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1. Introduction

During the last decade it has been practicable to achieve a full control of the temporal
evolution of the wave field of ultrashort mode-locked laser beams (1). Advances in
femtosecond laser technology and nonlinear optics have made possible to tailor the phase and
magnitude of the electric field leading to a wide range of new applications in science. Many
physical phenomena are dependent directly on the electric field rather than the pulse envelope
such as electron emission from ionized atoms (2) and metal surfaces (3), or carrier-wave
Rabi-flopping (4). Moreover, attosecond physics is for all practical purposes accessible by
using femtosecond pulses with controlled carrier-envelope (CE) phase conducting to coherent
light generation in the XUV spectral regions (5). Additional applications in the frequency
domain includes optical metrology where the laser spectrum is employed (6).
In this chapter we apply fundamental concepts of three-dimensional wave packets to illustrate
not only transverse but what is more fascinating on-axis effects on the propagation of
few-cycle laser pulses (7). The frequency-dependent nature of diffraction behaves as a sort
of dispersion that makes changes in the pulse front surface, its group velocity, the envelope
form, and the carrier frequency. The procedure lays on pulsed Gaussian beams, in which these
changes are straightforwardly quantified. In particular, the carrier phase at any point of space
near the beam axis is evaluated. Anomalous pulse front behavior including superluminality
in pulsed Gaussian beams is also found. Finally the CE phase is computed in the focal volume
and in the far field.
Generally focused pulses manifest a strong phase dispersion in the neighborhood of the
geometrical focus, so that enhanced spatial resolution is achieved in CE phase-dependent
phenomena. In some circumstances, however, increased depth of focus may be of convenience
so that a stationary CE phase should be required in the near field. It is noteworthy that
Gouy wave modes (8) show some control over on-axis phases demonstrating undistorted
pulse focalization even in dispersive media. Practical realizations may be driven by angular
dispersion engineering of ultrashort laser beams. In this concern we introduced the concept of
dispersive imaging (9) as a tool for controlling the dispersive nature of broadband wave fields.
Achromatic (10) and apochromatic (11) corrections of the angular spectrum of diffracted
wave fields may be achieved with the use of highly-dispersive lenses such as kinoform-type
zone plates. This procedure has been employed previously to compensate the longitudinal
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chromatic aberration (12; 13) and also the diffraction-induced chromatic mismatching of
Fraunhofer patterns (14; 15).
We exploit dispersive imaging assisted by zone plates to gain control over the waveforms
of focused laser beams drawing near to Gouy waves modes. The theoretical analysis is
addressed only to pulsed Gaussian beams for simplicity. We carry to term a lens system design
applying the ABCD matrix formalism. Fundamental attributes of a dispersive beam expander
are provided in order to adjust conveniently the spatial dispersion of the collimated input
beam. Numerical simulations evidence CE-phase stationarity of few-cycle focused pulses in
dispersive media along the optical axis near the focus.

2. Carrier-envelope phase

Let us review in this section the basic grounds on linear wave propagation of few-cycle
plane waves in dispersive media. In particular we consider the effect of the CE phase on
the spectrum of a pulse train as it is launched by a mode-locked laser. Besides this sequel,
nonlinear effects also give rise to a relative phase shift between carrier and envelope which
are briefly discussed.

2.1 Pulsed plane waves

We start by considering a plane wave propagating in the z direction. Then we write the electric
field amplitude at z = 0 as (16)

E(0, t) = Re
∫ ∞

−∞
S(ω) exp(−iωt)dω (1)

The effect of propagation over a distance z is to multiply each Fourier component in the time
domain by a factor exp(ikz). Note that the wavenumber varies upon the frequency as k(ω) =
ωn(ω)/c, where n is the index of refraction of the medium. Therefore we may write

E(z, t) = Re E0(z, t) exp (ik0z − iω0t + iϕ0) (2)

We are assuming a carrier wave with frequency and wavenumber ω0 and k0 = k(ω0),
respectively. Additionally, there is an envelope of the wave field that we denote by

E0(z, t) =
∫ ∞

−∞
S(ω) exp {i[k(ω)− k0]z − i(ω − ω0)t − iϕ0} dω (3)

The absolute phase ϕ0 = arg
∫

S(ω)dω represents the argument of the complex wave field at
z = 0 and t = 0, leading to a real valued envelope E0 at the origin.
The Taylor expansion of k(ω) around the carrier frequency,

k(ω0 + Ω) = k0 +

(

∂k

∂ω

)

ω0

Ω +
1

2

(

∂2k

∂ω2

)

