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Controlling synchrony in oscillatory networks via an act-and-wait algorithm
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The act-and-wait control algorithm is proposed to suppress synchrony in globally coupled oscillatory networks
in the situation when the simultaneous registration and stimulation of the system is not possible. The algorithm
involves the periodic repetition of the registration (wait) and stimulation (act) stages, such that in the first stage
the mean field of the free system is recorded in a memory and in the second stage the system is stimulated
with the recorded signal. A modified version of the algorithm that takes into account the charge-balanced
requirement is considered as well. The efficiency of our algorithm is demonstrated analytically and numerically
for globally coupled Landau-Stuart oscillators and synaptically all-to-all coupled FitzHugh-Nagumo as well as
Hodgkin-Huxley neurons.
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I. INTRODUCTION

Synchronization processes in large populations of interact-
ing oscillatory elements are the focus of intense research in
physical, chemical, and biological systems [1–7]. In practical
applications synchronization may play a constructive role.
For example, synchronization is utilized to generate strong
coherent fields in coupled arrays of lasers or Josephson
junctions. However, in many situations this phenomenon is
undesired and should be suppressed. An illustrative example
for such a situation is the lateral swing of London’s Mil-
lennium Bridge caused by coherent motion of walkers on
the inauguration day in the year 2000 [8]. Another example
where synchronization is harmful can be found in the Internet;
the network may collapse when multiple Routers synchronize
their delivering events, a dysfunction known as TCP global
synchronization [9].

In the brain, oscillations are a prominent feature of neuronal
activity and the synchronization of oscillations is a mechanism
for neural communication, which endows individual brain
areas with the ability to perform specific tasks [10]. On the
other hand, it was observed that the synchronous action of the
thalamus and basal ganglia neurons cause a tremor to patients
with Parkinson disease [11–13], whereas in the healthy state
neurons act uncorrelated [14]. Electrical deep brain stimulators
(DBS) have been developed and implanted in patients to
discharge an electrical signal into the brain tissue and to
restore the normal activity [15–18]. However, DBS may cause
side effects, and its therapeutic effect may decrease over time
[19,20]. Hence, there is a need for less invasive stimulation
techniques [21].

Methods for the control of synchronization in oscillatory
networks developed to date can be roughly subdivided into
two categories: without feedback [22–24] and with feedback
[25–33]. The methods without feedback are based on phase
resetting principles. For example, in coordinated reset stim-
ulation [23,24] the population of synchronized neurons is
stimulated with several electrodes placed at different sites. The
stimuli at different electrodes are phase shifted with respect
to each other, so they entrain different synchronous clusters
of neurons. When the stimulation is switched off, the clusters
desynchronize. After some time the population synchronizes
to the one-cluster state again, and stimulation is switched on

again, and so forth. This method is easy to implement since
it does not require any online measurements. However, the
method requires repetitive stimulus administration and cannot
constantly maintain the desired unsynchronized state. The
feedback methods are superior in this way; they can stabilize
the desired unsynchronized state and maintain it constantly
with minimal stimulation intensities. Different algorithms
based on linear [25–27] and nonlinear [28] time-delayed
feedback, linear feedback bandpass filters [29], and others
[30–33] have been proposed.

In certain experimental systems, the implementation of
feedback methods can meet fundamental problems. For
example, in DBS the stimulation current exceeds the mea-
sured neuronal currents by several orders of magnitude, so
reliable registration of neuronal activity in the presence of
simultaneous stimulation can be hardly achieved [34]. To
avoid this problem a feedback algorithm with a spatially
separated stimulation and registration setup has been suggested
in Ref. [33].

Here we propose an alternative, more efficient way to
avoid the above problem by separating the stimulation and
registration processes in time rather than in space. The block
diagram of our algorithm is presented in Fig. 1. The control
process involves the periodic repetition of two stages. In the
first stage, the mean field of the free neuronal population
is registered and recorded in a memory, and in the second
stage, the memorized signal is processed by a controller and
feeded back to the system. In fact, this algorithm utilizes a
time-delayed feedback with the periodically switched-on and
-off feedback gain, which in control theory is known as an
act-and-wait control [35–38]. The main result of the control
theory concerning this algorithm is that the time-delayed
feedback with the periodically switched-on and -off control
gain may be superior to the time-delayed feedback with the
constant gain [35,36].

We demonstrate our algorithm for oscillatory networks in
which each oscillator is coupled with other oscillators via a
mean field; more complicated models that take into account
the architecture of a network or delayed coupling are without
the scope of this paper. The mean-field coupling models are
very popular, since they admit an analytical treatment and
provide a good understating of synchronization effects in real
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FIG. 1. Block diagram of the algorithm with the separated in time
registration (wait) and stimulation (act) setup. The wait and act stages
are periodically repeated with the period Tc = τw + τa , where τw and
τa are the durations of the wait and act stages, respectively. In the
wait stage 0 � t < τw , the mean field of the free neuronal population
is recorded in a memory. In the act stage τw � t < Tc, the system is
stimulated by memorized signal, previously processed by controller.

networks (see, e.g., Refs. [8,24,25,33]). Such models enable
us to investigate the performance of our algorithm by means
of analytical tools.

The paper is organized as follows. In Sec. II we describe
our algorithm and apply it to an ensemble of globally
coupled Landau-Stuart (LS) oscillators. We present an an-
alytical treatment of this problem in the thermodynamic
limit. Section III is devoted to control of synchronization
in synaptically coupled FitzHugh-Nagumo (FHN) neurons.
Here we introduce a modification of our algorithm that takes
into account the charge-balanced requirement. In Sec. IV we
apply our algorithm to an ensemble of realistic model neurons
described by Hodgkin-Huxley (HH) equations. Finally, in
Sec. V we conclude this paper by discussing our results.

II. GLOBALLY COUPLED LANDAU-STUART
OSCILLATORS

To begin with, we demonstrate our algorithm for a simple
model of globally coupled LS oscillators. First, we consider an
analytically tractable problem when the oscillators are coupled
and controlled by both dynamical variables. Then the case of
coupling and control via a single variable will be considered
to mimic the situation typical in neuronal systems.

