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Controlling Spin Exchange Interactions of Ultracold Atoms in Optical Lattices
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We describe a general technique that allows one to induce and control strong interaction between spin
states of neighboring atoms in an optical lattice. We show that the properties of spin exchange
interactions, such as magnitude, sign, and anisotropy, can be designed by adjusting the optical
potentials. We illustrate how this technique can be used to efficiently ‘‘engineer’’ quantum spin systems
with desired properties, for specific examples ranging from scalable quantum computation to probing a
model with complex topological order that supports exotic anyonic excitations.
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Recent observations of the superfluid to Mott insulator
transition in a system of ultracold atoms in an optical
lattice open fascinating prospects for studying many-
body phenomena associated with strongly correlated sys-
tems in a highly controllable environment [1–4]. For
instance, the recent studies have shown that, with spinor
bosonic or fermionic atoms in optical lattices, it may be
possible to observe complex quantum phase transitions
[5,6], to probe novel superfluidity mechanisms [7,8], or to
demonstrate the spin-charge separation predicted from
the Luttinger liquid model [9].

This Letter describes a general technique to control
many-body spin Hamiltonians using ultracold atoms.
Specifically, we show that, when two-state bosonic or
fermionic atoms are confined in an optical lattice, the
interaction between spins of the particles can be con-
trolled by adjusting the intensity, frequency, and polar-
ization of the trapping light. The essential idea is to
induce and control virtual spin-dependent tunneling be-
tween neighboring atoms in the lattice that results in a
controllable Heisenberg exchange interaction. By combin-
ing this simple experimental technique with the design of
the lattice geometry, it is possible to engineer many
interesting spin Hamiltonians corresponding to strongly
correlated systems.

Such techniques are of particular significance since
quantum magnetic interactions are central to understand-
ing complex orders and correlations [10].We illustrate this
with several examples: (i) We show that one of the gen-
erated Hamiltonians provides us an easy way to realize
the so-called cluster states in two or three dimensions
[11], which are useful for an implementation of scalable
quantum computation with neutral atoms; (ii) we show
that the realized Hamiltonian has a rich phase diagram,
opening up the possibility to observe various quantum
magnetic phase transitions in a controllable way;
(iii) finally, we show how to implement an exactly solv-
able spin Hamiltonian recently proposed by Kitaev [12],
which supports Abelian and non-Abelian anyonic exci-
tations with exotic fractional statistics. Abelian anyons
could also exist in a fast rotating condensate [13].

We consider an ensemble of ultracold bosonic or fer-
mionic atoms confined in an optical lattice formed by
several standing-wave laser beams. We are interested in
the Mott insulator regime, and the atomic density of
roughly one atom per lattice site. Each atom is assumed
to have two relevant internal states, which are denoted
with the effective spin index ! !"; # , respectively. We
assume that the atoms with spins ! !"; # are trapped by
independent standing-wave laser beams through polar-
ization (or frequency) selection. Each laser beam creates a
periodic potential V"!sin

2" ~kk" # ~rr$ in a certain direction
", where ~kk" is the wave vector of light. For sufficiently
strong periodic potential and low temperatures, the atoms
will be confined to the lowest Bloch band as has been
confirmed from experiments [1], and the low energy
Hamiltonian is then given by
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Here hi; ji denotes the near neighbor sites in the direction
", ai! are bosonic (or fermionic) annihilation operators,
respectively, for bosonic (or fermionic) atoms of spin !
localized on-site i, and ni! ! ayi!ai! .

For the cubic lattice (" ! x, y, z) and using a harmonic
approximation around the minima of the potential [3], the
spin-dependent tunneling energies and the on-site inter-
action energies are given by t"! ' "4= !!!!

#
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is the spin average potential in each direction, ER !
!h2k2=2m is the atomic recoil energy, and as"# is the scat-
tering length between the atoms of different spins. For
bosonic atoms U! ' "8=#$1=2"kas!$"ERV1!V2!V3!$1=4
(as! are the corresponding scattering lengths). For fer-
mionic atoms, U! is on the order of Bloch band separation
+2

!!!!!!!!!!!!!!!

V"!ER
p

, which is typically much larger than U"# and
can be taken to be infinite. In writing Eq. (1), we
have neglected overall energy shifts

P
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p $"ni" % ni#$=2, which can be easily compensated
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by a homogeneous external magnetic field applied in the z
direction.

