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Featured Application: This technique for controlling spatial coherence can be used for

beam shaping and reducing scintillation (or fades) in directed energy and free-space optical

communication applications.

Abstract: This paper presents the theory for controlling the spectral degree of coherence via spatial

filtering. Starting with a quasi-homogeneous partially coherent source, the cross-spectral density

function of the field at the output of the spatial filter is found by applying Fourier and statistical

optics theory. The key relation obtained from this analysis is a closed-form expression for the filter

function in terms of the desired output spectral degree of coherence. This theory is verified with

Monte Carlo wave-optics simulations of spatial coherence control and beam shaping for potential use

in free-space optical communications and directed energy applications. The simulated results are

found to be in good agreement with the developed theory. The technique presented in this paper will

be useful in applications where coherence control is advantageous, e.g., directed energy, free-space

optical communications, remote sensing, medicine, and manufacturing.

Keywords: coherence; fourier optics; spatial filtering; statistical optics

1. Introduction

Following the nomenclature and notation of Emil Wolf [1], a partially coherent source (PCS) is

defined by its autocorrelation function, better known as the mutual coherence function (MCF):

Γ (ρ1, ρ2; t1, t2) = 〈U (ρ1, t1)U∗ (ρ2, t2)〉, (1)

where U (ρ, t) is an instance of a random optical field evaluated at position ρ = x̂x + ŷy and time t,

∗ is the complex conjugate, and 〈〉 is the average over the ensemble of U realizations. The first and

second moments of many optical sources vary slowly with time such that they can be considered

static. This characteristic is referred to as wide-sense stationary and implies that the MCF defined in

Equation (1) depends temporally only on the time difference τ = t1 − t2.

The temporal Fourier transform of the MCF is the cross-spectral density (CSD) function:

W (ρ1, ρ2; ω) =
1

2π

∫

∞

−∞

Γ (ρ1, ρ2; τ) exp (jωτ)dτ, (2)

where ω is the radian frequency. Letting ρ1 = ρ2 = ρ yields the spectral density (SD), namely,

S (ρ; ω) = W (ρ, ρ; ω) , (3)
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which is the optical intensity at frequency ω. Normalizing the CSD produces the spectral degree of

coherence (SDoC), i.e.,

µ (ρ1, ρ2; ω) =
W (ρ1, ρ2; ω)

√

S (ρ1; ω) S (ρ2; ω)
, (4)

which is a measure of the spatial coherence of the source at frequency ω.

Working with the CSD, as opposed to the MCF, has two significant advantages. The first is the

separation of spatial and temporal coherence. In the MCF, time and space are coupled in such a way

that determining whether the phenomenon is caused by temporal or spatial coherence can be difficult.

On the other hand, the CSD provides a measure of the spatial coherence of an optical source at a

certain frequency ω. In this way, the CSD is much more physical than the MCF, and this physical

utility has led to the prediction and subsequent experimental validation of many counter-intuitive

optical phenomena, most notably, coherence-induced spectral changes [1,2] and coherence-induced

polarization changes [3–5].

The second advantage is analytical efficiency. The expression for the propagation of mutual

coherence is a complicated four-dimensional (4D) integral over space, where space and time are

coupled [6]. The typical approach for dealing with this is to assume that the source is narrowband

and quasi-monochromatic. These assumptions simplify the mutual coherence propagation expression

significantly; however, they restrict the applicability of the results. On the other hand, the expression

for the propagation of CSD—in its most general, paraxial form—is a 4D Fresnel transform [1,5].

In many practical scenarios, the 4D Fresnel transform simplifies to a 4D Fourier transform. The results

obtained using these propagation integrals are accurate regardless of the source’s bandwidth.

Wolf’s CSD formalism has led to the understanding and prediction of many optical phenomena.

Among these, Wolf and others showed that a spatially partially coherent beam (PCB) can be highly

directional similar to a laser [1,7–9]. Other research soon followed, showing that the reduced spatial

coherence of PCBs makes them less susceptible to scintillation or speckle [5,10–13]. These two

discoveries have motivated much of the recent PCS research because high directionality and

speckle/scintillation resistance are ideal source characteristics for directed energy, free-space optical

communications (FSOC), medical, and numerous other applications.

