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“... no more substance than a pattern formed by frost

that a simple rise in temperature would reduce to nothing.”

“... pas plus de consistance qu’un motif formé par le givre

qu’un simple redoux suffit à anéantir.”

- Michel Houellebecq,

La Possibilité d’une île
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Chapter 1

Introduction

Devices that use or produce light play an important role in modern life. Among the

numerous daily applications of light are displays, telecommunication, data storage,

sensors. In industry, medicine and scientific research, optical techniques are also

absolutely indispensable. Light is used for imaging and microscopy, but also for de-

tecting and treating diseases, analyzing chemical compounds and investigating living

cells on a molecular level.

In a transparent medium, like glass or air, light propagates along a straight line.

However, as we all know from daily experience, it is impossible to see through, for

instance, white paint or the shell of an egg. Such opaque materials have a micro-

scopic structure that makes it impossible for light to go straight through. Figure. 1.1a

shows schematically what happens when a beam of light impinges on a white opaque

object: collisions with tiny particles causes the light to spread out and lose all direc-

tionality. This process is called diffusion of light; it is comparable to the irreversible

diffusion process that makes a drop of ink in a glass of water spread out evenly.

Scattering and diffusion of light are huge limitations for optical imaging, but also

severely hinder telecommunication, spectroscopy, and other optical techniques. In

the last few decades, a tremendous effort was put in developing imaging methods

that work in strongly scattering media.[1] That research has brought forward impor-

tant new imaging methods like optical coherence tomography[2], diffusion tomogra-

phy[3] and laser speckle velocimetry[4].

In this thesis, a new approach is taken to tackle the problem of scattering. We de-

velop a wavefront shaping technique to steer light through opaque objects. When we

shape the wavefront so that it exactly matches the scattering properties of the object,

the object focuses light to a point (see Fig. 1.1b). The term ‘opaque lens’ was intro-

Figure 1.1: Principle of opaque lensing. a) A plane wave impinges on an opaque scattering object.

In the object, light performs a random walk with a typical distance given by the mean free

path for light (ℓ). The little light that makes it trough is scattered in all directions. b) The

incident wave is shaped to match the scattering in the object. The opaque object focuses

the shaped wave to any desired point, thereby acting as an ‘opaque lens’.
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Figure 1.2: Interference in an opaque lens. a) Transmitted intensity of an unshaped incident beam.

Scattered light forms a random interference pattern known as laser speckle. Inset (phasor

plot), at each point many waves interfere randomly, resulting in a low overall intensity. b)

Transmitted intensity of a wavefront that is optimized for focusing at a single point. The

intensity in the focus is approximately 1000 times as high as the average intensity in a.

Inset, in the focus all waves are in phase.

duced in a news item[5] about our research to describe this focusing behavior. Using

our wavefront shaping method, we steered light through opaque objects, focused it

inside and even projected simple images through the objects.

In this chapter, we first explain in general terms how we shape the wavefront to

control the propagation of light. Then, we relate our work to other experimental

fields. In Section 1.3, we give a brief introduction to the concepts and tools that are

used for analyzing light propagation in opaque objects. We end this introductory

chapter by giving an overview of this thesis.

1.1 Opaque lenses

The particles in a strongly scattering medium are smaller than the wavelength of light.

Therefore, the wave nature of light needs to be taken into account and light propaga-

tion cannot be described in terms of light rays. Diffusion of waves is fundamentally

different from diffusion of particles since waves exhibit interference. We first briefly

explain how a wave propagates through a disordered medium. Then, we show how

interference was used in our experiments to make an ‘opaque lens’ focus light.

Wave propagation in a disordered medium can be made insightful with the help

of the Huygens principle[6]. When an incident beam of light hits a small particle

in the object, part of the light is scattered and forms a spherical wave moving away

from the particle. In turn, this spherical wave hits other particles, giving rise to more

and more waves. Light propagation in a disordered scattering medium is extremely

complex; light is typically scattered hundreds or thousands of times before it reaches

the other side of the sample. Figure 1.2a shows the transmitted intensity for a sample

that is illuminated with laser. The complicated random pattern is the result of the

interference of very many different waves; this pattern is known as laser speckle.

We now illuminate the opaque object with thousands of light beams, instead of

one. Each of this beams forms a different random speckle pattern when it is scattered

by the object. The total field at a given point behind the sample is the sum of the
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speckle patterns of all incident beams. Since the object is disordered, each beam con-

tributes to the field with a random phase. Therefore, the contributions from different

beams mostly cancel each other (see the inset in Fig. 1.2a for a graphical representa-

tion of this statement).

Next, a spatial light modulator is used to delay each of the beams with respect to

the others and thereby shape the wavefront of the incident light. The modulator is

a liquid crystal on silicon display (LCoS). These displays have been developed in the

last decennium for use in commercial video projectors. A computer controlled al-

gorithm optimizes the intensity in a single target point. It does this by changing the

phase of the beams one by one, until their speckle patterns are all in phase in the tar-

get. In Fig. 1.2b we show the transmission after a successful optimization. All contri-

butions interfere constructively in the target and the intensity increases dramatically

(by a factor of thousand in this case). The opaque object now sharply focuses light

to a single point. The shaped wavefront uniquely matches the scattering object like

a key matches a lock. When the microscopic scatterers in the object have a different

position or orientation, a completely different wavefront is required. Therefore, this

method only works when the scatterers do not move during the optimization.

1.2 Relation with earlier work

Our work is inspired by an article of Dorokhov[8] about electron scattering in a metal

wire. Dorokhov predicted that there exist electron wave functions that are fully trans-

mitted through the wire, regardless of the length of the wire. Scattering of light in a

disordered medium is, in many ways, analogous to scattering of electrons in a wire.

The optical equivalent of this prediction is that it should be possible to construct a

shaped wave of which all 100% of the intensity is transmitted through an otherwise

opaque object. We wanted to construct this wavefront. The work on opaque lenses

was initially performed as a first step towards achieving full transmission. Because

opaque lenses turned out to be a fascinating research subject on their own, we first

explored that field for a while. Finally, we we used our optical analogue of a disor-

dered electronic system to confirm Dorokhov’s hypothesis.

In our opaque lens experiments, we ‘borrowed’ a lot of ideas from time-reversal

experiments with ultrasound and microwaves. In pioneering work by Fink et al. (see

Ref. 9 for a review) a short pulse impinged on a strongly scattering system. The am-

plitude of the scattered wave was recorded and played back reversed in time. Thanks

to time reversal symmetry, the wave focused back to the original source. In a series

of beautiful experiments, it was shown that time-reversal can be used to focus light

through a disordered medium[10], break the diffraction limit[11, 12], and improve

communication by using disorder[12].

In this thesis we show experiments that use our wavefront shaping method to ob-

tain similar result with light. Our approach has two fundamental advantages over

time-reversal methods. First of all, no time reversal symmetry is required. And sec-

ondly, for time reversal one needs to have a source at the target focus. With our

method, it is sufficient to only have a detector in the target focus. This difference

allows us to focus waves inside a scattering medium, as is demonstrated in Chapter 5.

An optical method that is related to time-reversal is optical phase conjugation[13].
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Using a non-linear crystal and high power lasers, it is possible to reverse both the

direction and the phase of a speckle pattern to project the light back to its original

source. Like with time-reversal, this method requires a source at the point where we

want the waves to focus.

Our experimental apparatus is similar to the setups used in adaptive optics[14].

Adaptive optics is a technique for correcting aberrations in lenses or other transpar-

ent media, such as a turbulent atmosphere[15] or the human eye[16]. Adaptive optics

works for situations where light propagates along rays. Diffraction and interference

effects are not taken into account. In opaque scattering media, however, there are

no rays of light that one can steer; light propagation is dominated by diffraction and

interference. Therefore, our method uses interference instead of ray optics to steer

light.

1.3 Mathematical tools for analyzing complex system

The propagation of light is described perfectly well by Maxwell’s equations, so why

would we need anything else? The problem is that these equations are so hard to

solve that exact results can only be found for very simple geometries. Even for a sim-

ple sphere geometry the result is not a closed expression, but a complicated sum of

Bessel functions.[17] Obviously, this approach cannot be scaled to a system contain-

ing billions of spheres, let alone irregularly shaped grains. Even worse, we do not even

know the exact positions and orientations of the scatterers in a sample to begin with.

Although this seems to be a hopeless situation, it is possible to capture the overall

characteristics of the system using statistical and physical tools. In this section, we in-

troduce the most important statistical tools that are used in this thesis: ensemble av-

eraging, correlation functions and probability density functions. Then, we highlight

the powerful physical concept of diffusion. These tools are applicable to all complex

systems, whether it is light propagation in a disordered medium, or the dynamics of

a complex biological, chemical or economical system.

1.3.1 Ensemble averaging

Every sample scatters light in a unique way. Even if all macroscopic properties (layer

composition and thickness, porosity, etcetera) are the same, the microscopic struc-

ture of two samples will be completely different. Therefore, it is impossible to predict

the exact scattering properties of a specific sample.

Instead, one calculates average quantities for a whole ensemble of samples. For

example, we could calculate the optical field averaged over all conceivable samples

that consist of a 10µm-thick layer of zinc oxide pigment. We write this quantity as

〈E 〉, where E is the field and 〈·〉 denotes averaging over the ensemble of all possible

samples of a given type.

In an experiment it is, most of the time, not needed to average over an ensemble

of samples. Instead, one can average over the response of different portions of the

sample. When both averaging methods are equivalent, the system is called ergodic.

We assume ergodicity for all our samples.
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1.3.2 Correlation functions

The majority of the research in random scattering is concerned with calculating or

measuring correlations of some kind. A correlation function relates the value of a

quantity at one coordinate to the value of that quantity at a different coordinate1. For

instance, the position correlation function of the electrical field is defined as

CE (r1, r2)≡
�

E ∗(r1)E (r2)
�

, (1.1)

where ∗ denotes the complex conjugate. When two quantities are statistically inde-

pendent, they can be averaged separately. For instance, when two points r1 and r2

are so far apart that the fields at both points are uncorrelated we can write (note the

essential difference in the placement of the brackets)

CE (r1, r2) =
�

E ∗(r1)
�
〈E (r2)〉 for r1 far from r2. (1.2)

Since E oscillates rapidly around 0, it quickly averages out. Inside a diffusive medium

〈E 〉 ≈ 0, and Eq. (1.2) vanishes. However, in general the decomposition in Eq. (1.2)

cannot be made. Especially when r1 = r2, the correlation function cannot be sepa-

rated

CE (r, r) =
�

E ∗(r)E (r)
�
�=

�
E ∗(r)

�
〈E (r)〉 . (1.3)

We adopt the convention that the intensity I (unit Wm−2) is defined as I ≡ |E |2 (see

e.g. [19]). Using this convention, CE (r, r) equals the average intensity. Since the in-

tensity is always positive, its average will not vanish and CE (r, r) is positive.

1.3.3 Probability density functions

The probability density function (pdf) gives the probability that a variable has a cer-

tain value. An important pdf is that of the intensity I of a speckle[20]

p (I ) =
1

〈I 〉 exp

�
− I

〈I 〉

�
, (1.4)

Eq. (1.4) tells us that the most likely intensity in a speckle pattern is zero. The chance

of finding bright speckles decreases exponentially with intensity of that speckle. A

typical speckle pattern with this distribution is shown in Fig. 1.2a.

A different pdf that is used extensively in this thesis describes the field of a speckle.

The joint probability density of the real part of the field (Er ) and the imaginary part

of the field (E i ) is given by a so-called circular Gaussian distribution

p (E i , E r ) =
1

π 〈I 〉 exp

�
−|E i |2+ |E r |2

〈I 〉

�
. (1.5)

The Gaussian distribution is very common and always arises when many uncorre-

lated random variables with a finite variance are added. This important statistical

fact is known as the Central Limit Theorem. In the case of a speckle pattern, the field

in a single speckle is the sum of the contributions from a large number of light paths.

When these light paths are independent, the field has a Gaussian distribution2.

1Here ‘coordinate’ can denote position, angle, frequency or any other independent variable. It is also very

common to have correlation functions involving four or more coordinates.
2The assumption of independent paths is not completely true. Tiny deviations from Gaussian statistics
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1.3.4 The diffusion equation

The average propagation of intensity in a disordered medium can be described very

well with a diffusion equation. For continuous wave illumination, the stationary dif-

fusion equation[22, 23] applies

−D∇2I (r; t ) =S(r; t ), (1.6)

where D is the diffusion constant for light, S is the source of diffuse light, and ∇2 is

the Laplace operator.

We now solve the diffusion equation to find the intensity distribution in a sample.

All our samples are effectively infinitely large in the x and y directions and have a

finite thickness L in the z direction. For such a geometry, it is convenient to work in

Fourier transformed coordinates q⊥ ≡ (qx ,qy ) for the traversal coordinates x and y .

In these coordinates, Eq. (1.6) transforms to

q 2
⊥I (q⊥, z )− ∂

2I (q⊥, z )

∂ z 2
=

S(q⊥, z )

D
, (1.7)

with q⊥ ≡ |q⊥|. We use the Dirichlet boundary conditions I (−z e 1) = 0, and I (L+z e 2) =

0 to describe the interfaces of the sample. These boundary conditions give a much

simpler and more insightful result than the slightly more accurate mixed boundary

conditions.[24]Here, L is the thickness of the sample and z e 1 and z e 2 are the so called

extrapolation lengths that account for reflection at the front and back surface of the

medium, respectively. These extrapolation lengths depend on the effective refractive

index of the sample and the refractive index of its surroundings[26–28]. When a slab

of diffusive material is illuminated by an external source, the incident light can be de-

scribed by a diffuse source at a depth of one mean free path ℓ.[29] Then, the solution

to Eq. (1.7) is (see e.g. Ref. [30])

I (q⊥, z ) =

⎧
⎪⎨
⎪⎩

S(q⊥)
sinh (q⊥[L e − z − z e 1])sinh (q⊥[ℓ+ z e 1])

Dq⊥ sinh (q⊥L e )
z ≥ z 0

S(q⊥)
sinh (q⊥[L e − ℓ− z e 1])sinh (q⊥[z + z e 1])

Dq⊥ sinh (q⊥L e )
z < z 0

, (1.8)

with L e ≡ L + z e 1+ z e 2. A numerical Fourier transform gives I in real space coordi-

nates. The intensity distribution in a diffusive slab is shown in Fig. 1.3. The inten-

sity is maximal close to the source and spreads out over the medium. Far away from

the source, the intensity decays exponentially with distance. From an expansion of

Eq. (1.8) in small variable q⊥, we find that the intensity decreases exponentially with

a decay length of L e /
�

6.

1.4 Outline of this thesis

This thesis describes experiments and theory on controlling the propagation of light

in opaque objects. The theoretical framework was developed in parallel with the ex-

periments. Therefore, most of the theory is presented together with the experimental

have been observed experimentally.[21] In Chapter 9 we describe an experiment in which we observed

very large effects of correlations between paths.



Bibliography 17

y,
�

m

z, �m
-50 0 50

-60

-40

-20

0

20

40

60

0

-1

-2

-3

-4

-100 -50 0 50 100

10
-6

10
-5

10
-4

10
-3

10
-2

In
te

n
s
it
y

x, �m

a b

Figure 1.3: Average distribution of diffuse light in a slab (shaded rectangle of thickness 30μm) of

strongly scattering material. a) Contour plot of the energy density distribution inside the

sample. The source is placed at a depth of z = ℓ= 0.72μm and x = y = 0. The numbers

on the equal-density curves indicate log10(I ). b) Logarithmic plot of the intensity profile at

the back of the sample (at z = 30μm).

results. The simple notation that was used in the first experiments did not suffice to

describe the more advanced experiments and a more powerful notation was devel-

oped along with the theory. Therefore there are slight differences in the notation in

the different chapters. Care has bee taken that all chapters are self-contained and can

be read and understood separately.

In Chapter 2 we describe the experimental apparatus, the samples and the con-

trol program that were used in the experiments. Special attention is given to a novel

wavefront modulation method that we developed.

In Chapter 3 the first experimental results of opaque lensing are presented. We also

explain the optimization algorithm and calculate the maximally achievable intensity

of the focus. The focusing resolution of opaque lenses is studied quantitatively in

Chapter 4. It appears that an opaque lens focuses light as sharply as the best possible

lens. In Chapter 5 the concept of opaque lenses is extended to focus light inside an

opaque object. In Chapter 6 we demonstrate that disorder can improve optical com-

munication. In Chapter 7 dynamic algorithms for use with non-stationary samples

are investigated.

In Chapter 8 a transport theory for optimized wavefronts is developed. We show

that wavefront shaping significantly increases the total transmission through opaque

objects. The experimental observation of this effect is presented in Chapter 9.

Finally, in Chapter 10, we summarize our findings and give an outlook of the many

possible applications of our work.
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Chapter 2

Experimental apparatus

In this chapter we discuss the experimental apparatus that we built to control the

propagation of light in disordered media. We discuss the considerations that played

a role in designing the experiment and give special attention to a new wavefront shap-

ing method that we developed for our experiments. The setup was modified for each

of the individual experiments that are described in this thesis. Here we discuss the

common elements of the design and explain what specific modifications were made.

A general diagram of the experiments is shown in Fig. 2.1. A strongly scattering

sample is illuminated by a wavefront synthesizer that is able to construct a spatially

modulated beam. The light that is scattered by the sample is collected by a detec-

tion system. This detection system provides feedback to a computer algorithm that

controls the wavefront synthesizer.

The most complex part of the apparatus is the wavefront synthesizer. It contains a

liquid crystal display (LCD) that spatially modulates incident light. In Section 2.1 we

analyze the characteristics of the LCD and explain how it was used as a phase modu-

lator. We also developed a new method for using the LCD to spatially modulate both

amplitude and phase of the light. This method was published in Ref. 1. In Section 2.2

the detection system is described. Here we also discuss how the detection is synchro-

nized with the wavefront synthesizer. We comment on the overall stability issues of

the setup in Section 2.3. Then, in Section 2.4, we describe which types of samples

were used and introduce a new fabrication method that we developed for making

strongly scattering samples. The structure of the control program that coordinates

the experiment is discussed in Section 2.5. Finally, in Section 2.6 we give an outlook

of what can be expected in future experiments.

Figure 2.1: Block scheme of the experiment. A wavefront synthesizer generates a shaped monochro-

matic wavefront. The light is scattered by a strongly scattering sample. A detector defines

a target position for the optimization procedure and provides a feedback signal. A computer

analyzes the signal and reprograms the phase modulator until the light optimally focuses

on the target.
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Figure 2.2: Operating principle of a transmissive TN LCD. a) No voltage is applied and the rod-like

liquid crystal molecules are ordered in a helix. The polarization of incident light follows the

twist. b) A voltage is applied between the two electrodes. The rods orient in the direction

of the field and the twist disappears. The polarization of the incident light is not rotated.

2.1 Wavefront synthesizer

Computer controlled wavefront shaping is a very versatile technique that is used in

many fields of optics. In adaptive optics[2], for example, deformable mirrors or other

spatial light modulators are used to correct aberrations in a variety of optical sys-

tems. Another area that relies on computer controlled light modulators is that of dig-

ital holography. Topics in digital holography include holographic data storage[3], 3D

display technology[4], and holographic image processing[5].

Liquid crystal displays are among the most popular types of light modulators be-

cause of their high optical efficiency, the high number of degrees of freedom and their

wide availability. In our experiment, light is modulated with a twisted nematic (TN)

liquid crystal display1. This LCD can modulate light at a refresh rate of 60 or 72 Hz at

a resolution of 1024×768 pixels. In Section 2.1.1 we discuss the operating principle of

a TN LCD. LCDs are designed to modulate light intensity. To use the LCD as a phase

modulator, a thorough characterization of the display is required. This characteriza-

tion procedure is described in Section 2.1.2. In Section 2.1.3, we describe a common

method to use TN LCDs as phase modulators. This method was used to perform the

experiments that are described in Chapters 3 and 7. For the other experiments in this

thesis, we developed a new modulation method that has several advantages over ex-

isting methods. This novel modulation technique is introduced in Section 2.1.4 and

experimentally demonstrated in Section 2.1.5. The switching behavior of the display

is described in Section 2.1.6.

2.1.1 Principle of a twisted nematic liquid crystal display

The operating principle of LCDs is based on the birefringence of rod-like organic

molecules. In the twisted nematic phase, these rods are ordered in a helix as is shown

in Fig 2.2a. A transmissive LCD is typically sandwiched between two crossed polar-

1We used two Holoeye LC-R 2500 systems. The LCDs have a size of 19.6mm× 14.6mm. One system was

customized by the manufacturer to control two LCDs with one control box. That system was used for

the experiments in Chapter 9, where we needed control over both polarizations.
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izers. The 90◦ helical structure of the liquid crystal rotates the angle of polarization

of the incident light so that the light passes the second polarizer. When a voltage is

applied over the liquid crystal cell, the molecules align with the electrical field, as is

shown in Fig 2.2b. Now the optical axis of the molecules is parallel to the direction of

light propagation and the polarization of the incident light is not rotated. As a result,

the light is blocked by the second polarizer and the pixel is dark.

The LCDs in our experiments are TN liquid crystal on silicon (LCoS) displays. These

reflective displays are designed to be used with a polarizing beam splitter or with

crossed polarizers in an off axis configuration. The thickness of the liquid crystal

layer and the twist angle are carefully engineered to optimize brightness, contrast

and response time for projecting video.

The operation principle of a reflective LCD is more complicated than that of a

transmissive LCD (see e.g. Ref. 6). When no voltage is applied, the polarization of

the linearly polarized incident light follows the helix. At the back surface of the LCD

the light is reflected and, on its way back it is rotated back to its original polariza-

tion. When a voltage is applied, the helix is distorted (see Fig. 2.2b). Now, linearly

polarized light cannot completely follow the twist anymore and becomes elliptically

polarized. In the ‘on’ state, the light is exactly circularly polarized at the back surface

of the LCD. Reflecting circularly polarized light changes its handedness. Therefore,

on its way back, the polarization is not rotated back to its original polarization, but

to the orthogonal polarization state. In the crossed polarizer configuration, the pixel

now is reflecting.

2.1.2 Liquid crystal display characterization

The optical characteristics of a single pixel of the LCD can be described by its Jones

matrix J . The Jones matrix relates the horizontal and vertical polarization compo-

nents of the incident field (denoted as, respectively E in
H and E in

V ) to the components

of the outgoing field

⎡
⎢⎣

E out
H

E out
V

⎤
⎥⎦= J

⎡
⎢⎣

E in
H

E in
V

⎤
⎥⎦ . (2.1)

Elliptic and circular polarization are described by complex values of EH and EV . In

general, the elements of the Jones matrix are also complex numbers. A pixel of the

LCD is fully characterized by measuring J (V ) for all voltage settings V .

The setup in Fig. 2.3a was used to measure the Jones matrix of the LCD. A laser

illuminates a disk with a diameter of approximately 3mm in the center of the LCD.

With two waveplates, any polarization of incident light can be generated. A third

waveplate and a polarizer are used to analyze the modulated light in any desired po-

larization basis. The modulated light is focused on a detector. To obtain, for instance,

the J12 component, the polarization optics were rotated so that the incident light was

vertically polarized and the reflected horizontally polarized light was analyzed. We

later used the simpler setup that is shown in Fig. 2.3b. That setup has no polarization

optics that need to be rotated and, therefore, is less sensitive to alignment inaccu-

racies. With the simplified setup only the J12 component can be measured. For the
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Figure 2.3: Setups used for characterizing the LCD. a) Setup for full characterization. λ/2, half wave-

plate; λ/4, quarter waveplate; BS, non-polarizing 50% beam splitter; P, polarizer; L, 60cm

lens; D, detector. The light source was a 632.8nm HeNe laser. b) Setup for partial charac-

terization. PBS, polarizing beam splitter. Partial characterization was performed at wave-

lengths of 632.8nm (HeNe laser) and 532nm (Nb:YAG laser).

modulation scheme that is discussed in Section 2.1.4, such a partial characterization

of the LCD is sufficient.

In both setups, J12 was measured using a diffractive technique that is comparable

to the method described in Refs. 7 and 8 but only required detection of the 0th order

diffraction mode. We assumed that all pixels of the LCD have the same Jones matrix.

First the absolute value of J12(V ) was obtained by varying the voltage over all pixels

of the LCD simultaneously. Then, we programmed the LCD with a binary grating

with a duty cycle of 50% (a so called Ronchi grating). The voltage over the notches of

the grating was kept constant at V0 while the voltage over the rules was varied. The

intensity in the 0th diffraction order responds as

I (V, V0)

|E in
H |2

= | J12(V0)|2+ | J12(V )|2+2| J12(V0)|| J12(V )|cos
�

arg J12(V )−arg J12(V0)
�

, (2.2)

which gives us, in principle, enough information to obtain the phase of J12(V ) up to

an overall phase offset. In practice, however, the inversion of Eq. (2.2) is very sensi-

tive to noise for some values of V . We solved this problem by measuring I (V, V0) for

different values of V0 (0%, 25%, 50%, 75% and 100% of the maximum voltage). Then

we combined the data, using only measurements for which the inversion of Eq. (2.2)

was stable. The result of these measurements is shown in Fig. 2.4. We find that the

phase of the reflected light changes from π to 0 with increasing voltage. The ampli-

tude increases from 0 to a maximum at the ‘on’ state (around a phase of 35◦) and then

decreases slightly.

To obtain all four elements of the Jones matrix, the measurement was repeated for

each element of J . Moreover, the measurements were also performed in a rotated

basis with left and right hand circularly polarized light. These extra measurements

resolved the relative phase of the different components of the J matrix.

All in all, measuring the full Jones matrix of an LCD is cumbersome. A complicating

factor is the fact that all polarization states (except for horizontal or vertical polariza-

tion) are changed by reflecting off a coated mirror or passing through a beam splitter.

Theoretical analysis is complicated by the fact that in thin LCDs surface effects start
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Figure 2.4: Polar plot of the modulator output amplitude with vertical polarization in, horizontal polariza-

tion out (J12), at a wavelength of 532nm. The modulation voltage increases in the direction

of the gray arrows.

to play a role. Also, the total amount of light that was reflected by the LCD was found

to depend on the voltage, which means that the Jones matrix is not unitary. There-

fore, many of the theoretical models that are used to describe LCDs[9–11] can only

give an approximate result.

2.1.3 Liquid crystal phase-mostly modulation

TN LCoS displays for intensity modulation typically achieve a maximum phase re-

tardation of around π for horizontally or vertically polarized light. Nevertheless, by

choosing a suitable combination of incident polarization and analyzer orientation, it

is often possible to find an operating mode where the phase retardation is 2π while

the amplitude modulation is relatively low. This mode of operation is called ‘phase-

mostly’ modulation and has been the subject of extensive experimental and theoret-

ical research[7, 8, 10–18].

The optimal configuration of the polarizers is different for each specific series of

LCDs and also depends on the wavelength of the light. In general, the optimal com-

bination of polarization states is elliptical.[17]We found the optimal polarizations for

a wavelength of 632.8nm with a brute force optimization method. This method used

the measured Jones matrix of the LCD to numerically try all configurations. In the

optimal configuration the transmission is low and the system is very sensitive to vari-

ations in the angles of the waveplates. The measured modulation curve (see Fig. 2.5)

has an intensity variation of 21% of the mean value. This configuration was used suc-

cessfully in the wavefront shaping experiments that are described in Chapters 3 and 7.

In these experiments, a reference detector compensated for the intensity variations.
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Figure 2.5: Polar plot of the modulator output amplitude. Dashed circle, perfect phase only modulation;

solid curve, measured response in the configuration for optimal phase-mostly modulation

at a wavelength of 632.8nm.

2.1.4 Decoupled amplitude and phase modulation2

In this section, we describe a novel modulation scheme that uses a TN LCD in combi-

nation with a spatial filter to achieve individual control over the phase and the ampli-

tude of the light. The method has four major advantages over the scheme described

in the previous section. Firstly, it allows separate control over amplitude and phase

of the wavefront. Secondly, the residual amplitude-phase cross-modulation that oc-

curred with the phase-mostly modulation scheme is almost completely eliminated.

Thirdly, the LCD operates in a simple horizonal-in vertical-out configuration, this

saves components and characterization time, and makes the setup less sensitive to

align. And finally, the experimental setup can be easily extended to control both po-

larizations.

Since the introduction of liquid crystals, many techniques have been developed to

achieve combined amplitude and phase modulation. Examples are setups where two

LCDs are used to compensate amplitude-phase cross modulation[19, 20], and dou-

ble pixel setups where two pixels are combined to a macropixel[21–23]. Each of this

techniques has its own limitations. The use of two LCDs introduces alignment and

synchronization issues. Dual pixel schemes put specific demands on the modulation

capacities of the LCD, such as requiring phase-only modulation[23], amplitude-only

modulation[21] or a phase modulation range of 2π [22].

We developed a method that combines four pixels into a macropixel. With this

method, full spatial amplitude and phase modulation can be achieved with any LCD.

The setup used for this modulation scheme is shown in Fig. 2.6. A monochromatic

beam of light is incident normal to the SLM surface. The modulated light is reflected

from the SLM. We choose an observation plane at which the contribution of each

2This section and the following section are based on the article Spatial amplitude and phase modulation

using commercial twisted nematic LCDs, E. G. van Putten, I. M. Vellekoop, and A. P. Mosk, accepted for

publication in Applied Optics (2008).
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Figure 2.6: Experimental setup to decouple phase and amplitude modulation. Four neighboring pixels

form one macropixel which can modulate amplitude and phase. In the plane of observation

neighboring pixels are π/2 out of phase (inset). A spatial filter combines the pixels into one

macropixel. L 1, L 2, lenses with a focal distance of 250mm and 200mm, respectively.

neighboring pixel is π/2 out of phase, as is seen in the inset. A spatial filter removes

all higher harmonics from the generated field, so that four neighboring pixels are

merged into one macropixel.