A. Coupling and control via both variables

1. Model equations and control algorithm

Consider an ensemble of N globally coupled and stimulated
LS oscillators, representing a normal form of a supercritical
Andronov-Hopf bifurcation

żj = (iωj + 1 − |zj |2)zj + KZ − PG(t)Z(t − τa). (1)

Here zj = xj + iyj is a complex-valued variable, that defines
the state of the j -th oscillator, j = 1, . . . ,N . Without coupling
(K = 0) and without stimulation (P = 0) each oscillator
performs an uniform rotation with the natural frequency ωj

and amplitude 1. The oscillators are globally coupled via the

mean field,

Z = 1

N

N∑
k=1

zk. (2)

We suppose that both components x and y of the complex
variable z are coupled with the same coupling strength defined
by the real-valued parameter K . The last term in Eq. (1)
describes the act-and-wait control force. The delayed mean
field Z(t − τa), which is recorded in a memory during the wait
period, is multiplied by the Tc-periodic act-and-wait switching
function

G(t) =
{

0, 0 � t < τw,

1, τw � t < τw + τa = Tc,
(3)

so the control force is switched off for a period of length τw

(wait), and it is switched on for a period of length τa (act). The
parameter P defines the feedback strength, which generally
can be complex valued. Here we suppose that both the real and
complex parts of this parameter are available for adjustment.

In order to ensure that the stimulation is performed by
a signal registered from the free (uncontrolled) system, we
have to require that the act period is less or equal to the wait
period τa � τw. Note that the same condition but in a different
context is introduced in the theory of act-and-wait control.
As pointed out in Refs. [35,36] such a condition leads to
essential simplification of the time delay problem. Though
the time-delayed feedback is usually associated with an
infinite-dimensional phase space, the above condition allows
us to treat the system as a finite-dimensional one. For τa � τw,
we can reduce the problem to a finite-dimensional map that
relates the state variables of the system at the beginning of the
n + 1-st control period with the state variables at the beginning
of the n-th control period, so the stability of the controlled
system is defined by eigenvalues of a finite-dimensional
monodromy matrix. This differs essentially from the systems
with the constant time-delayed feedback, where the analysis
of the stability requires the consideration of infinite number of
eigenvalues. Below we demonstrate these advantages in more
detail.

In what follows we restrict ourselves to the case of equal act
and wait durations τa = τw ≡ τ . Then the period of act-and-
wait switching is Tc = 2τ and the 2τ -periodic function G(t)
can be presented as

G(t) = H [− sin(πt/τ )] , (4)

where H (·) is the Heaviside step function.

2. Equation for the order parameter

To explore the advantages of the act-and-wait control
algorithm we investigate the phase dynamics of the system (1).
Substituting zj = ρje

iθj and neglecting the dynamics of the
amplitudes ρj one can transform Eq. (1) to the following
equation for the phases θj :

θ̇j = ωj + [Kr − PG(t)rτ ]e−iθj /2i + c.c. (5)

Here r = r(t) is the complex order parameter

r = 1

N

N∑
k=1

eiθk (6)
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and the subscript τ denotes the time-delayed value rτ (t) ≡
r(t − τ ). The abbreviation “c.c.” stands for complex conjugate.
Without control (P = 0), Eq. (5) represents the classical
Kuramoto model [1]. We assume that the frequencies ωj are
randomly distributed according to a symmetric probability
density function g(ω), g(� − ω) = g(� + ω), where � is the
central frequency. Then the critical coupling for spontaneous
synchronization is [1,4] Kc = 2/πg(�). For K < Kc the
ensemble relaxes to the state where all oscillators move
incoherently, and for K > Kc mutual synchronization occurs
in a group of oscillators.

We now analyze the synchronization properties of the
system in the presence of the act-and-wait control. We
characterize the synchronization by the absolute value of the
order parameter (6). The values of |r| vary in the interval [0,1]
such that small values indicate the incoherent state while the
values close to 1 represent the strong mutual synchronization.
To solve the problem analytically we analyze the system (5)
in the thermodynamic limit N → ∞. Using the Ott-Antonsen
theory [39] with the assumption that the natural frequencies
ωj satisfy the Lorentz distribution

g(ω) = gL(ω) ≡ (�/π )[(ω − �)2 + �2]−1, (7)

where � defines the width of the distribution, the follow-
ing equation for the order parameter can be derived (see
Appendix A for details):

ṙ =
[
i� − � + K

2
(1 − |r|2)

]
r + G(t)

2
(P ∗r2r∗

τ − Prτ ).

(8)

This equation is considerably simpler than the original sys-
tem (1) and allows for the direct analysis of the influence
of the act-and-wait control on the macroscopic properties
of the system. From this equation it follows that without
control (P = 0) the order parameter r(t) experiences the
Andronov-Hopf bifurcation when the coupling strength K

is increased. For K < Kc = 2�, the order parameter relaxes
to the stable fixed point r = 0, which means the incoherent
state of the oscillator system. When the coupling exceeds
the critical value K > Kc, the fixed point loses the stability
and r approaches the stable limit cycle with the amplitude
|r| = (1 − Kc/K)1/2 and frequency �. This corresponds to a
partial synchronization, which becomes increasingly stronger
when K is increased. For K → ∞ the systems tends to the
fully synchronized state, since |r| → 1. Below we analyze
how this scenario changes in the presence of the act-and-wait
control.

3. Linear stability analysis

We now consider an influence of the act-and-wait control
on the dynamics of the order parameter defined by Eq. (8).
The goal of the control is to suppress the synchronization that
we assume exists in the free system due to a large global
coupling, i.e., we take K > Kc, so the fixed point r = 0 of
the free system is unstable. The incoherent state can be rebuilt
by the control if the last term in Eq. (8) proportional to G(t)
stabilizes the fixed point. To analyze the stability of the fixed
point we first rewrite system (8) in the rotating frame with the
mean frequency � by changing the variable r = ei�tR. Then,

linearizing the system with respect to small R, we obtain

Ṙ = (K/2 − �) R − G(t)Pe−i�τRτ /2. (9)

The change of the coordinate system does not change the
absolute value of the order parameter, |R| = |r|. To analyze
the stability of the fixed point R = 0 it is useful to rewrite
Eq. (9) in terms of real-valued coordinates x + iy = R,(

ẋ

ẏ

)
= λ

(
x

y

)
− G(t)

(
P̄x −P̄y

P̄y P̄x

) (
xτ

yτ

)
. (10)

Here we introduced the notations λ = K/2 − � > 0, P̄x =
|P | cos(ϕ − �τ )/2, and P̄y = |P | sin(ϕ − �τ )/2, where ϕ is
the argument of the complex-valued parameter P = |P |eiϕ .

