
Controlling the Attack Surface

of Object-Oriented Refactorings

Sebastian Ruland1(B) , Géza Kulcsár1 , Erhan Leblebici1 ,
Sven Peldszus2 , and Malte Lochau1

1 Real-Time Systems Lab, TU Darmstadt, Darmstadt, Germany
{sebastian.ruland,geza.kulcsar,erhan.leblebici,

malte.lochau}@es.tu-darmstadt.de
2 Institute for Software Technology, University of Koblenz-Landau,

Koblenz, Germany
speldszus@uni-koblenz.de

Abstract. Refactorings constitute an effective means to improve quality
and maintainability of evolving object-oriented programs. Search-based
techniques have shown promising results in finding optimal sequences of
behavior-preserving program transformations that (1) maximize code-
quality metrics and (2) minimize the number of changes. However, the
impact of refactorings on extra-functional properties like security has
received little attention so far. To this end, we propose as a further objec-
tive to minimize the attack surface of programs (i.e., to maximize strict-
ness of declared accessibility of class members). Minimizing the attack
surface naturally competes with applicability of established MoveMethod

refactorings for improving coupling/cohesion metrics. Our tool imple-
mentation is based on an EMF meta-model for Java-like programs and
utilizes MOMoT, a search-based model-transformation framework. Our
experimental results gained from a collection of real-world Java programs
show the impact of attack surface minimization on design-improving
refactorings by using different accessibility-control strategies. We further
compare the results to those of existing refactoring tools.

1 Introduction

The essential activity in designing object-oriented programs is to identify class
candidates and to assign responsibility (i.e., data and operations) to them. An
appropriate solution to this Class-Responsibility-Assignment (CRA) problem, on
the one hand, intuitively reflects the problem domain and, on the other hand,
exhibits acceptable quality measures [4]. In this context, refactoring has become
a key technique for agile software development: productive program-evolution
phases are interleaved with behavior-preserving code transformations for updat-
ing CRA decisions, to proactively maintain, or even improve, code-quality met-
rics [13,29]. Each refactoring pursues a trade-off between two major, and gen-
erally contradicting, objectives: (1) maximizing code-quality metrics, including
fine-grained coupling/cohesion measures as well as coarse-grained anti-pattern

c© The Author(s) 2018
A. Russo and A. Schürr (Eds.): FASE 2018, LNCS 10802, pp. 38–55, 2018.
https://doi.org/10.1007/978-3-319-89363-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89363-1_3&domain=pdf
http://orcid.org/0000-0003-2542-9754
http://orcid.org/0000-0002-5387-8277
http://orcid.org/0000-0002-1815-7511
http://orcid.org/0000-0002-2604-0487
http://orcid.org/0000-0002-8404-753X


Attack Surface of OO Refactorings 39

avoidance, and (2) minimizing the number of changes to preserve the initial pro-
gram design as much as possible [8]. Manual search for refactorings sufficiently
meeting both objectives becomes impracticable already for medium-size pro-
grams, as it requires to find optimal sequences of interdependent code transfor-
mations with complex constraints [10]. The very large search space and multiple
competing objectives make the underlying optimization problem well-suited for
search-based optimization [15] for which various semi-automated approaches for
recommending refactorings have been recently proposed [18,27,28,30,34].

The validity of proposed refactorings is mostly concerned with purely func-
tional behavior preservation [24], whereas their impact on extra-functional prop-
erties like program security has received little attention so far [22]. However,
applying elaborated information-flow metrics for identifying security-preserving
refactorings is computationally too expensive in practice [36]. As an alterna-
tive, we consider attack-surface metrics as a sufficiently reliable, yet easy-to-
compute indicator for preservation of program security [20,41]. Attack surfaces
of programs comprise all conventional ways of entering a software by users/at-
tackers (e.g., invoking API methods or inheriting from super-classes) such that
an unnecessarily large surface increases the danger of exploiting vulnerabilities.
Hence, the goal of a secure program design should be to grant least privileges to
class members to reduce the extent to which data and operations are exposed
to the world [41]. In Java-like languages, accessibility constraints by means of
modifiers public, private and protected provide a built-in low-level mecha-
nism for controlling and restricting information flow within and across classes,
sub-classes and packages [38]. Accessibility constraints introduce compile-time
security barriers protecting trusted system code from untrusted mobile code [19].
As a downside, restricted accessibility privileges naturally obstruct possibilities
for refactorings, as CRA updates (e.g., moving members [34]) may be either
rejected by those constraints, or they require to relax accessibility privileges,
thus increasing the attack surface [35].

In this paper, we present a search-based technique to find optimal sequences
of refactorings for object-oriented Java-like programs, by explicitly taking acces-
sibility constraints into account. To this end, we do not propose novel refac-
toring operations, but rather apply established ones and control their impact
on attack-surface metrics. We focus on MoveMethod refactorings which have
been proven effective for improving CRA metrics [34], in combination with
operations for on-demand strengthening and relaxing of accessibility declara-
tions [38]. As objectives, we consider (O1) elimination of design flaws, partic-
ularly, (O1a) optimization of object-oriented coupling/cohesion metrics [5,6]
and (O1b) avoidance of anti-patterns, namely The Blob, (O2) preservation
of original program design (i.e., minimizing the number of change operations),
and (O3) attack-surface minimization. Our model-based tool implementation,
called GOBLIN, represents individuals (i.e., intermediate refactoring results) as
program-model instances complying to an EMF meta-model for Java-like pro-
grams [33]. Hence, instead of regenerating source code after every single refactor-
ing step, we apply and evaluate sequences of refactoring operations, specified as
model-transformation rules in Henshin [2], on the program model. To this end,



40 S. Ruland et al.

Fig. 1. UML class diagram of MailApp

we apply MOMoT [11], a generic framework for search-based model transfor-
mations. Our experimental evaluation results gained from applying GOBLIN

as well as the recent tools JDeodorant [12] and Code-Imp [27] to a collection
of real-world Java programs provide us with in-depth insights into the subtle
interplay between traditional code-quality metrics and attack-surface metrics.
Our tool and all experiment results are available on the GitHub site of the
project1.