By choosing the correct combination of pixel values, any complex value of the total

field can be synthesized. The electric field in a macropixel, Esp, can be written as the

sum of the fields, E1, E2, E3, and E4, coming from the four different pixels. Behind the

spatial filter, Esp is given by

Esp = E1 exp

�
3

2
iπ

�
+ E2 exp(iπ)+ E3 exp

�
1

2
iπ

�
+ E4, (2.3)

= (E4r − E2r )+ i (E3r − E1r )+ (E1i − E3i )+ i (E4i − E2i ), (2.4)

where the indices r and i refer to the real and the imaginary part of the field. The

voltages on pixels 2 and 4 are chosen such that E4i − E2i = 0, and in the same way

the voltages on pixels 1 and 3 are chosen such that E1i − E3i = 0. Equation 1 is now

reduced to

Esp = (E4r − E2r )+ i (E3r − E1r ) (2.5)

The separate pixels are programmed so that the fields are given by

E1 =−A sin(iφ)+ i∆1, (2.6)

E2 =−A cos(iφ)+ i∆2, (2.7)

E3 =A sin(iφ)+ i∆1, (2.8)

E4 =A cos(iφ)+ i∆2, (2.9)

with A and φ, respectively, the desired amplitude and phase. The imaginary parts ∆

cancel. The desired complex value is now synthesized by the real values of the field at

the four different pixels. From the geometrical construction shown in Fig. 2.7 it can
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Figure 2.7: Modulation amplitude response of four pixels that form a macropixel. Pixels have a π/2

phase shift with respect to each other. The four pixels synthesize any complex value: E2

and E4 generate the real part of the field; Im(E4-E2) = 0. E1 and E3 form the imaginary

part (not shown).

be seen how we modulate a value on the real axis, E4r − E2r , by choosing E4i = E2i .

It is always possible to find pixels values with exactly opposite imaginary parts and

different real parts. The only requirement posed on the SLM is that at least one of the

field components has to vary when the pixel voltages are changed.

The decoupled amplitude and phase modulation was used with aλ= 532nm diode

pumped solid state laser3 for the experiments in Chapter 5. For the experiments in

Chapters 4, 6 and 9, a λ = 632.8nm helium neon laser was used4. In Chapter 9 the

wavefront synthesizer was extended to modulate two polarizations by simply replac-

ing the beam dump (see Fig. 2.6) by a second LCD.

2.1.5 Demonstration of amplitude and phase modulation

We tested the new modulation technique with the same characterization method as

was used to measure the modulation curve of the LCD (see Section 2.1.2), with the

difference that we now use macropixels instead of actual pixels. We programmed the

modulator so that the macropixels formed a Ronchi grating. The notches were set at

half of the maximum amplitude with a phase offset of zero. The phase and amplitude

of the rules was varied. A detector recorded the light intensity in the 0th diffraction

order5. These experiments were performed at a wavelength of 532nm.

We observed that the intensity in the 0th diffraction order varied as the cosine of the

phase difference between the notches and the rules of the grating, just as is expected

from Eq. (2.2). We repeated the experiment with different amplitudes in the rules

of the grating. All experimental result overlaps almost perfectly with the theoretical

curves (see Fig. 2.8). From this agreement, we conclude that a full 2π phase shift is

3Coherent Compass M315-100, max. 100 mW, intra cavity doubled, diode pumped Nb:YAG laser.
4JDS Uniphase 1125/P, 5mW polarized HeNe laser.
5The 0th diffraction order of the macropixel grating is the direction of the modulated light when all

macropixels are set to the same amplitude and phase. This is not the same as the 0th diffraction order

of the modulator, which is the direction of the light when all actual pixels are set to the same voltage.
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Figure 2.8: Intensity in 0th order grating mode as a function of the set phase difference ∆θ ≡ θB −θA .

Notches of the grating are kept at amplitude A = 0.5, phase θA = 0. Amplitude B and

phase θB of the rulers is varied. Solid curves, expected intensity for perfect modulation.

Intensities are referenced to I0 = 4.56 ·103 counts/second.

0

1

0�

90�

180�

270�

Im Esp

Re Esp

0.5

Figure 2.9: Independent phase and amplitude modulation. Curves show the measured relative ampli-

tude A/
�

I0 as a function of the programmed phase. Relative amplitudes are set to 0.25,

0.5, and 0.75. I0 = 19.7 ·103 counts/second.

achieved. Moreover, at π phase shift the intensity in the 0th order vanishes, which

indicates that the field of the notches has the same magnitude and opposite sign as

the field of the rules of the grating.

To determine the amount of amplitude-phase cross-modulation quantitatively, we

measured the intensity in the 0th diffraction order when all macropixels are set to the

same field and amplitude. When the phase is cycled from 0 to 2π, the observed inten-

sity remains virtually equal. From the results shown in Fig. 2.9, we find that the am-

plitude is constant to within 2.5%, which is a significant improvement over the 21%

cross-modulation observed with the phase-mostly modulation scheme. The small

amplitude variations are periodic with a π/2 period. This periodicity is understand-



28 Experimental apparatus

able, since after π/2 rotation of the phase, the same pattern is programmed on the

LCD shifted by one pixel (see Eqs.(2.6)- (2.9)). Unlike the phase-mostly modulation

method, 0 and 2π are equivalent, which means that there are no discontinuities at

phase wraps. The amplitude variations are probably the result of dynamic cross-talk

between neighboring pixels. This effect is discussed in the following section.

Although the amplitude of a macropixel is not affected by its phase, neighbor-

ing macropixels do effect each other. A detailed analysis of this effect is found in

Ref. 24. The effect is similar to ordinary diffraction: the beams originating from the

two macropixels expand through diffraction and interfere with each other. It was

found that, typically, a completely random wavefront carries approximately 85% of

the intensity of a plane wave. The rest of the intensity is clipped by the iris diaphragm.

In Chapter 5 this effect was compensated for by measuring a reference intensity with

a random wavefront. In Chapter 9 we used a more accurate method where the sample

is translated.

2.1.6 Transient behavior

We now investigate how fast a pixel of the LCD can be switched. The image on the

modulator is updated with a refresh rate of 60 frames per second. To allow for real

time operation, we reconfigured the gamma lookup table of the LCD driver electron-

ics. The table was configured so that a pixel value linearly corresponds to an ampli-

tude modulation on the real or imaginary axis. Furthermore, the conversion from

a polar representation (amplitude and phase) to the real and imaginary parts (see

Eqs. (2.6)-(2.9)) is performed in real time by the video acceleration hardware. In the

process of displaying a new image the following sequence of events can be identified:

1. The control program loads new matrices for the amplitude and phase to the

video hardware

2. The video hardware scales and translates the matrices to screen coordinates.

Then it performs the necessary calculations to convert amplitude and phase to

pixel values and prepares the new image in a background buffer.

3. The control program waits to just before the start of a new frame (the so called

vertical retrace period) to swap the background buffer with the foreground buff-

er.

4. After every vertical retrace the video hardware sends the image to the light

modulator over a digital visual interface (DVI) link.

5. The light modulator hardware receives the image and converts pixel values to

voltages with the use of an internal gamma lookup table

6. The light modulator hardware drives a matrix of transistors on the back of the

LCoS display according to a pulse width modulation (PWM) scheme.

To measure the transient behavior of the LCD, we repeatedly switched the whole dis-

play from the minimum to the maximum voltage and back, each time waiting 500ms

between switches. A camera was configured to measure the intensity in the center
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Figure 2.10: Transient intensity response of the LCD for switching the amplitude from 0 to maximum

(solid curve) and for switching it back to 0 (dashed curve). During the first 33ms (2 frames)

the display does not respond at all. The intensity is normalized to the average intensity in

the ‘on’ state.

of the modulated beam with a shutter time of 1ms. The delay between the vertical

retrace and the camera trigger was varied from 0ms to 120ms.

Figure 2.10 shows the measured switching response of the LCD. We recognize three

distinct periods. During the first two frames (from 0 to 33ms) the image on the LCD

does not change. We call this period the idle time Tidle. During the idle time the

image is transferred from the computer to the modulator. In the second period the

voltage over the pixels changes and the liquid crystal molecules reorient, which takes

a certain time Tsettle ≈ 50ms. In the third period, the liquid crystal molecules have

reoriented completely. However, the signal still oscillates with a period of exactly half

a frame (8.3ms). These oscillations are the result of how the LCD hardware drives

the pixels (see e.g. [25]). Each pixel is switched on and off according to a PWM code.

A storage capacitor at each pixel integrates the total current to achieve the desired

average voltage over the liquid crystal. After half a frame, the controller reverses the

voltage to avoid a DC current that would damage the liquid crystal. This switching

scheme results in rapid oscillations in the reflected light.

When two neighboring pixels have a different voltage, there is a field gradient at

their border. Due to the pulse modulation scheme, the gradient will oscillate. The

magnitude of this undesired effect depends on the PWM code of each of the pixels.

For example, consider the field response for a varying phase and a constant ampli-

tude of 0.25 (the smallest circle in Fig. 2.9). The response curve shows small jumps in

the amplitude at phase values of −15◦ and +15◦, these jumps are repeated every 90◦.

To understand these jumps, we examine the bit code of adjacent pixels in a macro-

pixel. For a phase of 14◦, pixel 1 and 2 have a value of 255 and 230. At a phase of 15◦,
the first pixel values has changed to 256 and the second pixel is still at 230. Although

the change from 255 to 256 appears to be small, these numbers have a completely dif-

ferent bit-pattern (011111111 and 100000000 respectively). Therefore, the field gra-

dient between pixel 1 and pixel 2 will differ significantly between the two situations,

resulting in a jump in the field response.

The transient switching characteristics of the LCD and the temporal oscillations

put special demands on the timing of the detection. This issue is addressed in Sec-
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Figure 2.11: An imaging telescope is used to project the surface of the LCD to the entrance pupil of

the microscope objective. Crosses indicate focal points of the lenses.

tion 2.2.

2.1.7 Projecting the wavefront

In most of the experiments in this thesis, the shaped wavefront is focused on the

sample by means of a microscope objective. The surface of the LCD is imaged onto

the entrance aperture of the microscope objective with an imaging telescope. When

combined phase and amplitude modulation is used (see Section 2.1.4) there is a pin-

hole in the focus of the telescope to spatially filter the generated wavefront. The tele-

scope also serves to demagnify the beam coming from the LCD to the size of the mi-

croscope objective’s aperture. It is essential that a telescope with two positive lenses is

used so that beams that leave the LCD at an angle are also imaged onto the aperture

of the objective (see Fig. 2.11). When the lenses are aligned properly, the entrance

pupil of the objective corresponds to a circular area on the LCD. Pixels outside this

area do not contribute to the field on the sample and can, therefore, be skipped in the

optimization procedure.

In this configuration, a pixel on the LCD corresponds to an angle in the focal plane

of the objective. When we group pixels on the LCD together in blocks, we reduce the

angular resolution at the sample surface and, thereby, reduce the size of the projected

spot. The aperture of the objective is always filled completely. Therefore, when a high

NA objective is used, the number of segments in the incident wavefront is approx-

imately equal to the number of mesoscopic channels on the sample surface. If, for

example, all pixels are grouped into a single segment, light is focused to a diffraction

limited spot encompassing exactly one mesoscopic channel.

If the sample is not positioned in the focal plane of the objective, or when a low

NA objective is used, the wavefront synthesizer illuminates a spot that supports more

scattering channels than there are control segments in the incident wavefront. Thus

the incident field cannot completely be defined by the wavefront synthesizer. It turns

out that, in general, this limitation has little effect on how well the propagation of

light is controlled (see for instance Fig. 3.4).

2.2 Detection

During the wavefront optimization procedure, a detector monitors the intensity in

the target. Different detectors were used for this purpose. In this section we discuss

the detectors that were used, as well as their relevant properties.
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The first experiments were performed with a photodiode. A photodiode has an

excellent dynamic range and a fast response. The major drawback of using a photo-

diode is that it is very hard to select exactly a single speckle. For this reason we started

using cameras. During optimization the camera image is integrated over a disk with a

software defined radius and position. The diameter of the disk is chosen to be slightly

smaller than the speckles that are visible on the initial camera image. Using a camera

also allowed us to easily define multiple targets and to monitor the intensity in the

background around the optimized speckle.

We have used three different models of cameras. The first model is the Allied Vision

Technologies Dolphin F-145B. This camera is an all purpose charge coupled device

(CCD) camera that is connected to the computer with a IEEE 1394 link (firewire). To

increase the dynamic range of the camera, the shutter time was varied by the con-

trol program. In Chapter 9 the required dynamic range was so high that changing the

shutter time was not sufficient. Instead, the computer controlled a motorized trans-

lation stage that automatically placed a neutral density filter in front of the camera.

We used the Dolphin camera for all experiments, except for the fluorescence mea-

surements described in Chapter 5. For that experiment, we started with a Hama-

matsu ORCA electron multiplying CCD (EMCCD) camera. This camera is cooled with

a Peltier element to reduce the dark current. Also, the signal is amplified on the CCD

chip to overcome readout noise when the signal is very weak. The Hamamatsu cam-

era was connected to a dedicated computer with a CamLink interface. However, al-

though the Hamamatsu camera has a high sensitivity, it was not possible to measure

small variations in the signal intensity. It turned out that the overall background in-

tensity of the camera image varied on a frame by frame basis. This so called base-

line drift problem was solved by using a different EMCCD camera. The Andor Luca

DL658M is a cooled EMCCD camera that connects to the USB 2.0 bus. It has a base-

line clamping feature that eliminates almost all baseline drift.

The linearity of all cameras was confirmed experimentally. We also recorded a

background image for every experiment. For most experiments it was sufficient to

subtract the average value of the background image from the measured signal. How-

ever, the experiments in Chapter 9 required a measurement of the exact intensity

distribution over the whole camera. Therefore, the full background image was sub-

tracted pixel by pixel. Moreover, in that experiment we corrected for the approxi-

mately 30% lower sensitivity of the camera close to the corners of the CCD chip. The

lower sensitivity is probably the result of a minute misalignment of the microlenses

on this chip.

2.2.1 Timing

In all our experiments it turned out that the speed at which the optimal wavefront

can be constructed is the limiting factor. Therefore, we want to measure as quickly as

possible. In Section 2.1.6 we saw that the wavefront oscillates with a period of 8.3ms.

To avoid noise due to aliasing, the shutter time of the cameras (Tmeas)was always set

to a multiple of this value.

In Section 2.1.6 we observed that it takes some time for the image on the LCD

to start changing (Tidle) and then it takes some more time for the image to stabilize
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Figure 2.12: Timing diagram of a series of measurements. Time (in frames of 16.7ms) is indicated

on the top axis. The curve in the topmost box symbolizes the switching behavior of the

modulator. The numbered rectangles in the box below stand for the time that the camera

is recording an image. In the lower box the relevant time intervals for synchronization are

drawn.

(Tsettle). To maximize the number of measurements per second and to further reduce

aliasing effects, we synchronized the camera with the wavefront synthesizer.

A timing diagram of a series of measurements is given in Fig. 2.12. In this diagram,

Tidle = 33ms = 2 frames and Tsettle = 57ms = 3.4 frames. The first image is presented

during the vertical retrace period of the modulator (frame 0). At frame 2, the image

starts to change. Then, at frame 5, the second image is presented, although the mea-

surement for the first image has not even started. Since it takes two more frames for

the LCD to react, the image on the LCD is stable from frame 5 to frame 7. We trigger

the camera after Tidle+Tsettle = 5.4 frames. Even if there is some jitter in the timing, the

camera has finished measuring before the image on the LCD starts changing (frame

7).

With this tight timing scheme, we can perform a measurement each 5 frames (in-

stead of each 7 frames). The idle time Tidle only affects the first measurement of a

sequence. In the experiments we perform a sequence of 5 to 10 synchronized mea-

surements for each segment.

2.3 Stability

The optimized wavefront is unique to a sample. When the sample is moved, the opti-

mized wavefront does not fit the sample anymore. Therefore, during the course of an

optimization, the sample has to be stable with sub-wavelength accuracy. The stabil-

ity demands for the rest of the apparatus are high as well. In this section we discuss

the most important stability considerations for our experiments.

The whole apparatus was built with the requirements of interferometric stability

in mind. We built it on an actively levelled, damped optical table6. Moreover, only

6TMC CleanTop II 780 series, 783-655-12R with 14-426-35 support.
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high quality opto-mechanical components were used7. The sample was mounted on

a flexure stage to avoid the creep problems that are intrinsic to stages with ball bear-

ings. The mechanical stability of the system was tested by tapping the optical compo-

nents while monitoring the position of the focused light with sub-micron accuracy. If

the focus did not return to exactly the same position after tapping a component, the

mount of the component was replaced by a more stable one.

The temperature and humidity of the setup were not controlled. Therefore, it is

likely that thermal drift and hygroscopic expansion negatively affect the stability. Af-

ter switching on the system, it takes a few hours to stabilize completely. During this

time the laser, the cameras, the LCD, and the computer controlled translation stages

warm up. After this warmup time the total system is, typically, stable enough to per-

form an optimization that takes an hour.

We found that air turbulence causes fluctuations in the feedback signal. These

fluctuations are in the order of a few percent in the interesting frequency range of

about 1 Hz. To reduce air turbulence, a box was built around the experiment. This box

reduces stray light as well. As the laser is the most important source of hot, turbulent

air, it needed to be placed outside the box. Of course, all components with fans (the

cooled camera and the LCD control electronics) were also placed outside the box.

Finally, there is a constraint of the stability of the wavelength of the laser. To calcu-

late the required stability, we estimate the average path length through a sample. For

example: a typical sample has a mean free path of the path of ℓ= 0.7µm, and a thick-

ness of L = 15ℓ. Then, the diffuse path length s is in the order of s = 152ℓ= 160µm. At

a wavelength of 532nm, a typical path is 300 wavelengths long. When a wavelength

change results in a π phase shift over this path length, the wavefront optimization

fails. In this example, the wavelength needs to be stable to within a nanometer (or ex-

pressed in inverse centimeters, better than 31 cm−1), which is absolutely no problem

for a temperature stabilized Nb:YAG laser or a HeNe laser.

2.4 Samples

For our experiments we used a large diversity of strongly scattering objects. In many

ways, our method for controlling the propagation of light in such objects does not

depend on the optical parameters of the sample. There are, however, some practical

limitations that restrict what samples we can use:

Stability The optimal wavefront for focusing light through a strongly scattering ob-

ject uniquely depends on the exact configuration of the scatterers. Therefore,

we are limited to solid samples. We observed that after optimization the signal

decreases with a typical timescale of approximately one hour, a value that is

probably limited by thermal drift in the setup rather than by the samples.

Absorption For our method to work, there has to be at least some light on the de-

tector before the optimization procedure is started. If the absorption in the

7Most opto-mechanical components were manufactured by Siskiyou and Thorlabs. For the beam ex-

pander, the laser, the LCDs, and the sample, special stable mounts were designed.
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sample is too strong, there will be no feedback signal to optimize. For most ex-

periments it should be possible to use weakly absorbing materials as long as the

initial transmission is detectable. However, for the experiment in Chapter 8, we

expect that absorption decreases the effect that we are interested in. Therefore,

we only used non-absorbing materials in all our experiments.

Thickness The optimization method detects the intensity in a single scattering chan-

nel. The number of independent channels is roughly equal to (2L)2/(λ/2)2,

where L is the thickness of the sample and λ is the wavelength. Moreover, the

total transmission scales as ℓtr/L, with ℓtr the transport mean free path for light

in the medium. Therefore, the total optical power in a single speckle scales with

L−3. For this reason, most of our samples were made relatively thin (∼ 10µm).

However, successful optimizations have been performed on samples that were

up to 1.5mm thick (a baby tooth, see Table 3.1).

Scattering strength We want to study light propagation in non-absorbing opaque

scattering media where all transmitted light is diffuse. A scattering object is

opaque when it is thicker than a few transport mean free paths. We require that

L > 4ℓtr. In this regime, the fraction of ballistic (non-diffuse) transmission is

less than exp(−4) ≈ 2%. To keep the number of channels as low as possible,

it is advantageous to use thin samples with a low ℓtr. There are two ways to

minimize ℓtr. First of all, the scale of the disorder should be comparable to the

wavelength of light in the medium. Secondly, the index contrast should be as

high as possible. Good candidates for making strongly scattering samples are

pigment particles made of a high index material (TiO2, ZnO). These particles

have a typical size of ∼ 200nm.

Flatness and homogeneity Our method for controlling propagation of light does not

depend on the flatness or the homogeneity of the samples. However, for sys-

tematically analyzing the experimental results it is highly desirable to have sam-

ples that have the same thickness over the whole sample area (< 20% varia-

tions). Furthermore, the samples should be homogeneous in composition and

certainly not have any holes.

Special requirement: doping For the experiment that is described in Chapter 5 it was

required to place fluorescent nanospheres in the scattering medium.

Special requirement: substrate The experiment in Chapter 9 required that the sam-

ples were on a thin glass substrate to allow two high NA microscope objectives

to focus both on the front and the back of the sample. Working without sub-

strate all together was not possible because the substrate provides structural

stability to the sample.

Special requirement: effective refractive index The experiment in Chapter 9 also re-

quired the number of channels to be as low as possible. Therefore, we used

thin, strongly scattering samples. Moreover, we chose to use ZnO pigment in

an air matrix because of its relatively low effective refractive index. A low refrac-

tive index reduces reflection at the sample boundaries and, thereby, reduces the

size of the diffuse spot and the number of independent scattering channels.
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In conclusion, for most experiments the requirements on the samples are not very

stringent and allow for a wide range of materials to be used. We successfully applied

our wavefront shaping method to daisy petals, porous gallium phosphide, TiO2 pig-

ment, ZnO pigment, white airbrush paint, eggshell, stacked layers of 3M Scotch tape,

paper and even a baby tooth.

2.4.1 Sample preparation method

We developed a spray painting technique to fabricate layers of strongly scattering

material. The technique allows the fabrication of flat, homogeneous layers with a

thickness of around 5µm and more. Moreover, it is very easy to use different materi-

als or to dope the sample with fluorescent markers. We first give the recipe for ZnO

samples with embedded fluorescent nanospheres. These samples were used for the

experiment in Chapter 5. Then we explain how different samples were made using

the same technique.

1. Substrate cleaning Standard 40mm× 24mm microscope cover slips with a thick-

ness of 160µm were used as a substrate. The substrates were first rinsed with

acetone to remove any residual organic material. Then they were rinsed with

isopropanol, a solvent that is known to leave no drying stains, and left to dry.

2. Paint preparation First, the nanosphere suspension8 was diluted by a factor of 105

(2.5µl suspension in 250ml water). Then, a suspension was made by mixing

2.5g of ZnO powder9 with 7.3ml water. The suspension was stirred on a roller

bank for 30 minutes and then placed in an ultrasonic bath for 15 minutes. Fi-

nally, 0.73ml of the diluted nanosphere solution was added. The suspension

was again stirred for 30 minutes and then placed in the ultrasonic bath for 15

seconds.

3. Spray painting The paint was sprayed onto the substrate with an airbrush10. The

airbrush was operated at an air pressure of 2.3 bar. The paint was sprayed from

approximately 20cm distance to allow for a homogeneous coverage. The empty

substrates were taped to an underground with an inclination of approximately

45◦. Spraying covered these substrates with a thin wet film of paint. Directly

after spraying, the samples were left to dry horizontally for two hours.

The resulting samples are homogeneous, flat up to a variation of 1µm, and opaque

(see Fig 2.13). The adhesion between the ZnO and the glass is remarkably good, es-

pecially since no binding agent was used at all. The thickness of the samples was de-

termined around a scratch in the sample surface using optical microscopy or Dektak

profilometry. Atλ= 532nm, the mean free path is 0.7±0.2µm, which was determined

from total transmission measurements (see Section 5.A.3).

8 Duke Scientific red fluorescent nanospheres. Diameter 0.30 ± 5%µm. Suspension with 1% solids in

water. 6.7 · 1011 spheres / ml. Dyed with FireFlyTM excitation maximum 542nm, emission maximum

612nm.
9 Sigma-Aldrich Co. Zinc Oxide powder, < 1µm,99.9% ZnO. With a scanning electron microscope (SEM)

the average grain size was determined to be 200nm
10Evolution Solo Airbrush from Harder & Steenbeck, 0.4mm needle diameter.
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Figure 2.13: a) Scanning electron microscopy image of a ZnO sample (side view). Both the sample-air

interface (top) and the sample-glass interface (bottom) are visible. b) Photograph of a

ZnO sample (on a background of millimeter paper).

Various other suspensions were used to make samples. The most homogeneous

samples were obtained with a mixture of 2.5 parts airbrush paint11 to 1 part acrylic

medium12. We also created samples using a suspension of 5 g of rutile TiO2 pigment13

in 10 ml airbrush thinner. Both the samples with airbrush paint and the samples with

rutile pigment are weakly fluorescent, which makes it hard to distinguish between

the probe signal and the background fluorescence. Therefore, for the experiments in

Chapter 5 we used ZnO samples, which do not fluoresce in the relevant wavelength

area.

2.5 Control program

All elements of the experiment are controlled and synchronized by a control program.

This program manages frame grabbing, detector triggering, video hardware accelera-

tion, optimization algorithms, user input, realtime visual feedback, data storage and

more. To keep a program of this scope maintainable we used a component based

development strategy. Instead of thinking of the program as a whole, we separated

it into self-contained components that offer a predefined service. An excellent intro-

duction into the ideas behind of component based programming and agile software

development can be found in Ref. 26.

Each component implements one or more interfaces. An interface is a specifica-

tion of a set of properties (publicly accessible data) and methods (executable func-

tions) with a certain functionality. For example, the interface of a camera component

defines a method for triggering the camera, and it defines properties such as the shut-

11Hansa pro-color opaque white. Pigmented, water-based acrylic polymer paint. Pigment: TiO2 PW 6,

CI#77891 (specifications from manufacturer material safety data sheet).
12Schminke 50602 acrylic airbrush thinner
13Sachtleben Rutil R210 #1060377/040
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ter time and the region of interest. Interfaces are defined in the most general terms

possible and hide all details of the implementation.

The only way to interact with a component is through its external interface. This

gives the possibility to create a different component that implements the same inter-

face with different underlying details, for example using a different low-level camera

driver. From the outside, these two components are indistinguishable. This means

that we can exchange these two components transparently.[27]

The interchangeability of components also makes it possible to extend the func-

tionality of code without changing it. This tantalizing idea is known as the Open-

Closed principle[28]. For example, the first algorithm we wrote for shaping a wave-

front was developed with a photodiode detector and a phase-mostly modulation con-

figuration. Because of the abstraction that was used, we were able to extend this al-

gorithm to work with an EMCCD camera and use the phase-amplitude modulation

scheme simply by connecting two different components to the algorithm. Not a sin-

gle line in the code of the algorithm was changed.

2.5.1 LabView and C++ mixed programming

We chose a mixed programming environment for developing the control program.

We used C++ to implement reusable components for the detectors, algorithms and

modulation schemes. Then, we used LabView to construct the measurement proce-

dure for a specific experiment. The rationale behind this separation to make writing

a measurement procedure as simple as possible.

LabView is a visual scripting environment that allows rapid development of simple

measurement procedures. Moreover, it is very easy to create a user interface for set-

ting the parameters of the experiment and for giving dynamic feedback in the form of

graphs and false-color images. However, LabView is not suitable for creating complex

programs or for performing time critical operations. Also, LabView code usually has

a limited reusability.

C++, on the other hand, is a programming language that provides a low level con-

trol over the hardware and allows for writing time critical code. Moreover, C++ is a

structured programming language that offers many mechanisms for code reuse and

abstraction. Additionally, the Microsoft Visual Studio programming environment al-

lows easy navigation through a complex project and contains various useful tools

such as an excellent debugger.

2.5.2 Component Object Model

The Component Object Model (COM) is a standard for writing reusable components.

A very accessible introduction to COM is given in Ref. 29. COM was introduced by

Microsoft to enable interprocess communication and dynamic object creation in a

way that is independent of the programming language that is used. Nowadays, COM

and ActiveX (one of the extensions to COM), are supported on various operating sys-

tems.

COM/ActiveX components are listed in the Windows registry. The registry contains

information about the location of the components executable code, as well as a de-

scription of the interface(s) of the component. In almost any modern programming
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Figure 2.14: Simplified class diagram for the most important components of the control program.

Blocks indicate classes. The top part of a box contains the class name, the middle part

contains its properties and the lower part its methods. Arrows denote inheritance. E.g.

AVT camera is an implementation of IDetector, which, in turn, derives from Rootclass.

language, including LabView, it is possible to select a component from the registry

and use it as if it was written in that programming language. It is even possible cre-

ate a COM object on a remote computer and access it as if it is a local object. The

operating system makes sure that all function calls are transparently relayed over the

network connection. We successfully used this feature to access the Hamamatsu EM-

CCD camera that was operated by a dedicated computer.

2.5.3 Global structure of the control program

We defined four interfaces for describing different functions in the control program.

These interfaces are ‘IDetector’ (for accessing detectors and cameras), ‘IModulator’

(for programming the light modulator), ‘IAlgorithm’ (that implements a wavefront

shaping algorithm) and ‘ISample’ (for storing and transferring measurement data).

All interfaces have some common functionality that is embedded in a common root

class. A simplified class diagram of the interface hierarchy is shown in Fig. 2.14. We
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first discuss these interfaces and then explain how these components are connected

to form a measurement program.

Rootclass (IDataAccess) We constructed a common base interface for all compo-

nents. It defines functions for accessing the component’s data in a uniform

way. All publicly accessible data of a component is organized in named ‘chan-

nels’. Access to the data is, in many ways, independent of the data type. For

example SetChannelValue("Shutter", 1000) sets the shutter time of a camera to

1000µs and SetChannelValue("Phase", 0) sets the phase of all segments on a

modulator to 0. Some data channels represent connections to a different com-

ponent (more on this below).

