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Abstract: We report on a procedure to focalize few-cycle laser pulses 
in dispersive media with controlled waveform. Stationarity of the carrier-
envelope phase for extended depth of focus is attained by shaping the spatial 
dispersion of the ultrashort beam. An adjustable group velocity is locally 
tuned in order to match a prescribed phase velocity at focus. A hybrid 
diffractive-refractive lens system is proposed to drive the wavefield to an 
immersion microscope objective under convenient broadband modulation. 
Numerical simulations demonstrate robustness over positioning of this 
dispersive beam expander. 
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1. Introduction 

The so-called Gouy phase is the subject of continuous investigation since in 1890 Louis 
G. Gouy published a celebrated paper on the longitudinal phase delay of spherical beams. 
Its relevance is primarily purely academic; for instance, the superluminal phase velocity 
found in the focal region of paraxial Gaussian beams may be understood in terms of this phase 
anomaly. Direct observation of Gouy phases has attracted the interest more recently in the 
framework of single-cycle focused beams . In this context, on the contrary, it 
results of great importance for a wide variety of phenomena and applications involving high 
field physics and extreme nonlinear optics. The key point to highlight here is that Gouy phase 
dispersion is determinant in the waveform of broadband optical pulses [5], which is commonly 
parametrized by the carrier-envelope phase (CEP). Sensitivity to CEP is observed for instance 
in photoionization of atoms and in photoelectron acceleration at metal surfaces mediated 
by surface plasmon polaritons 

In general, focused pulses manifest strong phase dispersion along the focal region, so that 
enhanced spatial resolution is achieved in CEP-dependent phenomena. In some circumstances, 
however, increased depth of focus may be of convenience so that a stationary CEP should be 
required near the focus. It is remarkable that Gouy waves modes show some control over 
on-axis phases demonstrating undistorted pulse focalization even in dispersive media. Practi
cal realizations are driven by angular dispersion engineering of ultrashort laser beams. In this 
concern we have recently introduced the concept of dispersive imaging as a tool for con
trolling the dispersive nature of broadband wavefields. Achromatic and apochromatic 
corrections of the angular spectrum of diffracted wavefields may be achieved with the use of 
highly-dispersive lenses such as kinoform-type zone plates. Incidentally, this is not a new idea; 
compensation of longitudinal chromatic aberrations [18, 19] and also diffraction-induced chro
matic mismatching of Fraunhofer patterns have been proposed elsewhere. 

In this paper we exploit dispersive imaging assisted by zone plates to gain control over the 



waveforms of focused laser beams as approaches to Gouy waves modes. For simplicity, the the
oretical analysis is addressed to pulse Gaussian beams. We perform a lens system design using 
the ABCD matrix formalism providing fundamental attributes of a dispersive beam expander 
capable of adjusting conveniently the spatial dispersion of the collimated input beam. Finally, 
numerical simulations show CEP stationarity of few-cycle focused pulses in dispersive media 
along the optical axis near the focus. 

2. Background 

Let us consider a focused pulse. If we neglect pulse envelope distortion in the focal volume, a 
reasonable statement based on the short-path propagation in the region of interest, the on-axis 
temporal evolution of the (real) field can be conveniently given as 

E(t,z)=E0(t')cos(coot'-(j)o), (1) 

where t' = t — (po denotes a local time, 0o = <po - ®o<po is the carrier-envelope phase being 
<p(z, a) the complex argument of the spectrum and (D$ the carrier frequency. In the following, 
a dot over a parameter stands for a derivative with respect to a, and a subscript 0 denotes its 
evaluation at the specific frequency a = (Do; therefore, the carrier phase cpo symbolizes cp (z, coo) 
and the envelope delay <po represents dm(p computed at a = (OQ. Rigorously speaking, Eq. (1) 
is a sufficiently general expression and its validity is restricted to pulse envelopes EQ described 
by symmetric even functions. 