Though the system (10) contains time delay feedback terms,
which are usually associated with an infinite-dimensional
phase space, it can be transformed to a finite-dimensional map
(cf. Refs. [35,36]). Such a transformation is possible due to
the presence of the periodic act-and-wait switching function
G(t). Denote the state variables of the system at the beginning
of the n-th act-and-wait control period by xn = x(2τn) and
yn = y(2τn). Then, for the wait period 2τn � t < 2τn + τ ,
the parameter G(t) = 0 and we obtain the solution of (10) as
x(t) = xne

λ(t−2τn) and y(t) = yne
λ(t−2τn). In the next act period

2τn + τ � t < 2τ (n + 1), the parameter G(t) = 1 so the time
delay functions xτ and yτ come into play. These functions are
exactly the above solutions obtained in the wait stage, so here
Eq. (10) represents a linear nonautonomous system. Solving
this system, we find the values of the state variables at the end
of the act stage and finally obtain the map(

xn+1

yn+1

)
= A

(
xn

yn

)
, (11)

where

A = eλτ

(−τ P̄x + eλτ τ P̄y

−τ P̄y −τ P̄x + eλτ

)
(12)

is the monodromy matrix. The eigenvalues μ1,2 of this matrix
defined by the characteristic equation

det(A − Iμ) = 0 (13)

are responsible for the stability of the system (10). The origin
of this system is stable if the both eigenvalues are inside the
unit circle in the complex plane, |μ1,2| < 1. From Eqs. (12)
and (13) we obtain

|μ1,2| = eλτ
[
(τ P̄x − eλτ )2 + τ 2P̄ 2

y

]1/2
. (14)

Thus, despite the presence of time-delayed feedback, the
stability of the system is defined by only two eigenvalues. By
appropriate choice of the two control parameters P̄x and P̄y the
both eigenvalues can be easily placed inside the unit circle. As
is seen from Eq. (14) the parameter P̄y plays a destructive role;
it can only enhance the values of |μ1,2|. Thus the best choice is
to make it zero, P̄y = 0. In terms of the initial complex-valued
parameter P this means that we fix its argument at ϕ = �τ ,
i.e., choose the feedback strength in the form P = |P |ei�τ .
Then, on substitution of P̄x = |P |/2 and P̄y = 0 into Eq. (14),
the criterion of the stability simplifies to

|μ1,2| = |eλτ − |P |τ/2|eλτ < 1.
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From this it follows that the the act-and-wait control force can
stabilize the incoherent state of strongly coupled (K > Kc) LS
oscillators if the feedback strength satisfies the inequalities

Pmn < |P | < Pmx, (15)

Pmx,mn = 2[e(K/2−�)τ ± e(−K/2+�)τ ]/τ. (16)

The optimal value of the feedback strength is attained at
|P | = 2eλτ /τ , when both eigenvalues vanish |μ1,2| = 0 and
the incoherent state becomes superstable.

4. Numerical simulations

To demonstrate the efficacy of the act-and-wait control
algorithm and verify the validity of the above analytical
theory we have numerically simulated an ensemble of N =
1000 globally coupled Landau-Stuart oscillators described by
Eqs. (1). The natural frequencies ωj were randomly chosen
from the Lorentzian distribution (7) with � = 0.25π and
� = 0.1. The coupling strength was taken far above the critical
value of the spontaneous synchronization, K = 0.5 > Kc =
2� = 0.2. In this case Eq. (8) predicts a rather large stationary
value of the order parameter of the uncontrolled system, |r| =
(1 − Kc/K)1/2 ≈ 0.77. In Fig. 2(a), the dynamics of the order
parameter (6) computed by direct integration of the system (1)
is presented by blue (dark) curve. For t < 100, the control is
not activated and the order parameter fluctuates with a small
amplitude around the predicted value |r| = 0.77. When the act-
and-wait control is switched on (t � 100) the oscillator system
suddenly approaches the incoherent state and the value of the
order parameter falls to zero. In the same figure, we also show
[by the red (gray) curve] the dynamics of the order parameter
obtained from the macroscopic Eq. (8). We see that the solution
of this equation reproduces well the results obtained from the
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FIG. 2. (Color online) Dynamics of N = 1000 globally coupled
Landau-Stuart oscillators (1) under act-and-wait control. For t < 100
the control is off (|P |=0), while for t � 100 the act-and-wait control
with the feedback strength |P | = 4 is activated. (a) Absolute value of
the order parameter estimated from direct integration of Eqs. (1) [blue
(dark)] and from macroscopic Eq. (8) [red (gray)]. (b) Dynamics of
the first three oscillators. The values of the parameters are as follows:
K = 0.5, � = 0.25π , � = 0.1, and τ = 0.4. The complex feedback
strength is chosen in the form P = |P |ei�τ .
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FIG. 3. (Color online) Incoherent state stability domains in the
plane of parameters (τ , |P |) for the Landau-Stuart oscillators (1)
controlled by the act-and-wait algorithm. The thick black curves
represent the boundaries of stability Pmx,mn(τ ) defined by Eqs. (16).
The color encodes the absolute value |r| of the order parameter
estimated from (a) Eq. (8) and (b) Eqs. (1). The values of the
parameters are as follows: N = 1000, K = 0.5, and � = 0.1. The
computations are performed in the rotating coordinate frame where
� = 0.

direct integration of the oscillator system (1). This confirms the
validity of Ott-Antonsen ansatz (A6), which allowed us to find
an analytical solution of the continuity Eq. (A2) in the presence
of the act-and-wait control. In Fig. 2(b), we demonstrate how
the act-and-wait control changes the dynamics of individual
oscillators by taking the first three oscillators as an example.