The property ComponentInfo contains a text string with the description of the

component, including the names and values of all data channels as well as the

information of all connected components. All measurement programs save

this string to the disk so that the values of all parameters in the experiment

are stored.

IDetector and ISample The detector interface encompasses everything that returns a

signal. Its channels correspond to settings of the detector, such as the shutter

time for a camera. When StartMeasurement() is called, the detector returns a

sample object containing all measured data. Data acquisition happens asyn-

chronously: the sample object is returned before the measurement and the

data processing is complete. Only when GetChannelValue() is called on one

of the data channels of the sample the computer waits until that data is avail-

able. It is also possible to explicitly wait for the measurement to finish by calling

Wait() on the sample.

The detector has a property MeasurementDuration, which is the maximum time

that the measurement will take. This property is used for synchronizing the

modulator and the measurements.

There are many implementations of the IDetector interface. We wrote a com-

ponent for each of the types of cameras and for the National Instruments data

acquisition hardware (NI-daq). We also wrote image processing components

(ImProc) that analyze a camera image and return a scalar value. Such ‘virtual

detector’ components are completely interchangeable with real detectors since

they have the same interface.

IModulator The modulator interface standardizes a light modulator. A modulator

component has channels that contain matrices for the phase and, depending

on the modulation scheme, amplitude. The properties SettleTime and IdleTime

affect the synchronization of the measurements (see Section 2.2.1). The func-

tion Refresh() is called to display the new image after the phase and/or ampli-

tude channels have been changed.

For testing and characterization purposes, different types of modulator com-

ponents have been created, such as the one that displays a Ronchi grating.

IAlgorithm The algorithm component contains code for the feedback procedure. The

three different algorithms that are listed in Fig. 2.14 are discussed in Chapter 7.
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Figure 2.15: Structure of a typical wavefront optimization program. Rectangles, ActiveX components

written in C++ are instantiated in a LabView environment and connected to each other;

lines, connection between a component and a channel (diamond) on a different compo-

nent; ellipse, a user interface constructed in LabView program provides feedback during

optimization.

The algorithm is operated by connecting a detector and a modulator object and

then repeatedly calling Iterate().

The LabView program instantiates the required objects and sets parameters such as

the shutter time, the number of segments, the position of the target, etc. Then, the

program connects the components together. The structure of a typical wavefront op-

timization program is shown in Fig. 2.15. A modulator and an image processing node

are connected to the algorithm. The image processing node takes two inputs, one

for the camera and one for a reference detector. The node averages the camera im-

age over the target area and divides this value by the reference signal to compensate

for variations in the incident intensity. The image processing node also takes care

that the camera and the reference detector are triggered simultaneously. A LabView

user interface displays the current status of the algorithm (percentage done, optimal

wavefront settings measured so far, etc.).

It proved to be relatively easy to quickly build a program with these predefined

components. Moreover, most of the LabView code could also be reused in different

experiments by simply exchanging components. The design is open for extension;

different cameras, algorithms, target functions and modulation schemes were added

without affecting other parts of the program. All in all, the flexible design helped in

quickly setting up an experiment.

2.6 Conclusions and outlook

In this chapter, we described the setup that was used for our wavefront shaping ex-

periments. The complete apparatus was designed from scratch. We discussed the

considerations that played a role in designing the experiment. Especially the wave-

front synthesizer turned out to be more involved than the cartoon in Fig. 1.1 suggests.

We first used a state-of-the-art method to achieve phase-mostly modulation with a

commercial liquid crystal display. Then, we developed a new method that allows full
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control over both phase and amplitude of the light. We also discussed a versatile fab-

rication method that we developed for making samples. This method allowed us to

make samples with different pigments and to embed fluorescent nanospheres.

We wrote a control program that executes the optimization algorithm and handles

all data flow in the experiment. The program was designed using a component based

development strategy. All detailed programming code was packaged in reusable and

interchangeable components. Therefore, it was easy to quickly try alternative mea-

surement schemes, to test new algorithms, and to replace detectors and cameras in a

late stage of the project.

The setup that is discussed in this chapter is capable to create an optimal wave-

front in a matter of minutes. Although this is an impressive achievement by itself,

our method cannot yet be applied to media with rapidly moving scatterers such as

perfused skin or turbid fluids. We believe that it is possible to speed up the mea-

surements considerably. Currently the speed is limited by the response time of the

LCD (∼ 50ms). However, recently adaptive optics systems for turbulence correction

have already been demonstrated to reach a correction speed of 800 Hz.[30] Modu-

lators that use ferroelectric liquid crystals (FLC) or transparent lanthanum-modified

lead zirconate titanate (PLZT) as a switching medium can have a response time that

is as short as 3µs. Even faster switching is achieved with micromachined mirrors;

such light modulators were shown to have a response frequency of up to 10 MHz.[31]

Typical frequencies for a centimeter of living human tissue are in the order of 1−
100 kHz[32, 33] and we believe that these rates can be achieved with our method in

the near future.
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Chapter 3

Focusing coherent light through

opaque strongly scattering media

Abstract: We report focusing of coherent light through opaque scattering materials,

by control of the incident wavefront. The multiply scattered light forms a focus that

is up to a factor 1000 brighter than the normal diffuse transmission.

[This chapter has been published as: I. M. Vellekoop and A. P. Mosk, Opt. Lett. 32,

2309–2311 (2007)]

Random scattering of light is what makes materials such as white paint, milk, or hu-

man tissue, opaque. In these materials, repeated scattering and interference distort

the incident wavefront so strongly that all spatial coherence is lost.[1] Incident co-

herent light diffuses through the medium and forms a volume speckle field which

has no correlations on a distance larger than the wavelength of light. The complete

scrambling of the field makes it impossible to control light propagation using the well

established wavefront correction methods of adaptive optics (see e.g. [2]).

We demonstrate focusing of coherent light through disordered scattering media

by the construction of wavefronts that invert diffusion of light. Our method relies

on interference and is universally applicable to scattering objects regardless of their

constitution and scattering strength. We envision that, with such active control, ran-

dom scattering will become beneficial, rather than detrimental, to imaging[1] and

communication[3–5].

Figure 3.1 shows the principle of the experiment. Normally, incident light is scat-

tered by the sample and forms a random speckle pattern (Fig. 3.1a). The goal is to

Figure 3.1: Design of the experiment. a) A plane wave is focused on a disordered medium, a speckle

pattern is transmitted. b) The wavefront of the incident light is shaped so that scattering

makes the light focus at a predefined target.
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Figure 3.2: Schematic of the apparatus. A 632.8 nm HeNe laser beam is expanded and reflected

off a Holoeye LC-R 2500 liquid crystal spatial light modulator (SLM). Polarization optics

select a phase-mostly modulation mode. The SLM is imaged onto the entrance pupil of

the objective with a 1:3 demagnifying lens system (not shown). The objective is overfilled;

we only use segments that fall inside the pupil. The shaped wavefront is focused on the

strongly scattering sample (S) and a CCD-camera images the transmitted intensity pattern.

λ/4, quarter wave plate. λ/2, half wave plate. M, mirror. BS, 50% non-polarizing beam

splitter. P, polarizer.

match the incident wavefront to the sample, so that the scattered light is focused in a

specified target area (Fig. 3.1b).

3.1 Experiment

The experimental setup for constructing such wavefronts is shown in Figure 3.2. Light

from a 632.8 nm HeNe laser is spatially modulated by a liquid crystal phase modulator

and focused on an opaque, strongly scattering sample. The number of degrees of

freedom of the modulator is reduced by grouping pixels into a variable number (N )

of square segments. A charge coupled device (CCD) camera monitors the intensity

in the target focus and provides feedback for an algorithm that programs the phase

modulator.

We performed first tests of inverse wave diffusion using rutile (TiO2) pigment,

which is one of the most strongly scattering materials known. The sample con-

sists of an opaque, 10.1µm thick layer of rutile[6] with a transport mean free path

of 0.55± 0.10µm measured at λ = 632.8 nm. Since in this sample the transmitted

light is scattered hundreds of times, there is no direct relation between the incident

wavefront and the transmitted image.[7, 8]

In Fig. 3.3 we show the intensity pattern of the transmitted light. In Fig. 3.3a we

see the pattern that was transmitted when a plane wave was focused onto the sam-

ple. The light formed a typical random speckle pattern with a low intensity. We then

optimized the wavefront so that the transmitted light focused to a target area with

the size of a single speckle. The result for a wavefront composed of 3228 individually

controlled segments is seen in Fig. 3.3b, where a single bright spot stands out clearly
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Figure 3.3: Transmission through a strongly scattering sample consisting of TiO2 pigment. a) Trans-

mission micrograph with an unshaped incident beam. b) Transmission after optimization

for focusing at a single target. The scattered light is focused to a spot that is 1000 times

brighter than the original speckle pattern. c) Multi-beam optimization. The disordered

medium generates five sharp foci at the defined positions. Figures 3.3a to 3.3c are pre-

sented on the same logarithmic color scale that is normalized to the average transmission

before optimization. d) Phase of the incident wavefront used to form Fig. 3.3c.

against the diffuse background. The focus was over a factor 1000 more intense than

the non-optimized speckle pattern. By adjusting the target function used as feedback

it is also possible to optimize multiple foci simultaneously, as is shown in Fig. 3.3c

where a pattern of five spots was optimized. Each of the spots has an intensity of ap-

proximately 200 times the original diffuse intensity. In Fig. 3.3d we show the phase of

the incident wavefront corresponding to Fig. 3.3c. Neighboring segments are uncor-

related, which indicates that the sample fully scrambles the incident wavefront.

3.2 Algorithm

The algorithm that constructs the inverse diffusion wavefront uses the linearity of the

scattering process. The transmitted field in the target, Em , is a linear combination of

the fields coming from the N different segments of the modulator,

Em =

N∑

n=1

tm n An e iφn , (3.1)
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Figure 3.4: Measured intensity enhancement as a function of the number of segments. Squares,

sample in focus, triangles, sample 100μm behind focus, solid line, ideal enhancement

(Eq. (3.2)), dotted line, corrected for residual amplitude modulation and finite persistence

time of Tp = 5400s. The experimental uncertainty is of the order of the symbol size.

where An andφn are, respectively, the amplitude and phase of the light reflected from

segment n . Scattering in the sample and propagation through the optical system

is described by the elements tm n of the unknown transmission matrix. Clearly, the

magnitude of Em will be the highest when all terms in Eq. (3.1) are in phase. We

determine the optimal phase for a single segment at a time by cycling its phase from 0

to 2π. For each segment we store the phase at which the target intensity is the highest.

At that point the contribution of the segment is in phase with the already present

diffuse background. After the measurements have been performed for all segments,

the phase of the segments is set to their stored values. Now the contributions from all

segments interfere constructively and the target intensity is at the global maximum. A

pre-optimization with a small number of segments significantly improves the signal

to noise ratio. This method is generally applicable to linear systems and does not rely

on time reversal symmetry or absence of absorption. Although mathematically this

algorithm is the most efficient, in noisy experimental conditions adaptive learning

algorithms[9] might be more effective and an investigation in such algorithms is on

its way (also see Chapter 7).

3.3 Scaling of the enhancement

The maximum intensity enhancement that can be reached is related to the num-

ber of segments that are used to describe the incident wavefront. For a disordered

medium the constants tm n are statistically independent and obey a circular Gaus-
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sian distribution[8, 10–12] and the expected enhancement η – defined as the ratio

between the optimized intensity and the average intensity before optimization – can

be calculated,

η=
π

4
(N −1)+1. (3.2)

It was assumed that all segments of the phase modulator contribute equally to the to-

tal incident intensity. We expect the linear scaling behavior to be universal as Eq. (3.2)

contains no parameters. Also, since we are free to choose the basis for Eq. (3.1), we

expect to find the same enhancement regardless of whether the target is a focus or

a far-field beam and regardless of how the shaped wavefront is projected onto the

sample. Interesting correlations between the transmission matrix elements, which

will cause corrections on Eq. (3.2), are predicted when N approaches the total num-

ber of mesoscopic channels.[11, 12]With our current apparatus we are far from this

regime and no deviation from Eq. (3.2) is expected.

We tested the universal scaling behavior implied by Eq. (3.2) by changing N . Using

the same TiO2 sample as before, the algorithm was targeted to construct a collimated

beam. In Fig. 3.4 the enhancement is plotted as a function of the number of segments

for different focusing conditions. The linear relation between the enhancement and

the number of segments is evident until the enhancement saturates at η = 1000. All

measured enhancements were slightly below the theoretical maximum. This is un-

derstandable since all perturbations move the system away from the global maxi-

mum. The main reason for deviations from the optimal wavefront is residual ampli-

tude modulation in the phase modulator, which introduced an uncontrolled bias in

the field amounting to 14% of the total intensity.

The saturation of the enhancement is the result of slow changes in the speckle pat-

tern. This instability effectively limited the number of segments for which the optimal

phase could be measured. We estimate that the effective enhancement decreases to

ηeff = η/(1+N T /Tp ), where T = 1.2s is the time needed for one measurement and

the persistence time Tp = 5400s is the timescale at which the speckle pattern of the

TiO2 sample remains stable. Depending on the environmental conditions, Tp can be

considerably higher and enhancements of over two thousand have been measured

overnight.

To verify the universal applicability of inversion of wave diffusion, we used a variety

of materials of natural origin. Table 3.1 lists the intensity enhancement for different

materials we used. Although the samples vary in thickness, composition and scat-

tering strength, they were all able to focus a properly prepared wavefront to a sharp

spot. The intensity enhancement varies between 60 and 1000. The main reason for

this variation is that the persistence time is not the same for all materials.

3.4 Conclusion

In summary, our results show that precise control of diffuse light is possible using

an optimal, non-iterative algorithm; light can be directed through opaque objects to

form one or multiple foci. The brightness of the focal spot is explained by a model

based on statistical optics. We expect inverse wave diffusion to have applications
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Sample L (µm) η (±15%) N

Rutile TiO2 10.1±0.3 1080 3228

Daisy petal, fresh 43±5 64 208

Daisy petal, dried 37±5 630 1664

Chicken eggshell 430±30 250 3228

Human tooth 1500±100 70 208

Table 3.1: Measured intensity enhancement for different materials. L, sample thickness (± surface

roughness); η, maximum enhancement reached; N , number of segments used by the algo-

rithm to describe the wavefront.

in imaging and light delivery in scattering media, possibly including metal nano-

structures[13]. Dynamic measurements in biological tissue are possible when the

time required for achieving a focus can be reduced to below 1 ms per segment[14,

15]; we estimate that this timescale is technologically possible with the use of fast

phase modulators[16]. Furthermore, the high degree of control over the scattered

light should permit experimental verification of random matrix theories for the trans-

port of light[11, 12].
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Chapter 4

The focusing resolution of

opaque lenses

In this chapter, we investigate both experimentally and theoretically the focusing res-

olution of the opaque lenses that were introduced in Section 1.1. For every optical

system there is a limit on how sharp it can focus light. The smallest focus that can the-

oretically be achieved with an aberration free lens is called the diffraction limit. The

diffraction limit is determined by the aperture and focal distance of the lens. Here

we examine how these concepts translate to the situation of an opaque lens. We use

the experimental geometry that is shown in Fig. 4.1 to measure the focal width of an

opaque lens and then compare this width to the theoretical diffraction limit of an

ordinary lens.

In Section 4.1 we explain how scattering inside an opaque lens helps focusing. The

focusing resolution of an opaque lens is determined experimentally in Section 4.2. In

Section 4.3 we compare the shape of the focus with the measured speckle correlation

function. To theoretically understand the focusing capacity of opaque lenses, a ma-

trix model does not suffice. Therefore, we developed a continuous field description

of opaque lenses in Section 4.4. This new theoretical framework explains the experi-

mental results. Moreover, the theory predicts the existence of the optical equivalent

CCD

f = 200 mm1

f2

D1 D2

Figure 4.1: Schematic of the experimental geometry. Light from a phase modulator is imaged on the

center plane of a lens (imaging telescope not shown). The numerical aperture of the lens is

controlled by a pinhole. A CCD camera is positioned in the focal plane of the lens. Between

the camera and the lens a strongly scattering sample is placed. The sample can be moved

to change the distance to the camera.
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Figure 4.2: Scattering helps wavefront shaping and focusing. A single incident beam contributes to all

transmitted wave vectors. As a result, a sharp focus can be generated even if the wavefront

synthesizer only controls light in a small solid angle.

of the acoustical time-reversal lenses that focus sound beyond the diffraction limit[1].

4.1 Wavefront shaping with an opaque lens

In practice, it is extremely difficult to design (systems of) lenses that have almost no

aberrations.[2, 3] A good microscope objective, for instance, contains up to twenty

lens elements for compensating various aberrations.[4] An alternative approach to

achieve a diffraction limited focus is to use adaptive optics to compensate for the

aberrations in the lens system.[5] However, the adaptive optics system that gener-

ates the incident wavefront may have many limitations, such as a maximum num-

ber of control segments, residual phase-amplitude cross-modulation, a limited max-

imal wavefront curvature, etcetera. All such limitations cause systematical deviations

from the diffraction limited focus.

We found that, surprisingly, the shape of the focus of an opaque lens is not affected

by experimental limitations of the wavefront modulator. Paradoxically, the scattering

medium makes that we have apparently more control over the scattered field than we

have over the incident field. A similar effect has been observed in time-reversal ex-

periments using ultrasound and microwaves: a limited number of broadband trans-

mitters suffices to generate a diffraction limited focus through a disordered medium

(see [6] for an excellent review on time-reversal focusing). Although our experiments

are performed at a single (optical) frequency, many of the concepts developed for

time-reversal experiments are still valid.

In Fig. 4.2, we illustrate how scattering improves focusing. Disordered scattering in

the sample randomly redistributes the incident light over all scattering channels (see

e.g. [7–9]). In a microwave experiment, it was demonstrated that even evanescent

channels are excited.[10] Scattering makes that light from a single segment of the in-

cident beam contributes to all wave vectors of the desired field. By tuning the relative

phases of all segments, their contributions to the desired field add up constructively.

The more segments are used, the better the desired field can be approximated. The

constructed field will never be perfect as the number of degrees of freedom in the

transmitted field cannot exceed the number of control segments. However, thanks

to the disordered scattering any deviation in the generated field is, on average, uni-

formly distributed over all outgoing channels, resulting in a low overall intensity con-
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tribution. Imperfections in the generated wavefront cause a loss of contrast with the

speckle background.

4.2 Measured focusing resolution of an opaque lens

The experimental geometry used for analyzing the focus of an opaque lens is shown

in Fig. 4.1. The sample is a 6µm layer of airbrush paint on a standard microscope

cover slip. The wavefront illuminating the sample is shaped to increase the intensity

on a single pixel of the camera. The algorithm that shapes the wavefront is the same

as was used in Chapter 3; it does not take into account the shape of the focus. The

distance between the sample and the camera can be varied to analyze the focusing

resolution of the opaque lens at different focal lengths.

We compare the measured focal width to the calculated diffraction limit. The op-

timal focus of a homogeneously illuminated lens with a circular aperture is an Airy

disk.[2] The half width at half maximum of the Airy disk is w = 0.51λ/NA, where NA

is the numerical aperture of the lens. This radius is almost equal to the Abbe diffrac-

tion limit[11] of w = λ/(2NA). To calculate the diffraction limit of the opaque lens, we

need to determine its numerical aperture NA2 = D2/(2 f 2), where D2 is the diameter

of the illuminated area on sample and f 2 is the focal length of the opaque lens.

The diameter of the spot on the sample depends on what wavefront is generated.

When the glass lens in front of the aperture is illuminated with a plane wave, the di-

ameter of the spot on the sample equals D2 = 2 f 2NA1, where the numerical aperture

of the glass lens is NA1 = D1/(2 f 1) = 5 · 10−3 with D1 = 2.1mm the diameter of the

aperture and f 1 = 200mm the focal length of the lens.

When the modulator is programmed to generate a shaped wavefront, diffraction at

the lens aperture will cause the beam to diverge. Segments of the phase modulator

are imaged onto the aperture to squares with sides of length Ds = 0.03mm. The angle

of diffraction for a square source equals α ≡ (4λ)/(π2Ds ) = 0.008 rad (see e.g. [12]).

Combining the effects of the focusing and diffraction, we find the spot diameter

D2 = 2 f 2NA1+2( f 1− f 2)α, (4.1)

where f = 200mm is the focal length of the lens. The radius (half width at half maxi-

mum intensity) of the diffraction limited focus at the detector plane is given by

w =
λ f 2

2 f 2NA1+( f 1− f 2)α
. (4.2)

The experimental results are displayed in Fig. 4.3. All widths are relative to the

diffraction limit of the glass lens (w0 = 31µm). Without sample, the sharpest focus

that was obtained by optimizing the wavefront has a width of 1.2 times this diffrac-

tion limit. The fact that the diffraction limit was not reached clearly demonstrates

the limitations of the wavefront synthesizer. With a sample, however, these limita-

tions do not degrade the sharpness of the focus. The width of the focus is exactly the

diffraction limit that is predicted by Eq. (4.2).
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Figure 4.3: Relative focal width w as function of sample-camera distance f 2. Diamonds, measured val-

ues with a sample present; solid curve, theoretical diffraction limit; circle (at f 2 = 200mm),

width of the focus after optimizing without sample; dashed line, size of a single pixel of the

camera, detection limit. All widths are relative to the diffraction limit of the glass lens (dotted

line, w0 = 31μm).

4.3 Measured relation between the focus and the speckle

correlation function

It appears that the focus of an opaque lens always has the same size as a typical

speckle. In this section, we analyze this effect by comparing the measured profile

of the focus to the measured speckle correlation function. The speckle correlation

function C is a measure for the shape of a typical speckle.[7] It is defined as

C (x1, y1;x2, y2)≡
�

I (x1, y1)I (x2, y2)
�

�
I (x1, y1)

��
I (x2, y2)

� −1, (4.3)

where the brackets denote spatial averaging over all speckles. We experimentally in-

vestigated the relation between the speckle correlation function and the generated

focus. First, we used the geometry as shown in Fig. 4.1 with the sample as close to the

camera as possible (26mm). The resulting spot has a radius of 6.6± 3µm, which is

hardly larger than the size of a single pixel on the camera (6.45µm). The speckle cor-

relation function and the intensity profile of the spot overlap exactly, as can be seen

in Fig. 4.4.

The same experiment was performed in a different geometry and with different

samples. This time the incident light was focused using a microscope objective and

the transmitted light was imaged using a second objective (see Chapter 3). For a rela-

tively thick sample (egg shell, 430±30µm thick) we placed the detecting objective at

a distance of 3.5±0.5mm and found a very narrow focus of 1.1±0.2µm (see Fig. 4.5).

In Fig. 4.6, the results for a thinner sample (10.1±0.3µm of rutile TiO2 pigment) in the

same configuration is shown. For this sample, we find a wider focus of 11±0.2µm. In

both cases, the profile of the focus overlaps with the speckle correlation function.
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Figure 4.4: Intensity profile of the focus at y = 0 (solid curve) and speckle correlation function (dashed

curve) for an 8μm thick layer of airbrush paint creating a focus at 26mm distance. The

speckle correlation function was measured with a randomly generated incident wavefront.
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Figure 4.5: Intensity profile of the focus at y = 0 (solid curve) and speckle correlation function (dashed

curve) for an egg shell of 430±30μm thick creating a focus at 3.5±0.5mm distance.
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Figure 4.6: Intensity profile of the focus at y = 0 (solid curve) and speckle correlation function (dashed

curve) for a 10.1 ± 0.3μm thick sample of white paint creating a focus at 3.5± 0.5mm

distance. The central point of the correlation function was removed since it was affected by

measurement noise in the camera image.
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4.4 Continuous field theory for opaque lenses

After optimizing to create a focus, a fraction of the field at the back of the sample

forms a converging beam, while the rest of the field forms a random speckle. In Chap-

ter 3, we introduced a matrix model to explain the intensity of the focus of an opaque

lens. Although that model proved suitable for describing the intensity in the focus of

an opaque lens, it cannot predict the shape of the focus. We now develop a continu-

ous field formalism that explains both the intensity and the shape of the focus. This

formalism also explains the similarity of the focus profile and the speckle correlation

function that was observed in the experiment.

4.4.1 Continuous field formalism

Light propagates from the modulator to the sample, then it is transmitted by the sam-

ple, and finally it reaches the focal plane where the target detector is placed. We sep-

arate light propagation into two parts. The first part starts at the modulator and ends

at the back of the sample. The second part is the propagation from the back of the

sample to the focal plane.

We define coordinates in the focal plane as rb (z b = f 2 as defined in Fig. 4.1), on the

back surface of the sample as rk (z k = 0), and in the plane of the phase modulator as

ra . The target for optimization is at point rβ . The field at the back of the sample is

given by

E (rk ) =

N∑

a

ta (rk )Ea , (4.4)

where the summation is over all segments of the phase modulator. We assume the

field to be constant within a segment, so that we can write E (ra ) = Ea . Just behind the

modulator, light propagation is nearly perpendicular to the surface of the modulator.

We can, therefore, use the Fresnel-Kirchhoff diffraction formula (see e.g. [13, 14]) to

find coefficient ta (rk )

ta (rk ) =
i

λ

∫∫

Sa

d2raG (rk , ra ). (4.5)

The integration is over the surface of a single segment of the light modulator (Sa ) and

G (rk , ra ) is the unknown Green function for propagating from the modulator to the

back of the sample. Light propagation from the back of the sample towards the focal

plane is described by the free space Green function g (rb − rk )

E (rb ) =

∫∫
d2rk g (rb − rk )

i

λ
E (rk ). (4.6)

Field propagation from a single segment a to the focal plane is described by a trans-

mission coefficient ta (rb )

ta (rb )≡
∫∫

d2rk g (rb − rk )
i

λ
ta (rk ). (4.7)

The role of ta (rb ) is similar to that of tb a in the matrix formalism. However, ta (rb ) is a

continuous function of the spatial coordinate and also gives the shape of the focus of

the opaque lens.
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4.4.2 Optimized field

We consider the case where the incident field is shaped with a modulator that per-

fectly modulates phase and amplitude. In Chapter 8, we will see that the results for

imperfect modulation or phase only modulation are equal up to a constant prefactor.

After optimizing for focusing at point rβ , the field generated by the modulator is (see

also Chapter 8)
�Ea = E0t ∗a (rβ ), (4.8)

where the tilde sign indicates the value of Ea after optimization. E0 is a constant that

fixes the average intensity at the modulator to I in, it is defined as

E0 ≡
I in�

1

N
I0(rβ )

, (4.9)

I0(rβ )≡ I in

N∑

a

|ta (rβ )|2. (4.10)

A physical interpretation of I0(rβ ) is that it is the intensity in the focal plane averaged

over all possible configurations of the light modulator that have an average intensity

of I in.

The field at the back of the sample after optimization is calculated by substituting

Eq. (4.7) into Eq. (4.8) and then substituting the result in Eq. (4.4)

�E (rk ) =

N∑

a

ta (rk )

�
E0

∫∫
d2r′

k
g (rβ − r′

k
)

i

λ
ta (r
′
k
)

�∗
. (4.11)

The term ta (rk )t ∗a (r
′
k ) fluctuates rapidly with the distance∆r≡ r′k −rk . The ensemble

average of this product is the field-field correlation function[15]

�
ta (rk )t

∗
a
(r′

k
)
�
=

�
|ta (rk )|2

� sin(k0|∆r|)
k0|∆r| exp (−|∆r|/(2ℓ)), (4.12)

where k0 ≡ 2π/λ and |ta (rk )|2 is the intensity transmission coefficient from segment

a to point rb . Its average value
�
|ta (rk )|2

�
depends on the geometry of the experiment

and the thickness of the sample. Because the correlation function Eq. (4.12) is very

sharp, we can take g ∗(rβ − r′k ) out of the integral in Eq. (4.11). Integrating Eq. (4.12)

over r′k gives.

∫∫
d2r′

k

�
ta (rk )t

∗
a
(r′

k
)
�
=

�
|ta (rk )|2

�
2π

1

k 2
0 +1/(2ℓ)2

≈
�
|ta (rk )|2

� λ2

2π
, (4.13)

where we used that 4(k0ℓ)2≫ 1. This assumption is valid even for very strongly scat-

tering samples. The area given by λ2/(2π) corresponds to the size of a single scatter-

ing channel (see e.g. [16]). The average value of the optimized field at the back of the

sample now reduces to

� �E (rk )
�
= g ∗(rβ − rk )C0I0(rk ), (4.14)



58 The focusing resolution of opaque lenses

Figure 4.7: Better than diffraction limited focusing with an opaque lens. a) An ordinary lens at best

focuses light to the diffraction limit given by the diameter of the incident beam. b) An

opaque lens focuses light more sharply than the diffraction limit because diffusion in the

lens increases the diameter of the transmitted converging beam. c) Opaque wafer lens

made out of gallium phosphide. Reflection at the GaP-air interface fold back the optical

paths and improve the focusing resolution even further.

where C0 ≡ iλE0/(2πI in) and I0(rk )≡ I in

∑N

a
|ta (rk )|2, just as in Eq. (4.10).

In the geometry as shown in Fig. 4.1, I0(rk ) is constant in a disk with a diameter D

given by Eq. (4.1) and zero outside of the disk. In this case, Eq. (4.14) becomes

� �E (rk )
�
= g ∗(rβ − rk )C0I0circD (rk ), (4.15)

with

circD (rk )≡
�

0 x 2
k + y 2

k >D2/4

1 otherwise.
(4.16)

Equation (4.15) tells us that, up to a constant proportionality factor, the average field

at the back of the sample is the complex conjugate of the free space propagator. In

other words, the transmitted field is the same as if the sample time-reversed a wave

coming from the target focus. Hence, the transmitted light focuses on the target as

well as is physically possible for a system with an aperture given by circD (rk ).

