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SUMMARY

The Lasso shrinkage procedure achieved its popularity, in part, by its tendency to shrink estimated coef-
ficients to zero, and its ability to serve as a variable selection procedure. Using data-adaptive weights,
the adaptive Lasso modified the original procedure to increase the penalty terms for those variables esti-
mated to be less important by ordinary least squares. Although this modified procedure attained the oracle
properties, the resulting models tend to include a large number of “false positives” in practice. Here, we
adapt the concept of local false discovery rates (lFDRs) so that it applies to the sequence, λn , of smoothing
parameters for the adaptive Lasso. We define the lFDR for a given λn to be the probability that the variable
added to the model by decreasing λn to λn − δ is not associated with the outcome, where δ is a small value.
We derive the relationship between the lFDR and λn , show lFDR = 1 for traditional smoothing parameters,
and show how to select λn so as to achieve a desired lFDR. We compare the smoothing parameters chosen
to achieve a specified lFDR and those chosen to achieve the oracle properties, as well as their resulting
estimates for model coefficients, with both simulation and an example from a genetic study of prostate
specific antigen.

Keywords: Adaptive Lasso; Local false discovery rate; Smoothing parameter; Variable selection.

1. INTRODUCTION

The Lasso procedure offers a means to fit a linear regression model when the number of parameters p is
comparatively large (Tibshirani, 1996, 2011). The Lasso estimates coefficients by minimizing the residual
sum of squares plus a penalty term. Let there be n subjects, let Y = (Y1, . . . , Yn)

T be their outcomes, let
X j = (X j1, . . . , X jn)

T be their measurements for variable j = 1, . . . , p, and let X = (X1, . . . , X p). Then
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654 J. N. SAMPSON AND OTHERS

the estimated coefficients are

β̂(λn) = argmin

⎧⎪⎨
⎪⎩
∥∥∥∥∥∥Y −

p∑
j=1

X jβ j

∥∥∥∥∥∥
2

+
p∑

j=1

λn|β j |

⎫⎪⎬
⎪⎭ .

A major benefit of the L1 penalty is that the Lasso also serves as a variable selection method, as a large
proportion of β̂ j are reduced to 0 when λn is large.

The adaptive Lasso modifies the original version by adding a data-defined weight, ω̂ jn , to the penalty
term (Zou, 2006). For our purposes, we consider only ω̂ jn = 1/|β̂OLS

j |, where β̂OLS
j is the ordinary least

squares estimate. The adaptive Lasso minimizes

β̂(λn) = argmin

⎧⎪⎨
⎪⎩
∥∥∥∥∥∥Y −

p∑
j=1

X jβ j

∥∥∥∥∥∥
2

+
p∑

j=1

λnω̂ jn|β j |

⎫⎪⎬
⎪⎭ . (1.1)

When λn → ∞ and λn/
√

n → 0, the adaptive Lasso is an oracle procedure (Cai and Sun, 2007; Fan and Li,
2001). Let the true relationship be described by the linear equation E(Y |X) = β1 X1 + · · · + βp X p where
only a strict subset of the β-coefficients are non-zero, this subset being A = { j : β j |= 0}. An oracle proce-
dure is defined by having the following two properties:

• Consistent variable selection: pr{ Â(λn) = A} → 1 where Â(λ) = { j : β̂ j (λ) |= 0} is the estimated set
of influential variables.

• Asymptotic efficiency for βA = {β j : j ∈ A} :
√

n{β̂A(λn) − βA} →
Normal(0, �), where � is the inverse of the information matrix when A is known.

In practice, with finite sample sizes, a sequence, λn , that satisfies the oracle requirements results
in a model that includes a large number of false positives (i.e. the set { j : β j = 0, j ∈ Ân} is large)
(Martinez and others, 2010). In this manuscript, our three objectives are the following: (1) To demonstrate,
mathematically, that choosing λn to meet the oracle properties will result in a high false positive rate for
finite samples. (2) To quantify the probability that a variable selected into the model is a false positive.
This probability can provide confidence that the included variable is independently associated with the
outcome. (3) To show how to identify a sequence of smoothing parameters that controls the number of
false positives, instead of achieving the oracle properties.

