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Controlling thermal emission of 
phonon by magnetic metasurfaces
X. Zhang1,2, H. Liu1, Z. G. Zhang1, Q. Wang1 & S. N. Zhu1

Our experiment shows that the thermal emission of phonon can be controlled by magnetic resonance 

(MR) mode in a metasurface (MTS). Through changing the structural parameter of metasurface, the 

MR wavelength can be tuned to the phonon resonance wavelength. This introduces a strong coupling 

between phonon and MR, which results in an anticrossing phonon-plasmons mode. In the process, 

we can manipulate the polarization and angular radiation of thermal emission of phonon. Such 

metasurface provides a new kind of thermal emission structures for various thermal management 

applications.

In recent years, the research interest of thermal emission in the infrared wavelength range is growing fast due 
to its important applications in thermaophotovoltaic (TPV) devices1, radiative cooling2,3, incandescent source4, 
near-�eld heat transfer5, and infrared spectroscopy6. Up to now, various structures and systems have been used 
to control thermal emission, such as gratings7,8, nanoantennas9,10, photonic crystals11, surface plasmons12–14,  
metamaterials15–17 and metasurfaces (MTS)18,19. Some properties of thermal emission, such as the emission band-
width20, coherent properties7 and dynamics switching21,22 are reported to be controlled in these systems.

In physics, thermal emission is caused by the elementary excitations in materials, such as phonon in polar 
dielectric7,18, exciton in semiconductor20,21, and plasmons in metals. Up to now, most of related published papers 
investigated thermal emission produced by only one elementary excitation. �ere are few work to explore the 
simultaneous contribution of di�erent elementary excitations to thermal emission. In the infrared frequencies, 
phonons, the quantum emitter as the ‘�ngerprints’ of materials characterizing the vibrations of constitution atoms, 
are the eigen states of materials. And manipulating thermal emission of phonons is important in electronics,  
optics, bimolecular, and integrated circuits23–26. However, the thermal emission of phonon is usually weak and 
hard to be controlled. On the other hand, plasmons of di�erent metallic nanostructures can be easily controlled 
through structural designing. In this work, we will show that thermal emission of phonon can be well controlled 
through phonon-plasmons coupling in magnetic metasurfaces.

Compared with bulk metamaterials, 2-D MTS are more easily fabricated and the optical loss can be suppressed 
greatly27–29. Up to now, MTS has been widely used in anomalous negative refraction30–32, beam shaping33–35,  
surface wave excitation18,36,37, hologram38,39, reflection phase40, mathematical operation41, polarization  
controlling42–47, functional mirrors48,49, nonlinear devices50,51, invisible cloaking52 and subwavelength imaging53. 
Among di�erent metasurface resonance unit designs, metal/insulation/metal (MIM) sandwich resonator has very 
strong local MR mode and is easily fabricated. MIM resonator has been used in magnetic �eld enhancement54, 
magnetic polariton55, magnetic plasmon waveguide56, magnetic nanolaser57, perfect absorber58,59, nonlinear  
generations60, negative optical pressure61 and dipolar response62.

In this work, the MIM metasurface is used to control the emission of phonons. Using high temperature syn-
thesized amorphous SiO2, we designed and fabricated the Al/SiO2/Al magnetic MTS with Al grating arrayed 
on the SiO2/Al �lm (see Fig. 1(a)). �e MTS grating width is adjusted to produce the strong coupling between 
MR and phonon inside SiO2. Di�er from the precedent studies about the active optical phonons of silica at 
λ =  10 µm63, here, we focus our attention on the relatively inactive optical phonon at λ =  12.5 um. �e absorption 
and thermal emission spectra were measured by Fourier-transform infrared (FTIR) spectrometer in the wave-
length range 11–16 µm. �e anticrossing features in the spectra denoted that strong coupling occurred between 
phonon and magnetic resonance, albeit with big di�erence in radiation intensity of these two resonant states. 
Using commercial so�ware FDTD solution and coupled mode theory64, we analysed the coupling physical mech-
anism. �e theoretical calculations agree with experiments quite well.
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Experiment result
�e Al/SiO2/Al magnetic MTS were fabricated on Si wafer. In fabrication, Al �lm of thickness 150 nm was depos-
ited on pre-cleaned Si wafer by electron beam evaporation. Amorphous silica �lms (500nm) were synthesized by 
plasma enhanced chemical evaporation (PECVD) at temperature 300 °C on the Al �lm, and subsequent in situ 
annealing was performed for 10 hours. An Al grating was fabricated on the amorphous SiO2 �lms by ultraviolent 
photolithography and subsequent li�-o�. �e schematic view in Fig. 1(a) exhibits both structure and material 
information. In experiment, the period and height of grating was �xed as Λ  =  6.5 µm and h =  0.05 µm, the width d 
can be changed through tuning the exposure time in the course of photolithography. Figure 1(b) shows the mor-
phology characterized by a commercial scanning electron microscopy (SEM) of sample with width d =  2.8 µm. 
�e total thickness of MTS is 0.7 micron which is much smaller than the working wavelength range 11–16 µm.

We measured thermal emission and absorption of sample with FTIR spectrometer. �e scanning wavelength 
range is 11–16 µm. At the same time, we also used FDTD method to calculate the absorption of structures and 
compare the results with experiment. Firstly, we investigated the MR and phonon separately without coupling 
e�ect between them. Figure 2(a) gives the thermal emission and absorption of SiO2/Al. Without grating, there 
is no MR and only phonon is found. Both the measured absorption (blue triangle symbolic line) and thermal 
emission (red brackets symbolic line) spectra show one faint and broad peak at 12.5 um, along with the measured 
ones was the simulated absorption spectrum by FDTD method as denoted by the black triangle symbolic line in 
Fig. 2(a). �e data of SiO2 were referred to ref. 65. �e agreement between measured and calculated absorption 
spectra consolidated our material research base and method reliability. Figure 2(b) gives the calculated absorption 
spectrum of MTS, where the refraction index of SiO2 n =  1.47 was used in simulation. In the simulation, the MTS 
grating periodic is Λ  =  6.5 µm and width d =  3 µm under TM polarization (electric �eld perpendicular to the 
grating), as we can see, only MR resonance peak is found at 12.5 um. Compared with phonon, the absorption of 
MR is much stronger which is attributed to the strong magnetic resonance mode54–61. Here, the MR mode can be 
regarded as a kind of plasmonic cavity mode.

For the MTS given in Fig. 1, its thermal emission shows very strong polarization dependence. