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Abstract

One of the central challenges in the development of parametric amplifiers is the

control of the dynamic range relative to its gain and bandwidth, which typically limits

quantum limited amplification to signals which contain only a few photons per

inverse bandwidth. Here, we discuss the control of the dynamic range of Josephson

parametric amplifiers by using Josephson junction arrays. We discuss gain,

bandwidth, noise, and dynamic range properties of both a transmission line and a

lumped element based parametric amplifier. Based on these investigations we derive

useful design criteria, which may find broad application in the development of

practical parametric amplifiers.

1 Introduction

Due to the rapidly evolving field of quantum optics and information processing with su-

perconducting circuits the interest in low-noise amplifiers has dramatically increased in

the past five years and has lead to a body of dedicated research on Josephson junction

based amplifiers [–]. The most successful quantum limited detectors which have so far

been realized in the microwave frequency range are based on the principle of parametric

amplification [–]. Josephson parametric amplifiers (JPAs) have not only been used to

generate squeezed radiation [, , –], but moreover enabled the realization of quan-

tum feedback and post-selection based experiments [–], the efficient displacement

measurement of nanomechanical oscillators [] and the exploration of higher order pho-

ton field correlations [, ].

While JPAs have been demonstrated to operate close to the quantum limit, their perfor-

mance is to date mostly limited by their relatively small dynamic range, i.e. the saturation

of the gain for large input signals. Here, we discuss the control of the dynamic range by

making use of Josephson junctions arrays in the parametric amplifier circuit, which we

have already employed in recent experiments [, ]. After reviewing the principles of

parametric amplification we discuss bandwidth and noise constraints in dependence on

the circuit design, based onwhich we derive simple strategies for optimized circuit design.

2 Principles of parametric amplification

2.1 Parametric processes at microwave frequencies

In quantum optics the word parametric is used for processes in which a nonlinear re-

fractive medium is employed for mixing different frequency components of light. Such

processes are parametric in the sense that a coherent pump field, applied to a nonlinear

© 2014 Eichler and Wallraff; licensee Springer on behalf of EPJ. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

http://www.epjquantumtechnology.com/content/1/1/2
mailto:eichlerc@phys.ethz.ch
http://creativecommons.org/licenses/by/2.0


Eichler and Wallraff EPJ Quantum Technology 2014, 1:2 Page 2 of 19

http://www.epjquantumtechnology.com/content/1/1/2

medium, modulates its refractive index, which appears as a parameter in a semi-classical

treatement. This time-varying parameter is affecting modes with frequencies detuned

from the frequency of the pump field and can stimulate their population with photons.

The energy for creating these photons is provided by the pump field.

The refractive index in optics is equivalent to the impedance of electrical circuits. In

order to realize parametric processes at microwave frequencies we therefore modulate

an effective impedance. This is achieved by varying the parameters of either a capaci-

tive or an inductive element in time. Although there have been early proposals for fast

time-varying capacitances [], it now is considered to be more convenient to make use

of dissipationless Josephson junctions for this purpose. In a regime in which the current I

flowing through a Josephson junction is much smaller than its critical current IC ≡ eEJ/�

its associated inductance is approximately L ≈ LJ ( +


(I(t)/IC)

). Applying an AC current

through the junction using appropriate microwave drive fields therefore leads to the de-

sired time-varying impedance. Because of the proportionality of the inductance L to the

square of the current I(t), such a drive results in a four-wave mixing process [].

The effective impedance can alternatively be modulated by varying the magnetic flux

threading a superconducting quantum interference device (SQUID) loop [] such that

the effective inductance is approximately modulated proportionally to the AC current I(t)

flowing in the loop, L ≈ LJ ( + I(t)/I). The quantity I in this expression depends on the

DC flux bias point of the SQUID loop. Since the relation between current and inductance

is in this case linear, the magnetic flux drive results in a three-wave mixing process [].

In order to enhance parametric amplification in a well-controlled frequency band while

suppressing it for frequencies out of this band, the modulated Josephson inductance is

frequently integrated into a microwave frequency resonator. This is the simplest way to

control the band in which parametric amplification occurs. A number of variations of this

basic idea are now explored. The circuit design has recently been modified to achieve a

spatial separation of signal and idler modes [, , –] and to build traveling wave

amplifiers, in which a field is amplified while propagating in forward direction coaxially

with a pump field [, ]. Various drive mechanisms ranging from single and double

pumps [] to magnetic flux drives [, , ] have been explored. Being aware of this

variety of possible approaches, we focus here on a single mode (degenerate) parametric

amplifier driven with one pump tone close to its resonance frequency.

2.2 Circuit QED implementation of a parametric amplifier

The JPA essentially is a weakly nonlinear oscillator, in which the nonlinearity is provided

by Josephon tunnel junctions. In practice, this is typically realized either as a transmission

line resonator shunted by a SQUID [, , ], see Figure (a), or as a lumped element

nonlinear oscillator []. The use of a SQUID instead of single tunnel junction guarantees

tunability of the resonance frequency. Since resonator-based parametric amplifiers pro-

vide amplification in a narrow band only, tunability is highly desirable to match the band

of amplification with the frequency of the signal to be amplified.