In order to measure and control the number of false positives, we introduce the concept of the local
false discovery rate (lFDR) into the selection of λn (Efron and others, 2001; Efron and Tibshirani, 2002;
Benjamini and Hochberg, 1995). Specifically, we define lFDR(λn) to be the probability that a variable
added to the model is a false positive when the penalty term is incrementally lowered below λn . Our first
goal is to derive the relationship between lFDR and λn . We then show that lFDR(λn) → 1, an unusual
choice for most problems, if λn satisfies the oracle requirements, thus explaining the observation that
the adaptive Lasso results in a large number of false positives when the effect sizes are not too large. In
more traditional problems, a value of 0.05 is often the targeted FDR or lFDR. Finally, we offer a para-
metric bootstrap method for selecting λn to achieve a desired lFDR which is similar to a step described
by Hall and others (2009). Others have also noted this high false positive rate and proposed Bootstrapped
and Bayesian versions of the Lasso for handling this problem (Bach, 2008; Hans, 2010; Park and Casella,
2005).

Our motivating example comes from a Genome-Wide Association Study (GWAS). Both the Lasso
(Wu and others, 2009) and the adaptive Lasso (Kooperberg and others, 2010; Sun and others, 2010) have

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/14/4/653/368827 by guest on 16 August 2022



FDR and the adaptive Lasso 655

become popular tools for GWAS because variable selection is an important step given that 100 000’s of
single nucleotide polymorphisms (SNPs) are available for testing. In our specific study, we focus on model-
ing the prostate specific antigen (PSA) level, a biomarker indicative of prostate cancer (Parikh and others,
2010).

The order of this paper is as follows. In Section 2, we introduce notation and review the adaptive Lasso.
We then formalize our definition of the lFDR, derive the relationship between the lFDR and λn , and provide
asymptotic theory. Finally, we describe our bootstrap approach for choosing λn . In Section 3 and supple-
mentary material available at Biostatistics online, we evaluate the behavior of λn when selected by the
lFDR through simulation and our motivating example. We conclude with a short discussion in Section 4.

2. METHODS

2.1 Notation

We assume that there is a continuous outcome Yi and its true value is defined by

Yi = Xi1β1 + · · · + Xipβp + εi , (2.1)

where εi = Normal(0, σ 2). Further, we assume n−1XTX → D, where D is a positive-definite matrix.
Recall that A is the set of covariates that are associated with a non-zero β, A ≡ { j : β j |= 0}, and βA ≡
{β j : j ∈ A}. We say that covariate j is influential if j ∈ A or that it is superfluous if j /∈ A. Without loss
of generality, assume that A = {1, . . . , p0}, let z = 1 − p0/p, and let D00 be the corresponding p0 × p0

submatrix of D.
Let β̂(λn) be the parameter estimates produced by the adaptive Lasso,

β̂(λn) = argmin

⎧⎪⎨
⎪⎩
∥∥∥∥∥∥Y −

p∑
j=1

X jβ j

∥∥∥∥∥∥
2

+
p∑

j=1

λnω̂ jn|β j |

⎫⎪⎬
⎪⎭ ,

where, for our purposes, ŵ jn = 1/|β̂OLS
j |. The sequence λn is the set of smoothing parameters. We let

Â(λn) be the set of covariates predicted to have a non-zero β, so Â(λn) ≡ { j : β̂ j (λn) |= 0}.
Finally, we include the notation and definitions for the local FDR and related terms. We denote the

probabilities, Pf p(λn) and Pf n(λn), that a variable will be a false positive and a false negative by

Pf p(λn) = 1

zp

∑
j /∈A

pr{β̂ j (λn) |= 0} and Pf n(λn) = 1

(1 − z)p

∑
j∈A

pr{β̂ j (λn) = 0}.

We define the lFDR by

lFDR(λn) = z	 f p(λn)

z	 f p(λn) − (1 − z)	 f n(λn)
, (2.2)

where

	 f p(λn) = dPf p

dλ

∣∣∣∣
λ=λn

and 	 f n(λn) = dPf n

dλ

∣∣∣∣
λ=λn

.

By a Taylor series expansion, the expected difference in the number of false positives, (1 − z){Pf p(λ) −
Pf p(λ − δ)}, at λ and λ − δ, is approximately (1 − z)δ	 f p(λ). Similarly, the expected difference in the
number of false negatives and the total number of variables included in the model are zδ	 f p(λ) and
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zδ	 f p(λ) + (1 − z)δ	 f n(λ). Therefore, we define the lFDR by (2.2) as the probability that a variable
added to our model will be superfluous, if added when the smoothing parameter is lowered below λn . Our
definition of lFDR differs from that traditionally given for two reasons: (i) we interpret the lFDR from a
frequentist point of view and (ii) we focus on the smoothing parameter λn instead of on a test statistic. The
traditional definitions of lFDR and FDR have also been used for purposes of variable selection, usually
by including only those variables with a q-value below a given threshold (Storey, 2002). However, such
an approach would not be as appropriate for Lasso procedures, which try to avoid this post hoc selection.
Note, an equivalent definition for FDR is available by replacing 	(λn) with P(λn) in (2.2).

