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Abstract Multivariate outlier detection requires computa-
tion of robust distances to be compared with appropriate
cut-off points. In this paper we propose a new calibration
method for obtaining reliable cut-off points of distances
derived from the MCD estimator of scatter. These cut-off
points are based on a more accurate estimate of the extreme
tail of the distribution of robust distances. We show that our
procedure gives reliable tests of outlyingness in almost all
situations of practical interest, provided that the sample size
is not much smaller than 50. Therefore, it is a considerable
improvement over all the available MCD procedures, which
are unable to provide good control over the size of multiple
outlier tests for the data structures considered in this paper.

Keywords Minimum covariance determinant estimator ·
Robust distances · Multiple outliers · Simultaneous testing ·
Calibration factor · Simulation

1 Introduction

Multivariate outlier detection is a fundamental and perva-
sive step of most statistical analyses. For data from location-
scale families, its accomplishment requires estimation of

A. Cerioli (�) · M. Riani
Dipartimento di Economia, Università di Parma, Via Kennedy 6,
43100 Parma, Italy
e-mail: andrea.cerioli@unipr.it

M. Riani
e-mail: mriani@unipr.it

A.C. Atkinson
Department of Statistics, The London School of Economics,
Houghton Street, London WC2A 2AE, UK
e-mail: a.c.atkinson@lse.ac.uk

location and scatter in v dimensions. However, it is well
known that the estimates of the mean and covariance ma-
trix using all the data are extremely sensitive to the presence
of outliers. The circularity breaks down only if robust esti-
mates are employed instead of the classical unbiased ones
(Rousseeuw and van Zomeren 1990; Becker and Gather
1999). In particular, in this paper we deal with the highly-
robust Minimum Covariance Determinant (MCD) estimator
of Rousseeuw and Van Driessen (1999) and with its several
refinements. This estimator has an intuitive appeal and ben-
efits from the availability of software implementation in dif-
ferent languages, including R, S-Plus, Fortran and Matlab. It
also has good asymptotic properties that compare favourably
with those of other high-breakdown estimators (Butler et al.
1993; Croux and Haesbroeck 1999). For these reasons the
MCD estimator has gained much popularity, not only for
outlier identification but also as an ingredient of many ro-
bust multivariate techniques (Croux and Haesbroeck 2000;
Willems et al. 2002; Pison and Van Aelst 2004; Rousseeuw
et al. 2004; Todorov 2006; Todorov and Filzmoser 2008).

To identify multivariate outliers in a sample y =
(y1, . . . , yn)

′ of n observations from a v-variate population
with mean μ and dispersion matrix �, the MCD estimates of
μ and �, say μ̂(MCD) and �̂(MCD), are plugged into the Ma-
halanobis formula to obtain the n squared robust distances

d2
i(MCD) = (yi − μ̂(MCD))

′�̂−1
(MCD)(yi − μ̂(MCD)),

i = 1, . . . , n, (1)

which do not suffer from masking and swamping. Obser-
vations for which d2

i(MCD) exceeds a specified threshold are
then labelled as outliers.

In order to achieve consistency under the normal popula-
tion model, �̂(MCD) must incorporate a correction factor that
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allows for the fact that � is estimated from the ‘central’ part
of the data only. An additional ingredient that is often, but
not always, part of MCD estimation is a small sample bias-
correction factor obtained by simulation (Pison et al. 2002).
Sometimes a one-step reweighted version of �̂(MCD) is used
in definition (1) to gain efficiency while retaining the same
breakdown point as the initial MCD estimator (Rousseeuw
and Van Driessen 1999, p. 218; Lopuhaä 1999). However,
there is no general agreement on whether or not the same
correction factors should apply after reweighting. Despite
the intuitive appeal of robust distances, the user must then
choose among several different versions of (1) and needs
guidance about the performance of each of them. We pro-
vide such guidance.

An unsolved problem is that the exact distribution of ro-
bust distances is unknown for finite sample sizes. The stan-
dard approach has been to compare the squared distances
to the percentage points of their asymptotic χ2

v distribution.
However, the χ2

v approximation is known to be liberal and
leads to the nomination of too many outliers in small and
moderate samples. Hardin and Rocke (2005) provided com-
pelling evidence of this behaviour and showed that the χ2

v

approximation can be substantially inadequate even for rel-
atively large values of n, depending on the actual value of v.
They suggested an improved approximation based on the F

distribution. The results of Hardin and Rocke refer to the ba-
sic MCD distances (1) and do not apply to the supposedly
more efficient reweighted ones. Therefore, they are only par-
tially useful for the purpose of comparing the available ver-
sions of such distances.

Another important issue is that of simultaneity of the n

tests performed by means of the squared robust distances
d2
i(MCD), i = 1, . . . , n. The usual suggestion in the MCD lit-

erature has been to control the size of each individual test
by comparing each d2

i(MCD) to the α% cut-off point of the
reference distribution. Most published results are based on
0.001 ≤ α ≤ 0.05, with α = 0.025 a popular choice (e.g.
Rousseeuw and Van Driessen 1999; Pison et al. 2002). How-
ever, the resulting family-wise error rate soon approaches 1
when n is larger than a few dozen and the user should be pre-
pared to declare at least one outlier (and often many more)
in any data set of realistic size, even when contaminated ob-
servations are not present.

