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Controlling the quantum stereodynamics of
ultracold bimolecular reactions
M. H. G. de Miranda1†, A. Chotia1†, B. Neyenhuis1†, D. Wang1†‡, G. Quéméner1, S. Ospelkaus2‡,
J. L. Bohn1, J. Ye1* and D. S. Jin1*
Molecular collisions in the quantum regime represent a new opportunity to explore chemical reactions. Recently,
atom-exchange reactions were observed in a trapped ultracold gas of KRb molecules. In an external electric field, these polar
molecules can easily be oriented and the exothermic and barrierless bimolecular reactions, KRb + KRb → K2 + Rb2, occur at
a rate that rises steeply with increasing dipole moment. Here we demonstrate the suppression of the bimolecular chemical
reaction rate by nearly two orders of magnitude when we use an optical lattice trap to confine the fermionic polar molecules
in a quasi-two-dimensional, pancake-like geometry, with the dipoles oriented along the tight confinement direction. With the
combination of sufficiently tight confinement and Fermi statistics of the molecules, two polar molecules can approach each
other only in a ‘side-by-side’ collision under repulsive dipole–dipole interactions. The suppression of chemical reactions is a
prerequisite for the realization of new molecule-based quantum systems.

Chemical reaction rates often depend strongly on
stereodynamics, namely the orientation and movement of
molecules in three-dimensional (3D) space1–3. An ultracold

molecular gas, with a temperature below 1 µK, provides a highly
unusual regime for chemistry, where the motion of two colliding
molecules is strictly quantized. Atom-exchange reactions observed
in a recent experiment with an ultracold gas of KRb molecules pro-
ceed with a single partial wave in the quantum threshold regime4. In
an external electric field, the reaction rate has a strong dependence
on the induced molecular dipole moment5. The quantum stereo-
dynamics of the ultracold collisions can be exploited to suppress
these bimolecular chemical reactions. We can confine the polar
molecules in quasi-2D optical traps, with the molecular dipoles
oriented perpendicular to the 2D plane6,7. By precise quantum-state
control of both the internal and external degrees of freedom of
the molecules, we ensure that two polar molecules can approach
each other only in a ‘side-by-side’ collision, dictated by the Fermi
statistics of themolecules and the trap confinement. Chemical reac-
tions are thus suppressed by the repulsive long-range dipole–dipole
interaction. The suppression of chemical reactions opens the way
for investigation of a dipolar molecular quantum gas. As a result of
the strong, long-range character of the dipole–dipole interactions,
such a gas brings fundamentally new abilities to quantum-gas-based
studies of strongly correlated many-body physics, where quantum
phase transitions and new states ofmatter can emerge8–13.

Two colliding polar molecules interact through long-range
dipole–dipole forces well before they reach the shorter distance
scales where chemical forces become relevant. Therefore, the spatial
anisotropy of the dipolar interaction can play an essential role in
the stereochemistry of bimolecular reactions of polar molecules.
In general, one expects the attraction between oriented dipoles in
a ‘head-to-tail’ collision to be favourable for chemical reactions,
whereas the repulsion between two oriented polar molecules
in a ‘side-by-side’ collision presents an obstacle for reactions.

1JILA, NIST and University of Colorado, Department of Physics, University of Colorado, Boulder, Colorado 80309-0440, USA, 2Max Planck Institute of
Quantum Optics, 85748 Garching, Germany. ‡Present addresses: Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
(D.W.); Institut für Quantenoptik, Leibniz Universität, 30167 Hannover, Germany (S.O.). †These authors contributed equally to this work.
*e-mail: ye@jila.colorado.edu; jin@jilau1.colorado.edu.