Incoherent state stability domains in the plane of parameters
(τ , |P |) are presented in Fig. 3. The linear theory predicts
the domain of stability lying between two thick black curves
Pmx,mn(τ ) defined by Eqs. (15) and (16). In Figs. 3(a) and 3(b),
the values of the order parameter evaluated from the solutions
of Eqs. (8) and (1), respectively, are encoded in color. We
see that the linear theory predicts well the results obtained
from solution of the nonlinear Eq. (8) for the order parameter.
However, the prediction for the original system (1) of LS
oscillators is limited. Here the linear theory predicts well only
the lower boundary |P | = Pmx(τ ) of the stability domain, but
with the increase of |P | the oscillators start to synchronize
before |P | reaches the upper boundary |P | = Pmx(τ ). Such a
discrepancy between the results obtained from Eqs. (1) and (8)
is explained by the fact that for large |P | the act-and-wait
control force influences not only the phases of the individual
oscillators but the amplitudes as well. Therefore, for large
|P | we cannot neglect the dynamics of the amplitudes and
substitute the original system (1) by the Kuramoto model (5)
that takes into account only the dynamics of the phases.

B. Coupling and control via a single variable

We now consider a situation typical for neuronal systems
where the interaction between neurons is provided by a
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single variable, the membrane potential, while the other
(gate) variables do not participate directly in the interaction.
Electrical stimulation acts directly also only on the membrane
potential of neurons. We can mimic this situation by modifying
the system (1) as follows:

żj = (iωj + 1 − |zj |2)zj + KReZ − PG(t)ReZ(t − τ ).

(17)

Here, unlike in Eqs. (1), the term of the global coupling and
the act-and-wait control force are applied only to the real part
of LS equations. We assume that both, the coupling strength
K and the feedback strength P , are real-valued parameters.

Similarly as in Sec. II A 2, we neglect the dynamics of the
amplitudes and derive an equation for the phases,

θ̇j = ωj − sin(θj )Re [Kr − G(t)Prτ ] . (18)

Now assuming that the natural frequencies are distributed by
the Lorentzian law (7) and repeating the procedure presented
in Appendix A, one can show that in the thermodynamic limit
N → ∞, the order parameter obeys the equation

ṙ = (i� − �)r + 1 − r2

2
[KRe(r) − G(t)P Re(rτ )] . (19)

To analyze the stability of the incoherent state r = 0, we
rewrite Eq. (19) in terms of real-valued coordinates x + iy = r

and, linearizing it with respect to the fixed point (x,y) = (0,0),
obtain(

ẋ

ẏ

)
=

(
K/2 − � −�

� −�

)(
x

y

)
− G(t)

P

2

(
xτ

0

)
. (20)

From this it follows that the incoherent state of the control-free
(P = 0) system is unstable for K > Kc = 4�. We suppose
that this inequality is fulfilled and look for the act-and-wait
control parameters (τ,P ), which lead to the stabilization of the
zero fixed point of the system (20). As well as in Sec. II A 2, an
analytical solution of this system can be written in the form of
Eq. (11). However, an expression for the monodromy matrix
is now much more complicated and we do not present it here.
Generally, analytical expressions for the stability domains
in the (τ,P ) plane are not available, but they can be easily
estimated numerically.

An exception where an analytical result can be gained is
the case of small τ . As is shown in Appendix B, for τ → 0,
the system (17) can be treated by the method of averaging and
its solution can be approximated as zj ≈ z̄j , where z̄j satisfy
the averaged equations

˙̄zj = (iωj + 1 − |z̄j |2)z̄j + (K − P/2)ReZ̄ (21)

with Z̄ = N−1 ∑N
j=1 z̄j . By comparison of Eqs. (21) and (17)

we see that for τ → 0 the act-and-wait control transforms to
the proportional feedback control. On the other hand, Eq. (21)
can be treated as a control-free equation but with the modified
coupling strength K → K − P/2. Then, from Eq. (20), we
obtain a simple criterion for the stability of the incoherent
state,

P > 2(K − 4�). (22)

The results of numerical simulations of Eqs. (17) and (19)
and the linear stability analysis based on Eq. (20) are
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FIG. 4. (Color online) Dynamics of globally coupled N = 1000
Landau-Stuart oscillators (17) under act-and-wait control. For t <

100 the control is off (P = 0), while for t � 100 the act-and-wait
control with the feedback strength P = 1.5 is activated. (a) Absolute
value of the order parameter estimated from direct integration of
Eqs. (17) [blue (dark)] and from macroscopic Eq. (19) [red (gray)].
(b) Dynamics of the first oscillator. The values of the parameters are
as follows: K = 1, � = π , � = 0.1, and τ = 2.

presented in Figs. 4 and 5. In Fig. 4, we choose the values
of the parameters � = 0.1 and K = 1 > Kc = 0.4 so the
control-free system is synchronized (|r| ≈ 0.78) and show
that the switching on of the act-and-wait control leads to the
desynchronization characterized by a small value of the order
parameter. The dynamics of the order parameter [Fig. 4(a)]
obtained from Eq. (19) agree well with the results of direct
simulation of Eqs. (17). In Fig. 4(b), we show the dynamics of
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FIG. 5. (Color online) Incoherent state stability domains in the
plane of parameters (τ , P ) for the Landau-Stuart oscillators (17)
controlled by the act-and-wait algorithm. The thick black curves
represent the boundaries of stability derived from linear Eq. (20). The
color encodes the absolute value |r| of the order parameter estimated
from (a) Eq. (19) and (b) Eqs. (17). The values of the parameters are
as follows: N = 1000, K = 1, � = 0.1, � = π , and T = 2π/�.
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the first oscillator. The results of the linear stability analysis
are presented in Fig. 5 (thick black curves). Incoherent state
stability domains in the (τ,P ) plane have a resonance structure;
they are located at the values of τ = kT /2, where T = 2π/� is
the mean natural period of the oscillators and k = 0,1,2, . . . is a
non-negative integer number. The feedback strength P in these
domains changes the sign depending on k being odd or even
number. In Figs. 5(a) and 5(b) the values of the order parameter
evaluated from the solutions of Eqs. (19) and (17), respectively,
are encoded in color. The linear theory predicts well the results
obtained from solution of the nonlinear Eq. (19); however,
the prediction for the original system (17) is limited. This
limitation is again due to ignoring the dynamics of oscillator
amplitudes in the transition from the original system (17) to
the Kuramoto model (18). Note that for the given values of the
parameters, the analytical condition (22) derived for τ → 0
reads P > 1.2. This is in good agreement with the numerical
results presented in Fig. 5.