From the above expressions, we observe that t"! de-
pend sensitively (exponentially) upon the ratios V"!=ER,
while U"# and U! exhibit only weak dependence. We can
easily introduce spin-dependent tunneling t"! by varying
the potential depth V"" and V"# with control of the in-
tensity of the trapping laser.We now show that this simple
experimental method provides us a powerful tool to en-
gineer many-body Hamiltonians. We are interested in the
regime where t"! , U!; U"# and hni"i& hni#i ’ 1, which
corresponds to an insulating phase. In this regime, the
terms proportional to tunneling t"! can be considered via
perturbation theory. We use a simple generalization of the
Schriffer-Wolf transformation [14] (see another method
in [8]) and, to the leading order in t"!=U"#, Eq. (1) is
equivalent to the following effective Hamiltonian:

H !
X

hi;ji
)$"z!

z
i!

z
j - $"?"!x

i!
x
j & !y

i!
y
j$*: (2)

Here !z
i ! ni" % ni#, !x

i ! ayi"ai# & ayi#ai", and !y
i !

%i"ayi"ai# % ayi#ai"$ are the usual spin operators. The &
and % signs before $"? in Eq. (4) correspond, respec-
tively, to the cases of fermionic and bosonic atoms. The
parameters $"z and $"? for the bosonic atoms are given
by

$"z !
t2"" & t2"#
2U"#

%
t2""
U"

%
t2"#
U#

; $"? ! t""t"#
U"#

: (3)

For fermionic atoms, the expression for $? is the same as
in (3), but in the expression for $z the last two terms
vanish since U! . U"#. In writing Eq. (2), we neglected
the term

P

i"4"t2""=U" % t2"#=U#$!z
i , which can be easily

compensated by an applied external magnetic field.
The Hamiltonian (2) represents the well-known aniso-

tropic Heisenberg model (XXZ model), which arises in
the context of various condensed matter systems [10].
However, the approach involving ultracold atoms has a
unique advantage in that the parameters $"z and $"? can
be easily controlled by adjusting the intensity of the
trapping laser beams. They can also be changed within
a broad range by tuning the ratio between the scattering
lengths as"# and as! (! !"; # ) by adjusting an external
magnetic field through Feshbach resonance [15].
Therefore, even with bosonic atoms alone, it is possible
to realize the entire class of Hamiltonians in the general
form (2) with an arbitrary ratio $"z=$"?. This is impor-
tant since bosonic atoms are generally easier to cool. In
Fig. 1(a), we show the phase diagram of the Hamiltonian
(2) on a bipartite lattice as a function of %t ! t"=t# & t#=t"
and U"#=U! [16] for the case when U" ! U# and t"! is
independent of the spatial direction ". Certain lines on
this phase diagram correspond to well-known spin sys-
tems: When U"#=U! ! 1=2 we have an XY model; when
%t ! 1 (t" or t# is zero) we have an Ising model; for %t !

-"1=2%U"#=U!$%1 we have an SU(2) symmetric anti-
ferromagnetic or ferromagnetic systems, respectively.

Before proceeding, we estimate the typical energy
scales and discuss the influence of imperfections and
noise. For Rb atoms with a lattice constant #=j ~kkj+
426 nm, the typical tunneling rate t= !h can be chosen
from zero to a few kHz [1]. The on-site interaction U= !h
corresponds to a few kHz at zero magnetic field, but can
be much larger near the Feshbach resonance. The energy
scale for magnetic interaction is about t2= !hU+ 0:1 kHz
(corresponding to a time scale of 10 ms) with a conser-
vative choice of U+ 2 kHz and "t=U$2 + 1=20. These
energy scales are clearly compatible with current experi-
ments [1]. We further note that the present system should
be quite robust to realistic noise and imperfections. First
of all, the next order correction to the Hamiltonian (2) is
proportional to "t=U$2, which is small in the Mott regime.
Second, since the atoms only virtually tunnel to the
neighboring sites with a small probability "t=U$2, the
dephasing rate and the inelastic decay rate are signifi-
cantly reduced compared with the cold collision scheme
[17,18]. Finally, the spontaneous emission noise rate can
be made very small by using a blue-detuned optical lattice
or by increasing the detuning. In a blue-detuned lattice,
even with a moderate detuning "+ 5 GHz, the effective
spontaneous emission rate is estimated to be of the order
of Hz, which is significantly smaller than t2=" !hU$.

We now illustrate the ability to engineer many-body
spin Hamiltonians with specific examples. For the first
example, we set V"#=V"" . 1, so that t"# becomes negli-
gible while t"" remains finite. In this case, the Hamil-
tonian (2) reduces to the Ising model H ! P

hi;ji$"z!
z
i!

z
j,

with $"z ! t2""="0:5=U"# % 1=U"$. Though this Hamil-
tonian has quite trivial properties for its ground states
and excitations, its realization in optical lattices can be
very useful for a dynamical generation of the so-called
cluster states [11]. Specifically, we note that this Ising
interaction can be easily turned on and off by adjusting
the potential depth V"". If we first prepare each atom in
the lattice into the superposition state "j"i& j#i$=

!!!