The relevant part of the Hamiltonian which describes the parametric amplifier consid-

ered here can be written as

HJPA = �ω̃A
†A + �

K



(

A†
)
A, ()
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Figure 1 Schematic and operation of the parametric amplifier. (a) Circuit diagram of a transmission line

resonator based parametric amplifier. The resonator is coupled with capacitance Cκ to a transmission line

where input and output modes are spatially separated using a circulator. A 20 dB directional coupler between

the λ/4-resonator and the circulator is used to apply the pump field required for modulating the SQUID

inductance. The second port of the directional coupler can be used to interferometrically cancel out the

pump tone reflected from the sample. (b) Phase of the reflected probe signal vs. drive power for two

characteristic drive frequencies below (blue) and above (red) the bifurcation threshold. (c) Illustration of the

nonlinear oscillator response in the quadrature plane. The blue circle represents various input fields αin close

to the one indicated by the gray circle in (b). Due to the nonlinear response of the resonator they are

transformed into output fields αout indicated by the red ellipse.

where A labels the annihilation operator of the intra-resonator field. Expressions for the

resonance frequency ω̃/π and the effective Kerr nonlinearity K are derived in Section 

based on the full circuit model. In the following section we analytically study the dynam-

ics of this system using the input-output formalism. Before presenting the mathematical

derivations, we qualitatively describe different dynamical regimes of this nonlinear oscil-

lator and explain the mechanism which leads to amplification.

If we assume for themoment that the JPA has no internal losses, all the incident power is

reflected from the resonator and the classical response (i.e. reflection coefficient) is com-

pletely specified by the phase ϕ of the reflected field. In contrast to a linear system, where ϕ

only depends on the frequencyω/π , it also depends on the power of the probe field in the

case of a nonlinear oscillator. In Figure (b), the theoretically expected value of ϕ is plot-

ted as a function of the probe amplitude for two characteristic drive frequencies. While

the phase is constant for low drive powers (quasi-linear response), the phase changes sig-

nificantly for increased drive power. Depending on the probe frequency we either find a

bistable regime where two stable solutions exist [, ] or a regime where the phase has a

unique solution (red and blue data sets in Figure (b)). In both cases the phase significantly

depends on the input power. The bistable response can for example be used to realize a

bifurcation amplifier [, ] and for nonlinear dispersive readout [], which has been

intensely studied in the context of circuit QED.

Since we are particularly interested in linear amplification the following discussion is

focused on the regime, in which the response has a unique solution (blue data set). The

mechanism of amplification can be understood qualitatively in the following way. If we

http://www.epjquantumtechnology.com/content/1/1/2


Eichler and Wallraff EPJ Quantum Technology 2014, 1:2 Page 4 of 19

http://www.epjquantumtechnology.com/content/1/1/2

Figure 2 Input-output model. (a) Schematic of the input-output model used for calculating the response

of the parametric amplifier in the presence of additional loss modes. (b) Normalized pump field photon

number n in the resonator as a function of reduced pump frequency δ for effective drive strengths

ξ /ξcrit = 0.01, 0.5, 1, 2, where ξcrit = –1/
√
27. (c) Absolute value of the reflection coefficient |Ŵ| for different

coupling ratios κ/(κ + γ ) = 1, 0.8, 0.5.

imagine that the device is constantly driven at a frequency and power at which the re-

flected phase ϕ depends sensitively on power (see gray circle in Figure (b)), the system

will strongly react to small perturbations. Such perturbations, which could be caused by

an additional small signal field for example, are therefore translated into a large change of

the output field.

We illustrate this process leading to amplification by plotting the resonator response

for input fields αin with slightly varying amplitude and phase. In Figure (c) we indicate

the input fields by a blue circle around the mean value (arrow). The small differences in

amplitude of the input field translate into large changes in ϕ of the output field αout (red

ellipse). If we interpret the arrow in Figure (c) as a constant pump field and its difference

to the points on the blue circle as an additional signal, the signal is either amplified or

deamplified depending on its phase relative to the pump.

The mechanism of amplification can thus be understood intuitively by considering the

nonlinear response to a monochromatic drive field. In order to characterize the exact be-

havior of input fields with finite bandwidth we analyze the response in more detail below.

3 Input-output relations for the parametric amplifier

3.1 Classical nonlinear response

Here, we employ the input-output formalism [, ] to calculate the nonlinear resonator

response discussed qualitatively in the previous section. The derivation presented here

is inspired by Ref. []. A schematic of the input-output model is shown in Figure . The

nonlinear resonator is coupled with rate κ to a transmission line, through which the pump

and signal fields propagate. Based on this model and the Hamiltonian in Eq. () we obtain

the following equation of motion for the intra-resonator field

Ȧ = –iω̃A – iKA†AA –
κ + γ


A +

√
κAin(t) +

√
γ bin(t). ()

http://www.epjquantumtechnology.com/content/1/1/2
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In addition to the coupling to transmission line modes Ain(t) with rate κ we account for

potential radiation loss mechanisms by introducing the coupling to modes bin(t) with loss

rate γ , compare Figure (a). A boundary condition equivalent to

Aout(t) =
√

κA(t) –Ain(t), ()

also holds for the loss modes. When operating the device as a parametric amplifier, the

input field Ain is typically a sum of a strong coherent pump field and an additional weak

signal field. Since this signal carries at least the vacuum noise, it is treated as a quantum

field. In this formalism this particular situation is accounted for by decomposing each field

mode into a sum of a classical part and a quantum part

Ain(t) =
(

ain(t) + αin

)

e–iωpt ,

Aout(t) =
(

aout(t) + αout

)

e–iωpt , ()

A(t) =
(

a(t) + α
)

e–iωpt ,

where α, αin, αout represent the classical parts of the field which are associated with the

pump, while a, ain, aout account for the quantum signal fields. Since all α’s are complex

numbers the modes a satisfy the same bosonic commutation relations as modes A do. By

multiplying the fieldmodes defined in Eq. () with the additional exponential factor e–iωpt ,

one works in a frame rotating at the pump frequency ωp. The strategy is to first solve the

classical response for the pump field α exactly and then linearize the equation of motion

for the weak quantum field a in the presence of the pump. Finally, we derive a scattering

relation between input modes ain and reflected modes aout.