III. SYNAPTICALLY COUPLED
FITZHUGH-NAGUMO NEURONS

A. Model equations

We now test the efficacy of the act-and-wait control for
neuronal systems. We start from a simple model of synaptically
coupled FitzHugh-Nagumo [40,41] neurons

v̇j = f (vj ) − wj + Ij − Isyn − Icon, (23a)

ẇj = ε(vj + β − γwj ). (23b)

Here the variable vj denotes the membrane potential and wj is
the recovery variable of j -th neuron (j = 1, . . . ,N), f (vj ) =
vj − v3

j /3 is the cubic source term of an ionic current, Ij is a
stimulus current that defines the spiking frequency of the free
neuron, Isyn stands for the synaptic current of the j -th neuron
due to connection with other neurons, and Icon is the current
generated by the act-and-wait control algorithm. The constant
ε > 0 is the ratio between the characteristic time scales of
vj and wj variables. We choose the standard values of the
parameters ε = 0.2, γ = 0.8, and β = 0.7.

In order to spread the natural spiking frequencies of
neurons, the stimulus currents Ij are generated by a normal
distribution with the mean value 〈I 〉 = 1 and the standard
deviation σ = 0.1. We assume that neurons are globally
coupled via a synaptic current defined as

Isyn = g(vj − vc)
1

N − 1

∑
k 	=j

�(vk − v0), (24)

where �(v) = 1/[1 + exp(−v/vth)] is a sigmoid function with
the characteristic threshold parameter vth and vc is the reversal
potential. We choose the parameters of synaptic current in such
a way as to model an excitatory coupling; each generated spike
speeds up other neurons to generate spikes, so that without
control (Icon = 0) the population spikes in synchrony. Then
we seek to suppress the synchronization by an external current
constructing in the form of the act-and-wait control,

Icon(t) = G(t)PV (t − τ ), (25)

where

V (t) = 1

N

N∑
k=1

vk(t). (26)

is the mean field of membrane potential, which we assume is
accessible for the measurement. The parameter P defines the
feedback strength, and the 2τ -periodic act-and-wait switching
function G(t) is defined by Eq. (4).

B. Criteria of synchronization and numerical results

In coupled and controlled neuronal population the individ-
ual phases of neurons can be defined as follows [5]:

θj (t) = 2π
t − t

(j )
k

t
(j )
k+1 − t

(j )
k

, t
(j )
k � t � t

(j )
k+1. (27)

Here t
(j )
k are the moments when the membrane potential

of the j -th neuron reaches the maximum. Using this phase
definition we can characterize the synchronization between
neurons by the standard order parameter r = N−1 ∑N

j=1 eiθj .
The dynamics of this characteristic for N = 500 synaptically
coupled FHN neurons is presented in Fig. 6(a). For t < 1500,
when the control is off (Icon = 0), the value of the order
parameter is close to 1. This indicates a highly synchronized
state induced by synaptic interjection. Then, for t > 1500, the
synchronization is effectively suppressed, when the control
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FIG. 6. (Color online) Dynamics of N = 500 synaptically cou-
pled FitzHugh-Nagumo neurons (23) under act-and-wait control.
For t < 1500 the control is off (Icon = 0), while for t � 1500 the
act-and-wait control (25) with the parameters τ = 18.5 and P = 0.2
is activated. (a) Absolute value of the order parameter; (b) the mean
field of membrane potential (26); and (c) the membrane potential of
the first neuron. The values of the parameters are as follows: ε = 0.2,
β = 0.7, γ = 0.8, v0 = 1, vc = 2.8, g = 0.05, and vth = 0.1.
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current (25) with appropriate values of the parameters τ =
18.5 and P = 0.2 is switched on. Here the order parameter
falls to values close to zero. The effect of synchronization
suppression is also observed in the dynamics of the mean
field (2) presented in Fig. 6(b). When neurons are synchronized
(t < 1500), the mean field oscillates with an amplitude compa-
rable to the amplitude of individual neurons, but incoherently
spiking neurons (t > 1500) produce mean-field oscillations
with a small amplitude. In order to demonstrate that the
act-and-wait control does not destroy the spiking of individual
neurons, in Fig. 6(c) we show the dynamics of the first neuron,
as an example.

The phase definition (27) is not universal and its use
becomes problematic when the dynamics of individual neurons
is complex. Such a complex dynamics appears, e.g., for the val-
ues of the act-and-wait control parameters that do not succeed
in the desynchronization. Thus for more detailed analysis of
outcomes of the act-and-wait control algorithm we need an al-
ternative, more universal, criterion of synchronization. Below
we use the criterion based on the comparison of mean fields
of the controlled and uncontrolled systems as follows [42]:

S = [Var(Vstim)/Var(Vfree)]1/2 . (28)

The parameter S is defined as the square root of the
ratio between the variances of the mean fields of the
controlled Var(Vstim) and control-free Var(Vfree) system.
In the synchronized state, when all neurons spike
simultaneously, the value of this parameter is close to
1, while in the incoherent state it is close to zero.

In Fig. 7(a), we present the results of numerical computation
of the parameter S in the dependence of the act-and-wait
control parameters τ and P . The values of S in the (τ , P )

P
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FIG. 7. (Color online) Performance of the act-and-wait control
algorithm for synaptically coupled FHN neurons (23): (a) control
law (25) without charge-balanced requirement and (b) control
law (30) with the charge-balanced requirement. The color in the (τ,P )
parameter plane encodes the value of the synchronization criterion
S defined by Eq. (28). Incoherent states are characterized by small
values of S. The period of the mean-field oscillations of the coupled
control-free neurons is T ≈ 19.8 and other parameters are the same
as in Fig. 6.
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FIG. 8. (Color online) Mean fields of the membrane potential of
Nex = 400 excitatory and Ninh = 100 inhibitory globally coupled by
synaptic links FitzHugh-Nagumo neurons (23) under act-and-wait
control. The top and middle panels represent mean fields of excitatory
and inhibitory neurons, respectively, while the bottom shows the total
mean field. All except the coupling parameters are the same as in
Fig. 6: g = 0.1, vc = 2.8 for excitatory and vc = −2.8 for inhibitory
coupled neurons.

plane are depicted in color code. We see that the incoherent
state domains have a resonance structure similar to that
obtained for the Landau-Stuart oscillators (see Fig. 5). They
are located at τ = kT /2, where T ≈ 19.8 is the period of
the mean-field oscillations of the coupled control-free neurons
and k = 0,1,2, . . . is a nonnegative integer number. The odd k

defines the domains with positive values of P , while the even
k corresponds to the negative P .

We also verified our algorithm for a network that contains
both the excitatory and inhibitory coupling. The inhibitory
coupling is modeled with the same expression for a synaptic
current (24) as for the excitatory coupling, but the values
of the parameters vc and g differ. The reversal potential vc

for the inhibitory coupling is chosen in such a way that the
synaptic current slows down the action potential of a neuron.
In Fig. 8 we present the results of simulation of a network
of N = Nex + Ninh = 500 globally coupled FHN neurons,
Nex = 400 neurons of which are coupled excitatory and Ninh =
100 neurons are coupled inhibitory. Without control (t <

1500), two synchronization clusters emerge, which contain
the neurons with only excitatory and only inhibitory coupling.
The mean fields of neurons with the excitatory and inhibitory
couplings and the total mean field are shown in the figure from
top to bottom, respectively. The decrease of all these mean
fields after switching on (t > 1500) of the control shows that
our algorithm is capable to desynchronize a network with a
mixed excitatory and inhibitory coupling.

C. Charge-balanced stimulation

In practice, electrical neuron stimulation algorithms require
some additional constraints. One of them is that the control
current has not to accumulate charge in the cell, i.e., the control
current integrated over the period of stimulation has to vanish.
This so-called charge-balanced stimulation requirement is
clinically mandatory to avoid tissue damage [43,44]. Such
a requirement can be easily satisfied by a simple modification
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of the act-and-wait control algorithm as follows. For each n-th
wait stage we estimate the mean value of the recorded signal,

V̄n = 1

τ

∫ (2n+1)τ

2nτ

V (t)dt, (29)

and then in the following act stage we subtract this value from
the recorded signal, i.e., instead of the control current (25) we
apply the current in the following form:

Icon(t) = G(t)P [V (t − τ ) − V̄n]. (30)

As is seen from Fig. 7(b) this algorithm is successful as well
as the algorithm without charge-balanced requirement, whose
performance is presented in Fig. 7(a). The only qualitative
effect induced by the charge-balanced requirement is that the
act-and-wait control technique stops working for small values
of τ . Comparing Figs. 7(a) and 7(b) we see that the domain of
successful desynchronization at small τ exists in Fig. 7(a) and
disappears in Fig. 7(b). An explantation of this effect is given
in the Appendix B.

IV. HODGKIN-HUXLEY NEURONS UNDER
CHARGE-BALANCED ACT-AND-WAIT CONTROL

As a last example demonstrating the efficacy of our
algorithm we consider synchronization control in an ensemble
of synaptically coupled realistic model neurons described by
the Hodgkin-Huxley equations [45],

Cv̇j = −gNam
3
jhj (vj − vNa) − gKn4

j (vj − vK )

− gL(vj − vL) + Ij + Isyn + Icon, (31a)

ṁj = αm(vj )(1 − mj ) − βm(vj )mj, (31b)

ḣj = αh(vj )(1 − hj ) − βh(vj )hj , (31c)

ṅj = αn(vj )(1 − nj ) − βn(vj )nj . (31d)

Here vj is the membrane potential of the j -th neuron (j =
1, . . . ,N ) measured in mV. We take the standard values of
the parameters that have been obtained by fitting this model
to the experimental data on the giant axon of the squid
[45], Cm = 1 μF/cm2, (vL,vK,vNa) = (10.6,−12,115) mV,
(gL,gK,gNa) = (0.3,36,120) mS/cm2. The rate parameters
defining the dynamics of the gating variables mj , hj , and nj

measured in ms−1 are the following functions of the membrane
potential:

αm(vj ) = (2.5 − 0.1vj )/[exp(2.5 − 0.1vj ) − 1], (32a)

βm(vj ) = 4 exp(−vj/18), (32b)

αh(vj ) = 0.07 exp(−vj/20), (32c)

βh(vj ) = 1/[exp(3 − 0.1vj ) + 1], (32d)

αn(vj ) = (0.1 − 0.01vj )/[exp(1 − 0.1vj ) − 1], (32e)

βn(vj ) = 0.125 exp(−vj/80). (32f)

The voltage scale in this model is shifted in such a way
that the membrane resting potential (i.e., the steady state
value of the membrane potential without external currents,
Ij = Isyn = Icon = 0) is zero.

The spiking regimes of individual neurons are induced
by direct stimulation currents Ij . In order to spread the
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FIG. 9. (Color online) Dynamics of an ensemble of N = 100
Hodgkin-Huxley neurons (31). In the time interval t ∈ [0,1000] ms
the control and coupling are off (g = 0, P = 0). In the interval
t ∈ [1000,2500] ms the synaptic coupling (24) with the strength
g = 0.05 mS/cm2 is activated but the control is off. For t � 2500 ms
the charge-balanced act-and-wait control (30) with the strength
P = 0.23 mS/cm2 and delay time τ = 10.5 ms is activated. (a) The
mean field of membrane potential, (b) absolute value of the order
parameter, and (c) the control current.

natural spiking frequencies of neurons we choose these
values randomly from a normal distribution with the mean
〈I 〉 = 25 μA/cm2 and standard deviation σ = 0.5 μA/cm2.
The neurons are globally coupled via synaptic current
Isyn defined by Eq. (24) with the parameters (vc,v0,vth) =
(120,50,10) mV/cm2. The charge-balanced act-and-wait con-
trol is performed via the current Icon determined by Eq. (30).