2.2 Prior results

The adaptive Lasso has many theoretical properties. Here, we build on two previous results. Zou (2006)
states the requirements needed for the adaptive Lasso to have the oracle properties.

THEOREM 1 Suppose that

λn/
√

n → 0 and λn → ∞. (2.3)

Then the adaptive Lasso estimates must satisfy the following:

Consistency in variable selection: lim
n

pr{ Ân = A} = 1, (2.4)

Asymptotic Normality:
√

n{β̂A(λn) − βA} → Normal(0, σ 2 × D−1
00 ). (2.5)

If our focus is on variable selection, then a theorem identified by Pötscher and Schneider (2009) proves
equally useful.

THEOREM 2 Let XTX = nI , where I is the identity matrix. Then

β̂ j (λn) = 0 if |β̂OLS
j | �√λn/(2n),

β̂ j (λn) = β̂OLS
j

(
1 − λn

2n(β̂OLS
j )2

)
if |β̂OLS

j | >√λn/(2n).

Because β̂OLS
j is asymptotically normal with mean β j , we immediately see

lim
n

pr{β̂ j (λn) = 0} − pr{χ2
1,γ j

� λn/(2σ 2)} = 0, (2.6)

where χ2
1,γ j

follows a non-central χ2 distribution with one degree of freedom and non-centrality parameter

γ j = nβ2
j /σ

2.

2.3 Local false discovery rates

When X is orthogonal, the total number of variables included in the model is monotonically non-decreasing
as λn decreases. The lFDR is the proportion of added variables that are expected to be false positives. When
X is orthogonal and σ 2 = 1, then

lFDR(λn) = {1 + C(λn)}−1, (2.7)
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where C(λ), which can be interpreted as the cost of removing a false positive, is

C(λ) = 1 − z

z

	 f n(λ)

	 f p(λ)
= 1 − z

z2 p

∑
j∈A

− fχ2
1,γ j

(λ/2σ 2)

fχ2
1
(λ/2σ 2)

= 1 − z

z2 p

∑
j∈A

1

2

⎡
⎣exp

⎛
⎝
√

λnβ2
j

2
− nβ2

j

2

⎞
⎠+ exp

⎛
⎝−

√
λnβ2

j

2
− nβ2

j

2

⎞
⎠
⎤
⎦ , (2.8)

where fχ2
1,γ j

(·) is the density for a χ2 variable with non-centrality parameter γ j = nβ2
j /σ

2.

Equations (2.7) and (2.8) allow us to choose λn to achieve a specific lFDR. For example, if, in addition
to σ 2 = 1 and X being orthogonal, all β j = β, then the lFDR will never exceed q if

λn = 2

nβ2

⎛
⎝log

⎛
⎝ z

1 − z

⎡
⎣1 − q

q
× exp

(
nβ2

2

)
+
√(

1 − q

q
× exp

(
nβ2

2

))2

−
(

1 − z

z

)2
⎤
⎦
⎞
⎠
⎞
⎠

2

.

(2.9)
The sequence λn , when defined by (2.9), is independent of the number of variables p. Moreover, all

properties discussed hold regardless of the size of β (e.g. β is constant or decreasing at a rate of 1/
√

n).
Therefore, although there is no λn that can attain the oracle property when β is decreasing at a rate of
1/

√
n (Pötscher and Schneider, 2009), the sequence defined by (2.9) would still attain the stated lFDR. As

expected, we note that the lFDR decreases with increasing λn confirming that those variables added when
λn is small are more likely to be false positives. We define λqn to satisfy lFDR(λqn) = q.

2.4 Constant β

The term exp(−
√

λnβ2
j /2 − nβ2

j /2) in (2.8) can be ignored when nβ2
j is large. Specifically, when λnnβ2

j >

5.3 ∀ j , the lFDR at a given value of λn can be approximated within 1% of its true value by

lFDR(λn) ≈ 1

1 + ((1 − z)/z2 p)
∑

j∈A
1
2 [exp(

√
λnnβ2

j /2 − nβ2
j /2)]

. (2.10)

Equation (2.10) shows more clearly that if we choose λn to achieve the oracle property (i.e. λn/
√

n →
0), then we are choosing a λn that results in an lFDR → 1. As an lFDR = 1 implies that all variables
being added to the model are false positives, purposely choosing such a λn would seem counterintuitive.
Therefore, even when λn can be chosen to achieve the oracle properties, it is unclear whether such a choice
is desirable. An alternative approach would be to choose λn to ensure that lFDR < q. In the previous
example, where σ 2 = 1, X is orthogonal, and β j = β, we now see lFDR < q if