The steady state solution for the coherent pump field is determined by

(

i(ω̃ –ωp) +
κ + γ



)

α + iKαα∗ =
√

καin, ()

which follows immediately by substituting Eq. () into Eq. () and collecting only the c-

number terms. Bymultiplying both sides with their complex conjugate we get to the equa-

tion

κ

(κ + γ )
|αin| =

((

ωp – ω̃

κ + γ

)

+




)

|α| –
(ωp – ω̃)K

(κ + γ )
|α| +

(

K

κ + γ

)

|α|, ()

which determines the average number of pump photons |α| in the resonator. Eq. () re-

duces to

 =

(

δ +




)

n – δξn + ξ n, ()

by defining the scale invariant quantities

δ ≡
ωp – ω̃

κ + γ
, α̃in ≡

√
καin

κ + γ
, ξ ≡

|α̃in|K
κ + γ

, n≡
|α|
|α̃in|

. ()

δ is the detuning between pump and resonator frequency in units of the total resonator

linewidth, α̃in is the dimensionless drive amplitude, and ξ is the product of drive power

http://www.epjquantumtechnology.com/content/1/1/2
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and nonlinearity, also expressed in dimensionless units. Finally, n is the mean number

of pump photons in the resonator relative to the incident pump power. As an important

consequence, we notice from Eq. () that only the product of drive power and nonlinearity

determines the dynamics but not each quantity itself. Therefore, a small nonlinearity can

at least in principle be compensated by increasing the drive power. Properties such as the

gain-bandwidth product are therefore independent of the strength of the nonlinearity as

long as the pump power is much larger than the power of amplified fluctuations. Further-

more, the solutions of Eq. () for negative ξ values are identical to those for positive ξ up

to a sign change in δ. Since ξ is negative for the Josephson parametric amplifier, we focus

on this particular case.

Equation () is a cubic equation in n and can therefore be solved analytically. We do not

present the lengthy solutions here explicitly, but assume in the following that we have an

explicit analytical expression for n in terms of δ and ξ . In Figure (b) we plot n for various

parameters ξ as a function of δ. At the critical value ξcrit = –/
√
 the derivative ∂n/∂δ

diverges and thus the response of the parametric amplifier becomes extremely sensitive

to small changes. For even stronger effective drive powers ξ /ξcrit >  the cubic Eq. () has

three real solutions. The solutions for the high and low photon numbers are stable, while

the intermediate one is unstable. The systembifurcates in this regime asmentioned earlier.

The critical detuning below which the system becomes bistable is δcrit = –
√
/. The crit-

ical point (ξcrit, δcrit) is the one at which both ∂δ/∂n and ∂δ/∂n vanish. In scale invariant

units the maximal value of n is , which is reached at the detuning δ = ξ .

Experimentally, the system parameters are characterized by measuring the complex re-

flection coefficient Ŵ ≡ αout/αin. Based on the input-output relation αout =
√

κα – αin and

Eq. () we evaluate this reflection coefficient as

Ŵ =
κ

κ + γ




– iδ + iξn

– . ()

In Figure (c) we plot the absolute value of the reflection coefficient at ξ = ξcrit for various

loss rates γ . For vanishing losses γ =  all the incident drive power is reflected from the

device and |Ŵ| = . Note that also in this case the resonance is clearly visible in the phase

of the reflected signal (not shown here). When the loss rate γ becomes similar to the

external coupling rate κ part of the radiation is dissipated into the loss modes. In the case

of critical coupling γ = κ all the coherent power is transmitted into the loss modes at

resonance. This is equivalent to the case of a symmetrically coupled λ/ resonator, for

which the transmission coefficient is one at resonance [].

3.2 Linearized response for weak (quantum) signal fields

Under the assumption that the photon flux associated with the signal 〈a†

inain〉 is much

smaller than the photon flux of the pumpfield |αin|, we can drop terms such asKa†aα, be-

cause they are small compared to the leading terms Ka†α and Ka|α|. By neglecting these
terms we obtain a linearized equation of motion for a in the presence of the pump field.