The individual testing scenario is inappropriate in many
situations, especially when one has repeatedly to check for
outliers in several samples supposed to come from the same
population. For instance, Arsenis et al. (2005) and Riani et
al. (2009) analyzed bivariate trade data arising in the Euro-
pean Union market. Outliers are of paramount importance
because some of them may correspond to fraudulent trans-
actions. However, there are hundreds of transactions to be
inspected over thousands of markets, corresponding to dif-
ferent traded commodities, and controlling the size of in-
dividual tests would lead to a plethora of false signals for

anti-fraud services. Another striking example arises in the
process of producing microarray data, where it is crucial to
evaluate the quality of an array and to identify those with
low quality. Cohen Freue et al. (2007) developed a multi-
variate technique based on robust distances similar to (1)
computed on different subsets of variables. Several distances
are obtained for each array and ignoring the multiplicity of
the resulting tests increases the probability of labelling false
outliers and of discarding potentially useful information. In
both these examples more effective conclusions could be
reached by controlling the proportion of ‘good’ data sets
that are wrongly declared to contain outliers.

The goal of this paper is twofold. First, after a brief re-
view of the MCD methodology, in Sect. 3 we examine the
null performance of the outlier tests that can be obtained
through alternative versions of (1). We investigate both the
individual testing scenario, thus complementing the pub-
lished simulation results of Hardin and Rocke (2005), and
the more realistic situation where control is over the family-
wise error rate of all the n tests, as suggested by Becker
and Gather (1999). We will see that performance is often
worse than expected and surprisingly bad for the purpose of
simultaneous outlier identification. Some hints on the weak-
ness of MCD-based outlier identification rules in the multi-
ple testing framework were also given by Becker and Gather
(2001), who provided evidence of the inadequacy of asymp-
totic cut-off values in a limited number of cases. Their re-
sults thus find extensive confirmation in our paper. We will
also see that satisfactory behaviour of an individual outlier
test does not necessarily reproduce in the multiple testing
scenario.

Then, in Sect. 4 we extend our simulation results to derive
improved correction factors for the robust distances. These
factors are obtained by calibrating the tail of the distribu-
tion of the distances, not just their mean and variance. Our
corrections turn out to be essential for controlling the size
of outlier tests in the multiple testing framework, where the
currently available MCD procedures are ineffective. They
are computed for a number of specific values of n and v, but
are then generalized through interpolation. Their impact on
the power of outlier tests is also investigated. The paper ends
with some concluding remarks in Sect. 5.

2 Options in MCD estimation

Suppose we have a sample y of n v-dimensional observa-
tions. The MCD subset y(MCD) is defined to be the sub-
sample of h observations, with n/2 ≤ h < n, whose covari-
ance matrix has the smallest determinant. We are interested
in outlier detection, as in Hardin and Rocke (2005). Hence
we take the value of h yielding the maximum possible break-
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down point, i.e.

h =
⌊

n + v + 1

2

⌋
, (2)

where �·� denotes the integer part. A larger value of h would
result in more efficient estimates, but at the expense of a
reduced breakdown value. The MCD estimate of location is
the average of the MCD subset,

μ̂(MCD) = 1

h

∑
i∈y(MCD)

yi , (3)

whereas the MCD estimate of scatter is proportional to the
dispersion matrix of this subset:

�̂(MCD)

= c(h)s(h,n, v)

h − 1

∑
i∈y(MCD)

(yi − μ̂(MCD))(yi − μ̂(MCD))
′.

(4)

The proportionality constant c(h) makes �̂(MCD) Fisher-
consistent when the distribution of y is elliptically sym-
metric and unimodal with mean μ and dispersion matrix
� (Butler et al. 1993; Croux and Haesbroeck 1999). If
y ∼ N(μ,�)

c(h) = h/n

P (χ2
v+2 < χ2

v,1−h/n)
, (5)

where χ2
v,α denotes the α% cut-off point of the χ2

v distribu-
tion which leaves α% of the values at its right.

The second proportionality constant, s(h,n, v), serves
the purpose of reducing the small sample bias of �̂(MCD).
The actual value of this factor depends also on n and v. It
was obtained by Pison et al. (2002) through a combination of
Monte Carlo simulation and parametric interpolation, under
the assumption that s(h,n, v) → 1 as n → ∞ for fixed v.
It is worth noting that s(h,n, v) is just a first-order correc-
tion factor for �̂(MCD). Hence, it might be expected to work
reasonably well for the purpose of adjusting the mean of the
squared robust distances (1), but it is likely to be inadequate
in the extreme tail of their distribution, the one of importance
for outlier detection, especially in the simultaneous testing
framework of Sect. 3.2. Improved first-order corrections for
very small samples are given by Todorov (2008) but are not
considered here.

Equations (3) and (4) define the raw MCD estimates
of location and scatter. To increase efficiency, a one-step
reweighted version of them is often used in practice. These
estimators are computed by giving weight 0 to observations
for which d2

(MCD)i exceeds a threshold value. Thus a first
subset of h observations is used to select a second subset of

m from which the parameters are estimated. The reweighted
MCD estimates of location and scatter are then

μ̂RMCD = 1

m

n∑
i=1

wiyi (6)

and

�̂RMCD = c∗(m)s∗(m,n, v)

m − 1

×
n∑

i=1

wi(yi − μ̂(RMCD))(yi − μ̂(RMCD))
′, (7)

where wi = 0 if d2
(MCD)i > d2

(MCD)∗, wi = 1 otherwise, and
m = ∑n

i=1 wi . The usual suggestion for the threshold (e.g.
Rousseeuw and Leroy 1987, p. 260; Rousseeuw and Van
Driessen 1999, p. 218; Pison and Van Aelst 2004, p. 312) is
to take the 0.025% cut-off point of the χ2

v distribution:

d2
(MCD)∗ = χ2

v,0.025. (8)

This threshold is the default implementation in most avail-
able software and is chosen independently of the size α

of the outlier test. An alternative proposal is described in
Sect. 3.2. The factors c∗(m) and s∗(m,n, v) guarantee con-
sistency of the reweighted estimator and improve its small
sample behaviour, as do the corresponding factors in (4).
They were not supported in the initial MCD literature but
were advocated later by Croux and Haesbroeck (1999) and
by Pison et al. (2002). However, only a few software func-
tions actually implement them (Todorov 2008). Most of the
available functions simply take the empirical covariance ma-
trix of the subset of m observations as the reweighted MCD
estimate of scatter.