λn = 2

nβ2

[
log

(
2

z

1 − z

1 − q

q

)
+ nβ2

2

]2

. (2.11)

Purposely choosing a λn such that the lFDR → 0 seems equally counterintuitive, limiting the reasonable
choices for λn . If σ 2 = 1, X is orthogonal, and β j = β, where β is a constant, we see that for the lFDR not
to diverge to 0 or 1, λn/n → 0.5β2.
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LEMMA 1 When β j = β ∀ j , β is constant, σ 2 = 1, X is orthogonal, and t = 0.5β2, then

λn

n
= t ⇒ lFDR(λn) → 2z

1 + z
, (2.12)

λn

n
→ t1 > t ⇒ lFDR(λn) → 0, (2.13)

λn

n
→ t1 < t ⇒ lFDR(λn) → 1, (2.14)

where 0 � t1 � ∞.

If λn were chosen to achieve an lFDR strictly between 0 and 1, then only the first of the two oracle prop-
erties holds, limn pr( Ân = A) = 1 from (2.4). However, we claim that forgoing the second oracle property,
in exchange for an lFDR between 0 and 1, is no loss. Although performing variable selection and fitting in
a single step is convenient, it is unnecessary. Clearly, there is a two-step method that recovers the second
oracle property. After using the adaptive Lasso with λn/n → 0.5β2 for variable selection, we can refit the
model using OLS with only that subset of variables. This two-step procedure not only satisfies both ora-
cle properties, but offers improved efficiency over the single-step procedure, reminding us that the oracle
procedure is not an optimal procedure. Although an oracle procedure promises that β̂(λn) → 0 for all super-
fluous variables, it makes no claim as to the rate at which this occurs. Asymptotically, we can increase the
rate at which pr{Ac /∈ Ân} → 1 without decreasing the rate at which pr{A ∈ Ân} → 1. Returning to (2.6),
this potential improvement is clear because, asymptotically, pr{χ2

1,γ � λn/(2σ 2)}, is unchanged by λn so
long as λn/n → 0.

2.5 Empirical choice of λn

In the idealized scenario, where X is orthogonal, β j = β ∀ j ∈ A, and both z and β are known, (2.9) can be
used to choose a sequence λn to achieve a specified lFDR. If all values of {β j : j ∈ A} are not identical, then
the solution to (2.8) would need to be obtained numerically. Although β and z are unknown, in practice,
we could use an estimate of z and either an estimate of β or a lower bound for a biologically meaningful
β. However, when (2.9) is evaluated with these estimates, the chosen λn tends to produce an lFDR above
the desired value when X is not orthogonal. Therefore, we prefer a bootstrap approach similar to one of
the steps discussed by Hall and others (2009). The algorithm is as follows. Let us first fit a simple model
of Y on X to obtain estimates of β. In practice, as done in our simulations, we suggest identifying those β

to have non-zero values by the adaptive Lasso with λdn , and then defining β̃ by the OLS estimates. Let us
then denote the variance of the residuals from this model by σ̃ 2. Next, set all components of β̃ below some
threshold equal to zero. In practice, when n > p, we use 1/

√
n as this threshold. Then generate B sets of

data, assuming the true model is Y = X β̃ + ε̃, where ε̃ = Normal(0, σ̃ 2). For each value of λn in a given
set, we calculate the number of true, N b

tp(λn), and false, N b
f p(λn), positives added to the model between

λn − δ and λn + δ where δ is an appropriately small number and the superscript b denotes the dataset. We
can then estimate the lFDR for each λn by

lFDRest(λn) =
∑B

b=1 N b
f p(λn)∑B

b=1 N b
f p(λn) +∑B

b=1 N b
tp(λn)

, (2.15)

and select the smoothing parameter that achieves a specified lFDR, q:

λqn = argmin{|lFDRest(λn) − q|}.
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For completeness, we define lFDRest(∞) = 0 and lFDRest(λn) = max{lFDRest(λ) : λ > λn} when∑B
b=1 N b

f p +∑B
b=1 N b

tp = 0. In practice, B = 10, but we base our estimates of lFDRest on a monotonically
smoothed version of lFDRest(λn).