Stationarity of the CEP, i.e. conservation of 0o along with the z coordinate, entails a spa-
tiotemporal evolution of the field E expressed in terms of an spatially-invariant waveform (irre
spective of its amplitude). In free space, a rigorous stationary CEP has been reported solely for 
X-waves However, finite-energy focal pulses demonstrate a variation of 0 o upon z due to 
material dispersion and, importantly, the presence of the Gouy phase. At most, a stationary CEP 
may be achieved in a small region around a point of interest (the focal point) reaching the sta
tionarity condition (9Z0O = 0. We conveniently introduce the local wavenumber&z(z, <o) = dzcp; 
we point out that on-axis pulse propagation evolves at a local phase velocity vp(z) = (Do/kzo 
and group velocity vg(z) = k^. Therefore 

dz0o = fflo ( ) , (2) 
\vp vgJ 

and CEP stationarity is attained when the phase velocity matches the group velocity, v p = vg, 
(both denoted as v). In this case, and assuming the focal point is located at z = 0, the spatial-
temporal dynamics of E in its vicinity may be given in terms of the variable / - z/v. Indeed, 
this result is more general as derived here. 

3. Stationarity of CEP in focus 

For illustration, we consider a focused Gaussian beam of waist (and focus) at z = 0 propagating 
through a nonabsorbing dielectric medium of refractive index n p = ck/ a. The on-axis wavefield 
of time-harmonic dependence exp(—i(ot) results 

zRexp(ikz) 
e((o,z) = ——-e((»,0), (3) 

iq 

where q((0,z) =z — IZR is the complex radius of curvature, ZR = ks2/2 is the Rayleigh range (s 
is the size of the beam waist), ande(co,0) is the focal spectrum. The argument of the complex 
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Fig. 1. Phase velocity (dashed line) and group velocity (solid lines) represented in (a) for 
pulsed Gaussian beams of different «̂ o (-^b = 34) propagating in fused silica at tt)t> = 
3.14 fs_1. In (b) we also show the CEP evolution along the optical axis. 

field e (omitting irrelevant terms) is cp = kz - cpG, being cpG = arctan(z/zR) the Gouy phase. 
Finally, the Gaussian local wavenumber is 

ZR 
(4) 

which is lower than the wavenumber k associated with a plane wave. 
Particularly, the phase velocity of the Gaussian beam in terms of the normalized axial coor

dinate £ = Z/ZRO is 

r i r1 

^=cr°-^0(i+c2)J • <5> 
where ZRO is the Rayleigh range at (Do and the Gaussian length Jz? = kzRJnp. Note that Jr?o = 
k^sl/lripo also gives the area (conveniently normalized) of the beam waist at (Do- On the other 
hand, the group velocity yields 

vP = c "go 
^o(i-c 2; 
^o(l + C2) 

(6) 

where ng = ck is the group index, and £P = (DZR/ZR. In order to understand its significance, 
let us conceive a Gaussian beam exhibiting an invariant £P within a given spectral band around 
(Do; this case would consider a dispersive Rayleigh range ZR = ZRO ((D/ (Do) , a model employed 
elsewhere [10]. Therefore, £P parametrizes the longitudinal dispersion of the Gaussian beam; 
this can be deduced also from the relationship & = ooJrf/Jr? - 1. More importantly, velocity 
matching vp . at focus is found if 

#o •(1+JSfoAno) (7) 

being An = ng - np the difference of group index and refractive index in the dispersive medium. 
Equivalently Eq. (7) reads Jzfo = —^Ano/aX). We conclude that CEP stationarity requires a 
given spatial dispersion of the wavefield to balance dispersion of the dielectric material An o. In 
particular, An = 0 in vacuum and therefore £P = -1, independently of the beam length. 

In Fig. 1(a) we compare graphically the phase velocity and the group velocity of pulse 
Gaussian beams of Jz?o = 34 with several ratios # o propagating in fused silica. At the mean 



frequency (Do =3.14 fs_ 1 we have ripo = 1.458 and «go = 1.478. As expected, isodiffracting 
Gaussian beams evidencing an invariant Rayleigh range (JP = 0) exhibit a constant group ve
locity along the optical axis. Of particular importance is the case ,^o = -1 -685 obtained from 
Eq. (7), since phase and group velocities matches at the focal point. In this case the CEP, written 
with zero initial phase (0o = 0 at £ = 0) as 

^(C) = - a r c t a n ( C ) - ^ o A « o C - ^ o 7 2 T T , (8) 
Q +1 

proves stationarity features at the origin, where <9j 0o = 0, as shown in Fig. 1(b). Moreover, 
Eq. (7) leads the on-axis CEP evolution to ultraflattened curves in the focal region since, in 
fact, £ = 0 is a saddle point where <9?0o = 0. Consequently, a quasi-matching of phase and 
group velocities is also demonstrated in the neighborhood of the focus. At the boundaries of 
the focal volume, |£| = 1, a significant mismatch of velocities is clear, which is quantitatively 
equivalent for different values of J^o- However, the CEP accumulates monotonically (in our 
numerical examples) such differences, in a certain way, displaying the mismatch history of the 
phase and group velocities and, as a consequence, the CEP provides its lowest (absolute) value 
for J^o = -1.685 in Fig. 1(b). 