In order to preserve the validity of this approximation even for larger input signals, the

amplitude α of the pump field needs to be increased. Experimentally, this can be achieved

by reducing the strength of the nonlinearity K as discussed in Section . in more detail.

http://www.epjquantumtechnology.com/content/1/1/2
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Substituting Eq. () into Eq. () and keeping only terms which are linear in a one finds

ȧ(t) = i

(

ωp – ω̃ – K |α| + i
κ + γ



)

a(t) – iKαa†(t) +
√

κain(t) +
√

γ bin(t). ()

Since Eq. () is linear, we can solve it by decomposing all modes into their Fourier com-

ponents

a(t)≡
κ + γ
√
π

∫ ∞

–∞
de–i(κ+γ )ta ()

and equivalently for ain, and bin,. Note that the detuning  between signal frequencies

and the pump frequency, is expressed here in units of the linewidth κ +γ . Substituting the

Fourier decompositions into Eq. () and comparing the coefficients of different harmon-

ics, results in

 =

(

i(δ – ξn +) –




)

a – iξneiφa†

– + c̃in,, ()

where c̃in, ≡ (
√

κain, +
√

γ bin,)/(κ + γ ) is the sum of all field modes incident on the

resonator. Furthermore, in Eq. ()φ is the phase of the intra-resonator pumpfield, defined

by α = |α|eiφ . The fact that Eq. () couplesmodes a and a†

– can be interpreted as a wave

mixing process. In order to express a in terms of the input fields cin,, Eq. () is rewritten

as a matrix equation

(

c̃in,

c̃†

in,–

)

=

(

i(–δ + ξn –) + 


iξneiφ

–iξne–iφ i(δ – ξn –) + 


)(

a

a†

–

)

. ()

By inverting the matrix on the right hand side, the quantum part of the intra-resonator

field a is expressed in terms of the incoming field c̃in,

a =
i(δ – ξn –) + 



(i – λ–)(i – λ+)
c̃in, +

–iξneiφ

(i – λ–)(i – λ+)
c̃†

in,– ()

with λ± = 


±
√

(ξn) – (δ – ξn). Using Eq. (), the final transformation between input

and output modes is

aout, = gS,ain, + gI,a
†

in,– +

√

γ

κ
(gS, + )bin, +

√

γ

κ
gI,b

†

in,– (a)

γ /κ→
= gS,ain, + gI,a

†

in,–, (b)

with

gS, = – +
κ

κ + γ

i(δ – ξn –) + 


(i – λ–)(i – λ+)
()

and

gI, =
κ

κ + γ

–iξneiφ

(i – λ–)(i – λ+)
. ()

http://www.epjquantumtechnology.com/content/1/1/2
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Figure 3 Parametric amplifier gain. (a) G = |gS,|2 vs. pump tone detuning δ and drive strength ξ at zero

signal detuning  and for κ = γ . For increasing drive strength ξ the detuning for maximum gain is indicated

by the dashed white line. A cut through the data for the highest value ξ = 0.98ξcrit is shown as the solid white

line in the bottom part. (b) Gain as a function of signal detuning  for the indicated drives strengths ξ /ξcrit
and optimal pump detuning. The exact gain curves (solid lines) are well approximated by Lorentzian lines

(black dashed lines).

Eq. (b) is the central result of this calculation. The output field at detuning  from the

pump frequency is a sum of the input fields at frequencies  and – multiplied with

the signal gain factor gS, and the idler gain factor gI,, respectively. The additional noise

contributions introduced via the loss modes bin, vanish in the limit γ /κ → . In the ideal

case γ = , the coefficients gS, and gI, satisfy the relation

G ≡ |gS,| = |gI,| +  ()

and Eq. (b) is identical to a two-mode squeezing transformation [, ] with gain G.

The two-mode squeezing transformation describes a linear amplifier in its minimal form

(compare Ref. []), of which we discuss characteristic properties in the following section.

3.3 Gain, bandwidth, noise and dynamic range

For simplicity we consider the case of no losses γ = , for which the parametric amplifier

response is described by Eq. (b). An incoming signal at detuning  is thus amplified by

the power gain G = |gS,| and mixed with the frequency components at the opposite

detuning from the pump. Characteristic properties of the parametric amplifier, such as

the maximal gain and the bandwidth, are thus encoded in the quantity gS, as a function

of pump-resonator detuning δ, effective drive strength ξ and detuning between signal and

pump .

In Figure (a) we plot the gain G for zero signal detuning  =  as a function of δ

and ξ . We find that the maximal gain increases with increasing drive strength ξ while

the optimal value for δ at which this gain is reached, shifts approximately linearly with

increasing ξ . The optimal values for δ are indicated as a dashed white line in Figure (a).

Mathematically, the gain diverges when ξ approaches the critical value ξcrit. In practice,

the gain is limited to finite values due to the breakdown of the stiff pump approximation

(see discussion below).

By changing the pump parameters ξ and δ we can adjust the gainG to a desirable value,

which is typically about  dB. Note that the gain can take values smaller than one, in the

http://www.epjquantumtechnology.com/content/1/1/2
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presence of finite internal losses γ > . Once the pump parameters are fixed we character-

ize the bandwidth of the amplifier by analyzing the gain as a function of the signal detun-

ing . In Figure (b) we plot the gain as a function of  for the indicated values of ξ /ξcrit

and the corresponding optimal pump detunings δ (compare dashed white line in (a)). The

gain curves are well approximated by Lorentzian lines as indicated by the dashed black

lines in Figure (b). When the gain is increased, the band of amplification becomes nar-

rower. This is quantitatively expressed by the gain-bandwidth relation
√
GB ≈ , where B

is the detuning forwhich the gain reaches half of itsmaximal value. This gain-bandwidth

relation follows from the Lorentzian approximation of the gain curves shown as black

dashed lines in Figure (b)) and holds for gain values above a few dB. Remember that 

is defined in units of the resonator linewidth κ + γ , which means that the amplifier band-

width equals approximately the resonator linewidth divided by the square root of the gain.