2
p

, and

FIG. 1 (color online). Phase diagrams of the Hamiltonians
(2) for bosonic and fermionic atoms: (a) at zero magnetic field,
(b) with a longitudinal field hz, and (c) (for bosons only) with a
transverse field hx. Each phase is characterized by the follow-
ing order parameter: I, z-Néel order; II, z-ferromagnetic order;
III, xy-Néel order for fermionic atoms and xy-ferromagnetic
order for bosonic atoms; IV and V, spin polarization in the
direction of applied field, z and x, respectively.
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then lower V"" for a time T with $"zT ! #=4mod#=2,
the final state is a cluster state with its dimension deter-
mined by the dimension of the lattice [11]. The
d-dimensional (d / 2) cluster states have important ap-
plications for implementation of scalable quantum com-
putation with neutral atoms: After its preparation, one
can implement universal quantum computation simply
via a series of single-bit measurements only [11].
The use of such cluster states can significantly alleviate
the stringent requirements on separate addressing of the
neighboring atoms in the proposed quantum computation
schemes [17,19]. Although the present approach is some-
what slower that the cold collision scheme [17], it allows
one to take advantage of its simplicity and the reduced
dephasing rate.

As our second example, we explore the rich phase
diagram of the Hamiltonian (2) in the presence of mag-
netic fields. For simplicity, we assume a bipartite lattice
and identical spin exchange constants for all links.
Figure 1(b) shows the mean-field phase diagram for bo-
sonic particles in the presence of a longitudinal field hz.
This diagram was obtained by comparing energies of the
variational wave functions of two kinds: (i) the Néel state
in the z direction h ~!!ii ! "%1$i ~eez; (ii) canted phase with
ferromagnetic order in the xy plane and finite polarization
in the z direction h ~!!ii ! ~eex cos&& ~eez sin&. Here, & is a
variational parameter, and ~eez;x are unit vectors in the
directions z; x. Transition between the z-Néel and the
canted phases is a first order spin-flop transition [20] at
hz ! Z"$2

z % $2
?$1=2 (Z is the number of neighboring

atoms of each lattice site), and transition between the
xy-Néel phase and the z polarized phase is a second order
transition of the XY type at hz ! Z"$z & $?$. In the
absence of transverse magnetic field, one can use the
existence of two sublattices to change the sign of $?
using the transformation !x;y

i ! "%$i!x;y
i . Hence, fermi-

onic atoms in the longitudinal magnetic field have the
same phase diagram as shown in Fig. 1(b), except that
their canted phase has transverse Néel rather than trans-
verse ferromagnetic order. Results of a similar mean-field
analysis of the Hamiltonian (2) for bosonic atoms with a
transverse magnetic field hx are shown in Fig. 1(c). For
fermionic atoms in a transverse field, there is one more
phase with a Néel order along y direction.

The third example involves the anisotropic spin model
on a 2D hexagonal lattice proposed recently by Kitaev
[12]. In this model, interactions between nearest neigh-
bors are of the XX, the YY, or the ZZ type, depending on
the direction of the link:

H !
X

'!x;y;z;hi;ji2D'

$'!'
i !

'
j ; (4)

where the symbol hi; ji 2 D' denotes the neighboring
atoms in the D' "' ! x; y; z$ direction [see Fig. 2(b)].

To implement this model using ultracold atoms, we first
raise the potential barriers along the vertical direction Z

in the three-dimensional optical lattice so that the tun-
neling and the spin exchange interactions in Z direction
are completely suppressed [1,9]. In this way, we get an
effective 2D configuration with a set of independent
identical 2D lattice in the X-Y plane. We then apply in
the X-Y plane three trapping potentials (identical for all
spin states) of the forms

Vj"x; y$ ! V0sin
2)kk"x cos&j & y sin&j$ & ’0*; (5)

where j ! 1; 2; 3, and &1 ! #=6, &2 ! #=2, &3 ! %#=6.
Each of the potentials is formed by two blue-detuned
interfering traveling laser beams above the X-Y plane
with an angle ’k ! 2 arcsin"1=

!!!

3
p

$, so that the wave
vector kk projected onto the X-Y plane has the value kk !
k sin"’k=2$ ! k=

!!!

3
p

. We choose the relative phase ’0 !
#=2 in Eq. (5) so that the maxima of the three potentials
overlap. In this case, the atoms are trapped at the minima
of the potentials, which form a hexagonal lattice as
shown by the centers of the triangles in Fig. 2(a). We
assume that there is one atom per each lattice site, and
this atom interacts with the three neighbors in different
directions through virtual tunneling with a potential
barrier given by V0=4.