4. Optical system 

Established that focalization of ultrashort laser beams is commonly produced with a CEP run
ning loosely within the focal depth, here we analyze a procedure inducing controlled spatial 
dispersion to achieve a stationary CEP. We assume the (coUimated) laser Gaussian beam, of 
input Rayleigh range ZRin = (osfn/2c, propagates in vacuum and impinges over an objective 
lens in order to produce the required focused field of ZR embedded in a medium of refractive 
index np. For convenience we assume a nondispersive infinity-corrected microscope objective 
of focal length / , and also beam truncation is ignored. Under the Debye approximation, the 
width of the Gaussian beam at the back focal plane 

provided the Rayleigh range of the focused beam ZR <C / . In this model, the focused 
laser beam is free of low-Fresnel-number focal shifts and longitudinal chromatic aberrations. 
As a consequence, the Gaussian lengths of the input (.£?,„) and focused (Jz?) beams satisfies 
Jz3«Jz? = (D2f2/c2np, whereas longitudinal dispersion of the fields obeys £Pin + £P = —An/np. 
Rather than concerning the focused pulse, we cast Eq. (7) showing explicitly the CEP constraint 
for the input Gaussian beam instead, yielding 

*M=i+^(^£-i). do) 

As a consequence, dispersive tailoring of the laser beam reaching ^,„o of Eq. (10) leads to 
CEP stationarity near the focus of the converging field. If focusing is performed in vacuum 
(A«o = 0), &m = 1 characterizing input pulsed fields of a Gaussian width that is independent 
upon the frequency, on other hand a well-established assumption in numerous studies. 

When focusing is carried out in dispersive bulk media, apparently, Eq. (10) is not generally 
satisfied for the input laser beam. In principle, modification of / and Jz?,„o with different mi
croscope objectives and beam expanders may result of practical convenience; however, these 
laser-beam tunes are produced at the cost of a field resizing at focus. This is evident if we 
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Fig. 2. Schematic diagram of the focusing setup: L\ and L2 a r e components of the diffrac-
tive doublet; L3 is the refractive lens and MO is the microscope objective. 

express Eq. (10) as #",„o = 1 + A«o (~^o - n J J. In a majority of applications this is undesir
able. We might conserve typical lengths of inputs and focused beams at 000 if, alternatively, 
spatial dispersion of the laser pulse is altered modifying J^M. In this case we switch the group 
velocity of the pulse at focus in order to match the given phase velocity. Next we propose an 
optical arrangement specifically designed to convert a given (collimated) pulsed Gaussian beam 
of Gaussian length Jẑ „o and dispersion #,„o, violating Eq. (10), into an ultrashort collimated 
laser beam of the same length _S?,„o = Jẑ «o but #,„o satisfying Eq. (10), as a previous step to 
the focusing action performed by the microscope objective. 

First we may give general features of the required system using the ABCD matrix formalism. 
A perfect replica (image) of the Gaussian beam is generated if we impose 5 = 0 and C = 0, 
simultaneously. This afocal system provides a lateral magnification^ = D ~1 of the image and, 
therefore, ZRin =A2ZRin is inferred. From Jr?,„o = Jẑ «o we derive that .4;, = 1; that is, beam 
expansion is unitary at (DQ. Also we obtain that 

»,M = &iril + 
2(QQA0 

An ' 
(11) 

As a consequence, dispersion of the matrix element^ is required in order to change the spatial 
dispersion properties of the Gaussian beam, switching from #,„o to J^M- This is of relevance 
also concerning the temporal response of the ABCD system; the spectrum of the field at the 
output plane is altered being multiplied by the spectral modifier^ ~1. Under strong corrections 
at this preprocessing stage, the spectrum of the collimated laser beam may be greatly distorted 

Ultimately, a spectral shift of the mean (carrier) frequency may be induced, which urges 
to recalculate Eq. (10); this effect is neglected here. 