3 Null performance of the MCD estimators

In this section we investigate the null performance of mul-
tivariate outlier tests based on squared robust Mahalanobis
distances. The reported values of n and v represent a subset
of the finer grid to be considered in Sect. 4. We focus on the
nominal test size α = .01, although similar results were also
obtained for α = 0.05 and α = 0.025. We choose among the
available MCD options those that should guarantee the best
control over the size of the resulting tests. Therefore, we in-
clude both the consistency correction and the small sample
correction in all our estimates of scatter. We take c(h) as
in (5). Similarly,

c∗(m) = m/n

P (χ2
v+2 < χ2

v,m/n)
.
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Table 1 Size of the multivariate outlier tests MCD, MCD-HR and RMCD for testing the n individual hypotheses H0i : yi ∼ N(μ,�), each at
nominal level α = 0.01. Size is computed on 50,000 simulations for each combination of n and v

n = 50 n = 75 n = 100 n = 150 n = 200 n = 300 n = 500

MCD 0.070 0.050 0.043 0.033 0.027 0.021 0.017

v = 2 MCD-HR 0.001 0.003 0.005 0.007 0.008 0.009 0.009

RMCD 0.019 0.015 0.013 0.012 0.011 0.011 0.010

MCD 0.137 0.090 0.070 0.046 0.035 0.024 0.018

v = 4 MCD-HR 0.009 0.012 0.012 0.012 0.011 0.010 0.010

RMCD 0.047 0.025 0.019 0.014 0.013 0.011 0.011

MCD 0.194 0.122 0.091 0.056 0.041 0.028 0.019

v = 6 MCD-HR 0.019 0.017 0.015 0.013 0.011 0.010 0.010

RMCD 0.090 0.038 0.025 0.017 0.014 0.013 0.011

MCD 0.237 0.152 0.111 0.066 0.046 0.031 0.020

v = 8 MCD-HR 0.026 0.020 0.016 0.013 0.011 0.010 0.009

RMCD 0.150 0.058 0.033 0.020 0.016 0.013 0.012

MCD 0.266 0.179 0.131 0.077 0.053 0.034 0.022

v = 10 MCD-HR 0.031 0.021 0.016 0.012 0.010 0.009 0.009

RMCD 0.217 0.088 0.046 0.023 0.018 0.015 0.013

MCD 0.283 0.203 0.152 0.088 0.060 0.037 0.024

v = 12 MCD-HR 0.034 0.021 0.016 0.011 0.010 0.008 0.008

RMCD 0.270 0.131 0.065 0.029 0.021 0.016 0.013

The small sample factors s(h,n, v) and s∗(m,n, v) are
those implemented in the function covMcd() of the R pack-
age robustbase available at http://cran.r-project.org/. The
MCD subset y(MCD) is obtained through the Fortran algo-
rithm FAST-MCD of Rousseeuw and Van Driessen (1999)
available at http://www.agoras.ua.ac.be/. Simulation uses
the pseudo-random number generator of Matsumoto and
Nishimura (1998), the default choice also in the R function
RNG.

For fixed n and v, the actual size of each test is estimated
by simulating 50,000 independent n-dimensional samples y

from the v-variate N(0, I ) distribution. The results are valid
for any y ∼ N(μ,�) of the same dimensions thanks to the
affine invariance property of robust Mahalanobis distances.
Size is estimated by the proportion of false rejections of the
null hypothesis over the total number of tests performed.

3.1 Individual testing

In the first part of our simulation study we work under the
inferential setting of Rousseeuw and Van Driessen (1999),
Pison et al. (2002) and Hardin and Rocke (2005), among
others. In this case each of the n individual null hypotheses

H0i : yi ∼ N(μ,�), i = 1, . . . , n, (9)

is tested at nominal size α = 0.01. The n hypotheses (9)
must be checked on each data set. The total number of tests
performed in the simulation study is thus 50,000n.

We focus on three different outlier tests.

• MCD. This test compares the squared distances d2
i(MCD)

to their asymptotic χ2
v distribution, as in the standard ap-

proach of Pison et al. (2002). The raw MCD estimators
(3) and (4) are used.

• MCD-HR. This test uses the same MCD options as above.
However, the squared distances d2

i(MCD) are compared to
the improved approximation of Hardin and Rocke (2005),
based on a scaled F distribution.

• RMCD. In this test the efficient one-step reweighted
MCD distances

d2
i(RMCD) = (yi − μ̂(RMCD))

′�̂−1
(RMCD)(yi − μ̂(RMCD))

are used, with μ̂(RMCD) and �̂(RMCD) defined as in (6)
and (7). The weights are computed from the raw MCD
estimates (3) and (4), with the threshold d2

(MCD)∗ at its
default value (8).