ω0

Ω2 + . . . (4)

where Ω = ω − ω0, gives

∂E0

∂z
+ k̇0

∂E0

∂t
+

ik̈0

2

∂2E0

∂t2
+ . . . = 0. (5)

From here on out we assume that a dot over a parameter stands for a derivative with respect
to ω, and a subscript 0 denotes its evaluation at the specific frequency ω = ω0. Therefore the
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inverse velocity k̇0 represents ∂ωk computed at Ω = 0. This is also consistent with the fact that
the carrier wavenumber k0 symbolizes k(ω0). It oftentimes comes to happen that k̈0∂2

t E0 and
all the higher-derivative terms in (5) are negligible compared with the first-derivative terms.
As a consequence Eq. (5) approaches

∂E0

∂z
+

1

vg

∂E0

∂t
= 0. (6)

The group velocity

vg =
1

k̇0
=

c

n0 + ω0ṅ0
, (7)

where n0 represents the real part of the refractive index, and c denotes the speed of light in
vacuum. We point out that a negligible absorption at ω0 is taken for granted, concluding that
k̇0 may be set as purely real. In this approximation, the evolution of the the electric field is
simply

E(z, t) = Re E0(0, t − z/vg) exp
[

−iω0(t − z/vp) + iϕ0

]

(8)

Accordingly the pulse envelope propagates without change of shape or amplitude at the
group velocity vg. However, the phase of the field evolves with a velocity vp = ω0/k0 = c/n0.
In dispersive media, the group velocity and the phase velocity are clearly dissimilar. If
otherwise we neglect dispersion by setting ṅ0 = 0, it is finally inferred from (7) that both
velocities coindice.

2.2 Few-cycle wave fields

For a short pulse of a duration much longer than an optical cycle, its envelope E0 provides
efficiently the time evolution of the wave field that is necessary to include in the vast majority
of time-resolved electromagnetic phenomena. If, however, the pulse length is of the order
of a single cycle, the phase variation of the wave becomes relevant upon the appropriate
description of the electric field. The issue of the absolute phase of few-cycle light pulses
was first addressed by Xu et al. (17). Their experiments revealed that the position of the
carrier relative to the envelope is generally rapidly varying in the pulse train emitted from a
mode-locked laser oscillator.
To understand the origin of this carrier phase shift, it is convenient to introduce a coordinate
system that is moving with the pulse at the group velocity. Thus we follow the pulse evolution
in this system. For that purpose we perform the coordinate transformation t′ = t − z/vg and
z′ = z. Equation (8) in this moving frame of reference can then be rewritten as

E(z′, t′) = Re E0(0, t′) exp
[

−iω0t′ + iϕ(z′)
]

(9)

where the phase

ϕ(z′) = ϕ0 + ω0

(

1

vp
− 1

vg

)

z′ = ϕ0 −
ω2

0ṅ0

c
z′. (10)

Note that ϕ(z′) determines the position of the carrier relative to the envelope.
In Fig. 1 we represent the pulse evolution in the time domain at different planes z′ of an
ultrashort wave field propagating in sapphire. The numerical simulations make use of a
bandlimited signal S(Ω′) = 1 − 2Ω′2 + Ω′4 for |Ω′| < 1, where Ω′ = (ω − ω0)/Δ0. The
mean frequency is ω0 = 3.14 fs−1 and the width of the spectral window is 0.8ω0, i.e.
Δ0 = 0.4ω0, providing a 4.8 fs (FWHM) transform-limited optical pulse. By inspecting ϕ(z′)
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z’ = 5 µm z’ = 10 µm

Δϕ 2Δϕ

Fig. 1. Plane wave propagation in sapphire. The velocities vp = 0.566 c and vg = 0.556 c are
estimated for a wavelength λ0 = 600 nm in vacuum. The envelope is shown in dashed line.

we can identify the difference between the phase delay z′/vp and the group delay z′/vg as
the reason that the carrier slides under the envelope as the pulse propagates in the dispersive
medium. With regard to this matter it is common to introduce the dephasing length Ld as
the propagation length over which the carrier is offset by a phase of π with respect to the
envelope. Since we express the change in the carrier phase shift upon passage through a
medium of length L as Δϕ = −

(

ω2
0ṅ0/c

)

L, we finally obtain

Ld =
πc/ω2

0

|ṅ0|
=

1

2

∣

∣

∣

∣

∂n

∂λ

∣

∣

∣

∣

−1

λ0

. (11)

In Eq. (11), λ0 represents the carrier wavelength as measured in vacuum. The dephasing
length can be as short as 10 μm in sapphire, as illustrated in Fig. 1. Now it becomes obvious
that the difference between phase and group delay in transparent optical materials originates
from the wavelength dependence of the (real) refractive index.