We propose the spatio-spectral processing of the Gaussian beam to be performed by the 
thin-lens triplet depicted in Fig. 2. This is inspired in the setup shown Firstly we in
troduce a doublet composed of kinoform-type zone plates (L 1 and Z2 in the plot) of dispersive 
focal lengths f\ = fwco/coo and fz = fio(o/(Oo, respectively, followed by a nondispersive re
fractive lens (Z3) of focal length f^ = /30. Phase-only diffractive lenses may have nearly-100% 
efficiency at (Do; neglecting losses due for instance to material absorption and reflections, the 
kinoform-lens efficiency may be estimated as [26] 

77(a)) = sine2 0) 

(DO 
(12) 

where sinc(x) = sm{nx)/{nx). We point out that Eq. (12) ignores material chromatic disper
sion in the lens to simplify our discussion; this assumption may be given in practice using for 



instance a diffractive mirror Therefore, the strength of the response 7] decreases severely 
at increasing spectral shifts due to the appearance of undesirable diffraction orders. This is a 
relevant effect for subcycle pulses, however being negligible in ultrashort beams of sufficiently 
narrow power spectrum as considered below. Interestingly, diffractive optical elements with 
high-efficiency responses, significantly flatter than rj from Eq. (12) and spanning the visible 
wavelength range, have been reported using twisted nematic liquid crystals. 

We point out that the matrix elements are necessarily dispersive in virtue of the co-dependent 
character of fa and fa. The coupling distance of the diffractive doublet is d\, and the distance 
from L2 to Z3 is d2. Furthermore, we assume that Zi is placed at the waist plane of the input 
Gaussian beam of Ray leigh range ZRin. After propagating through the triplet, the output field of 
dispersion-compensatedZRin = -lm{qin} is examined at a distance 

, = [did2-(di + d2)fa]fa m . 
3 dl(d2-fa-fa)+fa(fa-d2)

 ( ' 

from Z3 where the waist image is found (B = 0). For completeness, let us remind the well-
known matrix equation for Gaussian beams 

*- = ^ T S - (14) 

Cqin+D 
being qin = —izRin the complex radius of the input laser beam at the plane of L \. 

Distance dj, depends upon a so that we have control over the waist location of the imaged 
Gaussian beam for a single frequency. This is of concern when placing the microscope objec
tive; thus let us impose d^ at a = (Do to be the distance fromZ3 to the objective lens (see Fig. 2). 
This longitudinal chromatic dispersion of the waist plane leads to a dispersive spherical wave-
front in the entrance plane of the objective. Ultimately this fact yields a longitudinal chromatic 
aberration of the broadband focused wavefield that may be neglected upon evaluation of the 
Gaussian Fresnel number No = Re{qm}/zRm of the beam impinging onto the objective 
lens; specifically \NG\ <c 1 should be satisfied. 

Collaterally, a parametric solution satisfying, simultaneously, B = 0 and C = 0 cannot be 
found. A sufficient condition may be established by imposing C0 = 0 and Q = 0 so that C 
vanishes in the vicinity of the carrier frequency. Such a tradeoff is given when 

fa = fa + ^ l , (15) 
d\ 

, ( ^ 1 - / 1 0 ) n „ 
/20 = 7 • (16) 

/10 

This approach suggests that afocality of the the imaging setup is not rigorous but stationary 
around co = (OQ. 

Finally d2 = fw - d\ yields an unitary magnification^ 0 = 1; alternatively we may consider 
d2 = 3/io —d\— 2fa\jd\ giving AQ = — 1. Additionally, if 

^•H'+ssJ (17) 

(in both cases), where the mismatching A^,„o = ̂ M — ^mo, then^lo =^4oA^„o/2coo as re
quested in (11). We conclude that the focal length of each lens composing the hybrid diffractive-
refractive triplet is determined by the parameter A^,„o and the positive axial distance d\. This 
particular procedure cannot be applied if —4 < A^,„0 < 0 demanding a negative value of the 
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Fig. 3. Evolution of the wavefield and envelope at different on-axis points £ of the focal 
volume. Negative values of £ are drawn in dashed lines and positive values in solid lines. 
Subfigures (a)-(b) correspond to isodiffracting Gaussian beams focused onto bulk fused 
silica. Time domain is given in terms of the local time /'. In (c)-(d) we employ a CEP-
stationarity procedure. 

axial distance d2. In these cases we might consider a different arrangement: a triplet with L \ 
being a nondispersive thin lens and Z3 a zone plate instead. Following the analysis given above, 
it can be proved that a satisfactory dispersive processing is also provided using positive values 
of d\ and d2 in the interval A#,„0 < 0. 