Up to now, however, large centre-of-mass collision energies have
precluded the direct control of chemical reactions through dipolar
interactions. In a cold collision regime, where tens of scattering
partial waves contribute, one can begin to exert control of
intermolecular dynamics through the dipolar effect14. An ultracold
gas, however, provides an optimum environment in which to fully
investigate the dipolar effects5,15,16. Here, the molecules can be
prepared in identical internal quantum states, with the dipoles
oriented using an external electric field, and the molecular gas
confined in external potentials created using light. In the limit
of vanishing collision energies, the stereodynamics is described
by only a few quantized collision channels, and, moreover, for
indistinguishable molecules, the states of translational motion
are coupled to internal molecular states because the quantum
statistics of the molecules (fermions or bosons) dictates a particular
symmetry of the total wavefunction with respect to exchange of
two molecules. In this quantum regime, we have an opportunity to
suppress or enhance reaction rates by understanding and precisely
controlling the stereodynamics of colliding polarmolecules.

2D versus 3D trapping geometry
The spatial geometry of the confining potential can influence
collisions in a trapped dipolar gas. This effect has been explored
for elastic collisions of magnetic atoms17; here, we exploit spatial
geometry to control chemical reactions of polar molecules. In
particular, a 2D trap geometry, with the dipoles oriented parallel
to the tight confinement direction ẑ , is well matched to the spatial
anisotropy of the dipole–dipole interaction18–20.We can realize such
a geometry using a 1D optical lattice (see Fig. 1a), where the trapped
molecules are divided among several isolated layers. In each of these
layers, the lattice potential provides tight harmonic confinement
in ẑ such that only the lowest few quantized motional states in ẑ
are occupied. Consequently, within each isolated layer, colliding
molecules approach each other in two dimensions. However, the
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Figure 1 |Quantized stereodynamics of ultracold chemical reactions in
quasi-two dimensions. a, A quasi-2D geometry for collisions is realized for
polar molecules confined in a 1D optical lattice. An external electric field is
applied along the tight confinement axis. b, Schematic showing the three
lowest adiabatic potentials for collisions as a function of the intermolecular
separation, R. These three channels are ordered with increasing magnitude
of the centrifugal barrier. The arrows indicate the change in the potential for
an increasing external electric field, and hence a growing induced dipole
moment. c, Schematic showing each individual case for the three lowest
collision channels. The lowest-energy collision channel occurs when two
molecules are prepared in different internal states (indicated here by the
colours of the molecules). The second channel is realized when two
identical molecules are prepared in different vibrational levels v for their ẑ
motions. The third case has a much reduced loss rate as a consequence of
an increased centrifugal barrier when the two identical molecules are
prepared in the same vibrational level along ẑ.

range of the van der Waals interaction (and, for that matter, the
range of dipolar interactions at our largest external electric field)
is still smaller than the spatial extent of the cloud in the direction
of tight confinement, aho, and, therefore, at short intermolecular
distances, a collision still must be treated in three dimensions.

As discussed above, the two-molecule wavefunction must obey
an overall symmetry with respect to the exchange of the identical
molecules. This couples the internal degrees of freedom of the
molecules with their motional degrees of freedom, resulting in
a strong modification of the collision process through control
of internal states. Exploiting this coupling relies on the fact that
ultracold collisions, including ultracold chemical reactions, will
be dominated by the allowed collision channel with the lowest
centrifugal barrier. In three dimensions, ultracold fermions, such as
our molecules, that are spin-polarized (in the same internal state)
collide in the partial-wave channel with L= 1 (p wave), where h̄L is
the quantized relative angular momentum. Here, h̄= h/2π and h is
Planck’s constant. On the other hand, fermions in different internal
states can collide in s waves (L = 0). This behaviour is familiar
from the example of ultracold fermionic atoms21. For the case of
dipoles, the dipole–dipole interaction mixes states with different
L, such that one should replace L = 0 with the lowest-energy
adiabatic channel with even L, which does not have a centrifugal
barrier. Similarly, L= 1 becomes the odd-L adiabatic channel with
the lowest centrifugal barrier. The approach of controlling the
relative motion through control of the internal molecular states
has a serious limitation, which is that we do not have control
over the projection of the relative angular momentum of the
colliding particles on the ẑ axis, M . This is especially important
for dipoles, whereM describes whether the dipoles approach ‘side-
by-side’ (for example, L= 1,M =±1), and therefore experience a
repulsive dipole–dipole interaction, or ‘head-to-tail’ (for example,
L=1,M=0), where the dipole–dipole interaction is attractive.