In Fig. 9 we show the results of numerical simulation
of system (31) for N = 100 neurons. In the time interval
t ∈ [0,1000] ms the dynamics of uncoupled (g = 0) and
uncontrolled (P = 0) neurons is presented. Then in the interval
t ∈ [1000,2500] ms the synaptic coupling (24) with the
strength g = 0.05 mS/cm2 is activated but the control is
off. Finally, for t � 2500 ms we activate the charge-balanced
act-and-wait control (30) with the strength P = 0.23 mS/cm2

and delay time τ = 10.5 ms. We see that the mean field V of
uncoupled and uncontrolled neurons fluctuates with a small
amplitude about some mean value [Fig. 9(a)] and the order
parameter |r| is small [Fig. 9(b)]. When the synaptic coupling
is switched on, the neurons synchronize and the amplitude of
the mean field as well as the order parameter increase. This
synchronization is effectively suppressed when the control
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FIG. 10. (Color online) Performance of the charge-balanced act-
and-wait control algorithm for synaptically coupled Hodgkin-Huxley
neurons (31). The color in the (τ,P ) parameter plane encodes
the value of the synchronization criterion S defined by Eq. (28).
Incoherent states are characterized by small values of S. The period
of the mean-field oscillations of the coupled control-free neurons is
T ≈ 10.5 ms. The values of the parameters are the same as in Fig. 9.

is switched on. The amplitude of the mean field suddenly
decreases and we observe the fluctuations of the mean field
similar to those observed without coupling and control. The
order parameter also falls suddenly to small values. In Fig. 9(c),
we show the dynamics of the control current. When the system
is desynchronized, the control current does not vanish. This is
conditioned by the mean-field fluctuations that remain in the
desynchronized state due to the finite number of neurons. Here
we do not show the dynamics of individual neurons, because
it is analogous to that observed in the FHN model; the control
does not destroy the spiking of individual neurons.

In Fig. 10, we present the results of numerical computation
of the synchronization criterion (28) in the dependence of
the act-and-wait control parameters τ and P . The values of
the parameter S in the (τ , P ) plane are depicted in color
code. The incoherent state domains have again the resonance
structure similar to that obtained for the FHN neurons
[see Fig. 7(b)]. Note that here as well as for the FHN neurons
the charge-balanced act-and-wait control fails for τ → 0 (see
the Appendix B for details).

V. DISCUSSION

We have proposed an algorithm for synchrony suppression
in ensembles of globally coupled oscillators for a complicated
control situation, when an output signal is small in comparison
to a stimulated signal so reliable simultaneous registration and
stimulation of the system is not possible and the standard feed-
back control algorithms cannot be applied. Such a situation is
typical, e.g., for neuronal systems. Our algorithm is based
on the act-and-wait control, which assumes a separation in
time the registration and stimulation stages. In the registration
(wait) stage, the mean field of the free oscillatory system is
recorded in a memory and in the stimulation (act) stage it is
feeded back to the system. We assume that the duration of the
act stage is less or equal to the duration of the wait stage. The
periodic repetition of these two stages can effectively destroy
the mutual synchronization in ensembles of globally coupled
oscillators. Mathematically, this algorithm is described by

delay differential equations with the periodically switched-on
and -off time-delay feedback term. Although systems with
time delay are usually associated with an infinite-dimensional
phase space, here the problem of stability of the incoherent
state is definite by the eigenvalues of a finite-dimensional
monodromy matrix. This fact facilitates considerably the
search for appropriate control parameters that guarantee the
stability of the incoherent state.

The efficacy of our algorithm is demonstrated analytically
and numerically with several examples. As the first example
we consider an ensemble of globally coupled Landau-Stuart
oscillators. We reduce this system to a Kuramoto model, and
in the thermodynamic limit, derive a macroscopic equation for
the order parameter. In the case when coupling and control
is performed through both variables, we obtain a simple
analytical criterion for the stability of the incoherent state.
Then the case of coupling and control through a single variable
is considered in order to mimic a situation typical for neuronal
systems. We show that the incoherent state stability domains in
the (τ,P ) parameter plane (where τ is the duration of act and
wait periods, and P is the feedback strength) have a resonance
structure; they are located at the values of τ = kT /2, where
T is the characteristic period of oscillations of the mean field
of synchronized oscillators in the absence of control and k is
a non-negative integer number.

The analysis of more complicated systems such as ensem-
bles of synaptically coupled FitzHugh-Nagumo or Hodgkin-
Huxley neurons shows that the above resonance structure is
universal. For these systems we consider a modification of
the act-and-wait control algorithm that takes into account the
charge-balanced requirement. This requirement is clinically
mandatory to avoid tissue damage. We show that the charge-
balanced requirement does not destroy the resonance structure
of the incoherent state stability domains in the (τ,P ) plane,
but the algorithm stops to work for small values of τ .

Our algorithm, which separates the registration and stimu-
lation processes in time, is superior to the algorithm proposed
in Ref. [33], where these processes are separated in space.
This is because the spatial separation does not guarantee the
total exclusion of the influence of the stimulation signal on the
measurements of neuronal activity. Moreover, our algorithm
admits a handy experimental implementation, since both the
stimulation and registration processes can be served with a
single electrode.

In this paper, we tested our algorithm for neural networks
whose local connectivity admits the description via the mean-
field approximation. In such an approximation, our algorithm
is robust, since it works for networks constructed from different
oscillator models, including simple Landau-Stuart oscillators,
FitzHugh-Nagumo neurons as well as realistic Hodgkin-
Huxley neuron models. An extension of our algorithm for more
complicated networks that take into account the specific archi-
tecture or delayed coupling is the subject of our future research.

ACKNOWLEDGMENTS

This research was funded by the European Social Fund
under the Global Grant measure (Grant No. VP1-3.1-ŠMM-
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APPENDIX A: DERIVATION OF THE ORDER
PARAMETER EQUATION

In this Appendix, we analyze an ensemble (5) of N

globally coupled LS oscillators under act-and-wait control
in the thermodynamic limit N → ∞. Assuming the Lorenz
distribution (7) for the natural frequencies we show that the
dynamics of the complex order parameter (6) satisfy a simple
first-order ordinary differential equation.

In the limit N → ∞, the ensemble (5) at time t can be
described by a continuous distribution function, f (ω,θ,t), in
frequency ω and phase θ that satisfies the normalization∫ 2π

0
f (ω,θ,t)dθ = g(ω) (A1)

for all t . Since oscillators are conserved f must satisfy the
continuity equation

∂

∂t
f (ω,θ,t) = − ∂

∂θ
[f (ω,θ,t)v(ω,θ,t)], (A2)

where the velocity v(ω,θ,t) is defined by the right-hand side
of Eq. (5),

v(ω,θ,t) = ω + [Kr − PG(t)rτ ]e−iθ /2i + c.c. (A3)

In the continuum limit, Eq. (6) can be written as

r =
∫ 2π

0

∫ ∞

−∞
eiθf (ω,θ,t)dωdθ. (A4)

Expanding f (ω,θ,t) in Fourier series in θ we have

f = g(ω)

2π

(
1 +

[ ∞∑
n=1

fn(ω,t)einθ + c.c.