2.3 Pulse train spectrum in a mode-locked laser

Considering a single pulse, for instance at z = 0, it will have an amplitude spectrum S(ω)
that is centered at the optical frequency ω0 of its carrier. From a mode-lock laser, however, we
would obtain a train of pulses separated by a fixed interval T = Lc/vg,

F(t) = ∑
m

E(mLc, t), (12)

where Lc is the round-trip length of the laser cavity. For this case, the spectrum can easily be
obtained by a Fourier series expansion,

F̃(ω) = S(ω)∑
m

exp [imΔϕ(Lc)− imωT] = S(ω)
2π

T ∑
m

δ (ω − mωr − ωCE) . (13)

This gives a comb of regularly spaced frequencies, where the comb spacing ωr = 2π/T is
inversely proportional to the time between pulses (18). Additionally we have considered that
the CE phase is evolving with space, such that from pulse to pulse emitted by a mode-locked
laser there is a phase increment of Δϕ(Lc) = ϕ(Lc) − ϕ0. Therefore, the carrier-wave is
different for successive pulses and repeats itself with the frequency

ωCE =
Δϕ(Lc)

2π
ωr, (14)
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Fig. 2. Illustration of the time-frequency correspondence for a pulse train with evolving
carrier-envelope phase.

that is called the carrier-envelope frequency (19). Then in the spectral domain, a rigid shift
ωCE = Δϕ(Lc)/T will occur for the frequencies of the comb lines, as shown in Figure 2.
Changing the linear or nonlinear contributions to the round-trip phase shift Δϕ(Lc) inside the
laser cavity changes the CE frequency.

2.4 Nonlinear effects

In mode-locked lasers, nonlinear effects also give rise to a relative phase shift between the
carrier and the envelope. This is not surprising as there is a nonlinear contribution to the
phase shift of the intracavity pulse as it passes through the gain crystal. The most remarkable
effect in femtosecond lasers is the third order Kerr nonlinearity responsible for self-phase
modulation, which produces a significant spectral broadening. The Kerr effect leads to a
self-phase shift of the carrier, similar to the soliton self-phase shift in fiber optics (20). The
Kerr effect also induces a distortion of the envelope called self-steepening causing a group
delay of the envelope with respect to the underlying carrier.
One of the first experiments to measure carrier-envelope phase evolution observed its
intensity dependence (17). Further experiments showed that for shorter pulses, Δϕ was
much less sensitive to changes in the pulse intensity (21). In order to give a response to this
effect we may consider that the group velocity also depends on intensity. In fact the group
velocity changes twice as fast with intensity as does the phase velocity (20). Novel theoretical
treatment considered also the fact that dispersion and nonlinearity in the laser are not constant
as a function of position in the cavity (22). At this stage, a number of phenomena have been
identified in theory and experiment, although some aspects of the connection between them
remain unclear.
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We point out that the intensity dependence of the CE phase provides a parameter by which
the carrier-envelope phase can be controlled. However, it means that the amplitude noise will
be converted to phase noise.

3. CE phase of Gaussian laser beams

Since many lasers produce output beams in which the transverse intensity distribution is
approximately Gaussian, there has been an appreciable interest in studying the properties of
Gaussian beams. The exact Gaussian-like solution to the paraxial wave equation is introduced
in this section. Thereafter we obtain analytical expressions of the Gouy phase shift and the
CE phase shift of Gaussian beams. Finally we demonstrate that CE phase stationarity, i.e.
conservation of the CE phase along with the z coordinate, requires a given spatial dispersion
of the wave field to balance dispersion of the dielectric host medium.

3.1 The Gouy phase shift

The so-called Gouy phase is the subject of continuous investigation (23–26) since in 1890 Louis
G. Gouy published a celebrated paper (27) on the longitudinal phase delay of spherical beams.
Its relevance is a great deal more than purely academic. For instance, the superluminal phase
velocity found in the focal region of paraxial Gaussian beams may be understood in terms of
this phase anomaly (7). More recently, direct observation of Gouy phases has attracted the
interest in the framework of single-cycle focused beams (28–32). In this context, the Gouy
phase shift results of great importance for a wide variety of phenomena and applications
involving high field physics and extreme nonlinear optics.
It is shown that an exact solution to the paraxial wave equation

∂2ψ

∂x2
+

∂2ψ

∂y2
+ 2ik(ω)

∂ψ

∂z
= 0, (15)

for a monochromatic beam of Gaussian cross section traveling in the +z direction and centered
on the z axis is given by (33)