For purposes of comparison, we consider the standard method for selecting λn to be cross-validation
aimed at minimizing the prediction error of future estimates. Recall that standard 10-fold cross-validation
starts by dividing the set Sn of n subjects into 10 mutually exclusive sets, s1 ∪ s2 ∪ · · · ∪ s10 = Sn , of
roughly equal size. Let β̂ jk , 1 � k � 10 be the adaptive Lasso estimate for β j based on those subjects
not in sk . Then

λ̂dn = argmin

⎧⎪⎨
⎪⎩
∑

k

∑
i∈sk

⎛
⎝Yi −

∑
j

Xi j β̂ jk(λ)

⎞
⎠

2
⎫⎪⎬
⎪⎭ .

Also, λ̂dn is an estimate of the deviance-optimized smoothing parameters:

λdn = argmin

⎧⎪⎨
⎪⎩ET

⎡
⎢⎣
⎛
⎝Y0 −

∑
j

X0 j β̂ j (λ)

⎞
⎠

2
⎤
⎥⎦
⎫⎪⎬
⎪⎭ ,

where T = {−→X 1, Y1, . . . ,
−→
X n, Yn} are the data input into the adaptive Lasso to obtain the estimates β̂,

T0 = {−→X 0, Y0} are the data from a new individual, and T = {T, T0}. When β is fixed and X is orthogonal,
the smoothing parameters minimizing the deviance must satisfy the oracle properties.

2.6 High-dimensional adaptive Lasso: p > n

As defined in (1.1), the weights in the adaptive Lasso are 1/β̂OLS. However, when p > n, the weights
must substitute a different estimate of β in place of β̂OLS. Two possible substitutes that have been studied
include β̂sep, the estimates obtained by fitting separate models for each variable (Huang and others, 2008),
and β̂L , the estimates from a regular Lasso procedure (Zhou and others, 2009). The properties of the lat-
ter estimates, β̂L , with λn =√24 log(p)/n, have been studied and demonstrated to have useful qualities
(Zhou and others, 2009). In practice, however, we found that 1/β̂sep performed better, and chose to use
those weights in our simulations. For defining β̃, we cannot use 1/

√
n as our cutoff threshold. Instead, we

first perform the adaptive Lasso on our data and count the number of coefficients estimated to be non-zero.
We then find the threshold, such that by setting all β̃ below that threshold to 0 and simulating data, the
adaptive Lasso on the simulated data estimates a similar number of non-zero coefficients.

3. RESULTS

3.1 Simulation design: comparing λqn and λdn

Our first goal is to offer an example comparing the magnitude and performance of λdn and λqn . As with
all simulations here, our objective is not to describe the performance of the estimates λ̂dn and λ̂qn , but to
calculate, describe, and compare the true values of λdn and λqn . We assume that the covariate matrix X is
orthogonal and that the outcome Y can be described by linear regression, (2.1), with β j = 0.15 if β j ∈ A
and σ 2 = 1. For these examples, we fixed the number of covariates p = 50, but let the size of A vary,
z ∈ {0.5, 0.7, 0.9}. As described below, we used simulation to calculate λdn and λqn , their corresponding
lFDR and the proportion of variables that were misclassified, errMC, for a sequence of samples between
n = 200 and n = 2000.
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Our second goal is to show that results are essentially unchanged when we vary p. For efficiency, we
calculated λdn , λqn , lFDR, and errMC at only n = 1000 for p ∈ {100, 200, 500}, maintaining all of the other
assumptions.

Our third goal is to examine whether λqn , calculated assuming that X is orthogonal, was appropri-
ate when there was dependence. Specifically, we repeated the abbreviated analyses assuming that the
covariance structure of (Xi1, Xi2, . . . , Xip) is block diagonal. Correlation ρ within a block was constant,
ρ ∈ {0.3, 0.6}, each block contained the same number of influential variables (or possibly no influential
variables if there were more blocks than influential variables), and each block contained the same number
of total variables. Variables were divided into 2, 5, or 10 groups.

For any combination of n, p, z, and covariance structure, we estimate the values of λdn , λqn , lFDR, and
errMC by simulating 200 000 values of X and Y . For each simulation, at a specified set of λ ranging from
0.01 to 100, we calculate the residual deviance and errMC. Furthermore, for the same set of λ, we count
the number of true and false positives added to the model when the smoothing parameter was between
max(0, λ − 0.5) and min(λ + 0.5, 100). Then, for each λ, we average the number of true and false posi-
tives added, deviance, and errMC over all 200 000 datasets to obtain estimates of each desired value. The
lFDR was estimated by the ratio between the average number of false positives added, compared with
the total number of variables added to the model. For each combination of n, p, z, and covariance struc-
ture discussed, we simulated a new set of 200 000 simulations. To generate a dataset X, we assumed that
{Xi1, . . . , Xip} followed a normal distribution with mean 0 and specified covariance matrix. When X was
assumed orthogonal, we used the resulting principal components. All datasets were standardized, so each
variable had mean 0 and variance 1.