In a different geometry, for example when the incident light is focused sharply on

a thick sample, the intensity distribution I0(rk ) will be a smooth function of the po-

sition. In such a geometry, an opaque lens differs from an ordinary lens. With an

ordinary lens the amplitude profile at the back of the lens is equal to the amplitude

profile of the incident illumination. For an opaque lens, however, the amplitude of

the controlled field at the back of the sample is proportional to the intensity distribu-

tion at the back of the sample. In the following section we will see how to make use of

this difference.

4.4.3 Better than diffraction limited focusing

In time-reversal microwave experiments it was observed that scattering improves the

focusing resolution beyond the diffraction limit by ‘folding’ the propagation paths in

a waveguide.[1] In this section, we show that a similar dramatic improvement of the

focusing resolution can also be obtained in an optical system with a slab geometry.

With an ordinary lens, the intensity profile of the transmitted is the same as that of

the incident light. For a given diameter of the incident beam, the lens at best focuses

to the diffraction limit λ f /D (see Fig. 4.7a).
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With an opaque lens, however, diffusion in the lens makes that the transmitted spot

is larger than the incident beam (Fig. 4.7b). Therefore, an opaque lens focuses light

more sharply than the best possible ordinary lens. The intensity distribution I0(rk ) at

the back of the sample depends on the thickness and mean free path of the sample, as

well as on the extrapolation ratios that describe the boundary conditions. The thicker

the scattering medium, the sharper the focus.

The benefit of a thick scattering medium was observed in the experiment. Under

the same experimental conditions, the focus of a 430µm thick opaque lens (Fig. 4.5)

was ten times narrower than the focus of a 10.1µm thick opaque lens (Fig. 4.6).

A proposed special example of an opaque lens is shown in Fig. 4.7c. A thin layer on

one side of a gallium phosphide (GaP, n=3.3) wafer is made porous. The porous gal-

lium phosphide scatters the light into a 2π solid angle. However, due to the high index

contrast at the back of the wafer, most of the transmitted light is internally reflected

back to the scattering layer, where it is scattered by the porous GaP for a second time.

By folding the optical paths this way, the spot at the back of the sample increases

dramatically, and the focusing resolution improves accordingly.

We now estimate the factor by which a GaP wafer lens improves the diffraction

limit. The critical angle for total internal reflection at the GaP-air interface is θc =

17.6◦. For a wafer with a thickness of L, the incident spot needs to have a diameter of

at least 2tanθc L for the reflected internally reflected light to overlap the original spot.

We neglect the contribution of light that is reflected at an angle of over 45◦ and we

take into account only the first reflection at the GaP-air interface. Even with this pes-

simistic estimate, a 0.5mm thick opaque a GaP wafer lens already expands a 0.32mm

beam to 4mm before focusing it. These realistic numbers indicate that a 0.5mm thick

wafer can replace a 6× beam expander and a perfectly corrected microscope objec-

tive. In a way, this wafer is a miniature Cassegrain objective.

4.4.4 Intensity profile of the focus

We use the general result in Eq. (4.14) to calculate the intensity distribution in the

focal plane. Using Eqs. (4.6) and (4.14) we find

�E (rb ) =
i

λ

∫∫
d2rk g (rb − rk )g

∗(rβ − rk )C0I0(rk ). (4.17)

In the paraxial limit (see e.g. [14]), we can approximate

g (rb − rk )g
∗(rβ − rk )≈

e iΦ

f 2
2

exp

�
i k0

f 2

�
xk (xβ −xb )+ yk (yβ − yb )

��
, (4.18)

with f 2 the focal distance of the opaque lens. We isolated phase factor Φ≡ x 2
β −x 2

b +

y 2
β
− y 2

b
. We now have

� �E (rb )
�
=

i e iΦ

λ f 2
2

C0

∫∫
d2rk I0(rk )exp

�
i k0

f 2

�
xk (xβ −xb )+ yk (yβ − yb )

��
. (4.19)



60 The focusing resolution of opaque lenses

In Eq. (4.19) we recognize a 2-dimensional Fourier transform. We define the Fourier

transformed intensity U0 as

U0(rb )≡
∫∫

d2rk I0(rk )exp

�
i k0

f 2

�
xk (xβ −xb )+ yk (yβ − yb )

��
. (4.20)

To conform to literature (see e.g. [7]), we adopt the notation

� {I0(rk )} ≡U0(rb ). (4.21)

Now, the intensity in the focal plane is given by expanding C0

�I (rb ) =
1

(2π f 2
2 )

2

N

I0(rβ )
|� {I0(rk )} |2, (4.22)

which confirms the observation made in Section 4.4.2 that the opaque lens perfectly

focuses a field that is proportional to the intensity distribution at the back of the sam-

ple. The intensity exactly at the center of the focus equals

�I (rβ ) =
�

Ptot

2π f 2
2

�2
N

I0(rβ )
, (4.23)

where Ptot ≡
∫∫

d2rk I0(rk ) is the average total power that is transmitted through the

sample. Before optimization, the power is distributed over 2π solid angle. Therefore,

I0(rβ ) = Ptot/(2π f 2
2 ) and

�I (rβ ) =N I0(rβ ), (4.24)

which means that the intensity in the target has increased by exactly a factor N . For

phase only modulation, the enhancement reduces to 1+(N −1)π/4 (see Chapter 8).

The matrix model used in Chapter 3 predicts the same intensity enhancement. How-

ever, the new formalism clearly shows that the enhancement needs to be measured

exactly at the maximum of the focus and not, for instance, averaged over the whole

speckle. This experimentally important detail was not clear from the matrix model.

Moreover, the new formalism predicts the exact shape of the focus.

4.4.5 Connection with speckle correlation function

When the sample is thicker than a transport mean free path, the field at the back

surface of the sample is uncorrelated on length scales larger than the wavelength of

light (also see Eq. (4.12)) and, equivalently, the transmitted light has no preferential

direction. For such a sample, in the paraxial limit the correlation function (Eq. (4.3))

only depends on the coordinate difference ∆rb ≡ rb − rb ′ . The van Cittert-Zernike

theorem tells us that, under these conditions, the correlation function is given by[7,

17, 18]

C (∆xb ,∆yb ) =
1

P2
tot

|� {〈I (rk )〉}|2 , (4.25)

where I (rk ) is the diffuse intensity distribution at the back surface of the sample and

� {〈I (rk )〉} is defined as in Eq. (4.21). When the phase modulator is configured to
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generate a random field, 〈I (rk )〉= 〈I0(rk )〉. In this case, it follows from Eq. (4.22) that,

�I (x , y , f 2) =C (x , y )N
Ptot

2π f 2
2

I0(rβ ). (4.26)

Equation 4.26 predicts that the intensity profile of the focus is exactly equal to the

speckle correlation function (up to a constant prefactor). This identity is striking be-

cause the intensity in the focus is the square of an amplitude, whereas the correlation

function is an product of intensities. Our continuous field model explains the results

of Section 4.3, where this identity was observed experimentally in different geome-

tries.

4.5 Conclusion

We observed experimentally that opaque lenses focus light to a diffraction limited

spot. This experimental observation is explained by a continuous field model that

was developed in Section 4.4. The model provides a simple method to predict the

focusing resolution of an opaque lens for different geometries. For instance, a thin

opaque lens that is illuminated with a flat-top profile focuses light to a diffraction

limited spot. Theoretically, the focusing resolution can even be improved beyond the

diffraction limit by making use of the diffusion in a thick opaque object. Extremely

sharp focusing can be achieved with a GaP wafer lens where the optical paths are

folded back by total internal reflection.

The shape of the focus is exactly the same as the correlation function of the speckle

that is generated by the opaque lens. This experimentally important observation was

explained with the continuous field model for opaque lenses.

An opaque lens focuses light to a diffraction limited spot or even sharper. Addi-

tionally, opaque lenses are extremely thin and extremely cheap compared to a mi-

croscope objective. Therefore, disposable opaque lenses might replace conventional

microscope objectives, for example in applications that require tight focusing in a

polluting or corroding environment, or when space is tight.
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Chapter 5

Demixing light paths inside

disordered metamaterials

Abstract: We experimentally demonstrate the first method to focus light inside dis-

ordered photonic metamaterials. In such materials, scattering prevents light from

forming a geometric focus. Instead of geometric optics, we used multi-path in-

terference to make the scattering process itself concentrate light on a fluorescent

nanoscale probe at the target position. Our method uses the fact that the disorder in a

solid material is fixed in time. Therefore, even disordered light scattering is determin-

istic. Measurements of the probe’s fluorescence provided the information needed to

construct a specific linear combination of hundreds of incident waves, which inter-

fere constructively at the probe.

[This chapter has been published as: I. M. Vellekoop, E. G. van Putten, A. Lagendijk,

and A. P. Mosk, Opt. Express 16, 67–80 (2008)]

Photonic metamaterials are materials that gain their optical properties from their

nanostructure, rather than from their chemical composition. Their sub-wavelength

elements interact very strongly with the electromagnetic field and provide unprece-

dented control over the propagation of light[1, 2]. Exciting perspectives of metama-

terials include field enhancement in photonic crystal cavities[3], negative refractive

index optics[4–6], and sub-wavelength imaging[7, 8]. Perhaps even more amazing

is the use of metamaterials to cloak objects, making them completely invisible for a

certain frequency of light.[1, 2]While these perspectives require near-perfectly man-

ufactured metamaterials, intentionally disordered metamaterials also find applica-

tions such as sub-wavelength focusing[9] and enhanced non-linear conversion[10,

11]. Furthermore, disordered metamaterials are of fundamental interest because of

their analogy to electrical conductors[12, 13], their quantum optical properties[14],

and mesoscopic transport phenomena[15–17]. Recently it was shown experimentally

that localization induced by disorder can confine and guide light.[18]

To direct light to a desired position in a metamaterial requires thorough knowledge

of the propagation of light in these structures. Since metamaterials are strongly pho-

tonic, even weak manufacturing imperfections strongly influence propagation[19–

21], which makes it even harder to get light to the right place. For disordered meta-

materials it is, even in theory, impossible to have a priori knowledge of light propa-

gation. To treat the metamaterial as a homogeneous medium and pretend to focus

somewhere inside (Fig. 5.1a) is an erroneous approach; in reality, the structure of the

material prevents light from forming any focus at all.

We demonstrate experimentally that light can be delivered to a target inside a dis-

ordered photonic metamaterial, or in fact any strongly scattering solid, without hav-

ing any a priori knowledge of the optical properties of the system. Our approach is

based on the fact that the structure of the metamaterial mixes light entering through
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Figure 5.1: Principle of channel demixing. a) Conventional way of illuminating a metamaterial sample

or device. In order to get light to the area inside the metamaterial indicated by the cir-

cle, one might try to focus light using an ordinary lens. However, the randomly oriented

nanoparticles in the material mix the incident scattering channels in a complicated way so

that light does not travel directly to the target. Incident rays will not converge to a geometri-

cal focus. b) Our new way of illuminating a specific point inside a metamaterial. The wave

nature of light is used as an advantage. When the phase delay for each of the incident

scattering channels is set correctly, the channels demix inside the sample; multi-channel

interference makes the light focus at the desired point.

different scattering channels (a scattering channel is an angular or spatial mode of

the optical field[12]). The mixing process is complex and stochastic due to disorder.

Even so, reciprocity dictates that there always exists a linear combination of incident

channels that demix inside the metamaterial to focus at the target. In our experiment

we find this unique configuration and focus light on a target that is deeply embedded

in a disordered photonic structure (Fig. 5.1b).

It is well known that the inverse wave problem is ill posed. In other words, even in

principle optical measurements cannot be used to reconstruct the three-dimensional

structure of a photonic metamaterial. Likewise, optical reflection and transmission

measurements cannot reveal the combination of channels that demix inside the ma-

terial.

There exist different methods for focusing waves in the presence of scattering. In

transparent media where geometrical optics applies, delivery of light can be achieved

very effectively using a variety of adaptive optics wavefront correction techniques

(see e.g. Ref. 22). For example, adaptive optics is commonly used to reduce astro-

nomical seeing[23], to improve the resolution of ophthalmic imaging[24], or for fem-

tosecond pulse shaping[25]. Unfortunately, these adaptive optics techniques break

down in nanostructured media where geometrical optics is not applicable.

For ultrasound and microwaves time-reversal has proven highly effective[9, 26] in

refocusing waves. Light waves can be refocused back to their source by phase con-

jugation[27], or they can be focused behind a scattering region by using feedback

from an external detector[28]. All these methods require physical access to the target

position, to place a transceiver, an extensive non-linear medium, or a detector. Inside

a photonic metamaterial, with structures smaller than the wavelength of light, these

methods cannot be used.

We have developed an approach that does allow focusing of light inside a meta-

material. Our method combines an advanced feedback and control system with a

nanoscale fluorescent probe that is situated at the desired location. The power of the
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Figure 5.2: Experimental setup and samples. a) Simplified schematic of the experiment. A 532 nm

laser is expanded and illuminates a spatial light modulator (SLM) that spatially modulates

the phase of the reflected light. The SLM is imaged onto the back aperture of a 63x mi-

croscope objective that focuses the modulated light on a sample. Fluorescence light is

collected by the same objective and imaged with an EMCCD camera. A computer drives

the SLM and analyzes the EMCCD images. PBS, polarizing beam splitter; DM, dichroic

mirror; F, fluorescence filter. Lenses were omitted from the schematic. b) Geometry of the

samples. A low concentration of 300-nm diameter fluorescent spheres is dispersed in a

zinc oxide pigment, deposited on a glass substrate. c) SEM image of a sample.

a b

Figure 5.3: Experimental demonstration of channel demixing. a) Fluorescence image of a 300 nm

sphere, embedded in ZnO pigment at a depth of 9.7μm. Conventional illumination after

a scan to find the position where the fluorescence is maximal; approximately 3 times the

speckle average intensity. Inset, phase of the incident wavefront (plane wave). b) Our

channel demixing method. Same sphere and sample position as in a, the phases of the

incident channels were set to the measured optimal values. The resulting fluorescence

intensity has increased by a factor of 22 with respect to the average intensity. Inset, phase

of the incident wavefront. Inside the sample this seemingly random wavefront transforms

into a focus. Intensities are in counts per second.
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emitted light is a measure for the intensity at the position of the probe. In our exper-

iment (Fig. 5.2a), we used a liquid crystal spatial light modulator (SLM) that spatially

modulates the phase of light coming from a green (532 nm) continuous wave laser.

The pixels of the SLM are grouped into 640 square segments that are imaged onto

the back aperture of a microscope objective. In this configuration, at the focal plane

of the objective each segment corresponds to a solid angle encompassing approxi-

mately one mesoscopic scattering channel. For each of these incoming channels the

phase can be set individually using the SLM. The microscope objective illuminates a

sample that is mounted on a xyz-translation stage. The fluorescence light emitted by

the probe inside the sample is collected by the same microscope objective and im-

aged with an electron multiplying charge coupled device (EMCCD) camera placed in

a confocal reflection configuration. Our samples consist of a white layer of zinc oxide

(ZnO) pigment on a glass substrate (Fig. 5.2b). The pigment grains have an average di-

ameter of 200 nm, resulting in a sub-wavelength disordered structure (Fig. 5.2c). The

pigment layer is up to 32µm thick, and all samples are fully opaque. The transport

mean free path was measured by fully analyzing transport of light through a series

of samples (see Section 5.A). The samples were found to be strongly photonic with

a mean free path of 0.7±0.2µm, comparable to the wavelength of light. Fluorescent

spheres with a diameter of 300±15nm are sparsely dispersed through the sample.

Conventional focusing of light does not work in disordered photonic media. The

absence of a ballistic focus was confirmed by performing an extensive 3-dimensional

scan of the sample with respect to the microscope objective (see Section 5.A). The

only change in the fluorescence emission was the result of the volume speckle field in

the medium that is formed by scattered monochromatic light. As the sample moves,

the weak fluorescence emission fluctuates randomly with the sample position. We

consequently find that the maximal emission found by scanning the sample is only

approximately 3 times the typical emission. In numerical simulations we find a sim-

ilarly weak enhancement (Section 5.B). The fluorescence emission with the sample

positioned at the brightest speckle is shown in Fig. 5.3a.

We now cycle the relative phase of a single incident channel between 0 and 2π

while keeping the phase of all other channels constant. The intensity at the probe

is the result of interference between the modulated channel and the other channels,

and therefore has a sinusoidal dependence on the phase. From the phase and the

amplitude of the sinusoid we obtain the complex propagation amplitude from the

modulated channel to the point inside the metamaterial. The complete set of prop-

agation amplitudes contains all information that is needed to calculate the propaga-

tion of any incident wave towards the target. The optimal configuration of incident

channels is found by taking the complex conjugate of the propagation amplitudes, so

as to fully compensate for the mixing of the channels that will occur.

Figure 5.3b shows the strong increase in fluorescence emission that was achieved

with channel demixing. By constructing the optimal configuration of incident chan-

nels, the intensity distribution inside the sample changed from random speckle to a

pattern specially tailored for focusing light at the target. We find that the amplitudes

for neighboring channels were uncorrelated, which is an indication that the channels

were originally fully mixed. Light from different incident channels mixed while prop-

agating in the medium and demixed again at the target position to form a focus. This
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Figure 5.4: Measured intensity for targets at different depths inside a 29± 3μm thick sample. Stars,

results of our channel demixing technique, starting from a random sample position. An

intensity was reached that is on average 20.4 times higher than the diffuse background

(dotted line). Circles, results of our channel demixing technique starting on a bright speckle,

demonstrating that starting from a bright spot is not advantageous. Squares, maximum

intensity that was achieved by searching for the brightest speckle. An average intensity

increase of only 3.2 was obtained (dotted line). Solid line, theoretical best case speckle

average using adaptive optics, assuming that all geometrical aberrations are corrected

perfectly. All measurements are normalized to the diffuse background.

focus was a factor of 22 more intense than the typical intensity and a factor of 6 more

intense than the maximum that was achieved by searching for the brightest speckle.

The experiment was repeated for targets at different depths inside a 29±3µm thick

sample. In Fig. 5.4 the target intensity that was reached with channel demixing is

compared to the maximum intensity reached by translating the sample. Channel

demixing increases the intensity at the target by a factor of on average 20.4, regardless

of the depth of the target. It makes no difference whether the sample was meticu-

lously placed on the brightest speckle first or whether the channel demixing proce-

dure was started without a preceding scan of the sample position. For completeness,

we also plot the calculated residual ballistic focusing component that can be expected

when the sphere is placed exactly in the geometrical focus. For this calculation, we

optimistically assumed that all geometric aberrations are perfectly corrected by an

adaptive optics system[22]. As can be seen in Fig. 5.4, adaptive optics could be effec-

tive for targets that are only a few mean free paths deep. When the target lies deeper,

scattering on the sub-wavelength structure of the material destroys even a perfectly

corrected geometrical focus. Using channel demixing, however, we consequently find

that the increase does not depend on the position of the target. Therefore, we con-

clude that scattering in no way limits the depth at which light can be delivered inside

the metamaterial.

Theoretically, in the current experimental configuration, channel demixing has the

possibility to achieve an intensity ratio that is approximately four times as high as

the measured value of 20.4 (see Section 5.B). In practice, however, we are limited by

photobleaching of the probe. We expect to achieve even higher intensity ratios as
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more stable probes, such as quantum dot assemblies[29], become available.

The measured set of complex propagation amplitudes characterizes propagation

of light towards a sub-wavelength target inside the metamaterial. For this measure-

ment no physical access to the target is required; it is not even required to know

where the target probe exactly is. In both ordered and disordered metamaterials these

amplitudes contain information about the structure and the optical quality of the

metamaterial.[20, 30–32] This information, which was not experimentally accessible

before, makes channel demixing a unique method for characterizing any metamate-

rial. Our experimental results call for the development of theoretical approaches that

treat light propagation inside disordered photonic metamaterials.[33]

We have shown that light can be focused on a target inside a photonic metama-

terial that completely scrambles the incident waves. Since the illumination is selec-

tive, channel demixing can be used to increase the contrast with a fluorescent back-

ground. A different application would be to selectively activate photochemical pro-

cesses by concentrating light at a point inside a scattering material. Finally, the use

of a fluorescent probe permits selectively focusing light on fluorescent areas, which

is highly desirable in biological imaging, and may be a key technology for selectively

illuminating individual cells in disordered biomaterials such as human skin tissue.

5.A Experimental details

5.A.1 Apparatus

The goal of the experiment is to illuminate a disordered medium in such a way that

light focuses at a predefined target deep inside. The experimental setup consists of

a spatial light modulator that is used to adjust the illumination, and a confocal fluo-

rescence microscope that indirectly measures the intensity at the target. A detailed

schematic of the setup is given in Fig. 5.5. Light from a continuous wave 532 nm

laser (Coherent Compass M315-100) is expanded using a 30x beam expander. The

expanded beam illuminates a Holoeye LC-R 2500 spatial light modulator (SLM) with

a resolution of 1024 x 768 pixels. The pixels are grouped into square segments of 20

x 20 pixels. We have independent control over the phase and amplitude of each of

the segments.[34]During this experiment, the amplitude of all segments is kept con-

stant. The SLM is imaged onto the back aperture of a microscope objective using a 1:2

demagnifying telescope. In total, 640 segments fall within the aperture of the objec-

tive, which means that we control 640 degrees of freedom. The microscope objective

(Zeiss infinity corrected 63x, NA=0.95 Achroplan air) focuses the light on the sample,

thereby mapping the segments to channels in k-space. The sample is mounted on

a XYZ-nanopositioning stage (Physik Instrumente P-611.3S NanoCube) to allow for a

precise 3D-scan of the geometrical focus.

The returned fluorescence light is separated from the excitation light using a com-

bination of a dichroic mirror (Semrock FF562-Di02-25x36) and a bandpass filter

(Semrock FF01-593/40-25). An electron multiplying CCD camera (Andor Luca DL-

658M) images the fluorescence emission. A computer sums the intensity in the cam-

era image to find the total power in the diffuse spot of fluorescence light. For each

of the segments, measurements are performed at phase delays of 0, 2π/5, 4π/5, 6π/5,
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Figure 5.5: Experimental setup. The left part consists of a laser (532 nm) that is expanded by a 30x

beam expander and modulated with a spatial light modulator (SLM). A 1:2 demagnifying

telescope images the SLM on the back aperture of a 63x microscope objective. The ob-

jective focuses the light on a sample that is mounted on a XYZ piezo positioning stage. A

dichroic mirror (DM) and a bandpass filter (F) block the excitation light. The fluorescence

emission is imaged on an electron multiplying CCD camera (EMCCD). D, iris diaphragm;

PBS, polarizing beam splitter cube; L1, L2, L3, lenses with a focal distance of 200 mm, 100

mm and 150 mm, respectively. Some folding mirrors and beam attenuation optics were

omitted.

and 8π/5 and a sinusoid is fitted to these measurements. Before advancing to the

next segment, the phase delay is reset to 0.

5.A.2 Measurement sequence

Channel demixing is achieved by measuring the propagation coefficients from the

incident channels towards the embedded target. After all propagation coefficients

are measured, it is known which linear combination of scattering channels focuses at

the target. To quantify the effectiveness of this method, we measure the intensity at

the probe position before and after the demixing procedure.

Since the field inside the medium is a completely random speckle pattern, the ini-

tial intensity is a random variable. A single measurement will not provide a reliable

reference. Therefore, we measure the speckle averaged initial intensity I0 by gener-

ating 500 different random combinations of incident channels and determining the

average fluorescence intensity. This way, fluctuations caused by volume speckle are

averaged out and a reliable measure for the initial intensity is found.

Next, the propagation constants for the different scattering channels are measured.

This measurement takes approximately 18 minutes. During these measurements, the

dye in the sphere photobleaches, which causes the response of the probe to decrease.

Since we are interested in how much excitation light is focused on the target position,
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Figure 5.6: Evolution of the fluorescence intensity during the measurements. The measurement pro-

cedure has three phases. 0-130 s, reference measurement; 130-1187 s, measurement of

propagation coefficients; at 1187 s, construction of optimal wavefront; 1187-2244 s, fluo-

rescence measurement with optimal wavefront.

we have to take into account the reduced response of the probe particle

ηmeasured =
Iopt

I0

I1

I2

, (5.1)

where Iopt is the fluorescence intensity directly after constructing the optimal com-

bination of scattering channels. I1 is the fluorescence intensity at the start of this

measurement step (directly after the reference measurement), and I2 is the intensity

at the end of the measurements (directly before the SLM is programmed with the op-

timal configuration). The ratio I1/I2 - which is between 1.0 and 1.8 when the sample

is positioned at a typical position and between 1.5 and 3.9 when the sample is posi-

tioned at the brightest speckle - corrects for the fact that photobleaching decreases

the sensitivity of the probe.

Figure 5.6 shows how the fluorescence intensity evolves during the measurement

sequence. During the reference measurement, the intensity fluctuates rapidly. In the

next step, the propagation constants are measured. Since we only cycle the phase of

a single channel at a time, the illuminating wavefront is practically constant. During

this step the fluorescence intensity decreases slowly due to photobleaching. After the

measurements have been performed for all segments, the phase modulator is pro-

grammed with the optimal phases and the fluorescence intensity jumps to a higher

value as the incident light now interferes constructively at the target. After this jump,

the wavefront is kept constant. The reason that the fluorescence intensity decreases is

that the higher incident intensity on the sphere causes the dye to bleach more rapidly.

5.A.3 Sample preparation and characterization

We demonstrated how interference of scattered light was used to focus light deep in-

side disordered metamaterials. Our samples are strongly scattering, that is, the mean

free path for light is of the order of the wavelength. Inside the sample, fluorescent
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Figure 5.7: Inverse total transmission through layers of ZnO pigment. The solid line is a fit of Eq. (5.2)

with ℓ = 0.72μm, z e 1 = 1.15μm, and z e 2 = 1.24μm. Error bars indicate the standard

deviation of the measured thickness and total transmission at different positions on the

sample.

probes mark the target positions. Typically, the probes are over 10 mean free paths

deep, which makes it impossible to focus light on them using conventional means

(Also see Section 5.B.4). In this section we address the fabrication and characteriza-

tion of these samples.

Sample preparation

Our samples consist of a layer of Zinc Oxide pigments (Aldrich Zinc Oxide < 1µm,

99.9%). The average particle diameter is 200nm (measured using scanning electron

microscopy). The fluorescent probes are made from polystyrene and have a speci-

fied diameter of 300±15nm (Duke Scientific red fluorescent nanospheres dyed with

FireFlyTM). An aqueous suspension of pigment and spheres was sprayed on a stan-

dard microscope cover slide using a commercial airbrush (Harder & Steenbeck Evolu-

tion). The thickness of the dried samples was measured with an optical microscope

by making a scratch in the surface. The background fluorescence of the ZnO was

shown to be negligible compared to the fluorescence of the dyed nanospheres.

Measurement of the mean free path

Transport of light in scattering media is quantified by the transport mean free path ℓ.

A method for obtaining ℓ is to measure the total (diffuse) transmission of light using

an integrating sphere. ℓ then follows from the relation[35]

1

T
=

L+ z e 1+ z e 2

ℓ+ z e 1

, (5.2)

where T is the total intensity transmission, L is the sample thickness and z e 1, z e 2

are the extrapolation lengths that describe boundary effects on the front and back

surfaces of the sample respectively. The extrapolation lengths follow from the ef-

fective refractive index of the medium, n eff.[36]We measured the total transmission
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through a set of similar samples with varying thickness. The inverse total transmis-

sion for an ensemble of 14 samples is plotted in Fig. 5.7. The samples range in thick-

ness from 6µm to 32µm. As expected, the inverse total transmission increases lin-

early with sample thickness. We obtain a good linear fit for ℓ = 0.7 ± 0.2µm and

n eff = 1.4± 0.1. The extrapolation lengths can then be calculated from n eff and we

find z e 1 = 1.15±0.2µm and z e 2 = 1.24±0.2µm.

Determination of the depth of the fluorescent probe

For each experiment we select a different probe sphere at a different depth inside a

sample. To determine the depth of the probe, we image the diffuse spot of emitted

light and fit this data with diffusion theory. The accuracy of methods that rely on in-

verting the diffusion equation is limited to about one mean free path due to noise.[37]

The intensity inside a disordered medium with a source at depth z 0 follows from

diffusion theory. We solved the diffusion equation for a slab of thickness L using the

Dirichlet boundary conditions I (−z e 1) = 0, and I (L + z e 2) = 0 [38, 39]. The extrap-

olation lengths z e 1 and z e 2 account for the reflections at the front and the back of

the sample, respectively. A closed form solution is found using Fourier transformed

traversal coordinates q⊥ ≡ (q⊥x ,q⊥y ).

Id (q⊥, z ) =

⎧
⎨
⎩

Jin
sinh (q⊥[L e − z − z e 1])sinh (q⊥[z 0+ z e 1])

Dq⊥ sinh (q⊥L e )
z > z 0

Jin
sinh (q⊥[L e − z 0− z e 1])sinh (q⊥[z + z e 1])

Dq⊥ sinh (q⊥L e )
z ≤ z 0

(5.3)

where Id is the diffuse energy density at depth z , q⊥ ≡
�

q 2
⊥x +q 2

⊥y , and Jin is the

power of the source in Watts. D is the diffusion constant and L e ≡ L+ z e 1+ z e 2.

To obtain the depth of the source, we Fourier transform the microscope image of

the fluorescence light and fit Eq. (5.3) with z=0 using z 0 and an intensity prefactor as

fit parameters.