ψ(�R, ω) = S(ω)
zR

iq(z, ω)
exp

[

ik(ω)
x2 + y2

2q(z, ω)

]

(16)

where �R = (x, y, z), (x,y being Cartesian coordinates in a plane perpendicular to the beam

axis), S(ω) = ψ(�0, ω) is the in-focus time-domain spectrum of the field, and q(z, ω) = z −
izR(ω) stands for the complex radius of curvature. The parameter zR(ω) = k(ω)s2/2 is called
the Rayleigh range, which depends on the spot size s at the beam waist. In fact, this term
is commonly used to describe the distance that a collimated beam propagates from its waist
(z = 0) before it begins to diverge significantly.
The monochromatic wave field of a Gaussian beam is completely described by including the
phase-only term exp (ikz − iωt). In the vicinity of the beam axis, (x, y) = (0, 0), the phase front
is approximately flat and the Gaussian beam behaves essentially like a plane wave. However,
the evolution of the phase front along with the propagation distance z ceases to be linear. In
particular, the phase shift of the complex wave field stored at different transverse planes from
the beam waist is φ = kz − φG, where

φG(z) = arctan

(

z

zR

)

(17)
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is the Gouy phase. Therefore, the wave accumulates a whole phase of π rads derived from
the term φG, which is produced for the most part near the beam waist.
Let us provide an intuitive explanation of the physical origin of the Gouy phase shift, which
is based on the transverse spatial confinement of the Gaussian laser beam. Through the
uncertainty principle, localization of the wave field introduces a spread in the transverse
momenta and hence a shift in the expectation value of the axial propagation constant (25).
At this stage we consider a smooth variation of φG along the optical axis, which allows us
to substitute φ by its first-order series expansion [k − ∂zφG(z0)] z − φG(z0) + z0∂zφG(z0) in
the neighborhood of a given point z0. Within a short interval around z0, the wave front
propagates with a spatial frequency k − ∂zφG(z0). Accordingly we conveniently introduce
the local wavenumber kz(z, ω) = ∂zφ. For a Gaussian beam, the local wavenumber is simply

kz = k − zR

z2 + z2
R

. (18)

Note that kz approaches the wavenumber k associated with a plane wave in the limit z → ±∞.
In the near field, however, kz is lower than k and it reaches a minimum value at the beam waist.

3.2 The CE phase shift

We will show that the Gouy phase dispersion is determinant in the waveform of broadband
optical pulses (7). This is commonly parametrized by the CE phase. For that purpose, let us
consider a pulsed Gaussian beam once again. As mentioned above, the electromagnetic field
near the beam axis evolves like a plane wave whose wave number kz given in (18) will change
locally. In this context, the temporal evolution of the wave field is fundamentally given by
Eq. (9). This is a particularly accurate statement within the Rayleigh range of highly-confined
Gaussian beams, which is based on the short-path propagation in the region of interest.
For non-uniform beams, the on-axis pulse propagation evolves at a local phase velocity

vp(z) = ω0/kz0 and group velocity vg(z) = k̇−1
z0 . Particularly, the phase velocity of the

Gaussian beam in terms of the normalized axial coordinate ζ = z/zR0 is

vp = c

[

np0 −
1

L0 (1 + ζ2)

]−1

, (19)

where zR0 is the Rayleigh range at the carrier frequency ω0, and the Gaussian length L =
kzR/n. Note that L0 = k2

0s2
0/2np0 also gives the area (which is conveniently normalized) of

the beam waist at ω0. On the other hand, the group velocity yields

vg = c

[

ng0 +
F0

(

1 − ζ2
)

L0 (1 + ζ2)
2

]−1

, (20)

where ng = ck̇ is the group index, and F = ωżR/zR. In order to understand the
significance of F , let us conceive a Gaussian beam exhibiting an invariant F within a given
spectral band around ω0. This case would consider a dispersive Rayleigh range of the

form zR = zR0 (ω/ω0)
F , a model employed elsewhere (32). Therefore, F parametrizes the

longitudinal dispersion of the Gaussian beam. This can be deduced also from the relationship
F = ωL̇/L− 1.
In Fig. 3(a) we compare graphically the phase velocity and the group velocity of pulsed
Gaussian beams with L0 = 34 and different values of the parameter F0, which are
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Fig. 3. Phase velocity (dashed line) and group velocity (solid lines) represented in (a) for
pulsed Gaussian beams of different F0 (L0 = 34) propagating in fused silica at
ω0 = 3.14 fs−1. In (b) we also show the CE phase evolution along the optical axis.