When operating the JPA, we also have to understand its behavior in terms of added

noise. In the ideal case with zero loss rate (γ = ), the input-output relation of the para-

metric amplifier in Eq. (b) has theminimal form of a scatteringmode amplifier []. The

amplification process reaches the vacuum limit as long as the input modes are cooled into

the vacuum. In practice, however, the device may have finite loss γ which increases the ef-

fectively added noise by a factor of (κ + γ )/κ . This is due to the additional amplified noise,

which originates from the modes bin, and contributes to the output field aout, (compare

Eq. (a)). Another potential source of noise is related to the stability of the resonance fre-

quency of the parametric amplifier. Magnetic flux noise in the SQUID loop may lead to a

fluctuating resonance frequency and thus a fluctuating effective gain.

In the derivationmade in the previous sections we have assumed that the solution of the

classical drive field is unaffected by the presence of additional signal and quantum fluctu-

ations at the input. This is known as the stiff pump approximation [], which assumes that

the pump power at the output is equal to the pump power at the input of the JPA. This

is of course an approximation, since the pump field provides the energy which is neces-

sary for amplifying the input signal. The stiff pump approximation is valid as long as the

pump power is significantly larger than the total output power of all amplified (quantum)

signal and vacuum fields. In order to quantitatively analyze the pump depletion due to the

presence of amplified fields we add the terms iK〈a†a〉α and iK〈a〉α∗ to the left hand

side of Eq. () and solve Eq. () and Eq. () self-consistently. This mean-field approach

is similar to the one used in Ref. []. For our calculation we model the incoming signal

field, which is to be amplified, as white noise with average photon number nth per unit

time and bandwidth. Based on this model we find that the gain decreases when the signal

strength exceeds a certain value, see Figure (a). The number of input photons nth at which

this happens becomes smaller with decreasing ratio κ/|K |. This is expected because the

pump power close to the bifurcation point is proportional to κ/|K | and provides the en-

ergy required for amplification. For small values κ/|K | the gain is reduced even for nth = 

due to the amplification of vacuum fluctuations (see blue data points in Figure (a)). As a

measure of the dynamic range we specify the  dB compression point of the JPA, i.e. the

value ndB of input photons nth at which the JPA gain G decreases by  dB compared to

the stiff pump approximated gain value. As shown in Figure (b), the  dB compression

point increases proportionally to κ/|K | in the limit of ndB ≫ . The presence of constant

vacuum fluctuations leads to a gain compression by more than  dB even for nth =  when

κ/|K | becomes smaller.We can qualitatively explain this behavior by comparing the pump

http://www.epjquantumtechnology.com/content/1/1/2
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Figure 4 Dynamic range of the JPA. (a) Gain G0 as a function of the photon number nth of the input signal

field for the three indicated ratios κ/|K|. (b) 1 dB compression point as a function of κ/|K| for various gain
values G0 .

power Pp = �ωp|αin| with the power of amplified signal and vacuum fields

Pout
γ=
= �ωpκ(nth + )

∫

d

π
(G – ). ()

Making use of the gain-bandwidth relation we find the following scaling of the ratio be-

tween the two powers

Pout

Pp

∝ (nth + )
|K |
κ

√

G. ()

The results shown in Figure (b) together with Eq. () indicate that the validity of the

stiff pump approximation is essentially determined by the ratio Pout/Pp. The calculations

furthermore show that the dynamic range can be increased by reducing the ratio |K |/κ
of the JPA, which seems to be the case also for flux driven parametric amplifiers [].

In Section  we discuss how to achieve small nonlinearities by making use of multiple

SQUIDs connected in series.

4 Effective system parameters from distributed circuit model

In the previous section we have analyzed the model of a nonlinear resonator with reso-

nance frequency ω̃, Kerr nonlinearity K and decay rate κ . Here, we explicitly derive this

effective Hamiltonian from the full circuit model of a λ/ - transmission line resonator,

which is terminated by a SQUID loop at the short-circuited end and coupled capacitively

to a transmission line, see Figure (a). These calculations allow us to determine ω̃, K , κ

from the distributed circuit parameters and give insight into potential limitations of the

effectivemodel.We also compare the obtained parameter relations with those of a lumped

element parametric amplifier.

4.1 Resonator mode structure in the linear regime

In order to find the normal mode structure of the system, we first neglect its capacitive

coupling to the transmission line as indicated in Figure . The derivation is similar to

the ones in Refs. [, , ]. Dissipation effects due the environment are discussed in

Section ..

http://www.epjquantumtechnology.com/content/1/1/2
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Figure 5 Circuit model. (a) Distribution of the magnetic flux field �(x) along the λ/4-resonator for the

fundamental resonator mode j = 0, without (red) and with (blue) a Jospehson junction. The additional

Josephson inductance changes the boundary condition such that neither the current nor the voltage is zero

at position x = d. The resulting increase in the effective wavelength π /(2k0) is indicated by the dashed blue

line. (b) Transmission line resonator of length d with a Josephson junction at the grounded end. (c) Lumped

element representation with indicated discretized magnetic flux field �j as used in Eq. ().

The total Lagrangian of the system in the magnetic flux field �(x) has a transmission

line part and a term which describes the SQUID at position x = d (Figure ).