2 Background and Motivation

We first introduce a running example to provide the necessary background and
to motivate the proposed refactoring methodology.

Running Example. We consider a (simplified) e-mail client, called MailApp,
implemented in Java. Figure 1 shows the UML class diagram of MailApp, where
security-critical extensions (in gray) will be described below. We use stereo-
type 〈〈pkg : name〉〉 to annotate classes with package declarations. Central class
MailApp is responsible for handling objects of classes Message and Contact both
encapsulating application data and operations to access those attributes. The
text of a message may be formatted as plain String, or it may be converted into
HTML using method plainToHtml().

Design Flaws in Object-Oriented Programs. The over-centralized architec-
tural design of MailApp, consisting of a predominant controller class (MailApp)
intensively accessing inactive data classes (Message and Contact), is frequently
referred to as The Blob anti-pattern [7]. As a consequence, method plainToHtml()
in class MailApp frequently calls method getPlainText() in class Message across

1 https://github.com/Echtzeitsysteme/goblin.

https://github.com/Echtzeitsysteme/goblin


Attack Surface of OO Refactorings 41

class- and even package-boundaries. The Blob and other design flaws are widely
considered harmful with respect to software quality in general and program main-
tainability in particular [7]. For instance, assume a developer to extend MailApp
by (1) adding further classes SecureMailApp and RsaAdapter for encrypting and
signing messages, and by (2) extending class Contact with public RSA key han-
dling: method findKey() searches for public RSA keys of contacts by repeatedly
calling method findKeyFromServer() with the URL of available key servers. This
program evolution further decays the already flawed design of MailApp as class
SecureMailApp may be considered as a second instance of The Blob anti-pattern:
method encryptMessage() of class SecureMailApp intensively calls method find-
Key() in class Contact. This example illustrates a well-known dilemma of agile
program development in an object-oriented world: Class-Responsibility Assign-
ment decisions may become unbalanced over time, due to unforeseen changes
crosscutting the initial program design [31]. As a result, a majority of object-
oriented design flaws like The Blob anti-pattern is mainly caused by low cohe-
sion/high coupling ratios within/among classes and their members [5,6].

Refactoring of Object-Oriented Programs. Object-oriented refactorings
constitute an emerging and widely used counter-measure against design
flaws [13]. Refactorings impose systematic, semantic-preserving program trans-
formations for continuously improving code-quality measures of evolving source
code. For instance, the MoveMethod refactoring is frequently used to update
CRA decisions after program changes, by moving method implementations
between classes [34]. Applied to our example, a developer may (manually) con-
duct two refactorings, R1 and R2, to counteract the aforementioned design
flaws:

(R1) move method plainToHtml() from class MailApp to class Message, and
(R2) move method encryptMessage() from class SecureMailApp to class Contact.

However, concerning programs of realistic size and complexity, tool support
for (semi-)automated program refactorings becomes more and more inevitable.
The major challenges in finding effective sequences of object-oriented refactoring
operations consists in detecting flawed program parts to be refactored, as well as
in recommending program transformations applied to those parts to obtain an
improved, yet behaviorally equivalent program design. The complicated nature
of the underlying optimization problem stems from several phenomena.

– Very large search-space due to the combinatorial explosion resulting
from the many possible sequences of (potentially interdependent) refactoring-
operation applications.

– Multiple objectives including various (inherently contradicting) refactoring
goals (e.g., O1−O3).

– Many invalid solutions due to (generally very complicated) constraints to
be imposed for ensuring behavior preservation.

Further research especially on the last phenomenon is required to understand
to what extent a refactoring actually alters (in a potentially critical way) the



42 S. Ruland et al.

original program. For instance, for refactoring R2 to yield a correct result, it
requires to relax declared accessibility constraints: method encryptMessage() has
to become public instead of protected after being moved into class Contact
to remain accessible for method sendMessage, and, conversely, method getPri-
vateKey() has to become public instead of private to remain accessible for
encryptMessage(). Although these small changes do not affect the functionality
of the original program, it may have a negative impact on extra-functional prop-
erties like program security. Therefore, the amount of invalid solutions highly
depends on the interaction between constraints and repair mechanisms.

Attack Surface of Object-Oriented Programs. The attack surface of a pro-
gram comprises all conventional ways of entering a software from outside such
that a larger surface increases the danger of exploiting vulnerabilities (either
unintentionally by some user, or intentionally by an attacker) [20]. Concern-
ing Java-like programs in particular, explicit restrictions of accessibility of class
members provide an essential mechanism to control the attack surface. Hence,
refactoring R2 should be definitely blamed as harmful as the enforced relax-
ations of accessibility constraints, especially those of the indeed security-critical
method getPrivateKey(), unnecessarily widen the attack surface of the original
program. In contrast, refactoring R1 should be appreciated as it even narrows
the attack surface by setting method plainToHtml() from public to private.