propagating in fused silica. At the mean frequency ω0 = 3.14 fs−1 we have np0 = 1.458
and ng0 = 1.478. As expected, isodiffracting Gaussian beams evidencing an invariant
Rayleigh range (F = 0) exhibit a constant group velocity along the optical axis. Of particular
importance is the case F0 = −1.685 for which the phase velocity and the group velocity of
the pulsed Gaussian beam matches at the focal point. At the boundaries of the focal volume,
|ζ| = 1, a significant mismatch of velocities is clear, which is quantitatively equivalent for
different values of F0.
In order to estimate the CE phase we will not employ Eq. (10) straightforwardly. For
convenience we start by considering the fact that

∂z ϕ(z) = ω0

(

1

vp
− 1

vg

)

, (21)

which is a magnitude that is accurate at least locally. Therefore, the CE phase of the Gaussian
laser beam may be computed as

ϕ(ζ) = L0

∫ ζ

0

(

c

vp
− c

vg

)

dζ = − arctan(ζ)−L0Δn0ζ −F0
ζ

ζ2 + 1
, (22)

assuming that ϕ = 0 at the beam waist. Here Δn = ng − n is the difference of group index
and refractive index in the dispersive medium. The CE phase will accumulate the difference
shown by the phase shift of the carrier and the phase delay of the wave packet as the pulsed
Gaussian beam propagates along the focal region. As a result, the CE phase displays the
mismatch growth of the phase and group velocities, as shown in Fig. 3(b). Note that, within
the Rayleigh range, the absolute value of the CE phase reaches a minimum for F0 = −1.685.

3.3 Stationarity of the CE phase

Sensitivity to CE phase is observed for instance in photoionization of atoms (34) and in
photoelectron acceleration at metal surfaces mediated by surface plasmon polaritons (35; 36).
For those experiments, it may result of convenience to neutralize the CE phase shift of
the pulsed laser beam as it propagates in the near field. Stationarity of the CE phase, i.e.
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conservation of ϕ along with the z coordinate, entails a spatiotemporal evolution of the wave
field (9) expressed in terms of an spatially-invariant waveform (irrespective of its amplitude).
In free space, a rigorous stationary CE phase has been reported solely for X-waves (37).
However, finite-energy focal pulses demonstrate a variation of ϕ upon z due to material
dispersion and, importantly, the presence of the Gouy phase. At most, a stationary CE phase
may be achieved in a small region around a point of interest, which in our case represents the
centre of the waist plane. Thus we reach the stationarity condition ∂z ϕ = 0 at z = 0.
From the discussion given above we derive that CE phase stationarity is attained when
the phase velocity matches the group velocity in the region of interest. In this case, the
spatial-temporal dynamics of the electric field given in (9) in the vicinity of the beam waist
may be given in terms of a single variable of the form t − z/v. For a pulsed Gaussian beam,
the condition of velocity matching at focus, that is vp = vg at ζ = 0, is satisfied if

F0 = − (1 + L0Δn0) . (23)

Equivalently Eq. (23) reads L̇0 = −L2
0Δn0/ω0.

We conclude that CE phase stationarity requires a given spatial dispersion of the wavefield,
represented by the parameter F , in order to balance dispersion of the dielectric material Δn0.
In particular, Δn = 0 in vacuum and therefore F = −1, independently of the beam length.
From the numerical simulations shown in Fig. 3 we may also employ the values n0 = 1.458
and ng0 = 1.478 for fused silica at the frequency ω0 = 3.14 fs−1, and L0 = 34 for the pulsed
Gaussian beam. In this case Eq. (23) gives F0 = −1.685. In the vicinity of the beam waist
Eq. (22) proves stationarity features at the origin, that is ∂ζ ϕ = 0, as shown in Fig. 3(b).
Moreover, Eq. (23) leads to ultraflattened curves of the CE phase evolution in the focal region
since, in fact, ζ = 0 is a saddle point where ∂2

ζ φ0 = 0.

4. Managing the CE offset

Provided that propagation of ultrashort laser beams is produced with a CE phase commonly
running within the Rayleigh range, in this section we analyze a procedure to induce a
controlled spatial dispersion leading to keep the CE phase stationary. In particular we exploit
dispersive imaging assisted by zone plates to gain control over the waveforms of Gaussian
laser beams. Using the ABCD matrix formalism, we disclose fundamental attributes of a
dispersive beam expander capable of adjusting conveniently the spatial dispersion of the
collimated input beam. Some optical arrangements composed of hybrid diffractive-refractive
lenses are proposed.