5.A.4 3-dimensional scan results

Conventional focusing does not work in strongly scattering materials such as our

samples. The absence of a ballistic focus was confirmed by performing an extensive

3-dimensional scan of the sample with respect to the microscope objective. The flu-

orescence emission strongly fluctuates with the sample position. These fluctuations

are the result of a volume speckle field in the medium that is formed by scattered

monochromatic light. As the sample moves, the volume speckle fluctuates randomly.

For each depth of the geometrical focus, we record the brightest speckle intensity.

Figure 5.8 shows the results of a typical 3-D scan. The depth of the geometrical fo-

cus was estimated to be n effz , with n eff = 1.4 as measured, and z the position of the

translation stage. No sign of a ballistic focus was observed. In other words, it is not

possible to focus light on the target using conventional means.
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Figure 5.8: Determination of the absence of a geometrical focus. The sample is moved with respect

to the objective (inset). For each depth, the sample is scanned in a plane parallel to the

surface to find the maximum fluorescence intensity (solid line). In homogeneous media,

there would be a sharp peak at the point where the fluorescent sphere is in the geometrical

focus of the microscope objective (dotted line). In disordered photonic media, a geometric

focus cannot be formed. The highest intensity is found when ‘focusing’ just below the

sample surface.

5.B Analysis of the channel demixing method

The optical field E at a point rb inside the medium is given by

E (rb ) =

∫∫∫
d3raG (rb , ra )S(ra ), (5.4)

where G is Green’s function for propagating from the sources S(ra ) to point rb . In a

disordered medium, G is stochastic and, therefore, initially unknown. We treat each

segment of the phase modulator as a sheet source with amplitude A and phase φ.

Since the phase modulator is in good approximation illuminated homogeneously, all

amplitudes A are equal. By integrating over the surface area S of each of the N seg-

ments, Eq. (5.4) is discretized,

E (rb ) =

N∑

a

∫∫

Sa

d2raG (rb , ra )Ae iφa , (5.5)

≡ A

N∑

a

tb a e iφa . (5.6)

When the phase of a single segment a of the phase modulator is changed, the inten-

sity at point rb responds as

I (rb )≡ |E (rb )|2 = I0b +2ARe(E ∗
b ā

tb a e iφa ), (5.7)
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with

I0b ≡ |Eb ā |2+A2|tb a |2, (5.8)

Eb ā ≡ A

N∑

a ′ �=a

tb a ′e
iφa ′ ≈ E (rb ). (5.9)

Since the number of segments N is large, Eb ā ≈ E (rb ) and, therefore, equal for each

of the segments. By repeating this procedure for all segments a , we measure the co-

efficients tb a up to an unknown common prefactor E (rb ).

Once all coefficients tb a are known, our channel demixing method maximizes E (rb )

by setting φa = −arg(tb a ) for all segments. This configuration of phases gives the

global maximum of Eq. (5.6),

Emax(rb ) = A

N∑

a

|tb a |. (5.10)

A comparison with Eq. (5.6) shows that now all amplitudes are summed with the same

phase and that all incident channels will interfere constructively at the target.

5.B.1 Maximum enhancement - scalar waves, simplified case

The theoretical increase in intensity that can be achieved with channel demixing de-

pends on the number of modulator segments N and the statistical properties of coef-

ficients tb a . In disordered systems it is often allowed to assume that the coefficients

are independently drawn from a single circular Gaussian distribution.[12, 13, 40–42]

Under this assumption, the expected ratio between the original diffuse intensity and

the maximally achievable intensity equals

η=
π

4
(N −1)+1. (5.11)

where N can never exceed the number of mesoscopic scattering channels. The num-

ber of contributing scattering channels depends on the depth of the target. The

deeper the target is embedded in the scattering material, the more channels will

contribute to the mixing process. We estimate the number of channels that con-

tribute to the target field by examining the size of the diffuse spot of the fluores-

cence light. The number of scattering channels in a spot with surface area A is given

by[43, 44] Nmax = 2πA/λ2. In Fig. 5.3b, the full width at half maximum of the diffuse

spot is 15µm, which leads to A = 177µm2 and Nmax = 3.9 · 103. In our experiment

N = 640≪ 3.9 · 103 and neighboring segments were uncorrelated.

5.B.2 Maximum enhancement - finite size probe

Ideally, the sphere that is used as a probe is only sensitive to the field of a single po-

larization at a single point. In reality, however, the fluorescent sphere probes the

summed intensity of three polarizations in a finite volume. Therefore, it is as if we

have multiple targets for which we try to increase the intensity simultaneously. As a
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result, the extra intensity is divided over all targets. The ratio between the original

diffuse intensity and the maximally achievable intensity now equals

ηM =
π

4

N −1

M
+1, (5.12)

where M is the number of targets. We determine M by calculating how many orthog-

onal fields can exist in the volume of the probe sphere. Using Mie theory we find

that for spheres of 300± 15 nm the three electric dipole modes and the three mag-

netic dipole modes all give an equally strong contribution to the fluorescence power.

The sphere is too small to support higher order (quadrupole) modes, so we estimate

that the probe contains 6 optical modes. Using Eq. (5.12) with M = 6 and N = 640,

we find an expected theoretical enhancement of 85. The experimental enhancement

was approximately 25% of this value. We believe that the most important reason for

not reaching the theoretical maximum enhancement is photobleaching. The chan-

nel demixing method favors the mode that initially is the brightest. Unfortunately,

this target mode also photobleaches the fastest. Since we correct only for the average

photo bleaching rate (see Section 5.A.2), the measured enhancement will systemati-

cally be lower than the actual enhancement.

5.B.3 Maximum enhancement of speckle scan

When the sample is moved, the speckle pattern in the medium fluctuates. As a result,

the probe fluorescence will fluctuate too. Therefore, when a 3D-scan of the sample

position is performed, at some points the intensity will be somewhat higher than the

diffuse background. We used numerical simulations to calculate the expected maxi-

mum enhancement that this scanning technique can achieve. We assumed Rayleigh

statistics for the speckle field and calculated the summed intensity in 6 independent

optical modes at Nr different positions. The simulation was repeated 1000 times and

for each run the maximum speckle intensity was stored. The number of independent

speckles, Nr , is limited by the diffuse intensity envelope of the light inside the mate-

rial. We estimate that Nr is between 1000 and 10000, depending on the depth of the

probe. With these numbers, the simulations predict that the brightest speckle is 2.9

to 3.4 times as intense as the diffuse background.

5.B.4 Diffuse and ballistic intensities inside the medium

Diffuse intensity

When a slab of diffusive material is illuminated, the incident light can be described

by a diffuse source at depth z 0 = ℓ in the medium.[45] The maximum diffuse intensity

at depth z is found by inverse Fourier transforming Eq. (5.3) with x = y = 0.

Id (x = 0, y = 0, z ) =
1

2π

∫ ∞

0

dq⊥Id (q⊥, z )S(q⊥)q⊥. (5.13)

Where S(q⊥) accounts for the spatial extent of the source. We modelled the source

as a Gaussian spot that encompasses 640 scattering channels; S(q⊥) = exp(−q 2
⊥/0.43).

Eq. (5.13) was evaluated numerically. The diffuse intensity was used to normalize the

theoretical curve for the perfect ballistic intensity in Fig. 5.4.
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Perfect ballistic intensity

We assume that all geometrical abberations are perfectly corrected and that all the

incident light is directed towards a sphere in the geometrical focus. While travelling

through the disordered medium, scattering and diffraction on sub-wavelength struc-

tures attenuate the incident beam according to the Lambert-Beer law,

Ib =
e−z /ℓs c

Av
, (5.14)

where Ib is the ballistic energy density at the sphere, A is the cross-section area of

the sphere, z is the depth of the sphere, v is the velocity of light inside the medium

and ℓs c is the scattering mean free path for light. The parameters ℓs c and v have not

been measured directly for our samples. We can, however, give an upper limit for

the ballistic intensity by overestimating ℓs c = ℓ and underestimating v = 3D/ℓ. The

ballistic intensity was normalized by the diffuse intensity and plotted in Fig. 5.4.
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Chapter 6

Exploiting the potential of

disorder in optical communication

Scattering of light is a long recognized problem that causes losses in optical telecom-

munication, and decreases the resolution of imaging systems[1]. However, impres-

sive experiments utilizing ultrasound and radio waves have shown that, for these

waves, scattering and interference can be used as an advantage.[2] Disordered scat-

tering is used for ultrafast radiographic communication[3] and for sub-wavelength

focusing of microwaves[4].

Unfortunately, these revolutionary methods have so far not been available in the

optical regime. The reason is that recording and playing back electrical fields at op-

tical frequencies is close to impossible. Therefore, time-reversal - which is highly ef-

fective for sound and radio waves - is not a realistic option. In this chapter, we show

that the potential of scattering can be exploited without time-reversal. A self-learning

optical system uses scattering to improve its resolution beyond the limit imposed by

diffraction at its aperture. Thanks to the increased resolution, multiple communica-

tion channels can coexist in the space that is normally needed to support one unscat-

tered communication channel.

We first explain the principle of the experiment and present our results. Then, in

Section 6.2, we give a more detailed description of the apparatus and the experimen-

tal procedure.

6.1 Increasing the information density

Figure 6.1a shows an optical system where a lens focuses monochromatic light on a

camera. Due to the limited numerical aperture (NA=1/200) of the system, the spot

will at best have a diffraction limited width of 60µm (full width at half maximum).

While aberrations in the optics can efficiently be removed using adaptive optics[5],

the resolution of an adaptive optics system is still limited by its numerical aperture.

We choose three individual pixels of the camera to define three independent re-

ceivers. The spacing between the pixels is less than the diffraction limit of the lens.

When the beam path is blocked by a disordered scattering medium (a 9µm-thick

layer of airbrushed white paint), the image on the camera changes dramatically. In-

stead of a focal spot, we now record a disordered speckle pattern that is the result

of random interference. Although the scattered light does not focus, its features are

much sharper than the size of the original diffraction limited spot because the scat-

tering process increases the effective numerical aperture of the optical system.

To control the propagation of light through the disordered environment, we devel-

oped a learning algorithm that acquires an optical fingerprint (a spatial amplitude
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Figure 6.1: a) An optical system with a limited numerical aperture cannot focus light sharply, all three

detectors receive the same signal. b) Scattering improves the diffraction limit. The incident

light is spatially shaped to match a scattering fingerprint. Scattered light focuses sharply

to a point. Now, each detector can be addressed individually. c) Measured transmitted

intensity for eight different linear combinations of incident wavefronts. Any three-bit pattern

can be generated in the area previously needed for one bit.
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and phase pattern) for each of the three receivers. The optical fingerprint uniquely

describes propagation through the scattering medium towards the receiver. When

the wavefront of the incident light matches this fingerprint, the scattered light con-

verges to a focus at the receiver (Fig. 6.1b) and simultaneously the intensity on the

other two receivers decreases.

We used a recently developed technique to spatially shape both phase and am-

plitude of a laser beam with a high accuracy.[6] This technique allowed us to con-

struct any linear superpositions of fingerprints. Propagation through the scattering

medium separates the superposition into separated foci on the receivers. All patterns

of three bits can be generated, as is shown in Fig. 6.1c. A thin layer of white paint has

increased the information density by a factor of three.

In conclusion, our method for matching optical fingerprints takes highly successful

ideas from microwave technology and introduces them to the optical regime. Apart

from improving optical communication, applications include sub-wavelength focus-

ing with ordered[7] or disordered[4]metamaterials.

6.2 Experimental details

The setup consists of a low numerical aperture optical system and a wavefront syn-

thesizer that spatially modulates light from a 632.8 nm Helium-Neon laser (see Fig-

ure 6.2). Wavefront modulation is achieved using a Holoeye LC-R 2500 spatial light

modulator (SLM). The SLM is of the twisted nematic type and by itself does not allow

independent control over the phase and amplitude of the reflected light. We devel-

oped a technique that combines four pixels into a macropixel of which both phase

and amplitude can be controlled fully.[6]

Without scattering, the optical system is not able to create a sharp focus, regardless

of the wavefront that the wavefront synthesizer produces. When we place a layer of

strongly scattering paint in the optical path, light is scattered. The scattered light

forms a random speckle pattern with sharp features. To focus light to a single point,

we generate a wavefront that precisely matches the scattering matrix of the layer of

paint. The scattered light now interferes constructively in a single point.

To construct the matching wavefront, or ‘fingerprint’, we use a method that is simi-

lar to the technique described in Chapter 3. One by one the phase of a segment of the

phase modulator is cycled from 0 to 2π. Meanwhile, the intensity at the desired focal

point is monitored with a camera. From the resulting interference signal we deduce

the phase and amplitude of that segment’s contribution to the target focus. This mea-

surement is repeated for all segments. From these measurements, the unique[8] opti-

cal fingerprint that causes constructive interference in the target focus is constructed.

In contrast to the method presented in Chapter 3, we also control the amplitude of the

incident light. We set the amplitude of each of the segments to be proportional to the

measured amplitude of that segment’s contribution to the target focus. In this way the

overlap of the incident field with the fingerprint of the medium is optimal. Segments

that contribute little to the focus are effectively switched off so that the background

intensity outside of the focus is reduced and contrast is improved. Theoretically, am-

plitude and phase modulation increases the contrast with the diffuse background by

a factor of 4/π with respect to phase only modulation. Moreover, thanks to the com-
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Figure 6.2: Schematic of the experimental setup. The first part of the setup consists of a wavefront

synthesizer that modulates amplitude and phase of a 632.8 nm Helium-Neon laser. The

laser beam is expanded by a 30x beam expander and modulated with a spatial light mod-

ulator (SLM). A 1:5 demagnifying telescope images the SLM on the surface of lens L3. A

pinhole in the focal point of the telescope (A1) acts as a spatial filter, which allows the SLM

to modulate both amplitude and phase (see text). The second part is the actual experiment,

consisting of a camera (CCD) that is placed in the focal plane of lens L3. The numerical

aperture of the lens is lowered using a 2.1-mm diameter aperture (A2). At 26 mm from the

camera a 9μm-thick strongly scattering layer of white paint is placed. A1, A2, apertures;

PBS, polarizing beam splitter cube; L1, L2, L3, lenses with a focal distance of 250 mm,

50 mm and 200 mm, respectively. Some folding mirrors and beam attenuation optics were

omitted.

bined amplitude and phase control, fingerprints for different foci can be superposed

to generate any desired bit pattern.

Bibliography

[1] A. Ishimaru, Limitation on image resolution imposed by a random medium, Appl. Opt. 17,

348 (1978).

[2] S. H. Simon, A. L. Moustakas, M. Stoytchev, and H. Safar, Communication in a disordered

world, Phys. Today 54, 38 (2001).

[3] G. J. Foschini, Layered space-time architecture for wireless communication in a fading envi-

ronment when using multi-element antennas, Bell Labs Technical Journal 1, 41 (1996).

[4] G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, Focusing beyond the diffraction limit with

far-field time reversal, Science 315, 1120 (2007).

[5] R. K. Tyson, Principles of adaptive optics, 2nd ed. (Academic Press, New York, 1998).

[6] E. G. van Putten, I. M. Vellekoop, and A. P. Mosk, Spatial amplitude and phase modulation



Bibliography 83

using commercial twisted nematic LCDs, Appl. Opt. (2008), accepted. Preprint avaiable on

arXiv: physics.optics/0711.4301. Also see Section 2.1 of this thesis.

[7] C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, Subwavelength imaging in pho-

tonic crystals, Phys. Rev. B 68, 045115 (2003).

[8] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, Physical one-way functions, Science 297,

2026 (2002).



84 Bibliography



Chapter 7

Phase control algorithms for

focusing light through turbid

media

Abstract: Light propagation in materials with microscopic inhomogeneities is af-

fected by scattering. In scattering materials, such as powders, disordered metamate-

rials or biological tissue, multiple scattering on sub-wavelength particles makes light

diffuse. Recently, we showed that it is possible to construct a wavefront that focuses

through a solid, strongly scattering object. The focusing wavefront uniquely matches

a certain configuration of the particles in the medium. To focus light through a tur-

bid liquid or living tissue, it is necessary to dynamically adjust the wavefront as the

particles in the medium move. Here we present three algorithms for constructing a

wavefront that focuses through a scattering medium. We analyze the dynamic be-

havior of these algorithms and compare their sensitivity to measurement noise. The

algorithms are compared both experimentally and using numerical simulations. The

results are in good agreement with an intuitive model, which may be used to develop

dynamic diffusion compensators with applications in, for example, light delivery in

human tissue.

[This chapter has been accepted for publication in Optics Communications.]

Materials such as paper, white paint or human tissue are non-transparent because of

multiple scattering of light.[1–3] Light propagating in such materials is diffuse. Re-

cently, we have shown that coherent light can be focused through diffusive media

yielding a sharp, intense focus.[4] Starting with the situation where a scattering ob-

ject (a layer of TiO2 pigment with a thickness of approximately 20 transport mean free

paths) completely destroys the spatial coherence of the incident light (Fig. 7.1a, 7.1c),

we controlled the incident wavefront to exactly match scattering in the sample. After-

wards, the transmitted light converged to a tight, high contrast focus (Fig. 7.1b, 7.1d).

These matched wavefronts experience inverse diffusion, that is, they gain spatial co-

herence by travelling through a disordered medium.

For a given sample of scattering material, there is a unique incident wavefront that

makes the object optimally focus light to a given point. Like a speckle pattern, this

wavefront is disordered on the scale of the wavelength of light. This wavefront cannot

be constructed from a small number of smooth base functions, which unfortunately

renders the efficient algorithms used in adaptive optics (see e.g. [5]) ineffective. In

Ref. 4, we presented an algorithm that finds the optimal wavefront when the sam-

ple is perfectly stationary and the noise level is negligible. To find applications in, for

example, fluorescence excitation or photodynamic therapy, the wavefront has to be

adjusted dynamically as the scatterers in the sample move. In this paper, we present

two additional algorithms, that dynamically adjust the wavefront to follow changes
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Figure 7.1: Principle and experimental results of inverse wave diffusion. a) A multiply scattering object

destroys the spatial coherence of incident light. b) When the same object is illuminated with

a specially constructed matching wavefront, the transmitted light focuses to a tight spot. c)

Recorded intensity transmission of an unshaped wave through a 10μm thick layer of TiO2

pigment. d) Intensity transmission through the same sample with a shaped wavefront.

in the sample. The performance of the algorithms is in good agreement with numer-

ical simulations and with an analytical model. We show that the new algorithms are

superior to the original algorithm when the scatterers in the sample move or when

the initial signal to noise ratio is poor.

Wave diffusion is a widely encountered physical phenomenon. The use of mul-

tiple scattered waves is the subject of intensive study in the fields of, for instance,

ultrasound imaging[6–8], radio and microwave antennas[9, 10], seismography[11],

submarine communication[12], and surface plasmons[13]. While the algorithms dis-

cussed in this paper were developed for spatial phase shaping of light, they can be

used for any type of wave and apply to spatial phase shaping as well as to frequency

domain phase shaping (also known as coherent control, see e.g. [14]) as the concepts

are the same.

This article is organized as follows. First the key concepts of inverse diffusion are

introduced and the three different algorithms are presented. Then the experimen-

tal apparatus is explained and the measured typical performance of the algorithms is

compared. In the subsequent section, we will compare the experimental results with

numerical simulations and analyze the data in terms of noise and stability of the scat-

terers. Finally, we will analytically explain the characteristic features of the different

algorithms and discuss their sensitivity to noise.
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Figure 7.2: Feedback loop for achieving inverse diffusion. An incident monochromatic beam is shaped

using a spatial light modulator (1) and projected on a non-transparent multiply scattering

object (2). A detector (3) detects the amount of transmitted light that reaches the target

area. A feedback algorithm (4) uses the signal from the detector to program the phase

modulator. Before the algorithm is started, the transmitted light forms a random speckle

pattern. The algorithm changes the incident wave to increase the intensity in the target

area. After a few iterations, the transmitted light focuses on the target.

7.1 Algorithms for inverse diffusion

The key elements of an inverse diffusion setup are a multiply scattering sample, a spa-

tial light modulator, an optimization algorithm and a detector, as shown in Fig. 7.2.

The sample can be anything that scatters light without absorbing it. We will con-

sider only samples that are thicker than approximately 6 transport mean free paths

for light. Light transmitted through these samples is completely diffuse and the trans-

mitted wavefront is completely scrambled, i.e., it has no correlation with the incident

wavefront.[15]We assumed that the intensity is low so that non-linear effects are neg-

ligible.

The incident wavefront is constructed using a spatial phase modulator. The mod-

ulator consists of a 2D-array of pixels that are grouped into N equally sized square

segments. A computer sets the phase retardation for each of the segments individ-

ually to a value between 0 and 2π. The optimization algorithms program the phase

modulator based on the detector output. Initially, each of the segments randomly

contributes to the field at the detector. The algorithms find the unique configura-

tion of retardations for which all contributions are in phase at the target. As follows

from the triangle inequality, the magnitude of the field at the detector is at a global

maximum for this optimal configuration. Since the sample completely scrambles the

incident wavefront, all segments of the wavefront are scattered independently and

the optimal wavefront will not be smooth.

Behind the sample is a detector that provides feedback for the algorithm. The de-

tector defines the target area where the intensity is maximized. The field at the detec-

tor is the result of interference from scattered light originating from the different seg-

ments of incident wavefront. When the phase of one or more segments is changed,

the target intensity responds sinusoidally. We sample the sine wave by taking 10 mea-

surements. The process of capturing a single sine wave and possibly adjusting the
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Figure 7.3: Principle used in the three different optimization algorithms. a) For the stepwise sequential

algorithm, all segments are addressed sequentially (marked squares). After the optimal

phase is measured for all segments, the modulator is updated to construct the optimal

wavefront (light gray squares). b) The continuous sequential algorithm is equal to the first

algorithm, except that the modulator is updated after each iteration. c) The partitioning

algorithm randomly selects half of the segments and adjusts their overall phase. The mod-

ulator is updated after each measurement.

phase modulator accordingly is called an iteration.

The amount of control we have over the propagation of light in the disordered sys-

tem is quantified by the signal enhancement. The enhancement η is defined as

η≡ IN

〈I0〉
, (7.1)

where IN is the intensity in the target after optimization and 〈I0〉 is the ensemble av-

eraged transmitted intensity before optimization. In a perfectly stable system, the

enhancement is proportional to N [4], meaning that the more individual segments

are used to shape the incident wavefront, the more light is directed to the target. In

practice, however, the enhancement is limited by the number of iterations that can

be performed before the sample changes too much. We define the persistence time

Tp as the decay time of the field autocorrelate of the transmitted speckle, which is

a measure for the temporal stability of the sample. The persistence time depends

on the type of sample and on environmental conditions. Typical values of Tp range

from a few milliseconds in living tissue[16] to hours for solid samples in laboratory

conditions. The other relevant timescale is the time required for performing a single

iteration, Ti . In our experiments, we operate the phase modulator at just below 10 Hz

and take ten measurements for each iteration; we have Ti ≈ 1.2s.

We will now present three algorithms we used to invert wave diffusion. The advan-

tages and disadvantages of the algorithms are discussed briefly and will be analyzed

in detail later.

7.1.1 The stepwise sequential algorithm

The stepwise sequential algorithm that was used in Ref. [4] is very straightforward. It

is based on the fact that the field at the detector is a linear superposition of the contri-
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butions from all segments. This means that we can construct the optimal wavefront

by optimizing each of the segments individually. The computer consecutively cycles

the phase of each of the N segments from 0 to 2π. The feedback signal is monitored

and the phase for which the target intensity is maximal is stored. At this optimal

phase, the contribution of this single segment is in phase with the background field

(the mean contribution coming from all other segments). The phase retardation of

the segment is reset to 0 before continuing with the next segment. This way, the back-

ground field remains unchanged. Only after all iterations are performed, the phase of

each segment is set to this optimal value (see Fig. 7.3a). Now, all contributions have

the same phase as the original background field.

In absence of measurement noise or temporal instability, algorithm 1 is guaran-

teed to find the global maximum in the lowest number of iterations possible. How-

ever, when N Ti ≫ Tp , the speckle pattern decorrelates before all measurements are

performed and the algorithm will not work. Therefore, it is important to adjust the

number of segments to the persistence time.

7.1.2 The continuous sequential algorithm

The continuous sequential algorithm is very similar to the stepwise sequential algo-

rithm except for the fact that the phase of each segment is set to its maximum value

directly after each measurement (see Fig. 7.3b). This approach has two advantages.

First of all, the algorithm runs continuously and dynamically follows changes in the

sample’s scattering behavior. Furthermore, the target signal starts to increase directly,

which increases the signal to noise ratio of successive measurements. It is still neces-

sary to adjust N to the persistence time Tp .

7.1.3 The partitioning algorithm

The two sequential algorithms change the phase of one segment at a time. As one

segment contributes only a small fraction of the wavefront, the signal to noise ratio is

low and the initial convergence is slow. As an alternative, we propose a partitioning

algorithm that simultaneously changes the phase of a whole group of segments (see

Fig. 7.3c). The amplitude of the interference signal is maximal when the group con-

tains half of the segments. At each iteration the segments are divided randomly over

two equally sized partitions. Then, the target intensity is maximized by changing the

phase of one partition with respect to the other. This process is repeated indefinitely,

and the modulator is randomly repartitioned every time.

Since the phase of many segments is changed simultaneously, the initial increase

in intensity will be fast and the feedback signal will be high. Therefore, this algorithm

is expected to be less sensitive to noise and to recover from disturbances more rapidly.

7.2 Experiment

The different algorithms were tested experimentally using the setup shown in Fig. 7.4.

In our case the scattering medium is a 10µm thick layer of rutile TiO2 pigment [17]
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Figure 7.4: Experimental apparatus used for inverting diffusion. Light from a HeNe laser is spatially

modulated by a liquid crystal spatial light modulator (SLM). Wave plates and a polarizer

(P) are used to generate and select the polarization state for which the modulator works

in phase-mostly mode. The shaped beam is demagnified by a factor of 3 (telescope not

shown) and focused on the sample (S). A reference detector monitors the total intensity

falling on the sample. A microscope objective, a polarizer and a CCD-camera are used to

detect the intensity in the target focus, a few millimeters behind the sample. M, mirror; BS,

non-polarizing 50% beam splitter.

with a mean free path of 0.55±0.1µm, determined by measuring the total transmis-

sion at a wavelength of 632.8nm. This sample is illuminated by a 632.8nm HeNe

laser. The laser beam is expanded and spatially modulated by a Holoeye LC-R 2500

liquid crystal light modulator (LCD). The modulator is a reflective twisted nematic

liquid crystal on silicon (TN-LCoS) device. Such devices are designed for intensity

modulation. However, by choosing an appropriate combination of the incident po-

larization and the analyzed polarization, the LCD can be used as a phase modulator

with a minimal residual intensity modulation[18]. We characterized the LCD using

the method described in [19] and select an optimal combination of elliptical polar-

izations to achieve a phase-mostly modulation mode with 2π phase modulation and

a maximum of 21% residual intensity modulation. The shaped beam is focused on

the sample using a 63x objective with a numerical aperture (NA) of 0.85. A 20x objec-

tive (NA=0.5) images a point that is approximately 3.5 mm behind the sample onto

a 12-bit CCD camera (Allied Vision Technologies Dolphin F-145B). This point is the

target area where we want the light to focus. A computer integrates the intensity in

a circular area with a radius of 20 pixels (corresponding to 129µm in the focal plane

of the objective). This target area is smaller than a typical speckle spot. Using this

signal as feedback, the computer programs the phase modulator using one of the al-

gorithms described above.

We first run the three different algorithms with N = 52. Since Tp/Ti ≫ 52, we do

not expect to see decoherence effects. In total, 208 iterations were performed, which

means that the sequential algorithms ran four times consecutively. The results of the

optimization procedures is shown in Fig. 7.5a. Although the three algorithms reach

the same final enhancement of intensity, there are significant differences between

the algorithms. The enhancement for the stepwise sequential algorithm increases
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Figure 7.5: a) Typical runs of the stepwise sequential algorithm (dotted curve), the continuous sequen-

tial algorithm (dashed curve) and the partitioning algorithm (solid curve). All algorithms

were run with N = 52. The sequential algorithms were repeated four times. b) Simulation

results for N = 52 averaged over 64 runs. The simulation captures the main features of the

three algorithms, but predicts a higher maximum enhancement.

Figure 7.6: a) Typical runs of the stepwise sequential algorithm (dotted curve), the continuous sequen-

tial algorithm (dashed curve) and the partitioning algorithm (solid curve). All algorithms

were run with N = 1804. The enhancement are plotted on a logarithmic scale. b) Simula-

tion results for N = 1804 averaged over 64 runs.

in discrete steps because the phase modulator is only reprogrammed every N itera-

tions. During the first N iterations, the target signal is low and the algorithm suffers

from noise. The saturation enhancement is reached after the second update (after

2N iterations). The continuous sequential algorithm and the partitioning algorithm

both start updating the wavefront immediately and, therefore, have a higher initial

increase of the signal. The continuous sequential algorithm is the first algorithm to

reach the saturation enhancement (after N iterations). The partitioning algorithm

has the fastest initial increase in the target signal. It is, however, the last algorithm to

reach the saturation enhancement since the final convergence is very slow.

When the number of segments in the wavefront is increased, we expect to find a
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higher target intensity. Figure 7.6a shows the experimental results for N = 1804 on a

logarithmic scale. The final intensity enhancement is approximately 40 times higher

than in Fig. 7.5a. A further difference is that in this situation the effects of decoher-

ence are no longer negligible. This effect is most clearly visible with the stepwise

sequential algorithm. The phase modulator is updated after each N iterations and

between the updates the intensity decays exponentially with a 1/e decay of about

Tp /Ti = 5000 iterations.

The convergence behavior of the three algorithms is similar to the experiment that

is shown in Fig. 7.5. The partitioning algorithm clearly causes a higher signal en-

hancement during the first 1000 iterations. The initial increase in the enhancement is

linear with a slope of 0.37. Initially, this linear increase is far superior to the quadratic

increase obtained with the continuous sequential algorithm.

