stiffness: robot positions (without an obstacle) at (a) ,t 0 s=  (b) ,t 1 s=  and (c) ,t 2 s=  
and (with an obstacle) at (d) ,t 0 s=  (e) ,t 1 s=  and (f) .t 2 s=  With an obstacle 
present, the robot drops the bar, as in the stiff case.
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the condition in [31] is fulfilled. Fur
ther technicalities concerning the 
particular choice of ,Koff  Kon  will be 
discussed in future works.

Experimental Results
In the following, we report an ex 
perimental example that aims to show 
the concepts previously mentioned: 1) 
alteration of mechanical stiffness due 
to highgain feedback and 2) the 
effectiveness of the control law (10) 
in stiffness conservation (i.e., in pre
senting an an   ti  ci patory behavior).

In this experiment, we used the 
setup in Figure 5. The experiments 
were performed using Qbmove 
Maker Pro [5] actuators as a test 
bed. These are modular, variablestiff
ness servos based on an agonist–antagonist mechanism. 
Using this modular system, we built a VSA revolute revolute 
planar arm. First, we used a purely highgain proportional 
integral integral (PII) feedback control to track the trajecto
ry, while the natural stiffness was set to be low. Then we ran 
the ILC algorithm to teach the robot to follow the desired 
trajectory on the horizontal plane, with both low and high 
constant stiffness. 0

i  was chosen through the inversion of a 
simplified model of the SR. Finally, in all three cases, we 
placed a brass bar next to the robot in such a way that 
impact with it was unavoidable. The goal was to track the 
trajectory while maintaining the natural behavior of the 
robot in different configurations. I.e., we expected that the 
robot would push over the bar if the joints were stiff, and 
would gently comply with its presence if the joints were soft.

Figure 6 presents the integral of the 2-norm of the track
ing error (normalized by the terminal time) at each itera

tion, in experiments without impacts. The accuracy of the 
pure highgain feedback control scheme on the soft config
uration is also reported for comparison. The iterative learn
ing law (10) is applied to the robot in its high and low 
physical stiffness configurations. The results show an 
increasingly better tracking by the learning controller, with 
an accuracy of the SR that converges toward that achieved 
with the stiff robot, while both eventually overcome the 
accuracy of the highgain feedback. Photographic sequenc
es illustrating the execution of the final (150th) iteration of 
the ILC on the stiff robot, the ILC on the SR, and the high
gain PII on the SR are reported in (a)–(c) of Figures 7, 8, 
and 9, respectively.

Figures 7–9 (d)–(f) show the effect of an impact with 
the brass bar under the same  conditions. When the mechan
ical stiffness of the robot is set to high, the robot knocks the 
bar down [Figure 7(d)–(f )] as it continues on to track the 
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Figure 10. The trajectory followed by a two-DoF horizontal robot in the presence of an obstacle. Panel (a) and panel (b) show, respectively, 
the trajectories followed by the first and the second joint of the robot. The impact occurs at 0.94 s for the ILC case and at 1.12 s for the 
high-gain feedback case. For the high-stiffness configuration with the ILC algorithm (ILC Stiff in the legend), the robot drops the bar at 1.3 s 
and continues to follow the desired trajectory. For the low-stiffness configuration with high-gain feedback action (FB Soft in the legend), the 
feedback alters the mechanical stiffness, and the robot acts again in a stiff way, dropping the bar. For the low-stiffness configuration with the 
ILC algorithm (ILC Soft in the legend), the robot maintains its mechanical behavior and adapts to the external environment.
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reference trajectory, as expected. When the mechanical 
stiffness is low, but the highgain PII controller is used, the 
bar is also pushed over [Figure 8(d)–(f )]. However, as shown 
in Figure 9(d)–(f), the ILC controller makes it so that 
the robot preserves its natural compliance and has a very 
moderate impact with the bar. Figure 10 provides a 
more precise description of these behaviors in terms of 
the actual trajectories followed by the first and second 
robot joints before and after the impact.

Finally, in Figures 11 and 12 we show the total amount 
of feedforward and feedback exerted by the algorithm to 
control the system. The relative weight of the total control 
attention is gradually shifted from the feedback to the 
feedforward components during the learning phase of the 
ILC scheme. The motivation for this behavior is twofold: 
on one side, the feedforward action, which is initialized 
with a low value, is progressively more authoritative. Per
haps more important, the feedback action is less and less 
needed over time, as the improving results of learning 
result in fewer and fewer errors to compensate for (as 
shown in Figure 6).

Conclusions
In this work, we discussed a fundamental contradiction in 
the feedback control of SRs, i.e., to obtain good accuracy 
high gain is needed, which in turn destroys the purposely 
introduced softness. If feedback control alone is applied  
to an SR, it may thus alter its natural behavior to some
thing different that what was chosen in the design. We 
also derived conditions to maintain such stiffness altera
tion under a given threshold. Then we discussed possible 
approaches to face the introduced problem. Leveraging 
the human example, we proposed using a suitable combi
nation of lowgain feedback and feedforward, focusing 
on ILC. Finally, we discussed experiments to prove both 
the negative effects of highgain feedback control and the 
effectiveness of ILC. Interestingly, a gradual shift of 

 control authority from the feed
back to the feedforward component 
was observed.
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