Because of their many potential uses, the literature is replete with techniques to synthesize sources

with controllable spatial coherence. A survey of the literature reveals two general approaches for

generating PCBs. The first starts with a spatially coherent source, commonly a laser, and “spoils”

the coherence by randomizing the wavefront. This is accomplished using spatial light modulators

(SLMs) or rotating ground glass diffusers (GGDs) [5,14,15]. The second approach starts with a spatially

incoherent source, an LED for instance, and exploits the Van Cittert–Zernike theorem (VCZT) or

uses spatial-frequency filters (typically referred to as just spatial filters) to synthesize the desired

source [16–20]. Hybrid approaches have also been developed [11,12,21].

The “coherent” and “incoherent” PCS synthesis methods discussed above have pros and cons

that make one more suitable for a specific application than the other. FSOC is a good example and

will be the focus of the remainder of this paper because of the author’s research interests. In FSOC,

the source’s wavefront cycling rate, i.e., the rate at which the source produces statistically independent

wavefronts, must be at least 10–100 times larger than the communication modulation frequency. This is

so the detector integrates many independent intensity realizations per digital bit to reduce scintillation

caused by atmospheric turbulence between the transmitter and receiver. Considering that FSOC data

rates are gigabits to potentially terabits per second and SLM frame rates and GGD rotation rates are

optimistically 10 kHz, spoiling the coherence of a laser source is not a realistic option.

On the other hand, the wavefront cycling rate of a spatially incoherent source (e.g., an LED,

thermal source, et cetera) is determined by the physics of how the source generates light (for the

aforementioned sources, the physical mechanism is spontaneous emission) and is ultimately related to

the source’s bandwidth [6]. The bandwidths of such sources applicable to FSOC vary from a couple

THz to 10 s of THz. Even for sources at the low end of this range, the wavefront cycles so quickly that
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100 gigabit per second data rates are possible. Because of this, the incoherent option is the only viable

approach for FSOC applications.

Of the two incoherent techniques, i.e., VCZT and spatial filtering, the latter has many advantages

including simplicity and compactness. Surprisingly, despite these advantages and its common use

in optical Fourier processing [22], the spatial filtering of a partially coherent source (PCS) has been

discussed in relatively few papers [19,20,23,24]. These references, after presenting the requisite Fourier

and statistical optics theory, generally focus on specific PCSs, e.g., Gaussian Schell model [1,5] or

incoherent sources. Simple, physical, “engineering” expressions for the PCS at the filter output,

or directions for designing/choosing a filter to produce a desired beam are not presented.

The goal of this paper is to derive these expressions and demonstrate their use. In the next section,

starting with a stochastic source field, the field at the output of a general spatial filter is derived.

Taking the autocorrelation of the output field and assuming that the source field can be modeled as

a quasi-homogeneous source [1,6] yields closed-form, approximate expressions for the output SD

and SDoC. Inverting the SDoC expression produces a function for the filter in terms of the desired

output SDoC. Lastly, Section 3 validates these theoretical expressions and demonstrates how to use

them to control coherence and beam shape via Monte Carlo wave-optics simulations.

2. Materials and Methods

2.1. Fourier and Statistical Optics Theory

The spatial filter geometry is shown in Figure 1. This simple geometry depicts a random field

passing through a two-lens system. The source plane is one focal length f1 in front of L1. The field

passes through L1 and then a complex amplitude filter T placed at the rear focus of L1. The location

of T also corresponds to the front focal plane of L2. The field then transits L2 before finally being

observed in L2’s rear focal plane.

L
2

L
1

1
f

1
f

2
f

2
fsrcU

outU
T

Figure 1. Spatial filter geometry.

Assuming that L1 is large enough in diameter to collect all the light emitted from the source,

the field in L1’s focal plane, right before T, is

U
(

ρ, f−1
)

=
exp (jk f1)

jλ f1

∫∫

∞

−∞

Usrc
(

ρ
′
)

exp

(

−j
k

f1
ρ · ρ

′

)

d2ρ′

=
exp (jk f1)

jλ f1
Ũsrc

(

ρ

λ f1

) , (5)

where ρ is the observation vector, ρ′ is the source vector, k = 2π/λ, and λ is the wavelength [22].