Table 1 displays the main findings obtained for the three
outlier tests. If the distribution of the robust distances were
well approximated by the reference distribution, we would
expect to declare about �αn� false outliers in each simulated
data set. Ideally each entry in the cells of Table 1 should be

http://cran.r-project.org/
http://www.agoras.ua.ac.be/
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Table 2 Estimated standard deviation of the proportion of outliers
found by each test for some values of n and v

n = 50 n = 100 n = 200 n = 500

MCD 0.071 0.042 0.020 0.008

v = 4 MCD-HR 0.020 0.017 0.011 0.006

RMCD 0.045 0.016 0.008 0.005

MCD 0.067 0.048 0.021 0.008

v = 8 MCD-HR 0.037 0.020 0.010 0.005

RMCD 0.086 0.024 0.009 0.005

MCD 0.046 0.048 0.023 0.008

v = 12 MCD-HR 0.042 0.020 0.009 0.005

RMCD 0.063 0.037 0.011 0.005

close to 0.01. However, it is seen that the MCD test based
on the χ2

v distribution is largely unsatisfactory for all the re-
ported values of n and v, a confirmation of the findings of
Hardin and Rocke (2005). The improved test based on the F

distribution, MCD-HR, is the only one that guarantees rea-
sonable performance, although its true size can still be a bit
different from the nominal value when n < 100, with de-
partures in both directions. The increased efficiency of the
reweighted test RMCD comes at a cost. Its size is generally
larger than 0.01 and the test becomes considerably more lib-
eral than MCD-HR for small sample sizes. In all instances
it is apparent that the small sample corrections do not work
properly when n < 100 and v increases. One explanation is
that s(h,n, v) and s∗(m,n, v) are first-order correction fac-
tors that do not allow for the variability in the tail of the
distribution of robust distances.

Table 2 provides a summary of the variability associated
with our simulations. It shows the estimated standard devia-
tion of the proportion of outliers found by each test for some
values of n and v. The standard errors of the test sizes given
in Table 1, which measure the Monte Carlo precision of our
estimated sizes, are easily obtained dividing these standard
deviations by

√
50,000.

3.2 Multiple testing

The situation is much less reassuring in the simultaneous
testing framework introduced in Sect. 1. The null hypothesis
of interest is now the intersection hypothesis

H0s : {y1 ∼ N(μ,�)} ∩ {y2 ∼ N(μ,�)} ∩ · · ·
∩ {yn ∼ N(μ,�)} (10)

that no outliers are present in the data. Given a cut-off d2
γ for

the squared robust distances, the size of this test is the prob-
ability that at least one outlier is erroneously found using d2

γ

as a cut-off. This probability is

P {maxn
i=1 d2

(MCD)i > d2
γ | H0s is true} (11)

for the MCD-based distances, and

P {maxn
i=1d

2
(RMCD)i > d2

γ | H0s is true} (12)

if the reweighted estimators are used. Size is then estimated
as the proportion of simulated data sets for which the event
in (11) is verified.

We control the multiplicity in (10) through a Bonferroni
approach, similar to the simultaneous outlier identification
rule of Becker and Gather (1999) and Becker and Gather
(2001). A Bonferroni-type argument is appropriate because
the observations not included in y(MCD) are approximately
independent of �̂(MCD) (Hardin and Rocke 2005). The cor-
relation between the test statistics d2

(MCD)i and d2
(MCD)j , and

that between d2
(RMCD)i and d2

(RMCD)j , should then be negli-
gible if yi and yj do not belong to the MCD subset. Given
the liberal behaviour exhibited by tests MCD and RMCD in
Table 1, the potential conservativeness of the method should
not be of great concern in the present context. A confirma-
tion of the minor effect of correlation on test size is provided
by the simulation results of Sect. 4.3. Use of the sharper
Šidák inequality (Šidák 1967) gave a negligible advantage
over the Bonferroni approach.

We set γ = α/n and define

d2
γ = χ2

v,α/n (13)

for MCD and RMCD. For the MCD-HR test,

d2
γ = vn∗

n∗ − v + 1
Fv,n∗−v+1,α/n, (14)

where Fν1,ν2,α is the α% cut-off point of the Fν1,ν2 distribu-
tion. The value n∗ in the denominator degrees of freedom is
computed using the adjusted asymptotic method of Hardin
and Rocke (2005, Sect. 3.1.1). The functions DCHIIN and
DFIN of the IMSL library are employed to obtain the nu-
merical values of (13) and (14).

We note that, under the Bonferroni approach, there is a
potential source of incoherence in the default RMCD proce-
dure described in Sect. 3.1. In this procedure each observa-
tion is first tested for outlyingness at size 0.025 to compute
its weight, see (8), and then at size γ = α/n to verify the cor-
responding component of the intersection hypothesis (10).
Since typically γ  0.025, one may control the multiplic-
ity of the n tests also in the computation of the weights. We
thus consider a modified version of the RMCD procedure
with Bonferroni adjustment of the threshold value d2

(MCD)∗.
This adjustment is introduced by Riani et al. (2009) and is
in agreement with the general definition of reweighted MCD
estimators provided by Croux and Haesbroeck (1999).

• RMCD-CH. This test uses the same reweighting scheme
as RMCD, but with threshold

d2
(MCD)∗ = χ2

v,γ . (15)
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Table 3 Size of the multivariate outlier tests MCD, MCD-HR, RMCD and RMCD-CH for testing the intersection hypothesis (10) at nominal
level α = 0.01. Size is computed on 50,000 simulations for each combination of n and v