In such a hexagonal lattice, we wish to engineer aniso-
tropic Heisenberg exchange for each tunneling direction
(denoted by Dx, Dy, and Dz, respectively). To this end, we
apply three blue-detuned standing-wave laser beams in
the X-Y plane along these tunneling directions:

V'!"x; y$ ! V'!sin
2)k"x cos&0' & y sin&0'$*; (6)

where ' ! x; y; z, and &0x ! %#=3, &0y ! #, &0z ! #=3. In
general, we require that the potential depth V'! depend on
the atomic spin state as

V'! ! V'&j&i'h&j& V'%j%i'h%j; "' ! x; y; z$;
(7)

where j&i' (j%i') is the eigenstate of the corresponding
Pauli operator !' with the eigenvalue &1 ( % 1).

2a

 /π|| xk

 /π||yk

1L 2L

 ∆ e

↑ 

 ↓

XX
ZZ

YY

2b

2c

Dx

Dz

Dy

FIG. 2 (color online). (a) The contours with the three poten-
tials in the form of Eq. (5). The minima are at the centers of the
triangles when ’0 ! #=2. (b) The illustration of the model
Hamiltonian (4). (c) The schematic atomic level structure and
the laser configuration to induce spin-dependent tunneling.
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The spin-dependent potentials in the form of Eqs. (6)
and (7) can be realized, for instance, with the specific
atomic level configuration shown in Fig. 2(c). Here, ! !
"; # denote two hyperfine levels of the atom with different
energies. They are coupled to the common excited level
jei with a blue detuning ", respectively, through the laser
beams L1 and L2 with frequencies matching the corre-
sponding transitions. The quantization axis is chosen to
be perpendicular to the X-Y plane, and the phase-locked
laser beams L1 and L2 are both polarized along this
direction. In the tunneling direction Dz, we only apply
the L1 laser beam, which induces the potential Vz!"x; y$
with the desired form (7) of its depth Vz!. In the tunnel-
ing direction Dx or Dy, we apply both lasers L1 and L2,
but with different relative phases, which realize the de-
sired potential depth Vx! or Vy! of the form (7) in the
corresponding direction.

The potentials (6) and (7) do not have influence on the
equilibrium positions of the atoms, but they change the
potential barrier between the neighboring atoms in the D'
direction from V0=4 to V0

'! ! V0=4& V'!. The parame-
ters V'& and V'% in Eq. (7) can be tuned by varying the
laser intensity of L1 and L2 in the D' direction, and one
can easily find their appropriate values so that, in the D'
direction, the atom can virtually tunnel with a rate t&'
only when it is in the eigenstate j&i'. Hence, it follows
from Eqs. (2) and (3) that the effective Hamiltonian for
our system is given by Eq. (4) with $' ' %t2&'="2U$ for
bosonic atoms with U"# ' U" ' U# ' U. After compen-
sating effective magnetic fields, we find exactly the model
described by the Hamiltonian (4).

The model (4) is exactly solvable due to the existence of
many conserved operators, and it has been shown to
possess very interesting properties [12]. In particular, it
supports both Abelian and non-Abelian anyonic excita-
tions, depending on the ratios between the three parame-
ters $'. In the region where 2$'="$x & $y & $z$ 0 1
(' ! x; y; z), the excitation spectrum of the Hamil-
tonian (4) is gapless, but a gap opens when perturbation
magnetic fields are applied in the x; y; z directions, and
the excitations in this case obey non-Abelian fractional
statistics. Out of this region, except at some trivial points
with $x$y$z ! 0, the Hamiltonian (4) has gapped exci-
tations which satisfy Abelian fractional statistics. Thus,
the present implementation opens up an exciting possi-
bility to realize experimentally the exotic Abelian and
non-Abelian anyons.

Now we briefly discuss the techniques for probing the
resulting states. To detect the quantum phase transitions
in the XXZ model with magnetic fields or in Kitaev’s
model, one can probe the excitation spectra via Bragg or
Raman spectroscopy. In general, different quantum
phases are characterized by specific dispersion relations
(for instance, in Kitaev’s model, one phase is gapped
while the other is gapless). If the two probe light beams
have the momentum and frequency differences which
match those of the dispersion relation in the correspond-

ing phase, a resonant absorption of the probe light could
be observed [21]. The direct observation of the fractional
statistics in Kitaev’s model can be based on atomic inter-
ferometry with a procedure similar to that described in
Ref. [13]: One generates a pair of anyonic excitations with
a spin-dependent laser focused on two lattice sites, rotates
one anyon around the other, and then brings them together
for fusion which gives different results depending on the
anyonic statistics. Other methods for detecting complex
quantum states of atoms have also been developed re-
cently [22].

In summary, we have described a general technique to
engineer many-body spin Hamiltonians.
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