The random source field Usrc is assumed to be a sample function drawn from a wide-sense stationary

random process (the dependence of Usrc on radian frequency ω is assumed and suppressed), and Ũsrc

is the spatial Fourier transform of Usrc:

Ũsrc ( f ) =
∫∫

∞

−∞

Usrc (ρ) exp (−j2π f · ρ)d2ρ, (6)

where f = x̂ fx + ŷ fy is the spatial frequency vector.
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The field immediately to the right of the complex amplitude filter is

U
(

ρ, f+1
)

= T (ρ)U
(

ρ, f−1
)

=
exp (jk f1)

jλ f1
T (ρ) Ũsrc

(

ρ

λ f1

)

. (7)

Lastly, assuming that L2 is large enough to capture all the light that passes through T, the field at

the output of the spatial filter Uout is [22]

U (ρ, f2) = Uout (ρ)

=
exp (jk f2)

jλ f2

∫∫

∞

−∞

U
(

ρ
′, f+1

)

exp

(

−j
k

f2
ρ · ρ

′

)

d2ρ′

= −
exp [jk ( f1 + f2)]

λ2 f1 f2

∫∫

∞

−∞

T
(

ρ
′
)

Ũsrc

(

ρ′

λ f1

)

exp

(

−j
k

f2
ρ · ρ

′

)

d2ρ′

. (8)

The output field given in Equation (8) is for a single realization of the random source field Usrc.

Taking the autocorrelation of Uout produces

〈Uout (ρ1)Uout∗ (ρ2)〉 = Wout (ρ1, ρ2)

=
1

(λ2 f1 f2)
2

∫∫∫∫

∞

−∞

T
(

ρ
′
1

)

T∗
(

ρ
′
2

)

W̃src

(

ρ′
1

λ f1
,

ρ′
2

λ f1

)

exp

[

−j
k

f2

(

ρ1 · ρ
′
1 − ρ2 · ρ

′
2

)

]

d2ρ′1d2ρ′2
, (9)

where Wout is the output CSD function [1,5] and W̃src is the Fourier transform of the source

CSD function. It is quite easy to show that an equivalent and more physical expression for Wout is

Wout (ρ1, ρ2) =

[

M

(λ f2)
2

]2
∫∫∫∫

∞

−∞

Wsrc
(

ρ
′
1, ρ

′
2

)

T̃

(

ρ1 − Mρ′
1

λ f2

)

T̃∗

(

ρ2 − Mρ′
2

λ f2

)

d2ρ′1d2ρ′2, (10)

where M = − f2/ f1 is the magnification. This expression states that Wout is the scaled convolution

of Wsrc with the Fourier transform of the CSD function of T. In arriving at Equations (9) and (10),

no assumptions have been made about the spatial statistics of Usrc; thus, they are accurate for a source

of any state of coherence.

To make further progress, an analytical form for Wsrc is needed. Because of its use in FSOC

research, the physical source modeled here is the output of a multimode fiber (MMF) excited by a

“broadband” (1–2 THz) laser [25–27]. This source can be approximated by a quasi-homogeneous CSD

function [1,5,6], which takes the form

Wsrc (ρ1, ρ2) = Ssrc

(

ρ1 + ρ2

2

)

µ
src (ρ1 − ρ2) , (11)

where Ssrc is the source’s SD, µsrc is the source’s SDoC, and Ssrc is a “slow function” (varies slowly)

compared to µ
src.

Taking the Fourier transform of Equation (11) and substituting the resulting expression

into Equation (9) produces

Wout (ρ1, ρ2) =
1

(λ2 f1 f2)
2

∫∫∫∫

∞

−∞

T
(

ρ
′
1

)

T∗
(

ρ
′
2

)

µ̃
src

(

ρ′
1 + ρ′

2

2λ f1

)

×S̃src

(

ρ′
1 − ρ′

2

λ f1

)

exp

[

−j
k

f2

(

ρ1 · ρ
′
1 − ρ2 · ρ

′
2

)

]

d2ρ′1d2ρ′2

. (12)
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Making the variable substitutions s = ρ′
1 − ρ′

2 and t =
(

ρ′
1 + ρ′

2

)

/2 and simplifying, yields

Wout (ρ1, ρ2) =
1

(λ2 f1 f2)
2

∫∫

∞

−∞

µ̃
src

(

t

λ f1

)

exp

[

−j
k

f2
(ρ1 − ρ2) · t

]

×
∫∫

∞

−∞

T

(

t +
1

2
s

)

T∗

(

t −
1

2
s

)

S̃src

(

s

λ f1

)

exp

[

−j
k

f2

(

ρ1 + ρ2

2

)

· s

]

d2sd2t

. (13)