We conclude that both new algorithms are valuable improvements over the original

stepwise sequential algorithm. These algorithms are far less sensitive to noise and

the target signal is kept at a constant value even in the presence of decoherence. The

partitioning algorithm has the fastest initial increase and therefore will recover from

disturbances most rapidly.

7.3 Simulations

In order to obtain a better understanding of the effects of noise and fluctuations on

the performance of the different algorithms we perform numerical simulations. The

disordered medium is represented by a transmission matrix with elements drawn

from a circular Gaussian distribution (more details on the matrix representation can

be found below). Decoherence is modelled by adding a small perturbation to the

transmission matrix after every measurement. Finally, measurement noise is includ-

ed by adding a random value to the simulated detector signal.

Figures 7.5b and 7.6b show the simulated enhancement for a system with Tp/Ti =

5000. Every iteration, ten measurements are performed for phase delays between 0

and 2π. To each of these measurements, Gaussian noise with a standard deviation of

0.3I0 was added. The magnitude of the noise is comparable to experimental observa-

tions. The three different algorithms were run with N = 52 and N = 1804 to simulate

the experiments shown in Fig. 7.5a and Fig. 7.6a.

The simulations are in good qualitative agreement with the experimental data. The

result for the stepwise sequential algorithm shows that the effects of noise and deco-

herence are simulated realistically. Furthermore, the initial signal increase and the

long time convergence behavior correspond to the measured results. The only signif-

icant difference is the 20% to 50% higher enhancement reached in the simulations. A

possible explanation for this difference is the residual amplitude cross-modulation in

our phase modulator. Due to this cross-modulation, the optimal wavefront cannot be

generated exactly. Furthermore, the amplitude modulation decreases the accuracy of

the measurement of the optimal phase. The partitioning algorithm is less sensitive to

this last effect since the cross-modulation is averaged over many segments with dif-

ferent phases. Since the simulations capture the overall behavior of the algorithms

very well, we can use them to extrapolate to situations with a lot of noise and strong

decoherence or, on the other hand, to perfectly stable systems.
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7.4 Analytical expressions for the enhancement

In this section, we analyze the performance of the algorithms with analytical theory

and compare these results to the simulations. We describe scattering in the sample

with the transmission matrix elements, tm n . This matrix couples the fields of the

incident light and the transmitted light.

Em =

N∑

n

tm n An e iφn , (7.2)

where theφn is the phase of the nth segment of the phase modulator. Assuming that

the modulator is illuminated homogeneously, all incoming channels carry the same

intensity. We write An = 1/
�

N to normalize the total incident intensity. Elements

E1, E2, . . . correspond to single scattering channels of the transmitted light. Since we

are interested in focusing light to a single spot, we need to consider only a single

transmission channel, Em . The intensity transmitted into channel m is given by

|Em |2 =
1

N

     

N∑

n

tm n e iφn

     

2

. (7.3)

Regardless of the values of the elements tm n of the transmission matrix, the intensity

|Em |2 has its global maximum when the phase modulator exactly compensates the

phase retardation in the sample for each segment, i.e. φn = −arg(tm n ). The target

intensities before optimization (I0) and after an ideal optimization (Imax) are given by

I0 =
1

N

     

N∑

n

tm n

     

2

, (7.4)

and

Imax =
1

N

!
N∑

n

|tm n |
"2

. (7.5)

For a disordered medium the elements of tm n are independent and have a Gaus-

sian distribution.[20–23] Rewriting Eq. (7.5) gives

〈Imax〉=
#

1

N

N∑

n ,k �=n

|tm n ||tm k |+
1

N

N∑

n

|tm n |2
$

, (7.6)

= 〈I0〉
%
(N −1)

π

4
+1

&
, (7.7)

where the angled brackets denote ensemble averaging over disorder. Eq. (7.7) pre-

dicts that the expected maximum enhancement for an ideally stable, noise free sys-

tem linearly depends on the number of segments N . For N ≫ 1, we have η≈πN/4.

7.4.1 Performance in fluctuating environments

In reality, the sample will not be completely stable. Whether this instability is due

to a drift of the sample position, movement of the scatterers, changing humidity or
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Figure 7.7: Theoretical maximum enhancement as a function of coherence time for different algorithms.

The solid lines represent the maximum enhancement that can be obtained using the se-

quential algorithms. The enhancement depends on the number of segments used in the

algorithm. The dashed line shows the enhancement for the partitioning algorithm where

N ≫ Tp/Ti .

any other cause, the transmission matrix will fluctuate over time. In the simulations,

we modelled decoherence by repeatedly adding a small perturbation to each of the

matrix elements.

tm n →
1

�
1+δ2

(tm n +ξ), (7.8)

where ξ is drawn from a complex Gaussian distribution with mean 0 and standard

deviation δ. The prefactor normalizes the transformation so that
�
|t |2

�
remains con-

stant. By substituting the continuous limit of Eq. (7.8) in Eq. (7.6), we find an analytic

expression for the effect of decoherence,

〈IN 〉= 〈I0〉

⎡
⎢⎣
π

4N

!
N∑

n

e−Tnδ2/(2Ti )

"2

+O(1)

⎤
⎥⎦ , (7.9)

where Tn is the time that has past since the phase of segment n was measured. This

simple model explains the exponential decay of the intensity that was observed in the

measurements (see Fig. 7.6a) and predicts a decay time of Tp = Ti /δ2.

We now calculate the maximum enhancement that can be reached with the con-

tinuous sequential algorithm in the presence of decoherence. Because the phases of

the segments are measured sequentially, at any given time the values for Tn/Ti are

equally spaced between 1 and N . From Eq. (7.9) we find a maximum intensity en-

hancement of

ηN ≡
〈IN 〉
〈I0〉

=
π

4N

�
1− e−N Ti /(2Tp )

e Ti /(2Tp )−1

�2

+O(1). (7.10)

The maximum enhancement for both sequential algorithms is the same. However,

since the stepwise algorithm only updates the projected wavefront after N iterations,

the enhancement decreases exponentially between updates.



Analytical expressions for the enhancement 95

Figure 7.8: Simulated effect of decoherence on the sequential algorithms (solid curve) and on the

partitioning algorithm (dashed curve). The simulations are averaged over 25 runs. Only

when N ≈ 2.51Tp /Ti , the sequential algorithms perform slightly better than the partitioning

algorithm.

In Fig. 7.7 the enhancement for different values of N is plotted versus Tp /Ti . When

the persistence time is large (Tp/Ti ≫N ), decoherence effects do not play a role and

the enhancement linearly depends on N as was seen in Eq. (7.7). For Tp/Ti <N , how-

ever, the enhancement decreases because the speckle pattern decorrelates before all

iterations are performed and the enhancement drops to zero. As a consequence, the

sequential algorithms only perform optimal when N is adjusted to Tp . When Tp is

known a-priori, this optimum for N can be found by maximizing Eq. (7.10). We find

Nopt =W Tp/Ti , (7.11)

where W ≈ 2.51 is the solution of exp(W /2) = 1+W . The maximal enhancement

achievable with sequential algorithms follows by substituting Eq. (7.11) into Eq. (7.10)

and equals ηopt = 0.640Tp /Ti .

With the partitioning algorithm η increases by 1/2 each iteration of the algorithm

(see Section 7.A). As long as N ≫ Tp/Ti , the enhancement saturates atη= Tp /(2Ti )+1,

when the increase is exactly cancelled by the effect of decoherence. The most impor-

tant difference with the sequential algorithms, is that the enhancement reached with

the partitioning algorithm does not depend on N . In Fig. 7.7 it can be seen that the

partitioning algorithm outperforms the sequential algorithms for almost all combi-

nations of Tp and N . The sequential algorithm only give a slightly higher enhance-

ment when they are fine-tuned for a known persistence time (N = 2.51Tp /Ti ). In most

situations, Tp is not known a-priory or varies over time and the partitioning algorithm

will be preferable.

Our analytical results for all three algorithms are supported by numerical simula-

tions (see Fig. 7.8). The simulations exactly reproduce the theoretical curves shown

in Fig. 7.7. For the simulations of the partitioning algorithm we used N = 4096, a

number that can easily be reached with a LCD phase modulator. Again, the partition-

ing algorithm can be seen to have good overall performance, whereas the sequential



96 Phase control algorithms for focusing light through turbid media

stepwise continuous partitioning

sequential sequential

signal 2I0

�
1/N 2I0

�
η/N ηI0

bias I0 ηI0 ηI0

relative shot noise SNR 2
�

I0/N 2
�

I0/N
�
ηI0

rms phase correction
�

3π
�

3π
�

2/η

Table 7.1: Signal and noise characteristics of the three algorithms. The rms phase correction is a

measure for the required sensitivity.

algorithms only work well for certain combinations of N and Tp .

In conclusion, the maximum enhancement that can be reached linearly depends

on the sample’s persistence time. For the sequential algorithms η = 0.64Tp /Ti , but

only when N is precisely adjusted to Tp . The partitioning algorithm has η= 0.5Tp /Ti ,

as long as N is large enough. Using these analytical relations, the performance of each

of the three algorithms in different experimental situations can easily be estimated.

7.5 Effect of Noise

Measurement noise affects the measured phases. Noise-induced errors in the phases

lead to a reduction of the enhancement, η. We will now compare the signal-to-noise

ratio (SNR) of the three different algorithms. In a single iteration of an algorithm, the

phase of one or more segments is varied, while the phase of the other segments is

kept constant. The intensity at the detector equals

I (Φ) = IA + I B +2
�

IA I B cos (Φ−Φ0), (7.12)

where I B is the intensity at the target originating from the modulated segments, IA is

the target intensity caused by light coming from the other segments, Φ is the phase

that is varied and Φ0 is the unknown optimal value for the phase. The last term in

Eq. (7.12) is the signal that is relevant for measuring Φ0. There first two terms consti-

tute a constant bias.

Table 7.1 lists the magnitudes of the signal and the bias for each of the three algo-

rithms. If the detection system is photon shot noise limited, the noise is proportional

to the square root of the bias. When, on the other hand, constant noise sources such

as readout noise or thermal noise are dominant, the SNR is directly proportional to

the signal magnitude. Table 7.1 also shows the root mean square (rms) phase correc-

tion that is applied during each iteration of the corresponding algorithm. The rms

phase correction is a measure for the required accuracy of the measurements.

With the stepwise sequential algorithm, IA ≈ I0 and on average I B = I0/N . Since

the initial diffuse transmission I0 is low and N can be very high, the SNR is low. The

continuous sequential algorithm has a higher SNR since the overall intensity at the
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detector increases while the algorithm progresses and IA ≈ ηI0. Assuming the dom-

inant noise source is constant, the SNR will increase as the enhancement becomes

higher. Therefore, the algorithm can be accelerated by decreasing the integration

time of the camera as the algorithm advances. In case the detection system is photon

shot noise limited, the SNR remains constant during the optimization since both the

signal and the shot noise scale as
�
ηI0.

The highest SNR is achieved with the partitioning algorithm. Since we always

change the phase of half of the segments, IA ≈ I B ≈ ηI0/2, resulting in a maximal

signal. Unlike the sequential algorithms, the SNR does not depend on N . Therefore

the number of segments can be increased without suffering from noise. Like with

the continuous sequential algorithm, the integration time can be adjusted dynam-

ically to optimize the speed/SNR tradeoff. Although the partitioning algorithm has

the highest SNR, the magnitude of the phase corrections decreases as the algorithm

progresses. The required accuracy in measuring Φ0 increases at the same pace as the

SNR increases.

The partitioning algorithm is very sensitive to measurement errors since, when the

measured Φ0 has an error, half of the segments will be programmed with the wrong

phase. In the extreme case where the error equals π the enhancement completely

disappears in a single iteration. A simple and effective solution to this problem is to

keep the previous configuration of the phase modulator in memory. When an op-

timization step causes the signal to decrease, the algorithm can revert to the saved

configuration.

7.6 Simultaneously optimizing multiple targets

For some applications one wishes to focus on multiple targets at once. To achieve

multi-target focusing, one could use the sum of the intensities in all targets as feed-

back. In this case the feedback signal would equal (compare Eq. 7.12)

IM(φ)≡
M∑

m

Im (φ) (7.13)

=

M∑

m

Im A + Im B +2
�

Im A Im B cos(Φ−Φm 0), (7.14)

where the summation is over all M targets. Each of the cosine terms in Eq. (7.14) is

weighted by the square root of the intensity contribution of the modulated segments

Im B and the contribution of the unmodulated segments Im A . This weighting makes

that targets that initially are more intense are optimized more effectively. While the

intensity increases in all targets, the enhancement will not be distributed equally over

the targets and the distribution depends on the starting conditions.

With the sequential algorithms, it is possible to distribute the enhancement equally

over all targets by using a different feedback signal. If we use the summed square root
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of the intensities in the targets as feedback, we have a feedback ‘amplitude’

AM (φ)≡
M∑

m

�
Im (φ) (7.15)

≈
M∑

m

�
Im A +

�
Im B cos(Φ−Φm 0), (7.16)

where we used that Im A ≫ Im B for the sequential algorithms. For these algorithms,

Im A is approximately equal to the initial intensity in target m . The feedback signal in

Eq. (7.16) is only proportional to the propagation amplitude
�

Im B of the modulated

segment to the target. Therefore, the signal does not depend on the initial conditions

and the intensity enhancement will be distributed evenly over all targets.

7.7 Conclusion

Three different algorithms for inverting wave diffusion were presented. The algo-

rithms were compared experimentally, with numerical simulations and using analyt-

ical theory. We found good agreement between experimental data, simulations and

theory. Moreover, the simulations and theory can be used to predict the performance

in different experimental situations.

The effectiveness of the algorithms was quantified by the enhancement. It was

seen that the enhancement depends on the number of segments N and the relative

persistence time Tp /Ti . For the sequential algorithms to have optimal performance,

it is required to adjust N to match Tp . This means that these algorithms need a-priori

knowledge of the system. The partitioning algorithm does not need this knowledge

and always performs close to optimal. Moreover, the algorithm causes the enhance-

ment to increase the most rapidly of the three investigated methods. All in all, this

algorithm is a good candidate for applying inverse diffusion in instable scattering me-

dia such as living tissue. In the future, learning algorithms (see e.g. [24, 25]) might be

developed to further improve the performance of inverse diffusion, for instance by

dynamically balancing the trade-off between signal to noise ratio and measurement

speed.

The maximum enhancement linearly depends on the number of measurements

that can be performed before the speckle pattern decorrelates (Tp/Ti ). The faster the

measurements, the higher the enhancement. In our current system, the speed is lim-

ited by the response time of the LCD. Fast micro mechanical phase modulators have

a mechanical response time of about 10µs (see e.g. [26]), which allows a 104 times

faster operation than with our current system. At such high speeds, the response time

of the operating system of the control computer will become a bottleneck. Since the

computation time required for the algorithm itself is negligible, this bottleneck can be

overcome by using a real-time operating system, or by replacing the computer with

a programmable logic device. In perfused tissue, a typical decorrelation timescale is

10 ms [16], which means that an enhancement of about 50 should be possible with

currently available technology.
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Figure 7.9: Complex plane representation of the partitioning algorithm. a) Before the iteration the con-

tributions from A and B are not exactly in phase. b) After the iteration, the contributions

are aligned and the resulting intensity is higher.

7.A Calculation of the performance of the partitioning

algorithm

In this section we calculate the development of the enhancement of the partitioning

algorithm under ideal conditions. During one iteration of the partitioning algorithm,

the phase modulator is randomly split into two groups (A and B), each containing

half of the segments. The relative phase (Φ) of group B is cycled from 0 to 2π. During

this cycle, the target intensity is given by

I (Φ) =
  Em A + Em B e iΦ

  2
, (7.17)

where Em A is the contribution of the segments in group A to the target field

Em A =
∑

n∈A

'
〈I0〉
N
ξm n , (7.18)

with

ξm n ≡
(

1

〈I0〉
tm n e iφn , (7.19)

and similar for Em B . The coefficients ξm n are initially random and distributed ac-

cording to a normalized circular Gaussian distribution, meaning that 〈ξ〉 = 0 and�
(Reξ)2

�
=

�
(Imξ)2

�
= 1/2. As the algorithm proceeds, the phases φn are adjusted

and the distribution gradually changes to a Rayleigh distribution when a high en-

hancement is reached. The average value 〈ξ〉 increases from 0 to
�
π/4 as all con-

tributions are aligned to be in phase. At any moment during the optimization, 〈ξ〉 =�
(η−1)/(N −1) and

�
|ξ|2

�
= 1.

Figure 7.9 gives a graphical representation of a single iteration. Before the iteration,

Em A and Em B have a different phase. Without loss of generality, we choose the phase

of (Em A + Em B ) to be 0. The intensity before the iteration is given by

Ibefore = (ReEm A +ReEm B )
2 . (7.20)

After the iteration, Φ is set to the value that caused the highest target intensity, which

means that Em A and Em B are now in phase. The target intensity then equals

Iafter = (|Em A |+ |Em B |)2 , (7.21)

which is higher than or equal to before the iteration.
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We now calculate the average intensity gained in a single iteration. We consider the

regime where already a few iterations have been done (η≫ 1). In this regime, we can

approximate

|Em A |=
�
(ReEm A)

2+(ImEm A)
2 (7.22)

≈ ReEm A +
(ImEm A)

2

2ReEm A

. (7.23)

Using this result in Eq. (7.21) gives

Iafter = (ReEm A +ReEm B )
2+(ImEm A)

2+(ImEm B)
2+

+
ReEm A

ReEm B

(ImEm B )
2+

ReEm B

ReEm A

(ImEm A)
2+

+
(ImEm A)

4

4(ReEm A)
2
+
(ImEm B )

4

4(ReEm B )
2
+
(ImEm A ImEm B )

2

2ReEm AReEm B

(7.24)

where the terms on the last line can be neglected. If N ≫ 1, then ReEm B/ReEm A ≈ 1.

The intensity gain for the iteration∆I ≡ Iafter − Ibefore is now found to be

∆I = 2(ImEm A)
2+2(ImEm B )

2 (7.25)

We are primarily interested in the regime N ≫ η ≫ 1), where the algorithm picks

up the main part of the final enhancement. In this regime, 〈ξ〉 ≪ 1 and the proba-

bility distribution of ξ is still close to the original Gaussian distribution. Therefore,�
(Imξ)2

�
≈ 1/2 and it follows from Eq. (7.18) that

∆I =
1

2
〈I0〉 (7.26)

Therefore, we expect the intensity enhancement η to increase with 1/2 after each

iteration of the algorithm. With this information, we also calculate the typical phase

adjustment that is performed in each iteration. From Fig. 7.9 it follows that the root

mean square phase adjustment equals

Φrms ≡
��
Φ2

�
=

()
(ImEm A)

2

(ReEm A)
2

*
=

(
2

η
(7.27)

When η approaches its maximum, all contributions are almost completely in phase

and
�
(Imξ)2

�
vanishes. In this regime, the algorithm becomes less and less effective,

as was seen in simulations and experiments (see Fig. 7.6). Adaptive switching to one

of the other algorithms will ensure optimal convergence.
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Chapter 8

Transport of light with an

optimized wavefront

In our experiments we construct a wavefront that maximizes the intensity at a given

target position. In this chapter, we investigate the transport properties of light with

such an optimized wavefront. We introduce the concept of ‘active’ measurements to

describe a measurement where the wavefront is tailored to the specific realization of

disorder in the sample. We show that this new type of experiments is very promising

as it could be used to find signatures of absorption and possibly Anderson localiza-

tion of light, or to test mesoscopic transport theories and selectively study extended

modes in a sample.

So far, we have used a simple ad hoc matrix model (Eq. (3.1)) to describe scattering

and focusing through a disordered medium. This model is based on the assumption

of uncorrelated transmission coefficients (UTC). In reality, the constraint on energy

conservation makes that the matrix elements are correlated. Such correlations can be

described by random matrix theory (RMT). RMT predicts that it is possible to gener-

ate an incident wavefront that is fully transmitted through an opaque object, regard-

less of the thickness of the object.

In Section 8.1 we give a brief introduction to RMT and discuss how it can be applied

to describe scattering in a disordered optical waveguide. In Section 8.2 we use RMT to

describe the transport of light in an active measurement. We calculate experimentally

observable quantities and compare the situations with the matched and unmatched

incident wavefronts. Furthermore, we discuss the physical relevance of these ‘actively

measured’ quantities and compare the results with predictions made with the UTC

model. The total transmission of an optimized wavefront is found to be an observable

that characterizes the correlations in the scattering matrix. Finally, in Section 8.3, we

extend the RMT model so that it applies to a slab geometry and accounts for other

experimental parameters, such as the resolution of the light modulator. We use the

extended model to calculate how experimental limitations affect the measurements

and we show how they can be compensated for.

8.1 Random matrix theory

Random matrix theory is a very general mathematical theory for statistically describ-

ing extremely complex systems. Some excellent reviews on RMT can be found in

Refs. 1, 2 and 3. The theory has been developed by Wigner[4] to describe statis-

tics of eigenvalues of many-body systems. It was originally employed to describe

the properties of excited states of atomic nuclei and also proved very successful in

calculating the statistics of electron scattering in mesoscopic conductors and quan-
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Figure 8.1: Scattering in a waveguide geometry. The scattering matrix S couples incident waveguide

modes E+
a

and E−b to outgoing waveguide modes E−
a

, E+b . In a transmission experiment,

E−b = 0.

tum dots[5–8]. Weaver[9] was the first to study the application of RMT to acoustical

waves instead of quantum mechanical wave functions. In pioneering experiments in

acoustics[9, 10] and microwaves[11, 12] the distribution of eigenfrequencies in irreg-

ular cavities was measured. RMT proved very successful in predicting the statistical

properties of eigenfrequency spacing in these systems.[3] Although most results of

RMT are for monochromatic waves and, therefore, do not describe the dynamics of

scattering, methods for extending the matrix treatment to describe time dependence

are being developed[13–16].

More recently, RMT has been used to calculate correlations of light scattering in

disordered optical waveguides (see e.g. [2]) and random lasers[17]. Because only very

general concepts are used, it is very easy to translate results for one type of waves to

a different system. This also means that experimental observations in one field of

physics are directly relevant for many other disciplines.

The basic assumption of RMT is that the system is so complex that you might as

well use a completely random Hamiltonian matrix to describe it. In Wigner’s original

approach[4], the ‘randomness’ of the matrix is invariant under unitary transforma-

tions of Hilbert space. In terms of light scattering, this invariance means that the

scattered light has no spatial or angular correlation with the incident light whatso-

ever. The only other constraint that Wigner imposed on the random matrices is that

there is a conserved quantum number that imposes a symmetry condition on the

matrix. In the case of scattering this condition is that the energy is conserved (no

absorption). Usually, an optical system also has time-reversal symmetry, which puts

an extra constraint on the random matrix. Due to these constraints the elements

of the matrix have to be statistically correlated. Typically, the number of scattering

channels is large and the correlation between any pair of channels is negligible. Only

when many scattering channels are involved, the effects of the correlations become

visible.

8.1.1 Random matrix theory in a waveguide geometry

We first explain how RMT is applied to a simple waveguide geometry as is shown in

Fig. 8.1. To both sides of a strongly scattering disordered sample a waveguide sup-

porting exactly N propagating waveguide modes (channels) is connected. Evanes-

cent fields in the waveguide are not taken into consideration. The sample scatters

incident light into reflected and transmitted waveguide channels.
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Figure 8.2: Transmission experiment in a waveguide geometry. The transmission matrix of the system

is decomposed in three matrices: V maps the incident light to eigenmodes of the sample,

τ gives amplitude transmission coefficients for the eigenmodes. U maps the eigenmodes

back to real space on the other side of the sample.

Scattering by the sample is represented by the scattering matrix S that connects

the incident field E+a , E−b to the channels leaving the sample (E−a and E+b ). Channels

labelled a are channels on the left side of the sample and Channels labelled b are

channels on the right side of the sample. The scattering matrix S is defined as

⎡
⎢⎣

E−
a

E+b

⎤
⎥⎦=S

⎡
⎢⎣

E+
a

E−b

⎤
⎥⎦ . (8.1)

We assume that the sample does not absorb any light and, therefore, S is unitary.

When, in addition, scattering in the sample is reciprocal, time-reversal symmetry is

obeyed and S is both unitary and symmetric. Although all our experimental systems

have time-reversal symmetry, unitarity alone is sufficient for the derivations made in

this chapter to be valid. The scattering matrix can be split into four matrices describ-

ing reflection and transmission

⎡
⎢⎣

E−a

E+b

⎤
⎥⎦=

⎡
⎢⎣

r−+a a t −−ab

t ++b a r+−bb

⎤
⎥⎦

⎡
⎢⎣

E+a

E−b

⎤
⎥⎦ . (8.2)

From now on, we only consider transmission from left (channels a ) to right (chan-

nels b ) as described by the matrix t ++b a , in short t . RMT tells us that the restriction

of energy conservation gives rise to a statistical structure in the transmission matrix.

This structure is visible in the singular value decomposition (SVD) of the transmission

matrix. Like any matrix, the transmission matrix t can be decomposed as

t =UτV, (8.3)

where U and V are unitary matrices andτ is a diagonal matrix with real, non-negative

elements. The physical interpretation of Eq. (8.3) is illustrated in Fig. 8.2. Matrix V

maps the incident light from real space coordinates onto transmission eigenmodes

of the sample. The intensity transmission coefficients for each of these eigenmodes

are given by the diagonal elements of τ2. Matrix U maps the eigenmodes back to

spatial coordinates at the back of the sample.

In RMT U and V are random unitary matrices with elements that have a circular

Gaussian distribution. The statistical properties of these matrices are invariant to any
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Figure 8.3: Probability density of the intensity transmission eigenvalues T ≡τ2 as derived in Ref. 5.

unitary transform of the Hilbert space.[4] In other words, when we replace U (or V )

by U ′ = BU (V ′ = BV ), with B any unitary matrix, the ensemble properties do not

change. It, therefore, does not matter whether a channel is defined as a waveguide

mode, an incident plane wave or a position on the sample surface. Moreover, these

constraints on U and V make that these matrixes are statistically independent of τ.

8.1.2 Distribution of transmission eigenvalues

Intuitively, one might expect that all modes in a random system are roughly equiv-

alent and the distribution of T ≡ τ2 is peaked around the total transmission of the

sample. However, as was shown first by Dorokhov[5], the eigenvalues have a proba-

bility density that is given by

p (T ) = 〈T 〉 1

2T
�

1−T
. (8.4)

This probability density is plotted in Fig. 8.3. The eigenvalue distribution is bimodal:

almost all eigenvalues are either 1 or 0. A common terminology is to speak of ‘open’

and ‘closed’ channels. Light in an open channel is almost fully transmitted (T ≈ 1),

whereas light in closed channels is almost completely reflected (T ≈ 0). The predic-

tion that all channels are either open or closed is also known as the maximal fluctua-

tion theorem[18, 19].

The distribution in Eq. (8.4) is the result of the restriction of energy conservation

that is imposed on the scattering matrix. Due to this restriction, a mechanism called

eigenvalue repulsion spreads out the values of 1/ξ to a uniform distribution.[2, 18,

20] Here, ξ is the localization length that is associated with a mode in the sample.

The localization length relates to the transmission of a sample by T = cosh−2(L/ξ).

The uniform distribution of 1/ξ transforms into the distribution of T as is given by

Eq. (8.4). Originally, RMT was used to derive Eq. (8.4) for a waveguide. However, later

it was shown that this probability density function is more generally valid and also

applies to a slab geometry.[21]
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Equation (8.4) has divergencies at 0 and at 1. The divergency at 0 is not integrable.

In fact, there is a minimum value for the transmission coefficient of a mode[2, 22],

which is given by T = cosh−2(1/ 〈T 〉). This cutoff normalizes the probability distribu-

tion of T . The physical interpretation of the cutoff is that with 〈T 〉 ≈ ℓ/L, the local-

ization length of a mode cannot be shorter than the mean free path ℓ. In practice,

the cutoff for T is often ignored since most of the time one is only interested in the

moments of T . These moments depend very little on the cutoff.[22]

8.1.3 The effect of refractive indices

Random matrix theory is most conveniently formulated in a waveguide geometry

with an equal number of waveguide channels on both side of the sample. In an exper-

iment, the refractive index in front of the sample is often different from the refractive

index at the back. Moreover, the sample itself has an effective refractive index that

may differ from that of its environment. The number of channels scales with the re-

fractive index squared. Therefore, the number of channels in the sample is not the

same as the number of channels in the connected waveguides.

To account for the different number of scattering channels on both sides of the

medium we assume that all channels are statistically equivalent. The number of

channels is determined by the refractive index in each of the media. At an interface,

scattering randomly redistributes the light over all channels. When the light enters

a medium with a lower refractive index, some linear combinations of channels are

completely reflected. This reflection is the random equivalent of total internal reflec-

tion.

In general the transmission coefficient at the surface of a disordered medium is

angle dependent[23–25]. If we define channels as incident angles, different channels

are not statistically equivalent. Therefore, we chose to define channels in real space

coordinates. Since angular effects are equal for all channels, the channels are still

statistically equivalent. Furthermore, we assume that the refractive index contrasts

are low and that scattering is strong, so that neighboring channels can be considered

statistically independent.

We now consider three possible combinations of refractive indices and analyze

their effect on the RMT formalism.

Matrix description of a sample in air

When a sample is surrounded by air, its effective refractive index is higher than that

of the surrounding medium. This means that the sample supports more channels

than can possibly couple to the outside world. The difference in supported channels

is shown schematically in Fig. 8.4. Since no light can couple to these bound modes,

we ignore them and just use the formalism in Eq. (8.3), with τ a random subset of the

actual full τmatrix of the sample.