3.2 Simulation results: comparing λqn and λdn

First, consider the example when X is orthogonal, p = 50, and z = 0.7. Figure 1(a) shows that λqn increases
linearly with the number of subjects and that the slope is approximately 0.5β2 as (2.11) suggests, except
when λnnβ2 is small. The same equation promises that the lFDR-selected λn’s, for values q1 and q2, dif-
fer by approximately 2[log((1 − q1)/q1) − log((1 − q2)/q2)]. As the deviance-optimized λn’s achieve the
oracle properties when X is orthogonal, they must be increasing at a rate less than

√
n, and therefore, the

representative black line in Figure 1(a) is significantly below those illustrating the smoothing parameters
chosen to achieve the specified values of the lFDR.

The advantage to choosing a sequence λn that increases linearly with the number of the subjects is that
the proportion of misclassified variables converges to 0 much quicker. Figure 1(b) shows that when there
are 1000 individuals in the study and 35 out of 50 of the SNPs are superfluous, on average, 12% of the
variables are misclassified with the deviance-optimized parameters, whereas less than 2.1% are misclassi-
fied when using lFDR-selected parameters. The relationship between lFDR and percentage misclassified
is not monotone, as it depends on z. Here, setting q = 0.5 minimized the proportion misclassified. Figure 2
shows that when λn minimizes deviance, the cost of reducing false positives is very low, or equivalently,
the lFDR is high, so there is great benefit in increasing λn . In terms of identifying A exactly, with 1000
individuals, the probability that there is at least one misclassified variable, pr{ Ân |= A}, exceeds 0.999
when using deviance-optimized smoothing parameters, whereas that probability is less than 0.64 when
using lFDR-selected parameters.

Table 1 shows that the large difference between λdn and λqn remains for p > 50, and, in fact, both
λdn and λqn appear to be essentially independent of p when X is orthogonal. When the covariates are
correlated, compared with when they are independent, λqn tends to be larger, as more stringent penalty
terms are needed to exclude null variables that are correlated with influential variables. Increasing ρ or
block size magnifies this effect. Therefore, in practice, we suggest choosing λqn by the bootstrapping
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Fig. 1. (a) The sequence of λn chosen to minimize the deviance (solid black line) or chosen to achieve a specified lFDR
(broken lines) increases with the number of subjects in the study. For these simulations, z = 0.7, p = 50, β = 0.15 for
associated variables. (b) The average proportion of variables that are misclassified (error, y-axis), or the number of
false positives and false negatives, quickly drops to 0 when λn is chosen to achieve a specified lFDR, but remains
above 0 for deviance-optimized smoothing parameters.

method described in Section 2.5. Table 1 also demonstrates the obvious result that as the proportion z of
null variables increases, λqn must also increase.

3.3 Simulation design: evaluating the performance of adaptive Lasso with λqn

Our next goal is to evaluate the performance of the adaptive Lasso when using λqn , estimated by our boot-
strap approach described in Sections 2.5 and 2.6. This method selects a set of variables that should satisfy
the specified lFDR criteria. For comparison, we consider a more traditional method for selecting variables
targeting the same criteria. This method, implemented by the R function FDRtool (Strimmer, 2008), inputs
the p-values calculated from models including each variable individually. In brief, the method decom-
poses the overall distribution of p-values into two distributions, representing the p-values from the null
and influential variables. Given these two distributions, the traditional method first estimates the p-value
thresholds that would result in the specified lFDR and then selects all variables meeting the appropriate
threshold.

We consider the lFDR, lFDRAL, resulting from using the bootstrap version of the adaptive Lasso and
the rates lFDRTR resulting from the traditional method. We compare these observed rates to the targeted
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Fig. 2. (a) The solid black line shows the probability, pr( j /∈ Ân |β j = 0), that a null variable is excluded from Ân

when X is orthogonal. The top curved dashed line (red) shows the probability, pr( j ∈ Ân |β j = 0.15), that a non-null

variable is included in Ân when X is orthogonal, z = 0.7, and n = 1000. The vertical dashed line (red) farthest to the
right indicates λdn . The other pairs of broken lines show the equivalent values when n = 500 and n = 800. (b) The
local FDR, lFDR, is illustrated as a function of λ for the three scenarios above.

values: q ∈ {0.1, 0.5, 0.9}. These comparisons are performed in two types of datasets. When n > p, settings
are similar to those in Section 3.1: n = 1000, p = 500, z = 0.9, β j = 0.1 if β j ∈ A and σ 2 = 1. In order for
the traditional methods to produce rates below 1, we reduce the number of correlated variables per block
to 5. Again ρ ∈ {0.0, 0.3, 0.6}. When p > n, specifically n = 1000 and p = 5000, we increase z to 0.96
and include 10 variables per correlated block. To achieve q = 0.1 when p > n, we further increase z to
0.99 and β j to 0.35. We provide an extended set of simulations, exploring other correlation structures and
effect distributions, in supplementary material available at Biostatistics online.