Now, assuming S̃src is a very narrow function of s (much narrower than T), Equation (13) can be

approximated as

Wout (ρ1, ρ2) ≈
1

(λ2 f1 f2)
2

∫∫

∞

−∞

|T (t)|2 µ̃src

(

t

λ f1

)

exp

[

−j
k

f2
(ρ1 − ρ2) · t

]

d2t

×
∫∫

∞

−∞

S̃src

(

s

λ f1

)

exp

[

−j
k

f2

(

ρ1 + ρ2

2

)

· s

]

d2s

. (14)

Note that this assumption is equivalent to assuming that the integrand of Equation (12), without

the Fourier kernel, is another quasi-homogeneous source. Evaluating the above Fourier integrals

produces

Wout (ρ1, ρ2) =
1

M2
Ssrc

(

ρ1 + ρ2

2M

)

µfilt (ρ1 − ρ2)

µ
filt (ρ1 − ρ2) =

∫∫

∞

−∞

|T (λ f1u)|2 µ̃src (u) exp

[

j2π

(

ρ1 − ρ2

M

)

· u

]

d2u

. (15)

The output SD and SDoC are

Sout (ρ) = Wout (ρ, ρ) =
1

M2
Ssrc

(

ρ

M

)

µfilt (0)

µ
out (ρ1, ρ2) =

Wout (ρ1, ρ2)
√

Sout (ρ1) Sout (ρ2)
≈

µ
filt (ρ1 − ρ2)

µfilt (0)

. (16)

Note that the output SD Sout (physically, the source shape) is a magnified version of Ssrc, and the

output SDoC µ
out is a magnified and filtered version of µsrc.

Although expressions for Sout and µ
out have been derived, an equation for T in terms of µout

(i.e., what T yields a given µ
out) is most useful. Starting with the above expression for µ

out given

in Equation (16) and assuming that µ̃src is a slow function compared to T (this is actually a consequence

of Wsrc assuming a quasi-homogeneous form) produces

µ
out (ρ1 − ρ2) ≈

∫∫

∞

−∞
|T (λ f1u)|2 exp

[

j2π
(

ρ1−ρ2
M

)

· u
]

d2u
∫∫

∞

−∞
|T (λ f1u)|2 d2u

. (17)

Letting ∆ρ = ρ1 − ρ2 for convenience and substituting t = λ f1u into both the numerator and

denominator integrals simplifies Equation (17) to

µ
out (∆ρ) =

∫∫

∞

−∞
|T (t)|2 exp

[

−j2π
(

∆ρ

λ f2

)

· t
]

d2t
∫∫

∞

−∞
|T (t)|2 d2t

. (18)

Applying the Fourier transform defined in Equation (6) to both sides of Equation (18) produces

the desired result:

|T (−λ f2 f )|2
∫∫

∞

−∞
|T (λ f2 f )|2 d2 f

=
∫∫

∞

−∞

µ
out (∆ρ) exp (−j2π f · ∆ρ)d2

∆ρ = Φ
out ( f ) . (19)
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This expression states that the spatial power spectrum of the output field Φ
out (the Fourier

transform of µout) is proportional to the magnitude squared of T rotated 180◦. The proportionality

constant is there to normalize the area under the power spectrum; it is inconsequential in practice.

The above interpretation of Equation (19) leads to the following steps for finding T:

1. Choose the desired output SDoC µ
out.

2. Compute the spatial Fourier transform of µout to find Φ
out.

3. Take the square root of Φ
out to find the magnitude of T.

4. Normalize T such that max
ρ∈R2

|T (ρ)| = 1.

5. Rotate T 180◦.

It should be stated that Equations (16) and (19) are accurate if the following three conditions hold:

1. The diameters of lenses L1 and L2 are large enough to collect all the light emitted from the source

and the light that passes through the spatial filter T, respectively.

2. The random source field Usrc is well approximated by a CSD function with a

quasi-homogeneous form.

3. S̃src is a fast function (narrow function) compared to T.

The first item is easily met in practice by using ray tracing and other standard optical design

techniques. The second criterion is true for “spatially incoherent” sources such as LEDs or,

applicable here, the light emitted from a broadband-laser-excited MMF. The third condition is the

hardest to satisfy in practice. The effects of violating this condition are shown in Section 3.1.

Because of the assumptions that underpin the analysis (enumerated above), Equations (16)

and (19) are approximations of the output PCS moments. Recall that the goal here was to find simple,

physical, “engineering” expressions that could be used to design a spatial filter that would produce a

desired PCS. Equations (16) and (19) achieve that objective.