Matrix description of a sample in a dense medium

In the situation where the refractive index of the sample is lower than that of its en-

vironment not all incident channels can couple into the sample. Or, more correctly,
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V Uτ

Figure 8.4: Diagrammatic representation of a sample in a medium with a lower refractive index. The

sample supports more channels than the connecting waveguides and can, be thought of in

a sense being ‘wider’.

V U
τ

Figure 8.5: Diagrammatic representation of a sample in a medium with a higher refractive index. The

sample supports fewer channels than the connecting waveguides and can, be thought of

in a sense being ‘narrower’. Not all incident channels can couple into the sample.

some linear combinations of incident channels have no support in the sample. As

is depicted in the diagram in Fig. 8.5, the sample acts as a bottleneck. This situation

could be modelled by using the formalism in Eq. (8.3) with a matrix τ that is extended

with extra zeros for channels that cannot exist inside the sample.

Matrix description of a sample on a substrate

When the sample is on a substrate with a high refractive index, it is sandwiched be-

tween a low refractive index medium and a high refractive index medium. In this

experimentally relevant situation, the number of incident channels is not equal to

the number of transmitted channels and t is a rectangular M ×N matrix. Here N is

the number of incident channels and M is the number of transmitted channels. In

the singular value decomposition of t , U is a unitary M ×M matrix, V is a unitary

N ×N matrix, and τ is a rectangular diagonal M ×N matrix. The number of diagonal

elements in τ equals K ≡ min (M , N ). When the sample is illuminated through the

low index waveguide, as is shown in Fig. 8.6, there will be no total internal reflection

as the light travels from a low refractive index towards a high refractive index. Since

the case with a rectangular t matrix is the most general, we will use this case in our

derivations.
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V Uτ

Figure 8.6: Diagrammatic representation of a sample on a substrate with a higher refractive index than

that of the sample. All channels on the low index side of the sample can couple to the

sample and, in turn, all channels in the sample can couple to the substrate.

8.2 A new class of experimental observables

A common way to experimentally study an optical system is to measure its response

to a fixed incident wavefront. For a disordered system, the response will be stochastic.

Useful results are obtained by statistical methods such as ensemble averaging and

calculating correlation functions.

In our experiment, however, we actively adapt the incident wavefront to each spe-

cific realization of disorder in the sample and selectively excite an extended optical

mode. This concept is analogous to the approach taken in the field of coherent con-

trol, where a femtosecond pulse is shaped in the frequency domain to optimize the

response of a chemical system[26–31]. This pulse selectively excites a chemical path-

way that can then be studied. For most systems described by RMT such control is not

possible and at best ensemble averaged quantities can be observed.

One of the potentials of our method becomes apparent from the distribution p (T )

in Eq. (8.4). This equation predicts that there always exist channels that have T = 1.

Using a wavefront synthesizer we can, in principle, generate an incident wavefront

that only couples to these open channels. Such a wavefront should be fully transmit-

ted through an otherwise opaque scattering medium.

Open channels correspond to optical modes that extend over the whole thickness

of the sample.[2] With our active measurement method, it is possible to selectively

study the properties (correlations, speckle statistics, delay time statistics, behavior in

random gain media, second harmonic generation, etcetera) of extended modes with-

out having a contribution from the localized modes that correspond to closed chan-

nels. The relation between localized modes and extended modes is of paramount im-

portance in the study of Anderson localization (where the number of extended modes

vanishes, see e.g. [2]) and in the field of random lasers[32].

The possibility to perform active measurements once again illustrates the funda-

mental difference between having a light modulator in front of the sample or behind

the sample. The two situations are shown in Fig. 8.7. In Fig. 8.7a the modulator is
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Figure 8.7: Difference between placing a light modulator in front of the sample or behind. a) Light

modulator in front of the sample. A sharp focus surrounded by a speckle pattern is formed

and the total transmission in the order of 100%. b) Light modulator behind the sample. All

transmitted light is formed into a focus without speckle. The total transmission does not

change and typically is in the order of 10%.

placed in front of the sample and the incident wavefront is optimized for creating a

focus behind the sample. The optimal wavefront only couples to extended modes in

the sample and the total transmission increases. Since only a fraction of all channels

is open, there is no complete set of basis vectors for forming any desired field be-

hind the sample. As a result, it is not possible to concentrate all light in the focus; the

rest of the transmitted light will form a random speckle pattern. When a modulator is

placed behind the sample, as is shown in Fig. 8.7b, it could in principle focus all trans-

mitted light to a single point. However, light transport in the sample is, of course, not

affected.

To find a wavefront that excites only open channels, one could theoretically per-

form a singular value decomposition of the full transmission matrix (see Eq. (8.3)).

However, measuring the complete scattering matrix is experimentally very challeng-

ing since it contains tens of millions of elements. Moreover, measurement noise

would accumulate and disturb the singular value decomposition. A different, much

easier, approach is to create a focus at any position behind the sample. Since closed

channels are fully reflected, only open channels contribute to this focus. When we

optimize the incident light to create a maximally intense focus, we generate a wave-

front that only overlaps with open channels.

In this section, we use the RMT model to calculate some experimentally observ-

able quantities and compare the result for an unshaped wavefront (passive measure-

ment) to the result of a wavefront that is optimized for creating a focus (active mea-

surement). The results of the calculations that follow below are summarized in Ta-

ble 8.1. We first derive these quantities for a waveguide geometry with a wavefront

synthesizer that perfectly controls the phase and amplitude of all incident channels.
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passive active (optimized)

single channel
�

Iβ
�
=

�
τ2

� K
M N

��Iβ
�
=

�
τ2

� K
M

total 〈Ttot〉=
�
τ2

� K
N

� �Ttot

�
= 2

3

Table 8.1: Average transmission into a single channel and average total transmission with and without

actively shaped wavefront.

This assumption greatly simplifies the calculations. Later, in Section 8.3, we will see

how the general results for an open system or for imperfect modulation can easily be

found once the results for a perfect waveguide system are known.

8.2.1 Observables in passive measurements

We now calculate average values for the total transmission through the sample and

for the intensity in a single transmission channel. The incident wavefront is not

adapted to the sample, which is the normal, passive, way of measuring transmission

coefficients. The general equation for calculating the field in outgoing channel b is

Eb =

N∑

a

tb a Ea . (8.5)

Using the singular value decomposition in Eq. (8.3), we obtain

Eb =

N∑

a

K∑

k

Ub kτk k Vk a Ea . (8.6)

Because RMT is symmetric to unitary transformations of the incident field, we can

use any arbitrary normalized field and achieve the same outcome. For simplicity, we

illuminate only incident channel a ′ and have Ea = δa ′a . The total transmission is

calculated using

Ttot ≡
M∑

b

Ib , (8.7)

with Ib ≡ |Eb |2. The total transmission follows from substituting Eq. (8.6) into Eq. (8.7)

Ttot =

M∑

b

     

K∑

k

Ub kτk k Vk a ′

     

2

. (8.8)

After expanding the square and reordering terms, we have

Ttot =

M∑

b

K∑

k ,k ′

U ∗
b k

U
b k ′τk k

τ
k ′k ′Vk a ′V

∗
k ′a ′ . (8.9)

Unitarity of U implies that
∑M

b
U ∗

b k
U

b k ′ = δk k ′ . Therefore, Eq. (8.9) reduces to

Ttot =

K∑

k

τ2
k k

  V
k a ′

  2
. (8.10)
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To find the ensemble average total transmission, we use the assumption from RMT

that V and τ are statistically independent. We can, therefore, average Eq. (8.10) over

all realizations of disorder to find

〈Ttot〉=
#

K∑

k

τ2
k k

  V
k a ′

  2

$
=

�
τ2

�
#

K∑

k

|Vk a ′ |2
$
=

�
τ2

� K

N
. (8.11)

where the unitarity of V was used in the final step. When the refractive index behind

the sample is higher than the refractive index in front of the sample, the factor K /N

equals one. On average, an incident field excites all eigenmodes with equal probabil-

ity. Therefore, the average total transmission equals
�
τ2

�
.

If, on the other hand the refractive index behind the sample is lower, the factor K /N

is less than one. To understand this factor, we examine the situation where there is

no sample, just a direct transition between the two media. When N > M , there are

more channels in the incident field than there are in the transmitted field. The excess

channels cannot exist in the medium behind the sample and undergo total internal

reflection. The fraction of channels that does not experience total internal reflection

is M/N . When a sample is present, energy is distributed randomly over all sample

channels. Only a fraction M/N of the light can leave the sample.

Since in the RMT formalism all transmitted channels are equivalent, the average

intensity in a single transmitted channel is simply found by dividing Eq. (8.11) by M

〈Ib 〉=
�
τ2

� K

M N
. (8.12)

8.2.2 Observables in active measurements

We now calculate the same quantities as in the previous section for an active mea-

surement where the incident wavefront is optimized to maximize transmission into

a single channel β . We first determine this optimal incident field �Ea and then use it

to calculate the transmission into channel β as well as the total transmission.

Intensity in the optimized channel

We now calculate the intensity in the target channel β after an optimization. The

incident field that maximizes the intensity in this channel follows from the Cauchy-

Schwartz inequality

Iβ =

     

N∑

a

tβa Ea

     

2

≤
N∑

a

|tβa |2
N∑

a ′

|Ea ′ |2, (8.13)

where the two sides are equal if and only if

�Ea =A0t ∗
βa

, (8.14)

where we denoted the optimal incident field after optimization with a tilde sign. We

are free to choose prefactor A0 ∈�; we choose A0 so that �Ea is normalized. Now, the
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optimal value of Iβ follows directly from Eq. (8.13)

�Iβ =
N∑

a

|tβa |2. (8.15)

Using the singular value decomposition in Eq. (8.3), we find

�Iβ =
N∑

a

     

K∑

k

Uβkτk k Vk a

     

2

, (8.16)

=

N∑

a

K∑

k ,k ′

U ∗
βk

U
βk ′τk k

τ
k ′k ′V

∗
k a

V
k ′a . (8.17)

We use the unitarity of V to get rid of the sum over a

�Iβ =
K∑

k

   Uβk

   
2

τ2
k k . (8.18)

Our model allows us to average over U and τ separately to find

��Iβ
�
=

�
τ2

� K

M
. (8.19)

In the situation where M = K = N , the fraction of the light that is transmitted into

channel β is equal to the total transmission before optimization (Eq. (8.11)).

Total transmission

We now calculate the transmitted field for the optimized incident wavefront given by

Eq. (8.14). Using Eq. (8.6) we find

�Eb =

N∑

a

!
K∑

k

Ub kτk k Vk a

"
A0

!
K∑

k ′

Uβkτk ′k ′Vk ′a

"∗
. (8.20)

Unitarity of V implies that
∑N

a
Vk a V ∗

k ′a = δk k ′ . We now have

�Eb = A0

K∑

k

Ub k U ∗βkτ
2
k k . (8.21)

The total transmission after optimization now follows from Eq. (8.7),

�Ttot = A2
0

M∑

b

!
K∑

k

U
b k

U ∗
βk
τ2

k k

"!
K∑

k ′

U ∗
b k ′Uβk ′τ

2
k ′k ′

"
. (8.22)

Using unitarity of U in the summation over b we find

�Ttot = A2
0

K∑

k

   Uβk

   
2

τ4
k k

. (8.23)
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The prefactor A0 was defined to normalize the incident wavefront. Using Eq. (8.14)

we find

A−2
0 =

N∑

a

|tβa |2 =
K∑

k

   Uβk

   
2

τ2
k k , (8.24)

where the equality of Eqs. (8.15) and (8.18) was used in the last step. Finally, we have

�Ttot =

∑K

k

   Uβk

   
2

τ4
k k

∑K

k ′

   Uβk ′

   
2

τ2
k ′k ′

. (8.25)

Here we see that the numerator is a weighted average over τ4 and the denominator is

a weighted average over τ2 with equal weights. Averaging over U gives

� �Ttot

�
=

�
τ4

�
�
τ2

� ≡C4,2. (8.26)

We see that the total transmission after optimizing the incident wavefront is equal to

C4,2, which is defined as the ratio between the fourth and the second moment of τ.

C4,2 does not depend on the refractive indices outside the sample. Using the distri-

bution p (T ) that is predicted by RMT (Eq. (8.4)), C4,2 can be calculated

C4,2 =
2

3
. (8.27)

Surprisingly, C4,2 turns out to be a universal constant. A fraction of 2/3 of the power

of an ideally optimized wavefront is transmitted, regardless of the thickness of the

sample.

8.2.3 Comparison with the uncorrelated model

The RMT model is very similar to the uncorrelated transmission coefficients (UTC)

model in the sense that both models use a matrix with statistically equivalent ran-

dom elements. The singular value decomposition that formed the start of our RMT

calculations can also be performed on the UTC matrix and all observables can be cal-

culated in exactly the same way. In effect, the only difference between the two models

is the distribution of transmission eigenvalues. When we choose
�
τ2

�
to be equal in

both models, the only observable difference is the value of C4,2.

RMT takes into account the correlations arising from the constraint of energy con-

servation and gives the universal result of C4,2 = 2/3. In the UTC model the matrix

elements are uncorrelated. For such a matrix the eigenvalues are expected to have an

exponential distribution.[33] In that case, C4,2 = 2
�
τ2

�
. The power in the optimized

channel increases to
�
τ2

�
, whereas the background transmission remains constant at�

τ2
�

. The optimized transmission is twice the original transmission and, therefore, it

is not a universal constant in this model.

Apparently, C4,2 is an accessible observable that depends on the symmetry of the

disordered system, which makes it very interesting to determine it experimentally.
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�

Figure 8.8: Ratio of the fourth moment to the second moment of the transmission eigenvalues (C4,2 ) as

a function of sample thickness. With increasing thickness, C4,2 rapidly converges to 2/3.[2]

8.2.4 Random matrix theory for thin samples

We calculated C4,2 = 2/3 using the RMT eigenvalue distribution of Eq. (8.4). This

equation is only valid in the limit of a ‘thick’ sample. To investigate when a sample

can be considered thick, we use the equation for the exact probability distribution of

transmission eigenvalues as calculated by Beenakker[2]. The exact equation is more

involved than its limit in the diffusion regime. Beenakker defines x ≡ arccosh(1/τ)

and then derives

P(x , s ) =
2

π
ImU (x − i 0+, s ), (8.28)

with

s =
4L

3ℓt r

, (8.29)

and U is the solution to the implicit equation

U (ζ, s ) =U0(ζ− sU (ζ, s )), (8.30)

with starting condition U0(ζ) = coth(ζ). We used these equations to numerically eval-

uate C4,2 and we found that C4,2 converges to 2/3 with increasing sample thickness

(Fig. 8.8). The convergence is very rapid: starting at C4,2 = 1 for an infinitely thin sam-

ple, C4,2 is already at 0.7 for samples that are only one mean free path thick. There-

fore, we conclude that samples in our experimental range can be considered thick

and Eq. (8.4) can be used.

8.2.5 Non-diffusive behavior

The distribution of eigenvalues depends on the transport physics in the disordered

medium. In the previous section, we saw that, for very thin samples, the distribution

depends on the thickness of the sample.

In microwave experiments, it was observed that absorption in the medium changes

the eigenvalue distribution to an exponential distribution.[34] This result can be un-

derstood in the sense that there is no constraint of energy conservation in such sys-
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passive active

single channel
�

Iβ
�
=

�
τ2

� K
MeffN

��Iβ
�
=

�
|γ|2

��
τ2

� K
M

total 〈Ttot〉=
�
τ2

� K
N

� �Ttot

�
=

�
|γ|2

� 2

3
+

+
1−

�
|γ|2

�,�
τ2

� K
N

Table 8.2: Value of some important observables in a realistic experimental situation (also compare

Table. (8.1)).

tems.[33] Therefore, the elements of the transmission matrix are uncorrelated, just as

in the UTC model.

In the limit of extremely strong scattering (k ℓ ≈ 1) interference effects dramati-

cally change the transport properties of waves.[35, 36] This effect is known as Ander-

son localization. The observation of Anderson localization of light[37–39] has proven

very difficult, especially because absorption can, in many situations, have a similar

signature[40].

Both absorption and localization make that the extended modes vanish, thereby

decreasing C4,2. However, in quasi-1D systems the effect of localization on the dis-

tribution of eigenvalues is rather spectacular. At the localization threshold, eigen-

values start to cluster. This effect is called eigenvalue crystallization and leads to an

oscillating eigenvalue distribution (see e.g. [2]). The study of localization in open 3-

dimensional systems is an ongoing field of research. Recent results[41] predict the

distribution of decay rates of optical modes. It would be very interesting to know the

distribution of transmission eigenmodes in such a 3-dimensional system and inves-

tigate if, by measuring C4,2, the difference between localization and absorption can

be established experimentally.

8.3 Random matrix theory in an optical experimental

situation

In this section, we extend random matrix theory of wave scattering to describe a

realistic optical experimental situation. First, the geometrical correlations that are

present in a slab geometry are analyzed and then the effect of limitations of the mod-

ulator is taken into account. We find that a realistic experimental situation can be de-

scribed with the degree of amplitude control γ that accounts for all deviations from

the ‘ideal’ waveguide geometry. The value of the observables in a realistic situation

are summarized in Table 8.2.

8.3.1 Slab geometry

In our experiments we have a slab geometry as is depicted in Fig 8.9. In this geom-

etry, not all channels are equivalent. When light is focused on incident channel a ,

transmitted channels directly opposite a will receive more intensity than channels

that are further away. To include this geometric effect, we recognize that the average
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Figure 8.9: Slab geometry. Light diffuses from a point with surface coordinates ra on the front of the

sample to a point rb at the back of the sample.

transmission coefficient is a function of the relative position of the channels.

�
|tb a |2

�
= f (|rb − ra |)

�
τ2

� K

M N
, (8.31)

where all channels are defined in r space. ra and rb are the 2-D coordinates of, re-

spectively, the incident and the transmitted channels at the front and back sample

surfaces. In a waveguide geometry f (|rβ −ra |) = 1. In a slab geometry f can be calcu-

lated using diffusion theory. It is a function that starts at 1 and decreases with distance

|rβ −ra |with a typical decay length that is comparable to the thickness of the sample.

Furthermore, f depends on the mean free path and the extrapolation lengths. Since

f decreases with distance, channels that are further away from the target contribute

less. The effective total number of channels that contribute to the intensity in β is

given by

Neff =

N∑

a

f (|rβ − ra |). (8.32)

Neff converges to a finite value in the limit K , M , N →∞. In this limit, the waveguide

model transforms into a model for an infinite slab and all physical quantities become

independent of N . Similarly, the effective number of transmitted channels at the back

of the sample originating from a point source at ra ′ equals

M eff =

M∑

b

f (|rb − ra ′ |) =
M

N
Neff. (8.33)

To introduce spatial dependency in the RMT formalism, we use the singular value

decomposition (Eq. (8.3)) to find

�
|tb a |2

�
=

#     

K∑

k

Ub kτk k Vk a

     

2$
. (8.34)

Assuming that τ is still independent of U and V , all geometrical effects are accounted

for by imposing the following correlation between on U and V

�
|Ub k Vk a |2

�
= f (|rb − ra |)

1

M N
. (8.35)

In the previous sections, we (implicitly) used the assumption that the matrices U and

V are uncorrelated only in the calculation of 〈Ib 〉; all other observables in Table 8.1
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are not affected by this correlation. In the active measurements, the incident field

is matched to the sample to maximize Ib . In a passive measurement, however, the

incident illumination can have any arbitrary profile that only depends on the experi-

mental configuration. The average value for Ib depends on this intensity profile Ia

〈Ib 〉=
N∑

a

f (|rb − ra |)
�
τ2

� K

M N
Ia . (8.36)

When the detector is further away from the sample than the diameter of the diffuse

spot, it is convenient to define far-field angular channels (far-field speckles). The

number of such channels is M eff (also see Ref. 42 for a discussion on the number of

independent channels). In that case, Eq. (8.36) reduces to

〈Ib 〉=
�
τ2

� K

M effN
, (8.37)

where the total incident power was assumed to be normalized. All other observables

that were derived above are not affected by the slab geometry. It is now possible to

supplement these results with spatial information. We can, for instance, calculate the

intensity profile of the optimal incident field (Eq. (8.14))

�
| �Ea |2

�
=

�
A2

0

��
|tβa |2

�
=

�
A2

0

�
f (|rβ − ra |)

�
τ2

� K

M N
. (8.38)

Below, we will use this intensity profile to determine how well a generated field match-

es the optimal field.

8.3.2 Wavefront modulation imperfections

So far, we have assumed that the incident wavefront is constructed with an infinitely

large perfect wavefront generator. All practical imperfections, such as a finite size

modulator or phase only modulation, are accounted for by a single parameter γ. We

start by decomposing the incident field into a contribution to the perfect incident

field and an orthogonal part∆Ea

Ea = γ �Ea +
�

1− |γ|2∆Ea , (8.39)

where γ is the inner product of the optimal field and the generated field

γ≡
N∑

a

�E ∗
a

Ea . (8.40)

With an ideal modulator, the optimal field can be generated perfectly and γ = 1. All

experimental limitations decrease γ. In the next section, we give some examples how

to calculate γ in realistic situations. Now, we first calculate how γ effects the observ-

ables �Iβ and �Ttot. Since ∆Ea is orthogonal to the optimal field, it does not contribute

to the intensity in the target focus. After optimization, the intensity in the focus is

given by (compare Eq. (8.19))

��Iβ
�
=

�
|γ|2

��
τ2

� K

M
. (8.41)
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To calculate the total transmission, we use a similar approach

� �Ttot

�
=

�
|γ|2

�
C4,2+

-
1−

�
|γ|2

�.��
τ2

� K

N
−ε

�
, (8.42)

where
�
τ2

�
K /N is the transmission coefficient of the unoptimized field and ε is a

small correction term takes into account the fact that the total transmission of the

orthogonal field is slightly lower than the total transmission of a random field since

it does not include the contribution of transmitted channel β . Also, at the back of

the sample the transmitted fields corresponding to ∆E and �Ea are not completely

orthogonal. Both effects are of order 1/Neff and partially cancel. Therefore it is safe to

neglect ε.

When the incident field is not shaped to fit the scattering matrix of the sample,

there will still be some accidental overlap with the optimal field. For such an incident

field,
�
|γ|2

�
is of order 1/Neff and will be neglected.

8.3.3 Examples of realistic experimental situations

We now calculate
�
|γ|2

�
for various experimental conditions. Eqs. (8.41) and (8.42)

can then be used to obtain the intensity in the focus, as well as the total transmission

after optimization.

Example 1: Finite size modulator

Suppose the light modulator illuminates a finite area that contains Ns independent

scattering channels. The modulator perfectly modulates amplitude and phase of all

these scattering channels. Then

γ=

Ns∑

a

�E ∗
a

Ea =A0A f

Ns∑

a

|tβa |2, (8.43)

where A0 normalizes the optimal field (see Eq. (8.24)) and A f normalizes the actually

generated field. Using Eq. (8.31) to introduce position dependence, we find

�
|γ|2

�
=

∑Ns

a
f (|rβ − ra |)

∑N

a f (|rβ − ra |)
=

∑Ns

a
f (|rβ − ra |)
Neff

. (8.44)

In the limit where the light modulator is very large γ → 1. In the limit where the

modulator is much smaller than the diffuse spot described by f , the degree of control

is
�
|γ|2

�
=Ns /Neff.

Example 2: Limited resolution

We first calculate
�
|γ|2

�
for the situation where the light modulator has a limited spa-

tial resolution. We assume that each of the Ns segments of the phase modulator il-

luminates a spatial cluster of N /Ns scattering channels. We group the channels by

segment and use Eq. (8.40) to find

γ=

Ns∑

s

∑

a∈{a s }

�E ∗
a

E
s
, (8.45)
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where {a s } is the collection of channels that is illuminated by segment s . E s is the

field that is generated by segment s of the modulator. The incident field is optimized

for a whole cluster at a time. After an optimization we have

E s = A s

∑

a∈{a s }

�Ea (8.46)

A s ≡

⎛
⎜⎝

N

Ns

Ns∑

s

     
∑

a∈{a s }

�Ea

     

2
⎞
⎟⎠

−1/2

(8.47)

where the prefactor A s normalizes the total power of the incident field. Substituting

Eq. (8.46) in Eq. (8.45) we find

γ= A s

Ns∑

s

     
∑

a∈{a s }

�Ea

     

2

, (8.48)

|γ|2 =
Ns

N

Ns∑

s

     
∑

a∈{a s }

�Ea

     

2

. (8.49)

Because elements of �Ea are independent and �Ea is normalized, we have

� �Ea
�Ea ′

�
= δa ′a

1

N
, (8.50)

which leads to
�
|γ|2

�
=

Ns

N
. (8.51)

Example 3: Phase only modulation

We consider the case of a phase only modulator that perfectly controls the phase of

all N incident waveguide channels. The amplitude of the channels is fixed at 1/
�

N .

For this experimental configuration, we find

γ=

N∑

a

�E ∗
a

E
a
=

1
�

N

N∑

a

| �Ea |, (8.52)

γ2 =
1

N

N∑

a ,a ′ �=a

| �Ea || �Ea ′ |+
1

N

∑

a ′′

| �Ea ′′ |2. (8.53)

To average, we use the complex Gaussian probability function of �Ea to arrive at

�
γ2

�
=
π

4
+

1

N

5
1−
π

4

6
. (8.54)
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Example 4: Realistic experimental conditions

In this example, we calculate the degree of control under realistic experimental con-

ditions. We analyze the geometry that was used for measuring the data in Fig. 3.4

where the enhancement as a function of the number of modulator segments is plot-

ted. In this geometry, no lenses were used behind the sample; the camera was ap-

proximately 30cm away from the sample surface. The incident light is focused on the

sample surface and illuminates a spot that is much smaller than a millimeter. Analy-

sis of the measured tb a coefficients showed that, on average, all segments contribute

approximately equally to the amplitude of the target (variations are within 15%). Fur-

thermore, limitations of the phase modulator made that the generated field had a

bias. On average, 14% of the incident intensity had a constant phase and could not

be shaped.

Since all segments contribute equally, we expect the enhancement to be given by

a combination of Example 2 and Example 3. Also taking into account that 14% of the

incident light could not be shaped, we find

�
|γ|2

�
= 0.86

Ns −1

Neff

π

4
+

1

Neff

, (8.55)

which is an upper limit for the case where the sample is absolutely stable and there

is no influence of measurement noise. We can now calculate the expected maximum

intensity enhancement η

η≡
��Iβ

�
�

Iβ
� . (8.56)

Using Table 8.2 with Eq. (8.55) yields

η=
�
|γ|2

�
M eff

N

M
(8.57)

= 0.68(Ns −1)+1. (8.58)

This result is the same as was found with the UTC model in Chapter 3. When all seg-

ments contribute equally, the UTC model gives the correct results even if the sample

is not in a waveguide geometry. The measured enhancement (η≈ 0.57Ns , see Fig. 3.4)

was slightly lower than the theoretical value because of measurement noise and due

to the fact that segments in the center contribute slightly more than segments close

to the edge of the phase modulator. This minute effect could be included in f in

Equation (8.44), to calculate a value for
�
|γ|2

�
that is a few percent lower. In the exper-

iments described in Chapter 3 the background intensity did not increase noticeably.

This result is explained by the fact that Ns ≪ Neff and, therefore,
�
|γ|2

�
≪ 1. In this

regime, the total transmission is hardly affected by an optimization (see Eq. (8.42)).

8.4 Conclusion

We developed a model for describing the transport of a waves that are actively shaped

to focus through a disordered sample. The new model is based on RMT and, there-

fore, correctly takes into account correlations between scattering channels.
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The concept of ‘active’ measurements was introduced. These measurements are

based on wavefront shaping. One of the most interesting observables in an active

measurement is the total transmission of an optimized wavefront. The fraction of

transmitted power for such a wavefront turns out to be 2/3, which is universally true

regardless of the thickness of the sample. Physical processes such as absorption and

Anderson localization change this value, which makes measuring it extremely inter-

esting.

All results were first calculated in an ideal waveguide geometry and then translated

to a realistic experimental slab geometry. This two-step calculation process proved

to be a very powerful and versatile technique.

Apart from the observables that were calculated in this chapter, there is a multitude

of interesting quantities that can be measured with our active measurement strategy.

Since most of the theoretical work has been done on ensemble averages rather than

on the subset of extended modes, many questions are still unanswered.
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Chapter 9

Observation of open transport

channels in disordered optical

systems

When a beam of light impinges on a strongly scattering object, such as a layer of white

paint, tiny particles randomly scatter light in all directions. After a few scattering

events, light is completely diffuse. The transport of multiply scattered light is, in gen-

eral, described very well by a diffusion equation. However, the diffusion equation

does not take into account interference effects. The inclusion of interference in the

description of disordered wave propagation has led to the discovery of fundamental

effects like enhanced backscattering[1, 2], universal conductance fluctuations[3, 4]

and Anderson localization of light[5–7].

Here we demonstrate experimentally a new interference effect that was first pre-

dicted by Dorokhov[8]. Like the interference effects mentioned above, this effect was

first derived for the propagation of electron wave functions in a disordered waveg-

uide (a metal wire) and then translated to optics.[9, 10] A disordered waveguide can

be described as a collection of orthogonal transport channels that each carry a frac-

tion of the incident wave. Using random matrix theory (RMT), Dorokhov showed that

due to interference these channels are either open (transmission close to 1) or closed

(transmission close to 0).

The existence of open transport channels means that it is, in principle, possible to

construct a wave that is fully transmitted through a normally opaque mesoscopic ob-

ject, regardless of the thickness of that object. In a mesoscopic electronic conductor

such control over the incident wave is not possible. For light, however, we can shape

the wavefront of the incident wave with a high accuracy. In this chapter we show that

the shaped wave selectively couples to open transport channels, causing the trans-

mission through an opaque, strongly scattering sample to increase dramatically.