4.1 Focusing pulses with stationary CE phase

We consider a collimated Gaussian beam propagating in vacuum, which has an input
Rayleigh range zRin = ωs2

in/2c. This pulsed laser beam impinges over an objective lens in
order to produce the required wave field embedded in a dispersive medium of refractive index
np. The Rayleigh range of the focused field is denoted by zR. For convenience we assume a
nondispersive infinity-corrected microscope objective of focal length f . We also ignore beam
truncation. Under the Debye approximation, the width of the Gaussian beam at the back focal
plane is (38)

s =
2 f

ksin
, (24)

provided that zR ≪ f . In this model, the focused laser beam is free of focal shifts induced
by either a low Fresnel number or longitudinal chromatic aberrations. As a consequence,
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the Gaussian lengths of the input (Lin) and focused (L) beams satisfies LinL = ω2 f 2/c2np.
Moreover, on-axis dispersion of the fields obeys Fin +F = −Δn/np.
Equation (23) provides the condition that the focused pulse must fulfil in order to keep its
CE phase stationary. This equation leads to a new constraint for the input Gaussian beam.
Therefore we recast Eq. (23) showing explicitly the specifications for the input pulse, that
yields

Fin0 = 1 +
Δn0

np0

(

ω2
0 f 2

c2Lin0
− 1

)

. (25)

As a consequence, dispersive tailoring of the laser beam reaching Fin0 of Eq. (25) leads to
CE-phase stationarity near the beam waist of the converging field. Note that if focusing is
performed in vacuum, that is assuming Δn0 = 0, then Fin = 1. In this case the input pulsed
field will have a Gaussian width that is independent upon the frequency. In fact, this is a
well-established assumption in numerous studies (33).
When focusing is carried out in dispersive bulk media, apparently, Eq. (25) is not generally
satisfied by the input laser beam. In principle, modification of Lin0 and f by using
beam expanders and different microscope objectives, respectively, may result of practical
convenience. However, these laser-beam tunings are produced at the cost of resizing the
beam spot at the region of interest. This is evident if we express Eq. (25) as Fin0 = 1 +

Δn0

(

L0 − n−1
p0

)

. In a majority of applications this is undesirable.

We might conserve typical lengths of inputs and focused beams at ω0 if, alternatively, spatial
dispersion of the laser pulse is altered by modifying Fin0. In this case we switch the group
velocity of the focused pulse at its waist in order to match a given phase velocity. Next we
propose an optical arrangement specifically designed to convert a given collimated pulsed
beam, which has a Gaussian length L̃in0 and a dispersion parameter F̃in0 that violates Eq. (25),
into an ultrashort collimated laser beam of the same length Lin0 = L̃in0 but a different
parameter Fin0 such that Eq. (25) is satisfied. Thus it conforms a previous step to the focusing
action, which will be performed by the microscope objective.
First we may give general features of the required system using the ABCD matrix formalism.
A perfect replica (image) of the Gaussian beam is generated if we impose B = 0 and C = 0,
simultaneously. This afocal system provides a lateral magnification A = D−1 of the image.
Therefore the relationship zRin = A2z̃Rin is inferred. Moreover, since L̃in0 = Lin0 we derive
that A2

0 = 1. In other words, the beam expansion will be unitary at ω0. Also it may be obtained
that

Fin0 = F̃in0 +
2ω0 Ȧ0

A0
. (26)

As a consequence, dispersion of the matrix element A is required in order to change the spatial
dispersion properties of the Gaussian beam, thus switching F̃in0 for Fin0.
The dispersive nature of A also has certain implications with regard to the temporal response
of the ABCD system. In particular, the wave field spectrum of the input laser beam will be
altered at the output plane of the optical system, since it will be multiplied by the spectral
modifier A−1. Under strong corrections carried out at this preprocessing stage, the spectrum
of the collimated laser beam might be greatly distorted (39). Ultimately, a spectral shift of the
mean (carrier) frequency would be induced, thus urging to recalculate Eq. (25). However, this
effect will be neglected in this chapter.
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Fig. 4. Schematic diagram of the focusing setup: L1 and L2 are components of the diffractive
doublet. Also L3 represents a refractive lens, and MO is the microscope objective.