5. Numerical verification 

Let us illustrate the validity of our approach with a numerical simulation. We consider an isodif
fracting Gaussian beam focused by a microscope objective lens of/ = 4 mm, which propagates 
in fused silica near the focus. From a practical point of view, oil-immersion objectives are suit
able to get rid of longitudinal chromatic aberration and focal shifts. Input widths s in = 0.8 mm 
(Jẑ „o = 3.5 107) allow that aperturing may be neglected in immersion objectives of NA > 0.75. 
Numerical computations are performed with the Fresnel-Kirchhoff diffraction formula. At fo
cus we employ a bandlimited signal e of normalized (amplitude) spectrum 1 - 2Q 2 + Q4 for 
|Q| < 1, where Q = (<o — coo)/Ao. The mean frequency is (Do = 3.14 f s - 1 and the width of 
the spectral window is 0.8oi)o, i.e. Ao = 0.4coo, providing a 4.8 fs (FWHM) transform-limited 
optical pulse. Figures 3(a) and 3(b) show on-axis waveforms near the focal point. The field 
envelopes are unaltered in spite of material dispersion; however, the carrier shifts inside the 
envelope in response of the velocity mismatching, vp = 0.700c and vg = 0.677c, evaluated at 
focus. 

Insertion of the dispersive beam expander of Fig. 2 provides focal waveforms shown in 
Figs. 3(c) and 3(d). The contribution due to unwanted higher orders of a given kinoform lens 
is neglected; considering an input signal s like that observed at focus, e, the integrated (mean) 



efficiency for the output, 

r} = ~1 , (18) 
/ \«\2dQ 

- l 

theoretically reaches a value rj = 0.954, revealing that higher-order foci carry only 4.6% of 
the input intensity. Correspondingly, the spectral amplitude shaping on the transmitted beam 
may be disregarded; the spectral modifier yfx\ altering the input signal s through a kinoform 
zone plate would induce a small pulse stretching (from 4.8 fs) up to 4.9 fs FWHM. We ob
serve that CEP is significantly stabilized around the focus, where Jz?o = 34 and #o = —1.685. 
In order to minimize the Fresnel number, we have selected d\ = 200 mm (for^o = 1) giving 
\NQ\ < 0.4 in our spectral window. Eqs. (15)—(17) yield values for the focal distances of the 
triplet, /io = 439 mm, /20 = —130 mm, and f-$ = 525 mm; also di = fw —d\ = 239 mm. Im
portantly, evaluation of Eq. (13) provides a negative axial distance at (Do; this incongmency is 
overcome placing the microscope objective immediately behind L 3 (03 = 0), as considered in 
the numerical simulations. This procedure is robust since such an adjustment still maintains the 
value of vg switched up to 0.700c; however, a minor asymmetric pulse broadening is observ
able. We point out that a relay system might be employed in cases where pulse distortions are 
dramatic. Placed between the dispersive beam expander and the microscope objective, the re
lay system may translate the appropriately-corrected virtual pattern of the broadband Gaussian 
pulse to the entrance plane of the focusing element. 

6. Conclusions 

In summary, we investigate the problem of focusing a few-cycle optical field with stationar-
ity of the signal within the depth of focus. Following theoretical concerns, we establish basic 
requirements for an optical setup to drive pulsed beams with adjustable spatial dispersion. Ulti
mately group velocity is tuned at the focal point in order to match the prescribed phase velocity. 
We also present a dispersive beam expander consisting of a hybrid diffractive-refractive triplet 
capable of preparing the spatiotemporal response of ultrashort Gaussian pulses to maintain a 
stationary CEP along the optical axis when focused within dispersive media. Robustness of the 
optical arrangement is demonstrated upon coupling with immersion microscope objectives. 
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