Challenges. As illustrated by our example, the attack surface of a program is a
crucial, but yet unexplored, factor when searching for reasonable object-oriented
program refactorings. However, if not treated with special care, accessibility con-
straints may seriously obstruct program maintenance by eagerly suppressing any
refactoring opportunity in advance. We therefore pursue a model-based method-
ology for automating the search for optimal sequences of program refactorings by
explicitly taking accessibility constraints into account. We formulate the under-
lying problem as constrained multi-objective optimization problem (MOOP)
incorporating explicit control and minimization of attack-surface metrics. This
framework allows us to facilitate search-based model transformation capabilities
for approximating optimal solutions.

3 Search-Based Program Refactorings

with Attack-Surface Control

We now describe our model-based framework for identifying (presumably) opti-
mal sequences of object-oriented refactoring operations. To explicitly control
(and minimize) the impact of recommended refactorings on the attack surface,
we extend an existing EMF meta-model for representing Java-like programs
with accessibility information and respective constraints. Based on this model,
refactoring operations are defined as model-transformation rules which allow
us to apply search-based model-transformation techniques to effectively explore
candidate solutions of the resulting MOOP.



Attack Surface of OO Refactorings 43

3.1 Program Model

In the context of model-based program transformation, a program model serves
as unified program representation (1) constituting an appropriate level of
abstraction comprising only (syntactic) program entities being relevant for a
given task, and (2) including additional (static semantic) information required
for a given task [24]. Concerning program models for model-based object-oriented
program refactorings in particular, the corresponding model-transformation
operations are mostly applied at the level of classes and members, whereas more
fine-grained source code details can be neglected. Instead, program elements
are augmented with additional (static semantic) dependencies to other entities
being crucial for refactoring operations to yield correct results [24–26]. Here, we
employ and enhance the program model proposed by Peldszus et al. [33] for auto-
matically detecting structural anti-patterns (cf. O1b) in Java programs. Their
incremental detection process also includes evaluation of coupling and cohesion
metrics (cf. O1a), and both metric values and the detected anti-patterns are
added as additional information into the program model.

Fig. 2. Excerpt of the program-model representation of MailApp

Figure 2 shows an excerpt of the program-model representation for MailApp
including the classes MailApp, Message, SecureMailApp, and Contact together
with a selection of their method definitions. Each program element is repre-
sented by a white rectangle labeled with name : type. The available types
of program entities and possible (syntactic and semantic) dependencies (rep-
resented by arrows) between respective program elements are defined by a
program meta-model, serving as a template for valid program models [26,37].
The program model comprises as first-class entities the classes (type TClass)



44 S. Ruland et al.

Fig. 3. Model-transformation rule for MoveMethod refactoring

together with their members as declared in the program. The representation of
methods is split into signatures (type TMethodSignature) and definitions (type
TMethodDefinition) to capture overloading/overriding dependencies among
method declarations (e.g., overriding of method sendMessage() imposes one
shared method signature, but two different method definitions). Solid arrows
correspond to syntactic dependencies between program elements such as aggrega-
tion (unlabeled) and inheritance (label extends) and relations between method
signatures and their definitions, whereas dashed arrows represent (static) seman-
tic dependencies (e.g., arrows labeled with call denote caller-callee relations
between methods).

Design-Flaw Information. The program model further incorporates informa-
tion gained from design-flaw detection [33], to identify program parts to be refac-
tored. In our example, design-flaw annotations (in gray) are attached to affected
program elements, namely classes Message and Contact constitute data classes
and classes MailApp and SecureMailApp constitute controller classes, which lead
to two instances of the anti-pattern The Blob.

Accessibility Information. To reason about the impact of refactorings on the
attack surface of programs, we extend the program model of Peldszus et al. by
accessibility information. Our extensions include the attribute accessibility

denoting the declared accessibility of entities as shown for method definitions in
Fig. 2. In addition, our model comprises package declarations of classes (type
TPackage) to reason about package-dependent accessibility constraints.

3.2 Model-Based Program Refactorings

Based on the program-model representation, refactoring operations by means
of semantic-preserving program transformations can be concisely formalized in
a declarative manner in terms of model-transformation rules [26]. A model-
transformation rule specifies a generic change pattern consisting of a left-hand side
pattern to be matched in an input model for applying the rule, and a right-hand
side replacing the occurrence of the left-hand side to yield an output model. Here,
we focus on (sequences of) MoveMethod refactorings as it has been shown in recent
research that MoveMethod refactorings are considerably effective in improving
CRA measures in flawed object-oriented program designs [34]. Figure 3 shows
a (simplified) rule for MoveMethod refactorings defined on our program meta-
model, using a compact visual notation superimposing the left- and right-hand



Attack Surface of OO Refactorings 45

side. The rule takes a source class srcClass, a target class trgClass and a method
signature methodSig as parameters, deletes the containment arrow between source
class and signature (red arrow annotated with --) and creates a new contain-
ment arrow from the target class (green arrow annotated with ++), only if such
an arrow not already exists before rule application. The latter (pre-)condition is
expressed by a forbidden (crossed-out) arrow. For a comprehensive list of all nec-
essary pre-conditions (or, pre-constraints), we refer to [38].

Accessibility Post-constraints. Besides pre-constraints, for refactoring oper-
ations to yield correct results, it must satisfy further post-constraints to be
evaluated after rule application, especially concerning accessibility constraints
as declared in the original program (i.e., member accesses like method calls in
the original program must be preserved after refactoring [24]). As an example,
a (simplified) post-constraint for the MoveMethod rule is shown on the right
of Fig. 3 using OCL-like notation. Members refers to the collection of all class
members in the program. The post-constraint utilizes helper-function reqAcc(m)
to compute the required access modifier of class member m and checks whether
the declared accessibility of m is at least as generous as required (based on the
canonical ordering private < default < protected < public) [38].