4.2 Diffraction-induced manipulation of CE dephasing

We propose the thin-lens triplet depicted in Fig. 4 that will perform the necessary
spatio-spectral processing of the pulsed Gaussian beam in order to keep stationary its CE
shift near the beam waist. This is inspired in the setup shown in (9). Firstly we introduce a
doublet composed of kinoform-type zone plates, which are named L1 and L2 in Fig. 4, whose
dispersive focal lengths are f1 = f10ω/ω0 and f2 = f20ω/ω0. The diffractive doublet is
followed by a nondispersive refractive lens (L3) of focal length f3 = f30. Note that phase-only
diffractive lenses may have an optical efficiency of nearly 100% at the carrier frequency ω0.
Neglecting losses induced for instance by material absorption and optical reflections, the
kinoform-lens efficiency may be estimated as (40)

η(ω) = sinc2

(

ω

ω0
− 1

)

, (27)

where sinc(x) = sin(πx)/(πx). We point out that Eq. (27) ignores chromatic dispersion in the
lens material to simplify our discussion. This assumption may be given in practice using for
instance a diffractive mirror (41). Therefore, the strength of the response η decreases severely
at frequencies different of ω0 due to the appearance of undesirable diffraction orders. This
is a relevant effect for subcycle pulses, however it may be negligible for ultrashort beams
of sufficiently narrow power spectrum as considered below. Interestingly, diffractive optical
elements with high-efficiency responses, which are significantly flatter than η given in Eq. (27)
and spanning the visible wavelength range, have been reported in (42) using twisted nematic
liquid crystals.
We point out that the ABCD elements of the optical triplet are necessarily dispersive in virtue
of the ω-dependent character of f1 and f2. The length of the diffractive doublet is d1, and the
coupling distance from L2 to L3 is d2. Furthermore, we assume that L1 is placed at the waist
plane of the input Gaussian beam, whose Rayleigh range is z̃Rin. After propagating through
the triplet, the output field is examined at a distance

d3 =
[d1d2 − (d1 + d2) f2] f3

d1(d2 − f2 − f3) + f2( f3 − d2)
(28)

from L3 where the waist image is found (B = 0). Therefore the Rayleigh range turns to
be zRin = −Im{qin}. For completeness, let us remind the well-known matrix equation for
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Gaussian beams

qin =
Aq̃in + B

Cq̃in + D
, (29)

being q̃in = −iz̃Rin the complex radius of the input laser beam at the plane of L1.
Distance d3 given in Eq. (28) depends upon ω. As a consequence, we have control over the
waist location of the imaged Gaussian beam for a single frequency. This is of concern when
placing the microscope objective. Let us impose d3 at ω = ω0 to be the distance from L3 to
the objective lens (see Fig. 4). The longitudinal chromatic dispersion of the waist plane leads
to a dispersive spherical wavefront at the entrance plane of the objective. Ultimately this fact
yields a longitudinal chromatic aberration of the broadband focused field. However it may
be neglected upon evaluation of the Gaussian Fresnel number NG = Re{qin}/zRin (38) of the
beam impinging onto the objective lens. Specifically |NG| ≪ 1 should be satisfied.
Furthermore, a parametric solution satisfying B = 0 and C = 0, simultaneously, cannot be
found. A sufficient condition may be established by imposing C0 = 0 and Ċ0 = 0 so that C
vanishes in the vicinity of the carrier frequency. Such a tradeoff is given when

f3 = d2 +
(d1 − f10)

2

d1
, (30)

f20 = − (d1 − f10)
2

f10
. (31)

This approach suggests that afocality of the the imaging setup is not rigorous but stationary
around ω = ω0.
Finally, an axial distance d2 = f10 − d1 yields an unitary magnification A0 = 1. Alternatively
we may consider that d2 = 3 f10 − d1 − 2 f 2

10/d1, which gives also a unitary magnification,
A0 = −1. In both cases, if additionally

f10 = d1

(

1 +
2

ΔFin0

)

, (32)

where the mismatching ΔFin0 = Fin0 − F̃in0, then it is found that Ȧ0 = A0ΔFin0/2ω0

as requested in (26). We conclude that the focal length of each lens composing the hybrid
diffractive-refractive triplet is determined by the parameter ΔFin0 and the positive axial
distance d1.
Note that d2 = f10 − d1 is positive if ΔFin0 > 0. In the same way d2 = 3 f10 − d1 − 2 f 2