2.2. Simulation Details

The purpose of the Monte Carlo wave-optics simulations is to validate the above analysis and to

demonstrate how to apply it, specifically Equations (16) and (19), to generate a desired PCS. Before

proceeding to the results, a brief discussion of the set-up is warranted.

To simulate the output of a MMF fed by a broadband laser [25–27], Wsrc took the form

Wsrc (ρ1, ρ2) = circ

(

ρ1

Dc/2

)

circ

(

ρ2

Dc/2

)

jinc

(

k

2
NA |ρ1 − ρ2|

)

, (20)

where circ (x) is the circle function defined by Goodman [22], jinc (x) = 2J1 (x) /x, and J1 is a first-order

Bessel function of the first kind. The fiber’s core diameter and numerical aperture were Dc = 105 µm

and NA = 0.22, respectively. The simulated wavelength was λ = 635 nm. Instances of Usrc were

synthesized from Wsrc using the method described in [28].

The focal lengths of the lenses comprising the spatial filter were f1 = 100 mm and f2 = 500 mm

(see Figure 1). The source, focal, and output planes were discretized using 512 points per side with grid

spacings equal to 0.8203 µm, 0.1512 mm, and 4.102 µm, respectively. All propagations were performed

using fast Fourier transforms [29].

The desired, output SDoC µ
out (after filtering) was

µ
out (ρ1 − ρ2) = sinc2

(

π
x1 − x2

2Dc

)

sinc2

(

π
y1 − y2

4Dc

)

, (21)

where sinc (x) = sin (x) /x. This SDoC was chosen to show that a source with a rotationally invariant

CSD function (see Equation (20)) can be transformed (via filtering) into one with different, specified x
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and y correlation lengths. The required T to synthesize a source with this SDoC was determined using

the five steps enumerated above. Figure 2a shows this T.

Figure 2. Spatial filter T images: (a) spatial coherence control simulation (Section 3.1); and (b) beam

shaping simulation (Section 3.2).

The simulated output SD Sout,sim and µ
out,sim were computed from 2000 propagated instances

of Usrc. These results were then compared to the theoretical predictions given in Equation (16).

All simulations were performed using MATLAB® version R2017a (The MathWorks, Inc., Natick, MA,

USA); the scripts (.m files) are included as Supplementary Materials.

3. Results and Discussion

3.1. Spatial Coherence Control

Figure 3 shows the simulation results. Figure 3a,b shows the theoretical and simulated SDs

(Sout,thy obtained from Equation (16) and Sout,sim); Figure 3c,d shows the theoretical and simulated

SDoCs (µout,thy given in Equation (21) and µ
out,sim); Figure 3e,f shows the y = 0 and x = 0 slices

through Sout,thy and Sout,sim; and Figure 3g,h shows the y = 0 and x = 0 slices through µ
out,thy

and µ
out,sim.

The Sout,thy and Sout,sim results noticeably disagree. This occurs because S̃src is not a fast function

compared to T, viz., Criterion 3 is violated. Recall that this assumption was made in going from

Equation (13) to Equation (14). The width of µout in the y direction is larger than in the x direction (see

Equation (21)). The Fourier transform relationship between T and µ
out means T has complementary

widths to µ
out, i.e., T is wider in the x direction than in the y direction. This µout-T relationship explains

why Sout,sim compares better to Sout,thy in Figure 3e than in Figure 3f.

Although Sout,thy and Sout,sim disagree, the objective here is to control spatial coherence as

measured by the SDoC. Figure 3c,d,g,h shows these results. Clearly, the effects of violating Criterion 3

are generally limited to the output SD because the agreement between µ
out,thy and µ

out,sim is excellent.

These results validate the PCS spatial filtering method presented here.
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Figure 3. Simulation results demonstrating coherence control using a spatial filter: (a) Sout,thy obtained

from Equation (16); (b) Sout,sim; (c) µout,thy given in Equation (21); (d) µout,sim; (e) y = 0 slices of Sout,thy

and Sout,sim; (f) x = 0 slices of Sout,thy and Sout,sim; (g) y = 0 slices of µout,thy and µ
out,sim; and (h) x = 0

slices of µout,thy and µ
out,sim.

3.2. Beam Shaping

The results presented in Figure 3 demonstrated that the output SDoC could be precisely controlled

by the proper choice of T. A related application where the Section 2.1 analysis can also be applied is

beam shaping.