By confining polar molecules in two dimensions, we gain control
over M . With extremely strong confinement and large dipole mo-
ments oriented perpendicular to the 2D plane, one could, in principle,
achieve a fully 2D geometry where themolecules could approach each
other only side-by-side (oddM ) simply because of the repulsive part
of the dipole–dipole interaction6,7. Alternatively, in our present exper-
imental situation of quasi-2D trapping, we can again use the overall
symmetry of the two-molecule wavefunction for fermionic molecules
to control M . In quasi-two dimensions, L is no longer a good
quantum number for describing how molecules approach each other
at intermolecular separations that are much larger than aho; instead,
the relative motion is described by M . In addition, we have a new
(comparedwith the 3D case) quantumnumber that describes the har-
monic oscillator motional state in z for each molecule. This quantum
number, which we label v , acts as a new internal degree of freedom
for themolecules as they approach each other in the long range, in the
sense that we can relatively easily control the occupation in the differ-
ent v states and this will in turn give us control over the relativemotion
described byM . Specifically, fermionicmolecules in the same internal
state and the same vmust collide with oddM , whereas fermions in the
same internal state but different v can collide with evenM .

Stereodynamics and quantized collision channels
We now consider the quantized collision channels that define
the stereodynamics in this quasi-2D geometry. We identify three
collision channels relevant to the stereodynamics, and we label
these |1〉, |2〉 and |3〉, in order of increasing centrifugal barrier
heights. Figure 1b shows schematically the adiabatic potentials for
these three lowest-energy collision channels. Collision channel |1〉
corresponds to spatially isotropic collisions, collision channel |2〉
is the quantum analogue of ‘head-to-tail’ collisions, and collision
channel |3〉 is the quantum analogue of ‘side-by-side’ collisions
(further details are provided in the Methods section). Channels
|1〉 and |2〉 become increasingly favourable for chemical reactions
as the dipole–dipole interaction strength is increased, for example
by increasing the external electric field E. In contrast, channel |3〉
has a centrifugal barrier whose height increases for higher dipole
moment, within the |E| range considered in this work. This barrier
hence continues to preventmolecules from reaching short range.

Figure 1c shows how these different collision channels can be
accessed through control of the internal molecular states and the ẑ
motional states. In Fig. 1c, molecules in different internal states are
shown in different colours and the harmonic oscillator states in ẑ
are labelled by v . In case (1), for two molecules in different internal
molecular states and in any combination of v levels, channel |1〉 is
allowed, resulting in no centrifugal barrier. In case (2), when the
molecules are prepared in identical internal molecular states but in
different v levels, the lowest-energy collision channel is |2〉 (‘head-
to-tail’). In case (3), where the molecules are prepared in the same
internal state and the same v level, the two lower-energy collision
channels are no longer allowed, and reactions can proceed only
through channel |3〉 (‘side-by-side’). This case is the least favourable
for atom-exchange bimolecular chemical reactions and thus results
in a strong suppression of inelastic losses in themolecular sample.

Preparation of the 2Dmolecular system
We create a trapped, ultracold gas of 40K87Rb molecules, in their
lowest-energy rovibrational level and in a single hyperfine state22,
following the techniques described in ref. 23. To confine the
molecules, we start with a crossed-beam optical dipole trap, with a
harmonic trapping frequency of 180Hz along the vertical direction
(ẑ) and 25Hz in the transverse directions. For the present work,
we add an optical lattice along ẑ , which is formed by a retro-
reflected beam with a 1/e2 waist of 250 µm and a wavelength of
1,064 nm. Both optical dipole trap beams and the optical lattice
beam are linearly polarized and their polarizations are mutually
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Figure 2 | Relative population of molecules in the lattice vibrational levels. We measure the relative population in each lattice vibrational level using a
band-mapping technique. a,b, The results for the initial distribution of molecules (a) and for a non-thermal distribution created by parametric heating in ẑ
(b). The two images use the same colour scale for the optical depth (OD). The images are an average of five shots (a) and seven shots (b), taken after
10 ms of free expansion. Below each image we show a trace along ẑ that corresponds to the OD averaged over the transverse direction. A fit (red line) to
the trace, which takes into account both the size of the Brillouin zones and our imaging resolution, is used to extract the relative populations, nv/ntot, in
each lattice level v. The horizontal axis corresponds to momentum in ẑ and is marked in units of the lattice momentum h̄k, where k is the lattice wave
vector. Error bars represent one standard deviation (s.d.).

orthogonal. Each layer of the optical lattice trap is tightly confining
in ẑ with a harmonic trapping frequency of νz = 23 kHz for the
molecules, whereas in the transverse directions, the combined trap
has a harmonic trapping frequency of 36Hz. The tunnelling rate
between lattice layers is negligible and, therefore, each layer realizes
an isolated trap for the molecules. Initially, 34,000 ground-state
molecules are confined in roughly 23 layers, with the centre layer
having 2,200molecules and a peak density of 3.4×107 cm−2.

We start by loading ultracold 40K and 87Rb atoms from the
crossed-beam dipole trap into the combined trap by turning up
the intensity of the optical lattice beam in 150ms. We then create
molecules in the lattice by first forming extremely weakly bound
molecules through magneto-association of atom pairs and then
coherently transferring these molecules into their rovibrational
ground state using optical transitions23. The temperature of the
molecular gas, T , in the combined optical dipole plus lattice trap
can be varied between 500 and 800 nKby varying the initial atomgas
conditions. To completely freeze out the motion of the molecules
along ẑ requires that kBT� hνz , where kB is Boltzmann’s constant.
For a gas at T =800 nK in our lattice, kBT/hνz =0.72 and we expect
25% of themolecules will occupy higher v levels.

As discussed above, to control the stereochemistry of bimolec-
ular reactions in the ultracold gas, we need to control both the
internal state and the harmonic oscillator level v of the molecules.
We create the molecules in a single internal quantum state. If
desired, we can subsequently create a 50/50 mixture of molecules
in the ground and the first excited rotational states by applying a
resonant microwave π/2-pulse22. The occupation of lattice levels
v can be controlled by varying T ; alternatively, we can prepare a
non-thermal distribution of molecules using parametric heating.
Here, the lattice intensity is modulated at twice νz , and, as a result,
molecules initially in the v=0 level are excited to the v=2 level.

We determine the population in each lattice level using an
adiabatic band-mapping technique24,25. As the lattice potential is
ramped down slowly, molecules in different vibrational levels of the
lattice are mapped onto Brillouin zones. The measured molecule
momentum distribution following this ramp is shown in Fig. 2a
for a T = 800 nK molecular gas. The measured fraction in v = 0
matches well with the expected thermal distribution. In contrast,
Fig. 2b shows the measured non-equilibrium occupation of lattice
vibrational levels following parametric heating.

Measurement of molecular loss rates
Wemeasure the bimolecular reaction rate by monitoring the loss of
trappedmolecules as a function of time. To image themolecules, we
reverse our coherent transfer process to bring the molecules back
to a weakly bound state where we can detect the molecules with
time-of-flight absorption imaging23. Themolecules are imaged after
free expansion from the combined optical dipole plus lattice trap.
From the images, we obtain the total number of molecules and the
radial cloud size. As we do not resolve the individual layers of the
optical lattice, we obtain an average 2D density per layer by dividing
the total number by the cross-sectional area of the cloud, and by an
effective number of layersα, as defined in theMethods section.

In Fig. 3a, we show the average 2D density as a function of time.
For these data, the molecules are all prepared in the same internal
state and |E| is 4 kV cm−1, which gives an induced molecular
dipole moment in the laboratory frame of 0.158 Debye (D), where
1D= 3.336×10−30 Cm. The two data sets in Fig. 3a correspond to
an unperturbedT =800 nK gas (black squares) and a parametrically
heated gas (red circles). For the case where parametric heating
was used to increase population in v > 0 levels, the data show a
faster initial loss of molecules. This indicates that the initial loss is
predominately due to interlevel collisions as described in case (2)
of Fig. 1c, whereas intralevel collisions (case (3) of Fig. 1c) give a
slower loss of molecules at longer times.