For instance, if refactoring R2 is applied to MailApp, method encryptMes-
sage() violates this post-constraint, as the call from sendMessage() from another
package requires accessibility public, whereas the declared accessibility is
protected. Instead of immediately rejecting refactorings like R2, we introduce
an accessibility-repair operation of the form m.accessibility := reqAcc(m) for each
member violating the post-constraint which therefore causes a relaxation of the
attack surface. However, this repair is not always possible as relaxations may
lead to incorrect refactorings altering the original program semantics (e.g., due
to method overriding/overloading [38]). In contrast, refactoring R1 (i.e., mov-
ing plainToHtml() to class Message) satisfies the post-constraint as the required
accessibility of plainToHtml() becomes private, whereas its declared accessibil-
ity is public. In those cases, we may also apply the operation m.accessibility :=
reqAcc(m), now leading to a reduction of the attack surface. Different strategies
for attack-surface reduction will be investigated in Sect. 4.

3.3 Optimization Objectives

We now describe the evaluation of objectives (O1)–(O3) on the program model,
to serve as fitness values in a search-based setting.

Coupling/Cohesion. Concerning (O1a), coupling and cohesion metrics are
well-established quality measures for CRA decisions in object-oriented program
design [4]. In our program model, coupling (COU) is related to the overall
number of member accesses (e.g., call -arrows) across class boundaries [5], and for
measuring cohesion, we adopt the well-known LCOM5 metric to quantify lack of
cohesion among members within classes [17]. While there are other metrics which
indicate good CRA decisions, such as Number of Children, these metrics are
not modifiable using MoveMethod refactorings and are therefore not used in



46 S. Ruland et al.

this paper [9]. Consequently, good CRA decisions exhibit low values for both
COU and LCOM5. Hence, refactorings R1 and R2 both improve values of
COU (i.e., by eliminating inter-class call -arrows) and LCOM5 (i.e., by moving
methods into classes where they are called).

Anti-patterns. Concerning (O1b), we limit our considerations to occurrences
of The Blob anti-pattern for convenience. We employ the detection-approach of
Peldszus et al. [33] and consider as objective to minimize the number of The Blob
instances (denoted #BLOB). For instance, for the original MailApp program
(white parts in Fig. 1), we have #BLOB = 1, while for the extended version
(white and gray parts), we have #BLOB = 2. Refactoring R1 may help to
remove the first occurrence and R2 potentially removes the second one.

Changes. Concerning (O2), real-life studies show that refactoring recommen-
dations to be accepted by users must avoid a too large deviation from the original
design [8]. Here, we consider the number of MoveMethod refactorings (denoted
#REF) to be performed in a recommendation, as a further objective to be
minimized. For example, solely applying R1 results in #REF = 1, whereas a
sequence of R1 followed by R2 most likely imposes more design changes (i.e.,
#REF = 2). In contrast, accessibility-repair operations do not affect the value
#REF, but rather impact objective (O3).

Attack Surface. Concerning (O3), the guidelines for secure object-oriented
programming encourages developers to grant as least access privileges as possible
to any accessible program element to minimize the attack surface [19]. In our
program model, the attack-surface metric (denoted AS) is measured as

AS =
∑

m∈Members
ω(m.accessibility), (1)

where weighting function ω : Mod → N0 on the set Mod of accessibility modifiers
may be, for instance, defined as ω(private) = 0, ω(default) = 1, ω(protected)
= 2, ω(public) = 3. Hence, a lower value corresponds to a smaller attack surface.
For example,R1 enables anattack-surface reductionby setting plainToHtml() from
public to private which decreases AS by 3. In contrast, R2 involves a repair
step setting encryptMessage() from protected to publicwhich increases AS by 1.
Whether such negative impacts of refactorings on (O3) are outweighed by simul-
taneous improvements gained for other objectives depends, among others, on the
actual weighting ω applied. For instance, each further modifier public consider-
ably opens the attack surface and should therefore be blamed by a higher weighting
value, as compared to the other modifiers (cf. Sect. 4).

3.4 Search-Based Optimization Process

Our tool for recommending optimized object-oriented refactoring sequences,
called GOBLIN2, is based on a combination of search-based multi-objective

2 Goblin is supervillain and Head of National Security in the Marvel universe [3]. GOB-
LIN also means Generic Objective-Based Layout Improvements for N on-designs.



Attack Surface of OO Refactorings 47

optimization techniques using genetic algorithms and model-transformations on
the basis of the MOMoT framework [11]. Figure 4 shows an overview on GOB-

LIN. First, the input Java program is translated into our program model [33].
This original program model together with its objective values for (O1)−(O3)
(i.e., its fitness values) serves as a baseline for evaluating the improvements
obtained by candidate refactorings. The built-in genetic algorithm (NSGA-III)
of MOMoT is initialized by an initial population of a fixed number of indi-
viduals serving as generation 0, where each individual constitutes a sequence
of at least 1 up to a maximum number of MoveMethod rule applications (cf.
Fig. 3) to the original program model. Thus, each individual corresponds to a
refactored version of the original program model on which the resulting fitness
values are evaluated. The refactored program model is obtained by applying the
given sequence of refactorings to the original program model. Steps within a
sequence not being applicable to an intermediate model (e.g., due to unsatisfied
pre-conditions) are skipped, whereas steps producing infeasible results (e.g., due
to unsatisfied and non-repairable post-conditions) cause the entire individual to
become invalid (thus being removed from the population).

Fig. 4. Architecture of the GOBLIN tool

For deriving generation i + 1 from generation i, NSGA-III first creates a set
of new individuals using random crossover and mutation operators. As indi-
cated in Fig. 4, a crossover splits and recombines two individuals into a new
one, while a mutation generates a new individual by injecting small changes into
an existing one. Afterwards, in the selection phase, individuals from the over-
all population (the original and newly created individuals) are selected into the
next generation, depending on their fitness values. For more details on NSGA-
III, we refer to [15,28]. The search-process terminates when a maximum number
of generations (or, individuals, respectively) has been reached, resulting in a
Pareto-front of non-dominated individuals, each constituting a refactoring rec-
ommendation [11].



48 S. Ruland et al.

4 Experimental Evaluation

We now present experimental evaluation results gained from applying GOB-

LIN to a collection of Java programs. First, to investigate the impact of attack-
surface reduction on the resulting refactoring recommendations, we consider the
following reduction strategies, differing in when to perform attack-surface reduc-
tion during search-space exploration (where step means a refactoring step):

– Strategy 1: A priori reduction. Before the first and after the last step.
– Strategy 2: A posteriori reduction. Only after the last step.
– Strategy 3: Continuous reduction. After every refactoring step.

We are interested in the impact of each strategy on the trade-off between attack-
surface metrics and design-quality metrics (i.e., do the recommended refactor-
ing sequences tend to optimize more the attack surface aspect or the program
design?). We quantify attack-surface impact (ASI) and design impact (DI) of a
refactoring recommendation rr as follows:

ASI(rr) =
AS(rr) − AS(orig)

AS(orig)
(2)

DI(rr) =
COU(rr) − COU(orig)

COU(orig)
+

LCOM5(rr) − LCOM5(orig)

LCOM5(orig)
(3)

where orig refers to the original program. Second, we consider the impact of
different weightings ω on attack-surface metric AS. As modifier public has a
considerably negative influence on the attack surface, we study the impact of
increasing the penalty for public in ω, as compared to the other modifiers. We
are interested especially in whether there exists a threshold for which any design-
improving refactoring would be rejected as security-critical. Finally, we compare
GOBLIN to the recent refactoring tools JDeodorant and CODe-Imp, which
both do not explicitly consider attack-surface metrics as optimization objective
so far. To summarize, we aim to answer the following research questions:

– (RQ1: Objective Trade-Off) Which attack-surface reduction strategy
offers the best trade-off between attack-surface impact and design impact
when taking the original program as a baseline?

– (RQ2: Weighting of Attack Surface) Which weighting of public in the
attack-surface metric constitutes a critical threshold obstructing any design-
improving refactorings?

– (RQ3: Tool Comparison) Which tool provides the best trade-off between
attack-surface impact and design impact in refactoring recommendations?

4.1 Experiment Setup and Results

We conducted our experiments on an established corpus of real-life open-source
Java programs of various size [33,39] as listed in Table 1 (with lines of code



Attack Surface of OO Refactorings 49

LOC, number of packages #P , number of classes #C and number of methods
#M). For a compact presentation, we divide the corpus into three program-
size categories (small, mid-sized, large), indicated by horizontal lines in Table 1.
All experiments have been executed on a Windows-Server-2016 machine with a
2.4 GHz quad-core CPU, 32 GB RAM and JRE 1.8. We used the default genetic-
algorithm configuration of MOMoT in all our experiments [11]: termination after
10,000 individual evaluations, population size of 100, and each individual con-
sisting of at most 10 refactorings. We applied the metrics for (O1)−(O3) (cf.
Sect. 3.3) to compute fitness values. GOBLIN requires 25 min to compute a set
of refactoring recommendations for the smallest program, up to several hours
in the case of large programs, which is acceptable for a search-based (off-line)
optimization approach. We selected a representative set of computed recommen-
dations which were manually checked for program correctness and impact.

For (RQ1), we measured ASI and DI values for two runs of GOBLIN (cf.
Figs. 6a, b, c, d, e and f). Figures 6a and b (first row, side by side) show a box-
plot for each Strategy (1−3) for small programs of our corpus (#iSj referring
to the program number i in Table 1 and Strategy j). The box-plots show the
distribution of ASI (Fig. 6a) and DI (Fig. 6b) values for each refactoring recom-
mendation of GOBLIN. The figure-pairs 6c−6d and 6e−6f show the same data
for mid-sized and large programs, respectively. For (RQ2), we used Strategy 3
from (RQ2) and varied function ω to study different penalties for modifier pub-
lic. Figure 5 plots the (minimal) values of ASI and DI depending on ω(public)
(from 3 up to 100). Regarding (RQ3), we compare the results of GOBLIN

to those of state-of-the-art refactoring recommender tools, JDeodorant [12]
and CODe-Imp [27]. Refactorings proposed by JDeodorant have as singleton
optimization objective to eliminate specific anti-patterns through heuristic refac-
toring strategies. In particular, JDeodorant employs ExtractClass [13] to elim-
inate The Blob (also called GodClass), by separating parts from the controller-
class into a freshly created class. Thus, each recommendation of JDeodor-

ant subsumes multiple MoveMethod refactorings (into the fresh target class).
In contrast, CODe-Imp pursues a search-based approach, including a variety of

Program Version LOC #P #C #M

1: QuickUML 2001 2,667 1 19 175

2: JSciCalc 2.1.0 5,437 3 121 563

3: JUnit 3.8.2 5,780 11 105 841

4: Gantt 1.10.2 21,331 28 256 1,925

5: Nutch 0.9 21,437 24 273 1,750

6: Lucene 1.4.3 25,472 15 276 1,750

7: log4j 1.2.17 31,429 35 394 3,240

8: JHotDraw 7.6 31,434 24 312 3,781

Table 1. Evaluation corpus

3 7 10 20 50 70 100

0

−0.001

−0.002

−0.003

−0.004

ω(public)