n = 50 n = 75 n = 100 n = 150 n = 200 n = 300 n = 500

MCD 0.426 0.336 0.297 0.230 0.185 0.129 0.083

v = 2 MCD-HR 0.000 0.000 0.000 0.001 0.002 0.004 0.007

RMCD 0.074 0.045 0.034 0.024 0.020 0.017 0.014

RMCD-CH 0.026 0.018 0.014 0.012 0.011 0.010 0.011

MCD 0.790 0.645 0.553 0.400 0.295 0.182 0.091

v = 4 MCD-HR 0.002 0.008 0.013 0.017 0.017 0.016 0.013

RMCD 0.284 0.131 0.078 0.041 0.030 0.021 0.015

RMCD-CH 0.085 0.038 0.026 0.017 0.016 0.013 0.011

MCD 0.934 0.807 0.706 0.501 0.363 0.202 0.097

v = 6 MCD-HR 0.021 0.030 0.031 0.028 0.022 0.017 0.013

RMCD 0.549 0.246 0.138 0.056 0.035 0.023 0.018

RMCD-CH 0.176 0.063 0.039 0.022 0.018 0.014 0.013

MCD 0.982 0.904 0.812 0.595 0.419 0.227 0.101

v = 8 MCD-HR 0.050 0.051 0.044 0.031 0.023 0.017 0.012

RMCD 0.794 0.402 0.210 0.077 0.047 0.029 0.020

RMCD-CH 0.333 0.102 0.053 0.030 0.023 0.017 0.014

MCD 0.997 0.958 0.888 0.680 0.489 0.266 0.114

v = 10 MCD-HR 0.082 0.064 0.050 0.031 0.023 0.014 0.010

RMCD 0.947 0.606 0.321 0.108 0.059 0.034 0.021

RMCD-CH 0.567 0.171 0.078 0.039 0.027 0.020 0.015

MCD 0.999 0.983 0.942 0.759 0.565 0.307 0.128

v = 12 MCD-HR 0.108 0.068 0.053 0.032 0.022 0.012 0.009

RMCD 0.995 0.803 0.483 0.156 0.077 0.038 0.024

RMCD-CH 0.814 0.283 0.124 0.053 0.036 0.024 0.016

Our default choice in (15) is γ = 0.01/n.

The performances of the four robust procedures for test-
ing the intersection hypothesis of no outliers in the data are
shown in Table 3. The results for MCD are exceptionally
bad, especially if n ≤ 200, with sizes up to almost 100%. As
n increases the χ2

v approximation improves, but even when
n = 500, a value by which asymptotics could be expected to
be a reasonable guide, the sizes fluctuate between 0.08 and
0.13. The MCD test is thus clearly unusable for the purpose
of simultaneous outlier identification over the whole range
of selected values of n and v.

Also the RMCD procedure of Sect. 3.1 is prone to strong
liberality and is thus unusable even in relatively large sam-
ples, its sizes being close to the hoped-for value only when
n approaches 500. The modified test RMCD-CH improves
the situation but does not solve the problem: when n = 100
its size is around 0.03 for v = 5 and around 0.08 for v = 10.
Therefore, the Bonferroni adjustment in threshold (15) is not
sufficient to control the size of the reweighted test. There are
at least two reasons for this, perhaps surprising, failure. The

first one is the same that leads to the unsatisfactory perfor-
mance of MCD. For small and moderate samples, the χ2

v

approximation is poor and threshold (15) discards more ob-
servations than the expected γ n for the reweighting step.
The second motivation is that the small sample corrections
s∗(m,n, v) were obtained by Pison et al. (2002) using the
χ2

v,0.025 threshold and are not appropriate for RMCD-CH.
The MCD-HR test based on the F distribution was seen

in Sect. 3.1 to be the only one with reasonable performance
across all values of n and v. However, its performance wors-
ens considerably in the multiple testing framework of Ta-
ble 3. One disappointing feature of this test is that it can
be either extremely conservative, with sizes < 0.001, when
n or v are small, or moderately liberal, with sizes > 0.05,
when v increases. Another surprising feature is that the test
size does not necessarily improve as a monotone function of
n for given v. For instance, when v = 6 the size at n = 50
is closer to the target than for n in the range [100,200]. We
conclude that the scaled-F approximation to the distribution
of robust distances, which works well for quantiles in the
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0.1–0.01 range, is substantially inaccurate for the quantiles
needed to perform multiple comparisons.

In summary, none of the four robust distances computed
from the MCD estimator of scatter is able to provide good
control over the size of the test of the intersection hypoth-
esis (10), even if the (potentially conservative) Bonferroni
method is adopted for the definition of cut-off values. The
reason is that the reference distributions defined by (13)
and (14) provide poor approximations to the extreme tail of
the distribution of robust distances, even after correction for
consistency and small-sample bias, at least when n < 500.
New correction factors that considerably improve this ap-
proximation are developed in the following section.

4 Improved calibration factors

4.1 Simulation-based calibration

The traditional way to get better control on the size of out-
lier tests based on squared robust distances has been to cal-
ibrate the dispersion matrix of the subset of units used for
estimation. The basic corrections are the consistency fac-
tors c(h) and c∗(m), in (4) and (7) respectively, which ac-
count for trimming in a multivariate normal sample. The
factors s(h,n, v) and s∗(m,n, v) developed by Pison et al.
(2002) provide first-order corrections suitable for small sam-
ples. The F approximation suggested by Hardin and Rocke
(2005) also takes into account the variance of the diagonal
elements of the MCD dispersion matrix, but was seen in
Sect. 3.2 to be rather inaccurate in the extreme tail of the
distribution. Furthermore, it is not applicable to the robust
distances computed from the reweighted estimator �̂RMCD.

We obtain improved calibration factors for the robust dis-
tances of Sect. 3 by Monte Carlo simulation. Our aim is to
calibrate the cut-off values of the reference distribution of
each squared distance, not just its expected value and its
variance, in order to obtain good control over the size of
the corresponding test. In what follows, we concentrate on
the more problematic test of the intersection hypothesis of
no outliers in the data. We consider the two basic and most
widely adopted procedures MCD and RMCD, although the
approach is quite general and could be applied to MCD-HR
and RMCD-CH as well.