For each combination of parameters, we generated 1000 datasets and then averaged the resulting
lFDRAL and lFDRTR across all 1000 datasets. For each dataset, we defined the lFDR to be 0 if the last
variable selected was influential, 1 otherwise.

3.4 Simulation results: evaluating the performance of adaptive Lasso with λqn

The bootstrap approach proposed in Sections 2.5 and 2.6 selected values of λqn that, when applied to the
full dataset, resulted in lFDR values similar to the targeted value. In the example where n > p and ρ = 0,
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Table 1. The smoothing parameters designed to achieve lFDR = 0.5 are larger than those designed to
minimize deviance

Low correlation High correlation

Independent 10 5 2 10 5 2

p z λdn λqn λqn λqn

100 0.9 6.31 18.52 18.72 20.32 27.33 22.32 27.63 30.23
100 0.7 3.7 15.02 16.22 18.32 18.32 14.92 17.12 15.22
200 0.9 6.21 17.92 20.72 23.63 28.33 26.23 28.13 39.44
200 0.7 3.7 14.82 17.02 18.72 19.82 15.02 14.92 15.42
500 0.9 6.21 18.12 28.73 34.84 45.15 38.44 50.56 51.66
500 0.7 3.7 14.22 18.62 18.92 19.52 15.42 15.42 16.02

The first two columns list the number of variables p and the proportion z that are unassociated with the outcome for each scenario.
The next two columns list the value of the smoothing parameter that minimizes deviance λdn and the smoothing parameter λqn that
achieves an lFDR = 0.5. The remaining columns show how λqn increases with the extent of correlation among the variables. In each
case all covariates are divided into 2, 5, or 10 groups, and the correlation is set to either 0.3 (low correlation) or 0.6 (high correlation).
The total number of subjects was fixed at 1000.

Table 2. A comparison between the newly proposed bootstrap (B) method for obtaining a specified lFDR
with the traditional (T ) approach

ρ = 0.0 ρ = 0.3 ρ = 0.6

Target B T B T B T

n > p
0.1 0.059 0.088 0.083 0.232 0.101 0.688
0.5 0.477 0.435 0.505 0.737 0.52 0.919
0.9 0.893 0.804 0.905 0.94 0.909 0.967

p > n
0.1 0.008 0.075 0.019 0.298 0.105 0.904
0.5 0.466 0.464 0.592 0.679 0.639 0.905
0.9 0.751 0.864 0.861 0.953 0.894 0.978

The table entries list the observed, or true, lFDR for different targeted values (rows) and for different correlation structures (columns).
Covariates were divided into either 100 independent blocks (n > p) or 500 independent blocks (p > n), with constant correlation of
0.0, 0.3, and 0.6. The top set of rows show results when n = 1000 and p = 500, whereas the bottom set of rows show results when
n = 1000 and p = 5000. When non-zero, β j = 0.10.

the observed lFDR was 0.06, 0.48, and 0.89 when λqn was chosen to achieve lFDR = 0.1, 0.5, and 0.9.
When targeting lFDR = 0.1, our method achieved a lower lFDR, and therefore our chosen λq was larger
than desired. This inflated λq arises, in part, from a tendency to select too few non-zero β̃ in our bootstrap
models. Table 2 and results in supplementary material available at Biostatistics online show that the lFDR
estimates were only minimally altered by changing the correlation structure or when considering the p > n.