M
in

im
a
l
Im

p
a
ct

min(ASI)

min(DI)

Fig. 5. Minimal ASI and DI values for dif-
ferent weightings of public



50 S. Ruland et al.

−0.1 0 0.1 0.2 0.3

#1S1

#1S2

#1S3

#2S1

#2S2

#2S3

#3S1

#3S2

#3S3

(a) ASI for Small Programs

−0.1 0 0.1 0.2 0.3

#1S1

#1S2

#1S3

#2S1

#2S2

#2S3

#3S1

#3S2

#3S3

(b) DI for Small Programs

−0.01 0 0.01 0.02 0.03

#4S1

#4S2

#4S3

#5S1

#5S2

#5S3

#6S1

#6S2

#6S3

(c) ASI for Mid-Sized Programs

−0.01 0 0.01 0.02 0.03

#4S1

#4S2

#4S3

#5S1

#5S2

#5S3

#6S1

#6S2

#6S3

(d) DI for Mid-Sized Programs

−0.008 −0.004 0 0.004 0.008 0.012

#7S1

#7S2

#7S3

#8S1

#8S2

#8S3

(e) ASI for Large Programs

−0.008 −0.004 0 0.004 0.008 0.012

#7S1

#7S2

#7S3

#8S1

#8S2

#8S3

(f) DI for Large Programs

0 0.01 0.02 0.03 0.04

#2

#3

#4

#5

#6

#7

#8

(g) ASI for GOBLIN and JDeodorant

0 0.01 0.02 0.03 0.04

#2

#3

#4

#5

#6

#7

#8

(h) DI for GOBLIN and JDeodorant

Fig. 6. Measurement results



Attack Surface of OO Refactorings 51

refactoring operations and design-quality metrics. For a comparison to GOB-

LIN, we used the MoveMethod refactoring of CODe-Imp which produces one
sequence of MoveMethod refactorings per run. Figures 6g and h contain compar-
isons of ASI and DI values, respectively, for our corpus (excluding QuickUML

due to relatively very high variations). For each program, the upper box-plot
shows the results for GOBLIN and the lower one for JDeodorant, respectively.
CODe-Imp only successfully produced results for QuickUML and JUnit (10
runs each) while terminating without any result for the others.

4.2 Discussion

Concerning (RQ1), Strategy 3 leads to the best attack-surface impact for
small programs (under neglectible execution-time overhead), while even slightly
improving the design impact. Although this clear advantage dissolves for mid-
sized and large programs, it still contributes to a reasonable trade-off, while
attack-surface reductions tend to hamper design improvements as expected. Cal-
culating the Pearson correlation [32] between ASI and DI shows that (1) the
strategy does not influence the correlation and (2) for small programs, GOB-

LIN finds refactorings which are beneficial for both attack surface and program
design.

Concerning (RQ2), Fig. 5 shows that a higher value for ω(public) leads to a
better attack-surface impact, as attack-surface-critical refactorings are less likely
to survive throughout generations. The increase in ASI is remarkably steep from
ω(public) = 3 to ω(public) = 7, but exhibits slow linear growth for higher values.
Regarding the design impact, up to ω(public) = 10, the best achieved DI also
grows linearly, but afterwards, no more DI improvements emerge. In higher value
ranges (>70), DI reaches a threshold, and degrades afterwards.

Regarding (RQ3), the The Blob elimination strategy of JDeodorant nec-
essarily increases attack surfaces, as calls to extracted methods have to access the
new class, thus necessarily increasing accessibility at least up to default. As also
shown in Fig. 6g, there are almost no refactorings proposed by JDeodorant

with a positive attack-surface impact. Surprisingly, JDeodorant also achieves
a less beneficial design impact than GOBLIN, with a strong correlation between
ASI and DI. Our unfortunately very limited set of observations for CODe-Imp

shows that, due to the similar search technique, the refactorings found by CODe-

Imp and GOBLIN are quite similar. Nevertheless, due to the different focus of
objectives, CODe-Imp tends to increase attack surfaces. Although, the differ-
ences in metrics definitions forbid any definite conclusions, however, CODe-Imp

does not achieve any design improvements according to our metrics.
To summarize, our experimental results demonstrate that attack-surface

impacts of refactorings clearly deserve more attention in the context of refac-
toring recommendations, revealing a practically relevant trade-off (or, even con-
tradiction) between traditional design-improvement efforts and extra-functional
(particularly, security) aspects. Our experiments further uncover that existing
tools are mostly unaware of attack-surface impacts of recommended refactorings.



52 S. Ruland et al.

5 Related Work

Automating Design-Flaw Detection and Refactorings. Marinescu pro-
poses a metric-based design-flaw detection approach similar to Peldszus et al.
in [33], which is used in our work. However, both works do not deal with elimi-
nation of detected flaws [21]. In contrast, the DECOR framework also includes
recommendations for eliminating anti-patterns, whereas, in contrast to our work,
those recommendations remain rather atomic and local. More related to our
approach, Fokaefs et al. [12] and Tsantalis et al. [40] consider (semi-)automatic
refactorings to eliminate anti-patterns like The Blob in the tool JDeodorant.
Nevertheless, they focus on optimizing one single objective and do not consider
multiple, esp. extra-functional, aspects like security metrics as in our approach.