Let, without loss of generality, d2
i represent the squared

robust distance actually selected for testing outlyingness of
observation yi . Instead of relying on distributional assump-
tions such as (13), in principle a Monte Carlo estimate of
d2
γ could be obtained from K independent replicates y(k) =

(y
(k)
1 , . . . , y

(k)
n )′, k = 1, . . . ,K , of y under the null hypothe-

sis (10). If d
(k)
[i] is the i-th ordered distance, i = 1, . . . , n, in

sample k, this estimate would be

d̃2
γ = 1

K

K∑
k=1

{d(k)
[l] }2,

where l = �(n+1)(1−γ )�. However, with γ = α/n we ob-
tain that l = n if α < n/(n + 1), so that d̃2

γ is not an appro-
priate estimate in virtually all situations of practical interest.

We resort to a different approximation of d2
γ based on the

K replicates y(k). Let Y = (y(1), . . . , y(K))′ be the pooled
sample of N = Kn observations obtained by simulation
from the v-variate N(0, I ) distribution. We rely on approx-
imate independence of �̂(MCD) and the observations not in-
cluded in y(MCD). From this result the squared robust dis-
tances computed from the observations in Y that do not con-
tribute to any MCD subset can be taken as an approximate
random sample from the same distribution. Write Y ∗ for this
sample of N∗ = K(n − h) ≈ N/2 approximately indepen-
dent observations in Y . Let d[i] be the i-th ordered distance
in the pooled sample Y , and d∗[i] be the i-th ordered dis-
tance in the approximately random sample Y ∗. The vector
d∗ = (d∗[1], d∗[2], . . . , d∗[N∗])′ contains the order statistics on

which we base our estimate of d2
γ .

To motivate the estimation procedure, write y(MCD) for
the set of n − h ≈ n/2 units that do not belong to the MCD
subset for sample y. These are the units that contribute to
the random (pooled) sample Y ∗ and to the vector of order
statistics d∗. Hardin and Rocke (2005, p. 936) showed that
for γ in the usual range of test size values

P {i ∈ y(MCD) | d2
i > d2

γ } → 1 as n → ∞. (16)

Therefore, the size of the intersection hypothesis (10) can be
approximated by

P {max∗ d2
i > d2

γ }, (17)

where max∗ denotes the maximum over the units in y(MCD).
For K sufficiently large, convergence of the empirical quan-
tiles of Y ∗ to their population values suggests estimating d2

γ

as

d̂2
γ = {d∗[L∗]}2, (18)

with L∗ = �(N∗ + 1)(1 − α/(n − h))�. It is also straightfor-
ward to see that under (16) the samples Y and Y ∗ share the
same extreme observations. Therefore

N − N∗ + L∗ = �(N + 1)(1 − α/n)� = L,

say, so that d̂2
γ = {d[L]}2 with probability tending to 1.

The calibration factors for tests MCD and RMCD at si-
multaneous size α are defined as

κ̂α,n,v = d̂2
γ /χ2

v,α/n. (19)
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Table 4 Calibration factors for
the multivariate outlier tests
MCD and RMCD for testing the
intersection hypothesis (10) at
nominal level α = 0.01.
Calibration factors are
computed on the same 50,000
simulations that give rise to
Table 3

n = 50 n = 75 n = 100 n = 150 n = 200 n = 300 n = 500

MCD 3.200 2.426 2.164 1.836 1.686 1.489 1.336

v = 2 RMCD 1.556 1.277 1.188 1.113 1.084 1.055 1.043

MCD 5.151 3.416 2.848 2.147 1.827 1.533 1.287

v = 4 RMCD 2.690 1.630 1.378 1.173 1.122 1.067 1.037

MCD 7.073 4.016 3.092 2.194 1.794 1.478 1.253

v = 6 RMCD 4.493 1.987 1.488 1.204 1.130 1.076 1.046

MCD 8.595 4.437 3.220 2.199 1.776 1.466 1.247

v = 8 RMCD 6.722 2.493 1.639 1.242 1.151 1.086 1.050

MCD 10.407 4.916 3.374 2.225 1.801 1.444 1.235

v = 10 RMCD 9.330 3.113 1.841 1.282 1.170 1.095 1.059

MCD 12.000 5.173 3.570 2.250 1.804 1.432 1.233

v = 12 RMCD 12.402 3.837 2.079 1.330 1.185 1.101 1.064

Fig. 1 Three-dimensional surfaces of simulated calibration factors (19) as a function of n and v, for MCD (left-hand panel) and RMCD (right-hand
panel) and α = 0.01

Table 4 provides these factors with d̂2
γ computed from the

same set of K = 50,000 simulations that give rise to Table 3,
in the case α = 0.01. As expected all the reported values of
κ̂α,n,v are larger than 1, and considerably so when n ≤ 100.
They represent the extent to which the asymptotic cut-off
χ2

v,0.01/n is underestimating the true cut-off d2
γ in (11) and

(12).

4.2 Parametric calibration

It is important for the usability of our corrections to have
simple interpolation formulas which could reproduce the
required calibration factor for all n and v, without the
need of performing any additional simulation. For this pur-
pose, we now extend the simulation design of Sect. 3
by considering a finer grid of sample sizes and dimen-
sions. We computed our calibration factors κ̂α,n,v for n ∈
{50,55,60,75,90,100,125,150,200,300,500}, 2 ≤ v ≤
13 and α ∈ {0.01,0.025,0.05}. We performed 100,000 sim-
ulations in the case n ≤ 75, 75,000 simulations for n = 90
and 50,000 simulations if n ≥ 100, in order to have compa-
rable pooled sample sizes N∗ across different values of n.