L =

∫ d



dx

{

c



(

∂t�(x)
)

–


l

(

∂x�(x)
)

}

+ EJ cos

(

�(d)

ϕ

)

, ()

with the reduced flux quantum ϕ = �/e. Since we work in a limit in which the plasma

frequency of the SQUID is much larger than the resonance frequencies of interest, we

neglect the self-capacitance of the SQUID. Note that Ref. [] provides a detailed study of

the effect of the self-capacitance in various parameter regimes. We furthermore describe

the SQUID as a single junction with tunable effective Josephson energy EJ .

We first investigate the linear regime of the system, in which the cosine potential of the

SQUID is approximated as a quadratic potential.

EJ cos

(

�(d)

ϕ

)

≈ const –




(

�(d)

ϕ

)

. ()

Due to the spatial derivative in the Lagrangian in Eq. () all local fields in the chain are

coupled to their nearest neighbors and the normal mode structure is found by solving the

Euler-Lagrange equation ∂t(δL/δ�̇) – δL/δ� =  of the transmission line resonator. This

results in the wave equation

v∂
x�(x) – ∂

t �(x) = , ()

with the phase velocity v = /
√
cl, of which the general solution can be written as a sum of

normal modes

�(x) =

∞
∑

j=

φj cos(kjx). ()

http://www.epjquantumtechnology.com/content/1/1/2
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The valid wavevectors kj are determined by the boundary conditions at the two ends of the

λ/ transmission line. The open end at x =  requires that the current ∂x�(x)/l vanishes,

which is implicitly satisfied by choosing the cosine ansatz in Eq. (). On the shorted end

the boundary condition is modified by the presence of the Josephson junction. In order to

determine this boundary condition, we evaluate the Euler-Lagrange equation at position

x = d. For this purpose it is convenient to write the Lagrangian in a discretized form, see

Figure (c) and compare Ref. []:

L = lim
n→∞

n
∑

j=

x

{

c


(∂t�j)

 –


l

(�j –�j–)


x

}

–



EJ

(

�n

ϕ

)

, ()

where �n = �(x = d) and x = d/n. Evaluating ∂t(∂L/∂�̇n) – ∂L/∂�n =  leads to the

equation



l
∂x�(d) + EJ

�(d)

ϕ


= . ()

Substituting the ansatz () into Eq. () and comparing the resulting coefficients of the

independent variables φj, results in the transcendental equation

kjd tan(kjd) = ld
EJ

ϕ


≡
ld

LJ
. ()

Here, we have defined the Josephson inductance LJ = ϕ
/EJ. The infinite set of solutions kj

of this equation determines the normalmodes structure of the system in the linear regime.

In the limit in which the SQUID inductance LJ vanishes, Eq. () is solved by the poles of

tan(kjd), and we recover the normal modes of the λ/ resonator

k
()
j d =

π


( + j) with j ∈ {, , , , . . .}. ()

As a first order correction to this result in the limit of LJ/ld ≪ , we expand Eq. () to

first order in (k
()
j – kj)d and find kjLJ/ld = (k() – kj) or equivalently

kj ≈
k
()
j

 + LJ/ld
. ()

For the fundamental mode with j =  this linearized approximation is typically accurate

even for inductance ratios up to LJ/ld ≈ ., whereas for the higher harmonic modes the

linearized equation breaks down for much smaller values of LJ/ld. A comparison between

the exact solution based on Eq. () and the approximate solution in Eq. () is shown

in Figure  for the first three resonant modes. When higher harmonics are expected to

be relevant one should solve Eq. () numerically in order to determine the exact wave

numbers kj.

4.2 Kerr nonlinear terms and effective Hamiltonian

Using the normal mode decomposition in Eq. () we reexpress the Lagrangian in Eq. ()

as a sum of oscillators which are only coupled via the boundary condition imposed by the

http://www.epjquantumtechnology.com/content/1/1/2
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Figure 6 Resonance frequencies of the first three modes

as a function of Josephson energy. The solid line results

from the exact numerical solution of Eq. () while the

dashed line shows the linearized solution in Eq. (). The

bare resonance frequency is chosen to be 7 GHz and the

impedance of the transmission line resonator 50 �.

SQUID. For the purposes of parametric amplification the phase drop across the junction

is desired to be small, �n/ϕ < , i.e. the current flowing through the Josephson junction

is small compared to its critical current. We can therefore expand the SQUID cosine po-

tential and take into account only the first non-quadratic correction

EJ cos

(

�n

ϕ

)

= const –



EJ

(

�n

ϕ

)

+



EJ

(

�n

ϕ

)

+ · · · . ()

In Section  we discuss under which circumstances such an approximation may break

down. Substituting the normal mode decomposition Eq. () into the Taylor expansion of

the Lagrangian results in

L =




∞
∑

i=

{

φ̇iCiφ̇i – φiL
–
i φi

}

+

∞
∑

j,i,k,l=

Nijklφiφjφkφl ()

with the effective capacitances and inductances []

Ci = c

∫ d



dx cos(kix) =
cd



(

 +
sin(kid)

kid

)

,

L–i = L–J cos(kid) +
ki
l

∫ d



dx sin(kix) ()

Eq. ()
=

(kid)


ld

(

 +
sin(kid)

kid

)

,

and the nonlinearity coefficients

Nijkl =



EJϕ

–


∏

m∈{i,j,k,l}
cos(kmd). ()

As expected the linear part of the Lagrangian is diagonal in the normal mode basis. It

describes a set of uncoupled LC oscillators for which the effective resonance frequencies

coincide with the product of phase velocity and wave vector ωj = kjv = /
√

LjCj.