Multi-objective Search-Based Refactorings. O’Keeffe and Ó Cinnéide use
search-based refactorings in their tool CODe-Imp [28] including various stan-
dard refactoring operations and different quality metrics as objectives [27]. Seng
et al. consider a search-based setting, where, similar to our approach, compound
refactoring recommendations comprise atomic MoveMethod operations. Harman
and Tratt also investigate a Pareto-front of refactoring recommendations includ-
ing various design objectives [16], and more recently, Ouni et al. conducted a
large-scale real-world study on multi-objective search-based refactoring recom-
mendations [30]. However, neither of the approaches investigates the impact of
refactorings on security-relevant metrics as in our approach.

Security-Aware Refactorings. Steimann and Thies were the first to pro-
pose a comprehensive set of accessibility constraints for refactorings covering
full Java [38]. Although their constraints are formally founded, they do not
consider software metrics to quantify the attack surface impact of (sequences
of) refactorings. Alshammari et al. propose an extensive catalogue of software
metrics for evaluating the impact of refactorings on program security of object-
oriented programs [1]. Similarly, Maruyama and Omori propose a technique [22]
and tool [23] for checking if a refactoring operation raises security issues. How-
ever, all these approaches are concerned with security and accessibility con-
straints of specific refactorings, but they do not investigate those aspects in a
multi-objective program optimization setting. The problem of measuring attack
surfaces serving as a metric for evaluating secure object-oriented programming
policies has been investigated by Zoller and Schmolitzky [41] and Manadhata
and Wing [20], respectively. Nevertheless, those and similar metrics have not
yet been utilized as optimization objective for program refactoring. Finally,
Ghaith and Ó Cinnéide consider a catalogue of security-relevant metrics to rec-
ommend refactorings using CODe-Imp, but they also consider security as single
objective [14].



Attack Surface of OO Refactorings 53

6 Conclusion

We presented a search-based approach to recommend sequences of refactor-
ings for object-oriented Java-like programs by taking the attack surface as
additional optimization objective into account. Our model-based methodology,
implemented in the tool GOBLIN, utilizes the MOMoT framework including
the genetic algorithm NSGA-III for search-space exploration. Our experimental
results gained from applying GOBLIN to real-world Java programs provides us
with detailed insights into the impact of attack-surface metrics on fitness values
of refactorings and the resulting trade-off with competing design-quality objec-
tives. As a future work, we plan to incorporate additional domain knowledge
about critical code parts to further control security-aware refactorings.

Acknowledgements. This work was partially funded by the Hessian LOEWE ini-
tiative within the Software-Factory 4.0 project as well as by the German Research
Foundation (DFG) in the Priority Programme SPP 1593: Design For Future - Man-
aged Software Evolution (LO 2198/2-1, JU 2734/2-1).

References

1. Alshammari, B., Fidge, C., Corney, D.: Assessing the impact of refactoring on
security-critical object-oriented designs. In: Proceedings of APSEC, pp. 186–195
(2010)

2. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced
concepts and tools for in-place EMF model transformations. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 121–135.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16145-2 9

3. Bendis, B.M.: Secret Invasion, vol. 1-8. Marvel, New York (2009)
4. Bowman, M., Briand, L.C., Labiche, Y.: Solving the class responsibility assignment

problem in object-oriented analysis with multi-objective genetic algorithms. IEEE
Trans. Softw. Eng. 36(6), 817–837 (2010)

5. Briand, L.C., Daly, J.W., Wust, J.K.: A unified framework for coupling measure-
ment in object-oriented systems. IEEE Trans. Softw. Eng. 25(1), 91–121 (1999)

6. Briand, L.C., Daly, J.W., Wüst, J.: A unified framework for cohesion measurement
in object-oriented systems. Empir. Softw. Eng. 3(1), 65–117 (1998)

7. Brown, W.J., Malveau, R.C., McCormick III, H.W., Mowbray, T.J.: AntiPat-
terns: Refactoring Software, Architectures, and Projects in Crisis. Wiley, New York
(1998)

8. Candela, I., Bavota, G., Russo, B., Oliveto, R.: Using cohesion and coupling for
software remodularization: is it enough? ACM Trans. Softw. Eng. Methodol. 25(3),
24:1–24:28 (2016)

9. Chidamber, S., Kemerer, C.: A metrics suite for object oriented design. IEEE
Trans. Softw. Eng. 20(6), 476–493 (1994)

10. Van Eetvelde, N., Janssens, D.: Extending graph rewriting for refactoring. In:
Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS,
vol. 3256, pp. 399–415. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-30203-2 28

https://doi.org/10.1007/978-3-642-16145-2_9
https://doi.org/10.1007/978-3-540-30203-2_28
https://doi.org/10.1007/978-3-540-30203-2_28


54 S. Ruland et al.

11. Fleck, M., Troya, J., Wimmer, M.: Search-based model transformations with
MOMoT. In: Van Gorp, P., Engels, G. (eds.) ICMT 2016. LNCS, vol. 9765, pp.
79–87. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42064-6 6

12. Fokaefs, M., Tsantalis, N., Stroulia, E., Chatzigeorgiou, A.: JDeodorant: identifi-
cation and application of extract class refactorings. In: Proceedings of ICSE, pp.
1037–1039 (2011)

13. Fowler, R.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Reading (2000)

14. Ghaith, S., Ó Cinnéide, M.: Improving software security using search-based refac-
toring. In: Fraser, G., Teixeira de Souza, J. (eds.) SSBSE 2012. LNCS, vol. 7515, pp.
121–135. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33119-
0 10

15. Harman, M., Mansouri, S.A., Zhang, Y.: Search based software engineering: a
comprehensive analysis and review of trends techniques and applications (2009)

16. Harman, M., Tratt, L.: Pareto optimal search based refactoring at the design level.
In: Proceedings of GECCO, pp. 1106–1113. ACM (2007)