In Section 9.1 we give the theoretical relation for the total transmission of a shaped

wavefront. Then, in Section 9.2, the wavefront optimization setup is described. The

experimental results are presented in Section 9.3, followed by a more detailed de-

scription of the data analysis procedure and an estimation of the experimental error

margins in Section 9.4.

9.1 Expected total transmission

The average transport of light is described accurately by a diffusion equation. On

average, the total transmission coefficient is given by (ℓ+ z e 1)/(L+ z e 1+ z e 2), with ℓ

the mean free path for light, L the thickness of the scattering sample and z e 1 and z e 2
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extrapolation lengths that account for reflection at the sample interface[11, 12].

To increase the total transmission above the value predicted by diffusion theory,

we use a feedback algorithm that shapes the incident wavefront. The algorithm max-

imizes the intensity in a target focus behind the sample. Since only open transport

channels contribute to the intensity in the target, the ideally shaped wavefront se-

lectively couples to these open channels. In the extreme case where all open chan-

nels have a transmission coefficient of exactly 1 (the so called maximum fluctuations

theorem[13, 14]), light with an optimal wavefront is completely transmitted.

Random matrix theory[8] predicts a distribution that is close to the extreme situa-

tion of maximal fluctuations (see Eq. (8.4)). We express the amount of fluctuations in

the distribution as C4,2, which is defined in Eq. (8.26) and denotes the transmission

coefficient of an ideally shaped wavefront. For Dorokhov’s distribution C4,2 = 2/3.

This universal value is independent of the thickness or the mean free path of the sam-

ple.

To couple to open channels, a high degree of control over the incident wavefront

is essential. When only a small subset of the scattering channels is controlled, the

transmission matrix elements are effectively uncorrelated and no open channels can

be found. Therefore, the experiment is designed to approximate the ideal wavefront

as closely as possible. Still, in any experiment there will be a difference between the

optimal wavefront and the field that is actually generated. This is especially true in an

open system where the optimal wavefront has infinite support. The total transmis-

sion of an incompletely optimized wavefront equals (see Eq. (8.42))

�Ttot ≡
�Ptot

Pin

= |γ|2C4,2+(1− |γ|2)Ttot, (9.1)

where �Ptot is the totally transmitted power of the incompletely optimized wavefront,

Pin is the incident power and Ttot ≡ Ptot/Pin, with Ptot the totally transmitted power of

an non-optimized wavefront. |γ|2 is the degree of control as defined in Eq. (8.40). In

the case that we have full control over the incident wavefront |γ|2→ 1 and �Ttot→C4,2.

The degree of control can be determined experimentally by measuring the power

in the target focus �Pβ after optimization. From Eq. (8.41) we can make |γ|2 explicit

|γ|2 =
�Pβ

Ptot

n 2
2

n 2
1

, (9.2)

where n 1 = 1 and n 2 = 1.52 are the refractive indices of the medium in front of the

sample (air) and behind the sample (glass substrate) respectively. Since |γ|2 can be

determined experimentally, Eq. (9.1) can be solved to find C4,2.

9.2 Experiment

The experimental apparatus is designed to have optimal control over the incident

wavefront. The setup is shown in Fig. 9.1. An expanded beam from a 632.8nm HeNe

laser is rotated to a 45◦ linear polarization by a half waveplate and impinges on a

polarizing beam splitter cube. Both horizontal and vertical polarization are modu-

lated using the macropixel modulation method that was described in Section 2.1.4.



Experiment 127

Figure 9.1: Experimental setup for finding open transport channels. HeNe, expanded 632.8nm HeNe

laser; λ/2, half waveplate; PBS, polarizing beam splitter cube; SLM, spatial light modulator.

A, iris diaphragm; 63x, microscope objective; 60x, oil immersion microscope objective;

S, sample; P, polarizer; ND, neutral density filter; L1, L2, L3, lenses with focal length of

respectively 250mm, 200mm and 600mm. ND and S are translated by computer controlled

stages.

The synthesized wavefront is focused onto the sample with a high numerical aper-

ture (NA) objective1 so that almost all angular channels are controlled. A high NA

oil-immersion objective2 collects almost all transmitted light. The immersion oil

matches the refractive index of the substrate n = 1.52 and, therefore, eliminates re-

flections at the back surface of the substrate. The transmitted light is split into hori-

zontal and vertical polarizations by a beam splitter cube. A second polarizer improves

the cube’s limited extinction ratio for reflected light. A camera measures the power of

the horizontally polarized light in an area with the size of a single speckle to provide

feedback for the optimization algorithm. We use the stepwise sequential algorithm

(see Section 7.1.1) to optimize the wavefront. A calibrated neutral density filter with

a transmission of 1.4 ·10−3 is automatically placed in front of the camera to be able to

measure the high intensity in the target focus after optimization. The magnification

of the detection system is 225×. At this magnification, individual speckles are well

separated on the camera. A second camera measures the transmission in the verti-

cal polarization channel. This camera is not used during the optimization procedure

itself.

The sample is a layer of spray-painted ZnO particles (see Section 2.4) in an air ma-

trix. The particles have an average diameter of 200nm, which makes them strongly

scattering for visible light. The mean free path was determined by measuring the to-

tal transmission and equals 0.85±0.15µm at a wavelength of 632.8nm. Two samples

were used: one with a thickness of 5.7± 0.5µm, and one that is approximately twice

as thick (11.3± 0.5µm). The sample was mounted on a motorized translation stage

that translates the sample perpendicular to the axis of the objectives between exper-

iments. This way, a different random configuration of scatterers could be used for

each experiment. The translation stage also provides a reliable way of making refer-

ence measurements (see Section 9.3).

1Zeiss 440068-0000-000 Achroplan 63x/NA= 0.95 without cover glass correction.
2Nikon MRD01691 CFI Plan Apochromat TIRF 60x/NA= 1.49
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Figure 9.2: Logarithmic plot of the intensity transmission in the horizontal polarization channel. The

intensity is integrated per column. a) 11.3μm-thick layer of ZnO pigment. Solid curve,

transmission of non-optimized wavefront; Dashed curve, transmission of optimized wave-

front. Measurements with and without neutral density filter were combined to cover the full

dynamic range. b) Same for a 5.7μm-thick layer of ZnO pigment.

9.3 Results

Optimizing the incident wavefront caused the intensity in the target to increase dra-

matically. The increase in the target intensity was a factor of 746±28 for the 11.3µm-

thick sample and a factor of 671 ± 14 for the 5.7µm-thick sample in the particular

cases that are shown in Fig. 9.2. In addition, the intensity also increased outside the

target area, even though the algorithm only used the intensity in the target as feed-

back. This is an important observation since it indicates that the transmission matrix

is correlated. By optimizing transmission to a single target, the incident intensity is

redistributed from closed channels to open transport channels. If the elements of

the transmission matrix had been uncorrelated, the background intensity would not

have changed (also see Section 8.2.3).

The increase in the background intensity is limited to an area of a few micrometers

around the target. The diameter of this area seems to be roughly proportional to the

thickness of the sample. This makes sense as, in a slab geometry, propagation paths

that are further apart than the thickness of the sample are essentially uncorrelated.

The intensity increase of the background is maximal just around the optimized spot.

There, the intensity increased by a factor of 4.1±0.7 and 2.3±0.3 for the thick and the

thin sample respectively3 . The total transmission in the background (not including

the optimized spot) increased a factor of 1.32±0.05 and 1.26±0.08, respectively.

The algorithm optimizes the transmission through the whole optical system that is

between the light modulator and the camera. To make sure that the extra intensity

is indeed the result of an increased transmissivity of the sample, we need to exclude

the trivial effect of an increased transmission trough e.g. the microscope objective.

3In Fig. 9.2 the intensity increase appears to be lower since the figure shows the intensity integrated over

all columns.
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Figure 9.3: Typical total transmission after optimization as a function of sample displacement. Solid

curve, horizontal polarization. Dashed curve, vertical polarization. Curves are normalized

to the reference transmission (average intensity between 0.6μm and 3.9μm displacement).

Fluctuations of the intensity are the result of speckle.

Therefore, we used exactly the same wavefront for measuring the non-optimized ref-

erence transmission as we used to measure the optimized transmission. The only

difference between the two measurements is a slight translation of the sample. At

the new position, the scattering behavior of the sample is different and the optimized

wavefront has no special significance anymore.

The effect of translating the 11.3µm-thick sample is shown in Fig. 9.3. Initially, the

total transmission in both of the polarization channels has increased significantly.

The intensity on one of the cameras is slightly higher since it includes the contribu-

tion of the optimized spot. Since the pixels in the target area saturate, in this plot the

difference is relatively small. After translating the sample over 600nm, the effect of

optimizing the wavefront is completely lost. The transmission is averaged over 34 im-

ages taken at displacements increasing from 0.6µm to 3.9µm to obtain the reference

transmitted power for the non-optimized situation (Ptot). We observe a slight varia-

tion in the total transmission when the sample is translated. The expected variance

of fluctuations in the total transmission is 1/(2g ) (see e.g. Ref. 15), where g ≡N Ttot,

with N the number of participating scattering channels. From the size of the diffuse

spot we estimate N ≈ 4.5 · 103. With a measured transmission of Ttot = 0.24 (see Sec-

tion 9.4), we expect fluctuations with a standard deviation of 2%, which is consistent

with the data.

We performed automated sequences of optimizations. Between each measure-

ment, the sample was translated to find a new realization of disorder. For each of

the measurements, we determined the degree of control using Eq. (9.2). In Fig. 9.4 we

plotted the increase in total transmission versus the degree of control for a 11.3µm-

thick sample. The total transmission increases linearly with |γ|2. The maximum in-

crease in transmission that was achieved is 40%. We conclude that, with increasing

degree of control, a larger fraction of the incident intensity couples to open channels,

causing the total transmission to increase.

From a linear regression we find that the curve has a slope of 1.7. With an original
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Figure 9.4: Normalized total transmission as a function of the degree of control |γ|2 for a single se-

quence of measurements. Circles, measured transmission after constructing the incident

wavefront; solid line, linear regression to the measurements; dotted line, diffusion theory;

dashed line, random matrix theory, C4,2 = 2/3 (there are no adjustable parameters).

average transmission coefficient of Ttot = 0.24 we expect a total transmission of 0.65

when |γ|2 = 1. This result is very close to the expected value of 2/3.

For this particular sequence, we reached a maximum control fraction of |γ|2 = 0.21.

The algorithm used 3816 control segments and phase only modulation. In this situ-

ation |γ|2 can theoretically not be higher than (3816/N )(π/4) ≈ 0.67. Even in a per-

fectly stable system, |γ|2 will be lower due to geometrical effects (see Section 8.3.2), so

|γ|2 = 0.21 is in line with expectations. The variations in |γ|2 are probably the result of

drifting environmental conditions that affect the stability of the setup. Although this

drift is undesired, it has the advantage of giving a wide range of |γ|2 to investigate.

We now combine the results from different measurements into a universal plot. To

do this, we subtracted the contribution of the uncontrolled fraction of the incident

wavefront to find the controlled part of the transmission

Tc ≡ �Ttot− (1− |γ|2)Ttot, (9.3)

From Eq. (9.1) we expect that Tc = |γ|2C4,2. As a result, all measurements should follow

a universal curve with a slope of C4,2. In Fig. 9.5 we plotted the controlled transmis-

sion for seven measurement sequences performed on two different samples. All data

points collapse to a single line, regardless of the thickness of the sample. This is a clear

indication that the transmission of the ideal wavefront (C4,2) is a universal parameter.

For the 11.3µm-thick sample the linear regression gives a slope 0.68 ± 0.01 and

for the 5.7µm-thick sample we find a slope of 0.68 ± 0.02, where the uncertainties

represent the 0.95% confidence interval of the regression. Combining the data from
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Figure 9.5: Total transmission of the controlled fraction of the wavefront. Data from seven measure-

ment sequences on two different samples collapses to a universal curve. There are no free

parameters in the data or the theory. Circles, results for 11.3μm-thick sample; squares, re-

sults for 5.7μm-thick sample; solid line, linear regression with slope of 0.68. The theoretical

curve for C4,2 = 2/3 is not shown as it overlaps with the fit.

both samples, we find C4,2 = 0.68± 0.07 where the uncertainty is determined by the

worst case systematical errors due to the extrapolation of the intensity profile (see

Section 9.4).

9.4 Details of the data analysis

In this section we give experimental details about the data analysis. In Section 9.4.1

we explain how the totally transmitted power was measured using a CCD camera.

This measurement method introduces a small but significant error in the determina-

tion of C4,2. Other possible sources of systematical measurement error are discussed

in Section 9.4.2. In Section 9.4.3 we explain how the incident intensity was measured

accurately.

9.4.1 Diffuse transmission measurement with a camera

We measured the totally transmitted power with the CCD cameras behind the sample.

The cameras collect most of the transmitted light, but the diffuse spot has such a wide

profile that its tails are not imaged onto the CCD chip. Therefore, the camera image

is extrapolated to obtain the total intensity.

It turned out to be hard to reliably fit a theoretical curve to the complete intensity
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Figure 9.6: Logarithmic plot of the transmitted intensity profile for a reference measurement. The inten-

sity is integrated per column. Dots, measurements; Dashed line, exponential extrapolation;

Dotted line, steepest slope that is consistent with diffusion theory.

profile, as the profile depends on the incident wavefront and many other parameters.

According to diffusion theory, the transmission profile asymptotically decays expo-

nentially with a decay length of (L + z e 1 + z e 2)/
�

6 (see Section 1.3.4). It, therefore,

makes sense to extrapolate the camera image exponentially.

A typical transmission profile of a reference measurement is shown in Fig. 9.6. It

can be seen that the exponential extrapolation gives a slight overestimation of the

intensity since the measured profile does not fully reach into the exponential asymp-

totic limit. Alternatively, we extrapolated the profile with the steepest exponential de-

cay that is in agreement with diffusion theory. For this, we took the lower limit for the

sample thickness (L = 10.8µm and L = 5.2µm), the minimal mean free path (ℓ= 0.7)

and the minimal extrapolation lengths (z e 1 = z e 2 = 2/3ℓ). This alternative extrapo-

lation method (dotted lines in Fig. 9.6) gives a lower limit for the total intensity. By

averaging the results of the two methods we find a total intensity of (2.92±0.08) · 107

counts for the profile in Fig. 9.6, where the error margin is the difference between the

results of the two extrapolation methods. A fraction of 82% of the total intensity fell

on the CCD.

The typical uncertainty in this experiment is about 4%. The profiles for the ref-

erence intensity Ptot and the optimized intensity �Ptot are almost equal at the edge of

the image (see Fig. 9.2). Therefore, it is likely that the error caused by the extrapo-

lation is either positive for both profiles, or negative for both profiles. In this case,

the extrapolation only causes an uncertainty of±2% in C4,2. By calculating C4,2 for all

combinations of error margins a worst case error margin of ±9% is found.

9.4.2 Possible causes of systematical error

It is possible that small systematical errors are introduced by the imaging system (mi-

croscope objective, lenses and camera) that record the transmitted light. We mea-

sured the intensity distribution coming from a sample that is illuminated with a wide

(> 500µm) spot. In this situation, the intensity distribution of the transmitted field
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should be flat (except for speckle). We used this flat-field reference image to compen-

sate for the position dependent sensitivity of the imaging system.

The angular dependency of the imaging system was not calibrated. However, the

width of the optimized spot was equal to the diffraction limit of λ/(2n 2) to within an

experimental uncertainty of 6%. Therefore, we expect the effect of angular depen-

dency to be below 6%.

9.4.3 Measurement of the incident power

With the cameras we measure the total power that is transmitted through a sample

before and after an optimization. We also measure Pin, which is a reference for the

incident power. This reference value is equal to the total power that is incident on

the sample times the detection efficiency of the transmitted light. When Pin is known,

we can calculate absolute values for the transmission coefficients. In measuring Pin,

great care was taken not to introduce systematical errors. A complicating factor is

that the optimized wavefront is different for every measurement, which causes vari-

ations in the power that reaches the sample. To compensate for these variations, we

determined Pin using

Pin =Ptot

P1

P2

1

1−R
(9.4)

where P1 is the detected transmitted power with an empty substrate in place of the

sample. The substrate was illuminated with an unshaped wavefront: all pixels of the

modulator were set to the same phase, so that the incident light forms a focused wave.

P2 was measured using the same unshaped wavefront, with the sample in place. The

sample was at exactly the same position where the optimization was performed. Ptot

is the reference transmission of the shaped wavefront. It was measured by translating

the sample after each optimization (see Fig. 9.3). The factor 1/(1−R) compensates for

the Fresnel reflection at the front surface of the substrate. For a uniformly illuminated

microscope objective with NA= 0.95, the average Fresnel reflection coefficient is R =

0.11. We determined the transmission coefficient of the unshaped wavefront using

Ttot = (1−R)P2/P1.

9.5 Conclusion

We have found experimental evidence of the existence of open transport channels

for light in opaque, strongly scattering materials. A wavefront shaping algorithm was

used to focus light through opaque objects. We observed that the transmitted in-

tensity in the target focus increased by almost three orders of magnitude. Simulta-

neously, the intensity outside the focus increased, even though the algorithm only

optimized the intensity in the focus. This result cannot be explained by diffusion

theory or by an uncorrelated matrix model. We conclude that the elements of the

transmission matrix are correlated as predicted by random matrix theory. Optimiz-

ing the transmission at a single point creates a wavefront that selectively couples to

open transport channels in the medium.

The total transmission has a linear relation to the intensity in the target focus. This

relation confirms the theoretical results from Section 8.3.2. The total transmission
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through a disordered sample was increased by a factor of up to 1.4.

We used the intensity in the target focus to derive the degree of control over the

incident wavefront. By considering only the transmission of the controlled fraction of

the wavefront, we were able to compare the results for different samples and different

realizations of disorder. All results showed a universal behavior that is in excellent

quantitative agreement with the distribution of channel transmission coefficients as

is predicted by random matrix theory.
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Chapter 10

Summary and outlook

In this thesis, we explored the use of wavefront shaping to steer light through strongly

scattering materials. We found that scattering does not irreversibly scramble the inci-

dent wave. By shaping the incident wavefront, an opaque object can form any desired

wavefront and focus light as sharply as an aberration free lens. We used feedback

from a target behind, or in, an opaque object to shape the incident wave. This way,

light was focused through, or inside, an opaque object for the first time ever.

Wavefront shaping provides a new way to perform experiments on strongly scatter-

ing samples. By studying the total intensity transmission of a shaped wavefront, we

found experimental evidence of open transport channels for light. This is an example

of how wavefront shaping can be used to study fundamental properties of scattered

waves.

Our results lay both an experimental and a theoretical basis for wavefront shaping

experiments. The concepts that were developed are generally applicable to any linear

complex system. Therefore, our methods can be directly translated to other disor-

dered systems such as scattering of microwaves, sound, seismic waves, electrons or

neutrons. Even though we have only taken some first steps in this field, the outline of

future applications and exciting research subjects becomes visible. We now discuss

some of the possible applications of our work.

Opaque object can be made to focus light with an excellent resolution. Therefore,

thin layers of paint might be used as cheap disposable lenses. Scattering can also

be used to improve the resolution and, thereby, the data transfer rate of a free space

communication system. Instead of creating a focus, multiply scattered light can also

be made to form a beam. This could be useful when performing laser spectroscopy

of opaque materials. The scattered coherent light could then be collected with a high

efficiency, thus greatly improving the sensitivity. Even better, incoherent background

light does not form into a beam and, therefore, would not be detected. The wavefront

that focuses light through an opaque object is unique for each object. This property

could be used in security applications. When, for example, a small photodiode is

covered with a layer of white paint, it is only possible to focus light on it when the

matching wavefront is known.

Light can also be focused inside an opaque object. The applications of this method

are endless. One could, for example, focus light on a single fluorescently labelled cell

below the human skin or inside bone. This application would allow one to study,

track or destroy individual (malignant) cells. To make this futuristic application pos-

sible, the wavefront needs to be constructed faster than the cells in the tissue move.

We demonstrated that wavefront shaping in a living flower petal is possible. For

wavefront shaping in human tissue, especially in perfused tissue, the speed of the

wavefront shaping process needs to improve dramatically. This speed improvement

is possible with the use of extremely fast light modulators that have recently been
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developed.

Our method can also be used to focus light inside non-random complex systems.

This way, one can focus light on a quantum dot in a three-dimensional photonic crys-

tal cavity, or excite a desired mode in a complex photonic metamaterial or plasmonic

device. All in all, wavefront shaping can be used to guide light (or any other wave) to

any desired position in an arbitrary complex environment.
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Dit proefschrift gaat over de voortplanting van licht in ondoorzichtige witte dingen

zoals velletjes papier, laagjes verf, eierschillen, bloemblaadjes en tanden. Witte ma-

terialen verstoren de voortplanting van licht: als je bijvoorbeeld met een zaklantaarn

op een velletje papier schijnt, gaat het licht niet als een bundel door het papier heen,

maar in plaats daarvan gloeit het hele papier op met een vaag schijnsel. Het licht is

diffuus geworden: het straalt gelijkmatig naar alle richtingen uit en er is niet meer te

zien waar het licht oorspronkelijk vandaan kwam. Het is daarom ook onmogelijk om

door het materiaal heen te kijken.

Tot nu toe was het niet mogelijk om te beïnvloeden hoe licht zich door een ondoor-

zichtig materiaal voortplant: het licht werd altijd diffuus. Wij hebben een techniek

bedacht waarmee we het licht wél kunnen sturen. Met deze techniek kun je licht door

een ondoorzichtige laag heen projecteren of zelfs concentreren op een punt diep bin-

nenin een ondoorzichtig object. Hiermee wordt het misschien ooit mogelijk om licht

door huid of bot heen op één enkele gemarkeerde kankercel te focusseren, of om door

de ingewikkelde structuur van een microchip heen één enkele transistor te belichten.

Ook bij andere toepassingen, zoals telecommunicatie, optische experimenten aan

microstructuren en spectroscopie aan poeders kan onze techniek uitkomst bieden.

Uiteindelijk zou dit ook kunnen leiden tot een verbetering van bestaande medische

beeldvormende technieken.

Interferentie en verstrooiing

Licht is een golf. Zoals alle golven kunnen lichtgolven met elkaar interfereren. In-

terferentie is niets anders dan dat twee golven bij elkaar opgeteld worden. Als twee

golven tegelijkertijd aankomen zijn ze in fase, zoals te zien is in Figuur 1a. De piek

van de ene golf telt dan op bij de piek van de andere golf en het resultaat is een golf

met grote pieken en dalen (dit heet constructieve interferentie). Het kan ook zijn dat

Figuur 1: Interferentie. a) De golven komen tegelijk aan. Ze zijn in fase en versterken elkaar. b) De

golven zijn uit fase en doven elkaar uit.
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a

b

Figuur 2: Principe van het experiment. a) een vlakke golf wordt gefocusseerd op een ondoorzichtig

wanordelijk materiaal. Door verstrooiing ten gevolge van microscopische oneffenheden legt

het licht een zeer complexe route af. Na honderden keren verstrooien bereikt een klein deel

van het licht de achterkant van het materiaal en vormt een diffuse vlek. b) Door de fase van

het binnenkomende licht op precies de goede manier aan te passen is het mogelijk om de

bijdragen van alle vlakjes constructief te laten interfereren op een punt achter het medium.

Het medium werkt in dit geval als een wanordelijke lens en focusseert het licht.

twee golven uit fase zijn. De ene golf komt dan wat later aan dan de andere zodat de

pieken van die golf samenvallen met de dalen van de andere golf; het resultaat is dan

dat de twee golven elkaar opheffen. Deze situatie is afgebeeld in Figuur 1b.

In een wit materiaal zitten allemaal kleine deeltjes waar het licht op botst. Bij iedere

botsing verandert de voortplantingsrichting van het licht. Het licht ‘stuitert’ door het

materiaal, een beetje zoals het balletje in een flipperkast. Dit proces heet verstrooi-

ing van licht. Al het verstrooide licht interfereert met elkaar, zodat er een complex

wanordelijk interferentiepatroon ontstaat. Dit patroon staat bekend als laserspikkel

(Engels: speckle). Een voorbeeld van een spikkelpatroon is te zien in Figuur 3.3a in

Hoofdstuk 3. Het hangt af van de fase van alle interfererende golven of ergens een

heldere of juist een donkere plek ontstaat.

Licht focusseren met een eierschil

We hebben een opstelling ontworpen die een bundel laserlicht in duizenden vlak-

jes verdeelt en dan de fase van elk van deze vlakjes afzonderlijk kan aanpassen. Het

licht van elk vlakje zal op een andere manier verstrooid worden (zie Figuur 2a). Door

de fase van de vlakjes op de juiste manier in te stellen kunnen we nu zorgen dat het

verstrooide licht op een bepaalde plek constructief interfeert (Figuur 2b). De licht-

intensiteit op die plek neemt daardoor enorm toe, soms wel met een factor duizend.
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Het resultaat is dat een ondoorzichtig object, zoals een eierschil, licht focusseert tot

een scherp punt. Eigenlijk werkt de eierschil dus als een ‘ondoorzichtige lens’.

Er zijn ongelooflijk veel mogelijke combinaties van fases te maken. Om de juiste

combinatie te vinden gebruiken we een computer die de hoeveelheid licht in het ge-

wenste focus meet en de fases aanpast. In het begin is de lichtintensiteit heel laag,

maar door de fase van een vlakje aan te passen kunnen we de hoeveelheid licht laten

toenemen. De computer herhaalt dit proces voor alle vlakjes. Uiteindelijk hebben we

dan een heel ingewikkeld gevormde bundel gemaakt die precies compenseert voor

alle botsingen aan de deeltjes in het materiaal. In hoofdstuk 3 laten we zien dat deze

methode de optimale combinatie van fases vindt. Omdat deze combinatie afhangt

van de positie van alle deeltjes in het materiaal, werkt onze methode nog niet voor

materialen waarin de deeltjes bewegen, zoals melk of doorbloed weefsel. Met recent

ontwikkelde technologie is het echter mogelijk om het proces zo te versnellen dat we

in de toekomst ‘real-time’ kunnen compenseren voor de bewegende deeltjes.

Belangrijkste resultaten

Het belangrijkste resultaat van dit proefschrift is dat we in staat zijn om licht door

een ondoorzichtig materiaal heen te focusseren. Deze doorbraak heeft nationaal en

internationaal veel aandacht gekregen (zie bijvoorbeeld ‘Witte verf of eierschaal als

brandglas voor bundel laserlicht’ in het NRC Handelsblad van 14 juli 2007). Het is niet

alleen gelukt om verstrooid licht in een scherp focus samen te laten komen, we be-

grijpen de resultaten ook kwantitatief. We hebben uitgerekend hoe intens het focus

is (Hoofdstuk 3), wat er gebeurt als de deeltjes in het materiaal bewegen (Hoofdstuk

7) en hoe groot het focus is (Hoofdstuk 4). Het blijkt dat het focus van, bijvoorbeeld,

een eierschil precies even scherp is als het focus dat je met de best mogelijke lens zou

kunnen maken. In Hoofdstuk 6 laten we verder nog zien dat wanordelijke verstrooi-

ing gebruikt kan worden om meer optische informatie te versturen dan normaal mo-

gelijk is.

We zijn ook in staat om licht binnenin een materiaal te focusseren, iets wat zeer

interessant is voor bijvoorbeeld medische toepassingen. Dit experiment is technisch

veel lastiger dan licht ergens dwars doorheen focusseren. Om de juiste combinatie

van fases te vinden is het namelijk nodig om de lichtintensiteit op de gewenste plek

te meten. Als je, bijvoorbeeld, binnen in de huid wilt focusseren, is het niet mogelijk

om op die plek een detector aan te brengen. We hebben daarom gebruik gemaakt

van zeer kleine bolletjes met een fluorescerende verf erin. Dit soort bolletjes zijn wél

in te brengen. Door nu te meten hoeveel het bolletje fluoresceert, meten we indirect

hoeveel licht er van buiten af op het bolletje valt. Dit experiment staat beschreven in

Hoofdstuk 5.

Verstrooiing van licht lijkt wiskundig gezien erg veel op het transport van elektro-

nen in een metaaldraad. We kunnen daarom met licht voorspellingen testen die ge-

daan zijn voor elektronische systemen. Het voordeel van onze optische methode is

dat we het binnenkomende licht heel precies kunnen vormen, iets wat met elektro-

nen nu niet mogelijk is. Eén van de meest verrassende voorspellingen is dat het mo-

gelijk moet zijn om een golf te maken die voor de volle 100% wordt doorgelaten door

een ondoorzichtig materiaal. In Hoofdstuk 8 laten we zien wat dit betekent voor ons
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experiment: als we de binnenkomende lichtbundel optimaliseren om op één punt

licht te focusseren moet de intensiteit rondom dat punt ook omhoog gaan. Er zal dus

in totaal veel meer licht doorgelaten worden (en er zal dus ook veel minder licht wor-

den gereflecteerd). We hebben in een experiment aangetoond dat de totale transmis-

sie inderdaad significant stijgt (Hoofdstuk 9). Hiermee bevestigen we een belangrijk

theoretisch aspect van het transport van elektronen, geluid, licht en andere golven.

Conclusie

We hebben een methode ontwikkeld om met behulp van interferentie laserlicht door

ondoorzichtige materialen heen te sturen. Het op deze manier sturen van laserlicht

is een nieuw onderwerp in de optica. Dit proefschrift kan daarom het beste gezien

worden als een eerste verkenning van dit gebied. Het is nu al duidelijk dat er nog

heel veel verder te experimenteren valt en dat er interessante toepassingen verwacht

kunnen worden. We hopen dan ook dat dit nieuwe vakgebied ook de komende jaren

nog tot veel spectaculaire resultaten zal leiden.
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