10/d1

yields a nonnegative real value in the case ΔFin0 ≤ −4. As a consequence, our proposal
cannot be applied if −4 < ΔFin0 ≤ 0 since a negative value of the axial distance d2 is
demanded. In these cases we might consider a different arrangement: a triplet with L1 being
a nondispersive thin lens and L3 a zone plate instead. Following the analysis given above, it
can be proved that a satisfactory dispersive processing is also provided using positive values
of d1 and d2 in the interval ΔFin0 < 0.
Let us illustrate the validity of our approach by means of a numerical simulation. We
consider an isodiffracting Gaussian beam that is focused by a microscope objective lens of
f = 4 mm. In the image space, the pulsed wave field propagates in fused silica. Note that,
from a practical point of view, oil-immersion objectives are suitable to get rid of longitudinal
chromatic aberration and focal shifts. An input width sin = 0.8 mm (Lin0 = 3.5 107)
allows that aperturing might be neglected in immersion objectives of NA > 0.75. Numerical
computations are performed with the Fresnel-Kirchhoff diffraction formula. At focus we
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Fig. 5. Evolution of the wave field and envelope at different on-axis points ζ of the focal
volume. Negative values of ζ are drawn in dashed lines and positive values in solid lines.
Subfigures (a)–(b) correspond to isodiffracting Gaussian beams focused onto bulk fused
silica. Time domain is given in terms of the local time t′. In (c)–(d) we employ a procedure to
achieve stationarity of the CE phase.

employ a bandlimited signal ε of normalized amplitude spectrum 1− 2Ω′2 + Ω′4 for |Ω′| < 1.
Once again, the mean frequency is ω0 = 3.14 fs−1 and the width of the spectral window is
0.8ω0. Figures 5(a) and 5(b) show on-axis waveforms near the focal point. The field envelopes
are unaltered in spite of material dispersion. However, the carrier shifts inside the envelope
as a reply to the velocity mismatching that it is found at focus, where vp = 0.700c and
vg = 0.677c.
Insertion of the dispersive beam expander of Fig. 4 provides focal waveforms shown in
Figs. 5(c) and 5(d). We observe that CE phase is significantly stabilized around the focus,
where L0 = 34 and F0 = −1.685. In order to minimize the Fresnel number of the pulsed
beam to be focused, we have selected d1 = 200 mm leading to a unitary maginfication A0 = 1
and giving |NG| < 0.4 in our spectral window. Equations (30)–(32) yield values for the focal
distances of the triplet, f10 = 439 mm, f20 = −130 mm, and f3 = 525 mm. We also derive
the on-axis distance d2 = f10 − d1 = 239 mm. Importantly, evaluation of Eq. (28) provides
a negative axial distance d3 at the carrier ω0. This inconvenience is relieved by placing
the microscope objective immediately behind L3 (d3 = 0), as considered in the numerical
simulations. This procedure is robust since such an adjustment still maintains the value of
vg switched up to 0.700c. Inevitably a minor asymmetric pulse broadening is observable. We
point out that a relay system might be employed in cases where pulse distortions are dramatic.
Placed between the dispersive beam expander and the microscope objective, the relay system
may translate the appropriately-corrected virtual pattern of the broadband Gaussian pulse to
the entrance plane of the focusing element.
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In the numerical simulations, the contribution due to unwanted higher orders of a given
kinoform lens is neglected. Considering an input signal S like that observed at focus, the
mean efficiency of an ideal diffractive lens may be estimated as

η̄ =

1
∫

−1

|S|2ηdΩ′

1
∫

−1

|S|2dΩ′
, (33)

which theoretically reaches a value η̄ = 0.954. This fact reveals that higher-order foci
carry only 4.6% of the input intensity. Correspondingly, the spectral amplitude shaping the
transmitted beam and induced by the thin lenses may be disregarded. Finally, the spectral
modifier

√
η altering the input signal S through a kinoform zone plate would also induce a

small pulse stretching. As a consequence, the FWHM is estimated to increase from 4.8 fs up
to 4.9 fs. Again this phenomenon may be ignored.

5. Conclusions

In summary, we investigated the problem of focusing a few-cycle optical field of Gaussian
cross section in order to exhibit a stationary time-domain regime within its depth of focus.
For that purpose we established some necessary requirements to be hold by an optical setup
to drive pulsed beams with adjustable spatial dispersion. This configuration allows the group
velocity of the pulse to be tuned ad libitum keeping the phase velocity unaltered. Therefore
dispersive imaging opens the door to fine-tune the electric field of ultrashort laser beams
(43; 44). Ultimately the group velocity is regulated at the focal point in order to match the
prescribed phase velocity.
We also set forth a dispersive beam expander consisting of a hybrid diffractive-refractive
triplet, which is capable of preparing the spatiotemporal response of ultrashort Gaussian
pulses to maintain a stationary CE phase along with the optical axis when it is focused within a
dispersive medium. Robustness of the optical arrangement is demonstrated upon its coupling
with immersion microscope objectives. Finally, the theoretical approach shown in this chapter
results promising but still unaccomplished since it must be ratified by experimental evidence.
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