Figure 1 displays the three-dimensional surfaces of κ̂α,n,v

for MCD and RMCD as a function of n and v, when α =
0.01. It is clear from these pictures that the simulated cali-
bration factors (19) generally decrease with n and increase
with v, as already suggested by Table 4, and that there is
strong interaction between n and v. Both surfaces are rather
flat in the region n ≥ 200 but increase steeply when n < 100.
The slope for the MCD test decays more slowly than that for
RMCD, the value still being larger than 1.2 at n = 500. It is
interesting to note that the eastern border of each surface
is not smooth, an indication that the behaviour of κ̂α,n,v for
v even is somewhat different from that for v odd when the
sample size is small and v increases. A plausible explana-
tion is the slight truncation effect induced by the definition
of h in (18) when n + v is even and n is small. Furthermore,
failure of the FAST-MCD algorithm to provide the global
minimizer of the covariance determinant may enhance this
behaviour.

For fixed n, we smooth the relationship between κ̂0.01,n,v

and v through the exponential function

κ̃α,n,v = b0 + b1I (v) + b2 exp(b3v), (20)
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Fig. 2 MCD: relationship
between ln(κ̂0.01,n,v) and v for
different values of n. Solid lines:
simulated calibration factors;
dashed lines: fit from (20)

Fig. 3 RMCD: relationship
between ln(κ̂0.01,n,v) and v for
different values of n. Solid lines:
simulated calibration factors;
dashed lines: fit from (20)

where κ̃α,n,v = ln(κ̂α,n,v) and the parameters b0, b1 and b2

depend on the chosen value of n. The dummy I (v) takes
the value 1 if v is odd and 0 otherwise. It accounts for the
different behaviour of calibration factors for v odd and n

small, as already depicted in Fig. 1. The parameter b1 is
constrained to be 0 if n > 100. Function (20) is fitted to
the simulated calibration factors by nonlinear least squares
and a Gauss code for performing this task is available at
http://www.riani.it/mcd. The web site also contains the in-
terpolated calibration factors exp(κ̃α,n,v), for v = 2, . . . ,15,
α ∈ {0.01,0.025,0.05} and n as in our simulation grid, to-
gether with the fitted coefficients b0, b1 and b2. Figures 2

and 3 show the relationship between ln(κ̂0.01,n,v) and v for
selected values of n, together with the interpolated calibra-
tion factors from function (20). From these pictures it is ap-
parent the fit is almost perfect for both MCD and RMCD.
The plots for the other values of α are similar and are there-
fore omitted.

Equation (20) provides a way to compute the required
calibration factor for any v, given a value of n and a test size
α belonging to our simulation grid. The final step is linear
interpolation of the smoothed calibration factors exp(κ̃α,n,v)

with respect to n and α, to obtain the desired correction, say
κα,n,v , for the value of n at hand and for the required size α.

http://www.riani.it/mcd
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Table 5 Estimated size of the calibrated tests MCD and RMCD under the intersection hypothesis (10) with nominal level α = 0.01. Size is
computed on 5,000 new simulations for each combination of n and v

n = 48 n = 52 n = 58 n = 70 n = 82 n = 95 n = 175

MCD 0.008 0.011 0.009 0.012 0.011 0.009 0.007

v = 6 RMCD 0.009 0.008 0.008 0.008 0.009 0.009 0.010

MCD 0.009 0.009 0.009 0.012 0.008 0.007 0.009

v = 8 RMCD 0.008 0.008 0.008 0.011 0.007 0.009 0.008

MCD 0.010 0.010 0.010 0.011 0.010 0.007 0.007

v = 10 RMCD 0.010 0.009 0.008 0.010 0.008 0.008 0.010

MCD 0.008 0.008 0.006 0.005 0.006 0.008 0.007

v = 11 RMCD 0.009 0.008 0.007 0.006 0.004 0.009 0.007

MCD 0.010 0.009 0.011 0.014 0.010 0.007 0.007

v = 12 RMCD 0.009 0.010 0.007 0.008 0.007 0.008 0.007

MCD 0.014 0.014 0.015 0.012 0.008 0.011 0.008

v = 14 RMCD 0.013 0.011 0.011 0.009 0.007 0.011 0.010

MCD 0.016 0.010 0.008 0.010 0.009 0.012 0.010

v = 15 RMCD 0.013 0.008 0.005 0.006 0.005 0.010 0.009

4.3 Size of calibrated tests

The adequacy of our parametric calibration procedure is
checked through a new Monte Carlo experiment. In this
experiment we generate 5,000 independent n-dimensional
samples y from the v-variate N(0, I ) distribution for a num-
ber of values of n and v. As in Sect. 3.2, size is estimated as
the proportion of simulated data sets for which hypothesis
(10) is rejected. The cut-off squared distance for rejection is
now the calibrated threshold

d2
γ = κα,n,vχ

2
v,α/n, (21)

with κα,n,v computed following the procedure of Sect. 4.2.
Table 5 summarizes the results for α = 0.01 in the more

critical situation where n < 200 and v ≥ 6. To avoid the pos-
sible danger of overfitting we only focus on sample sizes
not belonging to the simulation grid of Sect. 4.2. Indeed, all
the reported values of n are intermediate between the grid
nodes used in the calibration study. The results are thus in-
tended to show the worst-case behaviour of our procedure.
In spite of this the performance of the calibrated tests is gen-
erally excellent, with estimated sizes close to the nominal
0.01 and moderate conservativeness occurring occasionally
when v > 10.

It is worth noting that performance is still satisfactory
close to, and even beyond, the boundary of the interpola-
tion range, as shown when v ≥ 12 and n ≤ 52. This is a re-
markable result in view of the sparsity of multivariate space
with so few observations per dimension. Due to the curse
of dimensionality, Rousseeuw and van Zomeren (1990, p.