The goal in beam shaping is to produce a beam with a desired SD at a desired location—typically,

at the focus of a lens or, equivalently, in the far zone of the source. Referring back to Equation (15),

propagating Wout to the far field, and setting ρ1 = ρ2 = ρ yields the far-zone SD:

Sfz (ρ, z) ≈
M2

λ2z2
S̃src (0) µ̃src (0)

∣

∣

∣
T
(

− f2
ρ

z

)∣

∣

∣

2
. (22)

Note that the source takes the shape of the absolute square of the filter—magnified and rotated

180◦—in the far field. This can be exploited to produce beams of any desired shape.

As an example, Figure 4 shows the results of a beam shaping simulation. The source (see

Equation (20)) and set-up were identical to that described in Section 2.2, only T was changed to

produce a beam with a more complex shape. Figure 2b shows this T.

Figure 4a,b shows Sout,thy (obtained from Equation (16)) and Sout,sim, respectively. By design,

these SDs should look very similar to those in Figure 3a,b—the differences are due to the different T.

Figure 4c shows the absolute value of the pixel-by-pixel difference of Figure 4a,b.

Figure 4d,e shows the theoretical and simulated far-zone SDs, Sfz,thy obtained from Equation (22)

and Sfz,sim, respectively. The theoretical far-zone SD Sfz,thy is the desired beam shape. Sfz,sim was

computed from 2000 far-zone propagated instances of Uout (these propagations were simulated using

fast Fourier transforms [29]), which were obtained from 2000 instances of Usrc, synthesized in the

manner described in [28]. Similarly, Figure 4c,f shows the absolute value of the pixel-by-pixel difference

of Figure 4d,e.

The agreement between the simulated and theoretical SDs is excellent. These results further

validate the analysis presented in Section 2.1.



Appl. Sci. 2018, 8, 1465 9 of 11

Figure 4. Simulation results demonstrating beam shaping using a spatial filter: (a) Sout,thy obtained

from Equation (16); (b) Sout,sim; (c) absolute value of the difference of (a,b); (d) Sfz,thy obtained from

Equation (22); (e) Sfz,sim; and (f) absolute value of the difference of (d,e).

If one were to physically generate this source, it would start as partially coherent light emitted

from a MMF. It would exit the spatial filter as a circular flat-topped beam, as shown in Figure 4a,b.

As the beam propagated away from the spatial filter output plane, it would morph into the Celtic cross

image shown in Figure 4d,e.

4. Conclusions

The control of an optical source’s SDoC via spatial filtering was demonstrated. Starting with a

quasi-homogeneous random field, the optical field at the output of a general spatial filter was derived.

Taking moments of the stochastic output field yielded closed-form expressions for the output SD and

SDoC. The key relation which resulted from this analysis was a closed-form expression for the filter

function T in terms of the desired SDoC.

The analytical SD and SDoC equations derived in Section 2.1 were verified by Monte

Carlo analysis. First, the T required to produce a specified SDoC was found using the steps

developed and discussed in Section 2.1. Then, simulating a source used in FSOC research (namely,

the stochastic field emitted from a MMF excited by a broadband laser source) and a simple spatial filter

containing T, the output SD and SDoC were computed from many independent realizations of the

source field. Lastly, the simulated output SD and SDoC were compared to the theoretical predictions.

The agreement between the two was generally good with some discrepancies between the simulated

and theoretical SDs. The reason for these differences was discussed.

In addition, a beam shaping simulation was also performed to demonstrate another use

of coherence control via spatial filtering. Using the analytical relations derived in Section 2.1,

an approximate expression for the desired far-zone SD, in terms of the filter function T, was derived.

This equation was used to find the T required to synthesize a beam with a complex shape.

The simulated results were in excellent agreement with the derived, analytical SDs.

The spatial filtering technique presented in this paper has many advantages over other PCS

synthesis methods. First and foremost among them is speed. As discussed in the Introduction,

the wavefront cycling rate for this method can be 10s of THz, which is 109 times faster than SLM- or

GGD-based approaches. When compared against other incoherent synthesis techniques (e.g., VCZT),
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spatial filtering is simpler to implement. As demonstrated in Section 3, changing the output field

SDoC requires only a filter change. These pros make PCS spatial filtering useful in any application

where coherence control is advantageous. These include, but are not limited to, FSOC, directed energy,

medicine, manufacturing, and remote sensing.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/2076-3417/8/9/
1465/s1.
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