])
. (A5)

Following Ott and Antonsen [39], we restrict our analysis to a
special class of distribution functions defined by the ansatz,

fn(ω,t) = [α(ω,t)]n, (A6)

where |α(ω,t)| � 1 to avoid divergence of the series. Substi-
tuting this series expansion into Eqs. (A2) and (A4) we find
that this special form of f satisfies Eqs. (A2) and (A4) if

α̇ = K

2
(r∗ − rα2) − iωα + G(t)

2
(Pα2rτ − P ∗r∗

τ ) (A7)

and

r =
∫ +∞

−∞
α∗(ω,t)g(ω)dω. (A8)

Further simplification can be gained by choosing the density
distribution of the natural frequencies in the Lorentzian
function form (7). This form allows us to solve the ω integral in
Eq. (A8) and obtain an explicit relation r∗(t) = α(� − i�,t).
Putting this result into Eq. (A7) and setting ω = � − i�, we
finally get a closed equation for the complex order parameter

ṙ =
[
i� − � + K

2
(1 − |r|2)

]
r + G(t)

2
(P ∗r2r∗

τ − Prτ ).

(A9)

APPENDIX B: THE LIMIT OF SMALL τ

In this Appendix, we consider the effect of the act-and-wait
control algorithm in the limit τ → 0. We show that with
the charge-balanced requirement the effect of the algorithm
vanishes, while without charge-balanced requirement the
algorithm transforms to the proportional feedback control
algorithm. We demonstrate these statements for an ensemble
of interacting neurons that are described by a general Hodgkin-
Huxley type model,

v̇j = Fj (v1, . . . ,vN ,wj ) − Icon, (B1a)

ẇj = Qj (vj ,wj ). (B1b)

Here vj is the membrane potential of the j -th neuron (j =
1, . . . ,N). Without loss of generality we assume that the
membrane capacitance is equal to 1. The function Fj describes
the sum of currents flowing through ion channels of the
j -th neuron. This function includes the currents induced by
interaction with other neurons, therefore it depends generally
on the membrane potentials of all neurons. The last term in
Eq. (B1a) is the control current defined either by Eq. (30) or
Eq. (25) depending on the case of control with or without
charge-balanced requirement, respectively. Equation (B1b)
describes the dynamics of a recovery variable wj of the j -th
neuron. Generally, this is a vector variable. The function Qj

represents the ionic channel dynamics. The functions Fj and
Qj are defined by the specific neuron model.

We start from the case of control without charge-balanced
requirement. Then for τ → 0 the control current (25) up to the
first order in τ can be approximated as

Icon(t) = G(t)P [V (t) + O(τ )]. (B2)

Substituting Eq. (B2) into Eq. (B1a) we get a nonautonomous
system of ordinary differential equations with the high-
frequency periodic function G(t). Such a system can be treated
by the method of averaging [46]. To transform our system to
the standard form of equations as typically used by this method
we rescale the time variable t̄ = t/τ (here t̄ is the “fast” time)
and obtain

dvj

dt̄
= τ {Fj (v1, . . . ,vN ,wj ) − G̃(t̄)P [V + O(τ )]}, (B3a)

dwj

dt̄
= τQj (vj ,wj ). (B3b)

Due to the small factor τ , the variables vj and wj vary slowly
while the periodic function G̃(t̄) ≡ G(τ t̄) = H [− sin(πt̄)]
oscillates fast. According to the method of averaging [46],
an approximate solution of system (B3) can be obtained
by averaging the right-hand side of the system over fast
oscillations. Specifically, let us denote the variables of the
averaged system as (v̄j ,w̄j ). They satisfy the following
equations:

dv̄j

dt̄
= τ

2

∫ 2

0
{Fj (v̄1, . . . ,v̄N ,w̄j ) − G̃(s)P V̄ }ds, (B4a)

dw̄j

dt̄
= τ

2

∫ 2

0
Qj (vj ,w̄j )ds, (B4b)
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FIG. 11. (Color online) The synchronization criterion S as func-
tion of the control gain P for the HH model under act-and-wait
control without charge-balanced requirement in the limit τ → 0. The
analysis is performed by using averaged Eqs. (B5). The values of the
parameters are the same as in Sec. IV.

where V̄ = N−1 ∑N
j=1 v̄j . The method of averaging states

that the averaged system (B4) approximates the solutions of
the system (B3) with the accuracy of O(τ ), i.e., vj = v̄j +
O(τ ) and wj = w̄j + O(τ ). After performing the integration

[note that
∫ 2

0 G̃(s)ds = 1] and coming back to the original
time scale, the averaged system (B4) takes the following

form:

˙̄vj = Fj (v̄1, . . . ,v̄N ,w̄j ) − P V̄ /2, (B5a)

˙̄wj = Qj (v̄j ,w̄j ). (B5b)

Here the dot denotes differentiation with respect to the
original time t . Thus the nonautonomous system (B1) with
the accuracy O(τ ) can be transformed to the autonomous
averaged system (B5). The last term in Eq. (B5a) describes
the standard proportional feedback control with the strength
P/2. Therefore, the act-and-wait control algorithm without
charge-balanced requirement for τ → 0 transforms to the
proportional feedback control algorithm.

As an example of the application of the above general results
we performed the analysis of the HH model based on the
averaged Eqs. (B5). The dependence of the synchronization
criterion S on the coupling strength P presented in Fig. 11
shows that for τ → 0 the act-and-wait control algorithm with-
out charge-balanced requirement successfully desynchronizes
an ensemble of synaptically coupled HH neurons.

The consideration of the limit τ → 0 in the case of a charge-
balanced requirement is much simpler. As seen from Eqs. (29)
and (30), the control current in this case vanishes, Icon → 0 as
τ → 0. This explains why for τ → 0 the act-and-wait control
with the charge-balanced requirement fails for both the FHN
neurons [Fig. 7(b)] and the HH neurons (Fig. 10).
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[31] A. Berényi, M. Belluscio, D. Mao, and G. Buzsáki, Science 337,
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