Based on the Lagrange function () we derive the Hamiltonian by introducing the con-

jugate charge variables qi = δL/δφ̇i = Ciφ̇i. Performing a Legendre transformation and tak-

http://www.epjquantumtechnology.com/content/1/1/2
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ing only self-interactions and two-mode interactions into account, results in the Hamilto-

nian

H =




∞
∑

i=

{

qiC
–
i qi + φiL

–
i φi

}

– 

∞
∑

j �=i
Niijjφ


i φ


j –

∞
∑

i

Niiiiφ

i . ()

In a quantum regime qi and φi are operators which satisfy the commutation relation

[φj,qk] = δkj�/i and it is convenient to write the Hamiltonian in terms of normal mode

annihilation and creation operators []

φj = iφzpf,j

(

a†

j – aj
)

, qj = qzpf,j
(

aj + a†

j

)

()

with qzpf,i =
√
�ωiCi/ and φzpf,i =

√
�/ωiCi. The abbreviation zpf stands for zero point

fluctuations. Performing a rotating wave approximation (i.e. removing all terms with an

unequal number of creation and annihilation operators), and neglecting the small photon

number independent frequency shifts due to the nonlinear terms (i.e. Lamb shifts) we

arrive at

H =

∞
∑

i=

�ωia
†

i ai + �
Kii


a†

i a
†

i aiai +

∞
∑

j �=i
�Kija

†

i aia
†

j aj ()

with

Kij = –
EJ

�

(

φzpf

ϕ

)

cos(kid) cos(kjd). ()

The quantity K = K is the Kerr nonlinearity of the fundamental mode, which is used for

the parametric amplification process. The terms proportional to Kij with unequal i �= j are

cross Kerr interaction terms which couple different modes to each other. Such an interac-

tion can for example be used for counting the number of photons in one mode by probing

another one with a coherent field [–], similarly to a dispersive qubit measurement.

Note that the values resulting from Eq. () are divided by the square of the number of

SQUIDs, if an array is used instead of a single SQUID, as discussed in the following sec-

tion.

4.3 Decay rate and resonance frequency correction for low Q resonators

Since the parametric amplifier bandwidth is proportional to the decay rate κ , typical de-

vices are designed to have a low external quality factor, which is achieved by increasing the

coupling capacitanceCκ between transmission line and resonator (Figure ). The coupling

of an oscillator to the environment shifts its resonance frequency ωj → ω̃j [], which can

be significant if the coupling rate is large. When designing parametric amplifier devices, it

is therefore necessary to take these shifts into account. Based on the effective inductance

and capacitances calculated in Eq. () we find

ω̃
j ≈

ω
j

 +Cκ/Cj

=


(Cj +Cκ )Lj
and κj ≈

ω̃
j C


κR

Cκ +Cj

()

for resonance frequency and decay rate of the jthmode of the parametric amplifier device.

The external quality factor is given by Qj ≡ ω̃j/κj.

http://www.epjquantumtechnology.com/content/1/1/2
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4.4 Lumped element JPA

As already mentioned in the introduction, a JPA can also be realized as a lumped element

resonator by shunting a SQUID with a large capacitance CJ [, ]. In this case the res-

onator is described by the transmon Hamiltonian [], which in the deep transmon limit

EJ ≫ EC ≡ e/CJ takes the form of Eq. () with anharmonicity K ≈ EC/� and resonance

frequency ω̃ ≈ /
√

LJCJ . Also for this type of resonators the coupling rate κ to the trans-

mission line can be designed independently of EJ and EC by designing an appropriate ca-

pacitive network. Similarly as for the transmission line JPA, the description in terms of the

effective Hamiltonian Eq. () is based on the assumption that for relevant resonator fields

the phase drop across the Josephson junctions is small (compare Eq. ()). In the following

section we study the validity of this approximation when the resonator is driven close to

the bifurcation point where we expect parametric amplification to occur and analyze its

implications for realizing a parametric amplifier with large bandwidth and dynamic range.

5 Bandwidth and dynamic range constraints

5.1 Validity of the quartic approximation

In Section . we have shown that the dynamic range of the JPA scales with κ/|K |. Also
the bandwidth becomes larger with increasing κ , which indicates that a large κ is desirable

for JPAs. However, there are limitations on the maximal possible value for κ as discussed

in the following.

For deriving theHamiltonian in Eq. (), ormore generally Eq. (), we have expanded the

SQUID cosine potential to quartic order in the dimensionless flux variable �n/ϕ, where

�n ≡ �(x = d) is the phase drop across the SQUID. To guarantee that this approxima-

tion holds when we operate the device in the parametric amplification regime, we have to

make sure that �n/ϕ is small even when it is driven close to the bifurcation point. This

is equivalent to keeping the current flowing through the SQUID small compared to the

critical current.

To characterize the validity of the low order expansion of the cosine potential, we define

the maximal coherent field inside the resonator αmax as the one for which �n = ϕ. This is

the coherent amplitude, at which the current flowing through the SQUID equals its critical

current. According to Eq. () and Eq. () a coherent field α in mode j leads to a maximal

amplitude of �n = φzpf,jα cos(kjd) across the tunnel junctions, based on which we define

the critical amplitude as

αmax,j =
ϕ

φzpf,j



 cos(kjd)
=

ϕ

φzpf,j

ld

LJkjd sin(kjd)
. ()

The low order expansion of the cosine potential is only valid if the field inside the resonator

α ismuch smaller than thismaximal amplitudeα < αmax,j. In Section .we have found that

the photon number in a resonator mode at the bifurcation point is Ncrit = (κ + γ )/
√
K .