We fit the data using a simple model, which assumes two
loss-rate constants: one for interlevel collisions, β|2〉, and a second
one for intralevel collisions, β|3〉 (with the subscripts referring to the
adiabatic channels labelled in Fig. 1b). Here,

dn0
dt
=−β|3〉n02−β|2〉n0n1−β|2〉n0n2

dn1
dt
=−β|2〉n0n1−β|3〉n12−β|2〉n1n2

dn2
dt
=−β|2〉n0n2−β|2〉n1n2−β|3〉n22 (1)

where nv is the 2D density of molecules in a particular lattice
vibrational level v . To fit the measured time dependence of the total
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Figure 3 |Measurements of 2D loss rates and comparison with theory. a, A fit (solid lines) to the measured loss curves, with (red circles) and without
(black squares) 0.3 ms of parametric heating in ẑ, is used to extract the loss-rate constants β|3〉 and β|2〉. b, The extracted loss-rate constants for collisions
of molecules in the same lattice vibrational level (black squares) and from different lattice vibrational levels (red circles) plotted for several dipole
moments. Measured loss-rate constants for molecules prepared in different internal states are shown as green triangles. Error bars represent 1 s.d. For
comparison with each of these three measurements, we include a quantum scattering calculation for νz= 23 kHz, T=800 nK (solid lines). The potentials
corresponding to the dominant loss channel for the three cases are shown in matching colours in Fig. 1b,c.

2D density, ntot(t ), we use ntot(t )= n0(t )+n1(t )+n2(t ). We input
themeasured initial populations nv/ntot (see Fig. 2 and theMethods
section) at t = 0, and we fit the data to the numerical solution of
equation (1). We obtain β|3〉 and β|2〉 from a simultaneous fit to the
twomeasured ntot(t ) curves shown in Fig. 3a.

By repeating this procedure for different values of |E|, we
measure the chemical reaction rate constants, β|3〉 and β|2〉, as
a function of the induced dipole moment. In Fig. 3b, we show
the intralevel (black squares) and interlevel (red circles) chemical
rate constants as a function of the dipole moment. Also shown
as green triangles in Fig. 3b are the results of two measurements
for a 50/50 mixture of molecules in different rotational states
(case (1) of Fig. 1c). Here, we fit the loss of molecules in the ground
rotational state to the solution of (dntot/dt )=−β|1〉ntot2 to extract
a single loss-rate constant.

Experiment–theory comparison
For comparison with these measurements, we carry out quan-
tum scattering calculations using a time-independent quantum
formalism based on spherical coordinates with cylindrical asymp-
totic matching to describe the molecular collisions in quasi-two
dimensions26. We use an absorbing potential at short distance to
represent chemical reactions19,27. This technique showed excellent
agreement with previous experimental data for KRb bimolecular
reactions in three dimensions4,5. We computed the loss-rate co-
efficients βv1,v2 for molecules in different initial lattice vibrational
states v1,v2, at a collision energy of 800 nK. When the induced
dipole moment is still small (0–0.2D), the measured temperature
is a good approximation for the mean collision energy. The loss
rates of the different processes can be separated into fast loss rates
(β0,1,β0,2,β1,2) ≈ β|2〉 and slow loss rates (β0,0,β1,1,β2,2) ≈ β|3〉.
The black theoretical curve in Fig. 3b corresponds to an average
of the slow rates weighted by the initial populations n0,n1,n2.
The red curve corresponds to the same average, but for the fast
rates. The green curve corresponds to the loss rate of molecules in
different internal states.