17. Henderson-Sellers, B.: Object-Oriented Metrics: Measures of Complexity. Prentice-
Hall Inc., Upper Saddle River (1996)

18. Kessentini, M., Sahraoui, H., Boukadoum, M., Wimmer, M.: Search-based design
defects detection by example. In: Giannakopoulou, D., Orejas, F. (eds.) FASE
2011. LNCS, vol. 6603, pp. 401–415. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19811-3 28

19. Long, F., Mohindra, D., Seacord, R.C., Sutherland, D.F., Svoboda, D.: The CERT
Oracle Secure Coding Standard for Java. Addison-Wesley Professional, Boston
(2011)

20. Manadhata, P.K., Wing, J.M.: An attack surface metric. IEEE Trans. Softw. Eng.
37(3), 371–386 (2011)

21. Marinescu, R.: Detection strategies: metrics-based rules for detecting design flaws,
pp. 350–359. IEEE (2004)

22. Maruyama, K., Omori, T.: Security-aware refactoring alerting its impact on code
vulnerabilities. In: APSEC, pp. 445–451. IEEE (2008)

23. Maruyama, K., Omori, T.: A security-aware refactoring tool for Java programs.
In: Proceedings of WRT, pp. 22–28. ACM (2011)

24. Mens, T., Demeyer, S., Janssens, D.: Formalising behaviour preserving program
transformations. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.)
ICGT 2002. LNCS, vol. 2505, pp. 286–301. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45832-8 22

25. Mens, T., Taentzer, G., Runge, O.: Analysing refactoring dependencies using graph
transformation. SOSYM 6(3), 269–285 (2007)

26. Mens, T., Van Eetvelde, N., Demeyer, S., Janssens, D.: Formalizing refactorings
with graph transformations. J. Softw. Evol. Process 17(4), 247–276 (2005)

27. Moghadam, I.H., Ó Cinnéide, M.: Code-Imp: a tool for automated search-based
refactoring. In: Proceedings of WRT, pp. 41–44. ACM (2011)

28. O’Keeffe, M., Ó Cinnéide, M.: Search-based refactoring: an empirical study. J.
Softw. Maint. Evol. Res. Pract. 20(5), 345–364 (2008)

29. Opdyke, W.: Refactoring Object-Oriented Frameworks. Ph.D. thesis, University of
Illinois (1992)

30. Ouni, A., Kessentini, M., Sahraoui, H.A., Inoue, K., Deb, K.: Multi-criteria code
refactoring using search-based software engineering: an industrial case study. ACM
Trans. Softw. Eng. Methodol. 25(3), 23:1–23:53 (2016)

https://doi.org/10.1007/978-3-319-42064-6_6
https://doi.org/10.1007/978-3-642-33119-0_10
https://doi.org/10.1007/978-3-642-33119-0_10
https://doi.org/10.1007/978-3-642-19811-3_28
https://doi.org/10.1007/978-3-642-19811-3_28
https://doi.org/10.1007/3-540-45832-8_22
https://doi.org/10.1007/3-540-45832-8_22


Attack Surface of OO Refactorings 55

31. Parnas, D.L.: Software aging, pp. 279–287. IEEE (1994)
32. Pearson, K.: VII. Mathematical contributions to the theory of evolution.—III.

regression, heredity, and panmixia. Philos. Trans. R. Soc. Lond. Math. Phys. Eng.
Sci. 187, 253–318 (1896)

33. Peldszus, S., Kulcsár, G., Lochau, M., Schulze, S.: Continuous detection of design
flaws in evolving object-oriented programs using incremental multi-pattern match-
ing. In: Proceedings of ASE, pp. 578–589 (2016)

34. Seng, O., Stammel, J., Burkhart, D.: Search-based determination of refactorings
for improving the class structure of object-oriented systems. In: Proceedings of
GECCO, pp. 1909–1916 (2006)

35. Shin, Y., Williams, L.: Is complexity really the enemy of software security? In:
QoP, pp. 47–50 (2008)

36. Smith, S.F., Thober, M.: Refactoring programs to secure information flows, pp.
75–83. ACM (2006)

37. Stahl, T., Völter, M.: Model-Driven Software Development: Technology, Engineer-
ing, Management. Wiley, Chichester (2006)

38. Steimann, F., Thies, A.: From public to private to absent: refactoring Java pro-
grams under constrained accessibility. In: Drossopoulou, S. (ed.) ECOOP 2009.
LNCS, vol. 5653, pp. 419–443. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-03013-0 19

39. Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton, H.,
Noble, J.: The Qualitas Corpus: a curated collection of Java code for empirical
studies. In: Asia Pacific Software Engineering Conference, pp. 336–345 (2010)

40. Tsantalis, N., Chatzigeorgiou, A.: Identification of move method refactoring oppor-
tunities. IEEE Trans. Softw. Eng. 35(3), 347–367 (2009)

41. Zoller, C., Schmolitzky, A.: Measuring inappropriate generosity with access modi-
fiers in Java systems. In: Proceedings of IWSM-MENSURA, pp. 43–52 (2012)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-03013-0_19
https://doi.org/10.1007/978-3-642-03013-0_19
http://creativecommons.org/licenses/by/4.0/

	Controlling the Attack Surface of Object-Oriented Refactorings
	1 Introduction
	2 Background and Motivation
	3 Search-Based Program Refactorings with Attack-Surface Control
	3.1 Program Model
	3.2 Model-Based Program Refactorings
	3.3 Optimization Objectives
	3.4 Search-Based Optimization Process

	4 Experimental Evaluation
	4.1 Experiment Setup and Results
	4.2 Discussion

	5 Related Work
	6 Conclusion
	References