The ratio between Ncrit and the maximal coherent photon number Nmax,j ≡ |αmax,j| is

therefore given by

Ncrit

Nmax,j

=
κ
√


�

EJ cos(kjd)

(

ϕ

φzpf

)

. ()
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Figure 7 Validity of the quartic approximation. Ratio Ncrit/Nmax according to Eq. () (black), in the

lumped element limit (dashed blue) and in the limit of small participation ratio LJ ≪ ld (dotted red) for the

parameters {ω̃0/2π ,Q} = {7 GHz, 1,000}.

In order to minimize the effect of higher order nonlinearities we want to keep this ratio

small. It has the following two interesting limits

Ncrit

Nmax,j

=

⎧

⎨

⎩

√

Q– ld

LJ
, for LJ ≪ ld,

√

Q–, for lumped element JPA.

()

This is an important result, which sets clear constraints on both the maximally achievable

bandwidth and the dynamic range of the JPA. If we wantNcrit/Nmax,j to be small, κ needs to

be sufficiently small as well. Onemay also want to increase the dynamic range by reducing

the Kerr nonlinearity |K |.While this can in principle be achieved by choosing a small ratio

LJ/ld between Josephson and geometric inductance, care has to be taken when using this

approach because additional geometric inductance leads to a larger ratio Ncrit/Nmax as

illustrated in Figure .

Interestingly, we find that in the lumped element case the Josephson inductance LJ ,

and with it the Kerr nonlinearity K , can in principle be made smaller without affecting

Ncrit/Nmax. However, in practice a small Josephson inductance has to be compensated

by a large lumped element capacitor to retain the desired resonance frequency, which

is challenging to realize without introducing additional parasitic geometric inductances.

It therefore seems difficult to build a parametric amplifier with large bandwidth and high

dynamic range at the same time using a single SQUID only. In the following we show how

one can keep Ncrit/Nmax constant while decreasing the nonlinearity and thus increasing

the dynamic range of the amplifier, by replacing the single SQUID with a serial array ofM

SQUIDs ofM-times larger Josephson energy per SQUID (Figure ).

5.2 Josephson junction arrays

For simplicity we assume that all SQUIDs in the array have the same effective Josephson

energyMEJ . Since the spatial extent of the junction is still small compared to typical reso-

nance wavelengths, we can treat the array as a lumped element. To derive the nonlinearity

of the oscillator for this situation we investigate how the different terms in the Lagrangian

scale withM.

Assuming that the phase drop from the flux node at the end of the transmission line

resonator to the ground is homogeneously distributed over the array, we have the same

http://www.epjquantumtechnology.com/content/1/1/2
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Figure 8 Schematic of the SQUID array. (a) The phase drop across a single SQUID junction is proportional

to the node flux �n (indicated by the circle) at the end of the transmission line. (b) If we replace the single

junction by an serial array of M junctions with M times larger Josephson energy, the phase drop across each

junction is by a factor of M smaller while the total effective Josephson inductance stays the same.

phase drop �n/M across each SQUID, see Figure . As a result the quadratic term in the

Lagrangian scales as

EJ


�

n

→M
−→

M
∑

i=

MEJ



(

�n

M

)

=
EJ


�

n ()

and thus remains constant. This agrees with our expectation, since the total linear Joseph-

son inductance has not been changed. However, the quartic term scales like

EJ


�

n

→M
−→

M
∑

i=

MEJ



(

�n

M

)

=


M

EJ


�

n, ()

which leads to a quadratic decrease in the effective Kerr nonlinearity K → K/M and thus

a quadratic increase in Ncrit ∝ M. Furthermore, the maximal photon number also scales

as Nmax ∝M since the critical current of each junction is larger by a factor ofM. In other

words, the ratio Ncrit/Nmax only depends on the total Josephson inductance whereas the

bifurcation power increases quadratically inM. We thus conclude that the dynamic range

of a JPA can be increased without affecting the amplifier bandwidth, by using an array of

SQUIDs instead of a single SQUID. This conclusion is valid for both the transmission line

JPA and the lumped element JPA.

In practice, the Josephson energies in the array are not all equal due to inhomogeneous

coupling to the external magnetic flux and scatter in the critical current of Josephson

junctions due to unavoidable variations in fabrication. A quantitative analysis of the influ-

ence of such variations of Josephson energies on the parametric amplifier characteristics

could be an interesting task for future studies. This would help to quantify limitations in

the accessible tuning range of the parametric amplifier and a realistic understanding of the

breakdown of the low order expansion of the cosine potential. For such an approach the

methods used in Ref. [] could turn out to be useful.

6 Conclusion

In summary, we have presented a detailed analysis of Josephson junction based parametric

amplifiers, including a discussion of bandwidth, noise and dynamic range. By establishing

relations between basic JPA properties and designable circuit parameters we have been

able to derive two simple design strategies to achieve optimized JPA performance. On the

one hand the contribution of the Josephson inductance to the total effective inductance

of the resonant circuit has to be chosen sufficiently large. On the other hand the use of

http://www.epjquantumtechnology.com/content/1/1/2
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SQUID arrays instead of single SQUIDs provides the possibility to enhance the strength

of the pump field close at the bifuraction point and with it the dynamic range of the JPA.
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