The three measured reaction rate constants shown in Fig. 3b
are consistent with the quantum scattering calculations for
the collision channels shown in matching colours in Fig. 1b,c.
Molecules in different rotational states (green triangles in Fig. 3b)
have the highest rate for chemical reactions, consistent with the
fact that they can collide in channel |1〉, which corresponds to
spatially isotropic collisions with no centrifugal barrier. On the
other hand, molecules prepared in the same internal molecular
state (red circles and black squares in Fig. 3b) have suppressed
reaction rates because the lowest-energy collision channel is

no longer allowed. Instead, identical molecules in different
lattice levels (red circles in Fig. 3b) react predominantly through
collisions in channel |2〉, or ‘head-to-tail’, whereas identical
molecules in the same lattice level (black squares in Fig. 3b)
react through collisions in channel |3〉, or ‘side-by-side’. The
importance of stereodynamics on the reaction rate for polar
molecules is manifest in the very different dipole-moment
dependence of the reaction rates in these two collision channels.
In particular, for the case where the molecules are prepared
both in the same internal quantum state and in the same
v level, the reaction rate is suppressed even as the dipole
moment is increased.

2D versus 3D loss rates
Figure 4 shows how the initial loss rate in a gas of identical
molecules depends on the fractional occupation of the lowest
lattice level, n0/ntot. As n0/ntot increases, the calculated initial
loss-rate constant for a molecular gas in thermal equilibrium (solid
black line) changes from close to β|2〉 (the red line indicating the
measured value at 0.174D from Fig. 3b) to β|3〉 (open symbol at
n0/ntot = 1). In thermal equilibrium, the fractional occupation of
the lowest vibrational level is given by the Boltzmann distribution
(see the Methods section). On the top axis of Fig. 4, we give the
corresponding values of the scaled temperature (kBT/hνz). The
filled triangles in Fig. 4 correspond to the measured initial loss
rate at different temperatures (500 nK and 800 nK), and the open
symbol at n0/ntot ≈ 0.5 corresponds to the initial loss rate for the
parametrically heated, non-thermalmolecular gas.

We also directly compare the suppressed chemical reaction rate
in quasi-two dimensions with that of the 3D case in the inset
to Fig. 4. Here, we compare data for a 3D geometry from ref. 5
against the suppressed loss-rate constant measured in quasi-two
dimensions. For the comparison, the 2D loss rate is scaled to
three dimensions using β3D=

√
πahoβ2D (refs 20,28,29), where aho

is the harmonic oscillator length in ẑ . For a dipole moment d
greater than 0.1D, the 3D loss-rate constant increases markedly
as d6 (refs 5,30), whereas the scaled loss-rate constant for the
quasi-2D case remains close to the value at zero electric field. At a
dipole moment of 0.174D, the measured suppression in quasi-two
dimensions is a factor of 60.

Outlook
The results shown here demonstrate how quantum stereochemistry
in the ultracold regime can be used to control reaction rates.
The capability of precisely controlling the molecular quantum
states for both the internal and external degrees of freedom is
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Figure 4 | Loss rates from three dimensions to two dimensions. The
effective initial loss rate, βinitial, for polar molecules confined in a 2D
geometry depends on the fractional population (n0/ntot) in the lowest
harmonic oscillator level in ẑ, which for a gas in thermal equilibrium
depends on the ratio kBT/hνz. The measured initial loss rates for a dipole
moment of 0.174 D are shown for two different thermal distributions (solid
triangles), a non-thermal sample created by parametric heating (the top
open triangle) and an extracted pure β|3〉 for the limit of the entire
population residing in the lattice ground vibrational level (the bottom open
triangle). The experimental results agree well with a simple model (black
curve) described in the text and the Methods section. The top line indicates
the value of β|2〉 as given in Fig. 3b. Inset: The extracted intralevel loss rate
for identical fermionic KRb molecules in two dimensions (black circles)
compared with the loss rate in three dimensions (blue triangles). The 3D
data for T= 300 nK are from ref. 5. The 2D data were taken at T=800 nK
and are converted to 3D rates by multiplication with

√
πaho, where aho is

the harmonic oscillator length in ẑ. The red oval highlights the data for a
dipole moment of 0.174 D. Error bars represent 1 s.d.

a key ingredient for this advance. The strong suppression of
reaction rates for a gas of fermionic molecules in a quasi-2D
geometry opens the door for creating a stable ultracold gas of
polar molecules and studying the many-body physics of such a
system. Whereas a future, alternative possibility is to produce
an ultracold gas of a bialkali molecular species that might be
stable against bimolecular chemical reactions (although it is
an open question with respect to three-body losses)31–33, the
approach we demonstrate here is appealing considering that a
number of bialkali polar molecular species under study at present
are expected to experience chemical reactions at rates similar
to the KRb case20,31–33.