The traditional approach, based on estimating the p-value distribution of the null and influential vari-
ables, performed poorly when there was high correlation between variables (Table 2). When there was
high correlation, models with only a single variable assigned low p-values to those null variables asso-
ciated with influential variables. This resulted in more variables achieving the lFDR threshold, but a
higher proportion were false positives. With n > p, ρ = 0.6, and a targeted lFDR = 0.5, the observed
lFDR = 0.9.
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3.5 Application

In the United States, prostate cancer is the most commonly diagnosed non-cutaneous cancer in men, with
approximately 200 000 new diagnoses each year. Because levels of PSA are elevated in the presence of
prostate cancer, it is commonly used as a biomarker for early detection. Unfortunately, the specificity of
tests based on PSA is often very low, as many healthy individuals also have high levels. Specificity could be
greatly improved by a method that can identify individuals with naturally high levels. To this end, there have
been large GWASs searching for genetic markers associated with the PSA level. The Prostate, Lung, Col-
orectal, and Ovarian Cancer Screening Trial, or PLCO, which recorded PSA levels, genotyped 2200 healthy
men using an Illumina genotyping platform containing more than 500 000 SNPs (Andriole and others,
2009). We focus on a subset of 530 SNPs in and around the KLK3 gene (Parikh and others, 2010).

Let X be the 2200 × 530 matrix containing the genotypes for the study population at these 530 SNPs.
Genotypes are coded as 0, 1, or 2, indicating the number of minor alleles at that SNP. Let Y be the log-
transformed PSA levels. Then we regressed Y on X using a linear model with the adaptive Lasso procedure.
We repeated this analysis with the two values of λ: λ̂d and λ̂q , where λ̂q was estimated by the previously
defined bootstrap procedure. Unfortunately, the truth is unknown, and therefore we can only use this exam-
ple to illustrate their relative performance. The estimated values of the smoothing parameter were λ̂d = 14.2
and λ̂q = 58.0, with q = 0.5. As expected, λ̂d is significantly smaller than that value estimated to achieve
lFDR = 0.5. As a consequence, λ̂d allowed 17 SNPs to have non-zero coefficients, whereas λ̂q allowed
only 1 SNP (Table S2 of supplementary material available at Biostatistics online). Although we cannot be
certain that either model is correct, it seems doubtful that 17 SNPs in that region are directly associated
with PSA levels. To estimate β corresponding to rs2735839 using the two-stage approach, first selecting
variables with λ̂q and then estimating β using OLS, we calculate β̂ = 0.21 from a model containing only
rs2735839.

4. DISCUSSION

The adaptive Lasso has become a popular model-building procedure because it shrinks a subset of coeffi-
cients to zero, thereby simultaneously performing variable selection and simplifying model interpretation.
Although, asymptotically, using the traditional smoothing parameters promises that the adaptive Lasso will
achieve consistent variable selection, their use often leaves a large number of false positives in the model
when sample size is finite.

The lFDR is usually a form of post-processing, in that we would first perform a statistical procedure
to attach a p-value to an estimate of each parameter and then determine the probability that the true value
of a parameter with that p-value is the null value. We have adapted the lFDR framework to select smooth-
ing parameters in the adaptive Lasso. Instead of defining an lFDR for a specific p-value, we define it
for a specific value of the tuning constant λ. The framework offers an alternative means for selecting the
smoothing parameters. When chosen to achieve a specified value of the lFDR, the adaptive Lasso proce-
dure promises both asymptotically consistent variable selection and better control of the false positive rate
for finite samples.

By itself, a single-step, adaptive Lasso procedure using λq , the lFDR-selected smoothing parameter,
does not achieve the oracle properties. If one believed that the optimal, or best, estimator had to have these
properties, then a combined variable selection and model fitting procedure with λq would not be a viable
option. However, we do not consider the absence of the second oracle property to be a deterrent to using
λq . First, the oracle properties can be regained by a two-step procedure that adds a separate model fitting
step, where OLS is applied only to those variables retained by the initial adaptive Lasso. Although the
convenience of a one-step procedure is sacrificed, the final estimate would still have the stated proper-
ties. Second, the first oracle property, consistent variable selection, is not a statement of optimality. That
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property makes no claims on the rate at which pr{ Ân = A} → 1. In some sense, the rate of our two-step
procedure is faster than the rate of the single-step procedure. Therefore, there is a benefit to our method,
even if it cannot be measured by a characteristic as coarse as the oracle properties.

We chose to select the smoothing parameters to achieve a desired lFDR, instead of FDR, because we
wanted to judge each variable on its own merits, and not the merits of all selected variables. As discussed
previously (Efron and others, 2001; Efron and Tibshirani, 2002), if one fit a model with 1000 variables
and aimed to achieve an FDR of 0.1, then if the first 90 variables selected were guaranteed to be non-null,
the next 10 would be included regardless of the evidence. Note also that in addition to providing examples
when lFDR = 0.1, we offered examples with an lFDR as high as 0.9, a larger value than that generally
used. For the adaptive Lasso procedure, where standard practice has been to choose lFDR = 1 and there
is often the desire not to omit any non-null variables, aiming for larger lFDR values may be preferred for
the Lasso procedure.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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