649) stated that “any outlier method can get into trouble”
if n/v is relatively small and, as a rule of thumb, they rec-
ommended applying robust multivariate methods only when
n/v > 5. Table 5 demonstrates that this is not the case for
our technique. The null hypothesis of no outliers in the data
can be safely tested via (21) in otherwise problematic situa-
tions with at most four observations per dimension.

These findings are complemented by Table 6, which
shows the estimated sizes of the calibrated tests under the
individual hypothesis (9) with nominal level α = 0.01/n

for the smallest values of n. The agreement between nom-
inal and actual sizes of individual tests is good, confirming
that (18) yields reliable estimates of d2

γ even in relatively
small samples. Furthermore, as anticipated in Sect. 3.2, the
effect of Bonferronization when combining the n individual
tests into a simultaneous one is modest and produces only a
slight amount of conservativeness.

4.4 Hints on power of calibrated tests

A decrease in power is to be expected when strong con-
trol on the size of multiple outlier tests based on robust dis-
tances is achieved. Some evidence of this behaviour is given
in Riani et al. (2009), who consider the tests MCD-HR and
MCD-CH. Here we focus on the calibrated tests of Sect. 4.2,
MCDCAL and RMCDCAL say, and compare them to their
non-calibrated counterparts. For this purpose, we now simu-
late n-dimensional samples from a v-variate location-shift
model with constant contamination on all variables, yi ∼
N(δe, I ), where δ is a positive scalar and e is a column-
vector of ones. For a specified contamination rate ω < 0.5,



Stat Comput (2009) 19: 341–353 351

Table 6 Size of the calibrated tests MCD and RMCD under the individual hypothesis (9) with nominal level α = 0.01/n. Size is computed on the
same simulations as Table 5

v = 6 v = 8 v = 10 v = 11 v = 12

n = 48 MCD 0.00020 0.00024 0.00024 0.00020 0.00030

α = 0.00021 RMCD 0.00033 0.00023 0.00025 0.00024 0.00025

n = 52 MCD 0.00023 0.00020 0.00024 0.00020 0.00020

α = 0.00019 RMCD 0.00021 0.00020 0.00021 0.00020 0.00022

n = 58 MCD 0.00018 0.00018 0.00021 0.00012 0.00024

α = 0.00017 RMCD 0.00020 0.00017 0.00020 0.00013 0.00017

Fig. 4 Simultaneous power for MCD-based tests under a multivariate location-shift model with v = 5 and contamination rate ω = 0.05: n = 60
(left) and n = 200 (right)

each simulated data set is composed of 100(1 − ω)% ob-
servations from N(0, I ) and 100ω% observations from the
contaminated model.

The results on rejection of the simultaneous hypothesis
(10) in the case ω = 0.05 are shown in Fig. 4, for two val-
ues of n, v = 5 and several values of δ. Simultaneous power
is defined as the probability of finding at least one outlier
and is estimated using 10,000 simulated data sets. Obvi-
ously the results for δ = 0 repeat the findings of Table 3,
showing that the standard MCD tests have unacceptable er-
ror rates in small and moderate samples. The shape of the
power function of the calibrated tests is similar to that of
their liberal versions, but now, starting from approximately
the same size, RMCDCAL clearly outperforms MCDCAL
as δ increases. The power of the calibrated tests also in-
creases with n and the gap between RMCDCAL and RMCD
reduces as the contamination shift is more pronounced. This
gap becomes negligible for n = 200 and δ ≥ 2.

When the intersection hypothesis (10) has been rejected
and at least one outlier has been found, it remains to answer
the important question of which of the observations actu-
ally come from the contaminated model. Figure 5 reports

the average power of the different procedures, defined as the
proportion of contaminated observations which are correctly
named as outliers. Since these power results can only be ob-
tained under the alternative, the plots now start at δ = 1.0.
The main findings remain unaltered, although it is seen that
the average power of all the tests is appreciably smaller than
simultaneous power for a given contamination shift.

In summary, our power simulations show that the cali-
brated RMCD test is the one to be recommended among
the various MCD procedures considered in this paper. It
achieves strong control on the size of the hypothesis of no
outliers in the data and has reasonably good power proper-
ties for moderate to high contamination.

5 Conclusions

In this paper we have proposed a new calibration method
for obtaining reliable cut-off points of robust distances de-
rived from the MCD estimator of scatter, as implemented by
Rousseeuw and Van Driessen (1999) and subsequently mod-
ified by Pison et al. (2002). We have shown that our proce-



352 Stat Comput (2009) 19: 341–353

Fig. 5 Average power for MCD-based tests under a multivariate location-shift model with v = 5 and contamination rate ω = 0.05: n = 60 (left)
and n = 200 (right)

dure gives reliable tests of outlyingness in almost all situ-
ations of practical interest, provided that the sample size is
not much smaller than 50. It is a considerable improvement
over all the available MCD procedures, even the adjusted
versions of Croux and Haesbroeck (1999) and Hardin and
Rocke (2005), which were seen to be unable to provide good
control over the size of multiple outlier tests for the data
structures considered here. Furthermore, our corrections are
also available for the more efficient reweighted MCD test
not considered by Hardin and Rocke (2005). On the other
hand, additional work should be carried out in order to ob-
tain appropriate calibration factors for very small samples.

We have been mainly concerned with the problem of de-
tecting multiple outliers in a sample. We have addressed the
problem of multiplicity of tests through a Bonferroni ap-
proach. Although we have shown that conservativeness is
not a matter of great concern due to approximate indepen-
dence of individual tests and that our calibrated tests have
reasonable power properties, there might be more efficient
ways to address simultaneity in the present context. The de-
velopment of more powerful procedures is the subject of on-
going research.
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