Methods
The low-energy collision channels |1〉, |2〉 and |3〉 can be labelled with four relevant
quantum numbers, η,L,γ andM . The quantum number γ identifies the exchange
symmetry of the part of the two-molecule wavefunction that describes the relative
motion in ẑ ; for the symmetric case, γ = 1, and for the antisymmetric case,
γ =−1. For two molecules in the same ẑ harmonic oscillator state, γ = 1, whereas
both γ = 1 and γ =−1 are possible for two molecules in different harmonic
oscillator states. Similarly, we use a quantum number η to keep track of the
exchange symmetry of the part of the wavefunction that describes the internal
states of the two molecules. For two molecules in the same internal quantum
state, η= 1, whereas η=±1 for molecules in different internal states. In two
dimensions, three quantum numbers (M ,γ ,η) are sufficient to describe the
quantum stereodynamics. However, because the interactions at short range must
be described in three dimensions, the quantum number corresponding to the 3D

angular momentum, L, as well asM , becomes relevant. With collisional channels
described by quantum numbers η,L,γ and M , the fermionic symmetry can be
concisely stated in the following relations:

η(−1)L=−1, short range, 3D

ηγ (−1)M =−1, long range, 2D

Collision channel |1〉 has η=−1, L= 0, γ = 1 and M = 0, and corresponds
to spatially isotropic collisions. Collision channel |2〉 has η= 1, L= 1, γ =−1
and M = 0, and is the quantum analogue of ‘head-to-tail’ collisions. Collision
channel |3〉 has η= 1, L= 1, γ = 1 andM =±1, and is the quantum analogue of
‘side-by-side’ collisions. The dipole–dipole interaction mixes states with different
L. However, for convenience, we have denoted the lowest-energy adiabatic channel,
which does not have a centrifugal barrier, as L= 0. Similarly, L= 1 denotes the
odd-L adiabatic channel with the lowest centrifugal barrier.

The traces in Fig. 2 were obtained by averaging the images in the transverse
direction within one r.m.s. width of the Gaussian distribution. We fit the traces
to the convolution of a series of step functions and a Gaussian: the former
describes the first three Brillouin zones, whereas the latter characterizes the effect
of a finite imaging resolution. The uncertainty in the relative population is 3%,
and is dominated by systematic errors arising from the variation of the imaging
resolution within the range of 1–2 pixels. We note that after the creation of
ground-state molecules, the gas may be slightly out of thermal equilibrium owing
to a slight difference in the optical trapping potential between Feshbach and
ground-state molecules34.

The average 2D density shown in Fig. 3a is obtained by dividing the total
number of molecules, N , by an effective area, 4πασr2, where σr is the r.m.s.
cloud size in the transverse direction and N/α is a number-weighted average
over the occupied lattice layers. We calculate α(t = 0) = 23 assuming an initial
discrete Gaussian distribution in ẑ with an r.m.s. width that we measure after
transferring the molecules back to the optical dipole trap. However, α increases at
longer times because of the density dependence of the loss. For our analysis, we
use a time-averaged value α= 30 that was determined by comparing an analysis
based on a uniform layer density with a numerical simulation of the loss in each
layer. The uncertainties for β|3〉 and β|2〉 are dominated by statistical uncertainties
in the fits to ntot(t ). For the data shown in green triangles in Fig. 3b, the two
internal molecular states are |0,0,−4,1/2〉 and |1,1,−4,1/2〉, following the
notation of ref. 22.

For the solid black line in Fig. 4, the fractional molecular population f (v,T ) in
a vibrational level v at temperature T is obtained from a Boltzmann distribution,
and the effective βinitial is then calculated as

βinitial=β|3〉
∑
v

f (v,T )2+β|2〉
∑
v1 6=v2

f (v1,T )f (v2,T )
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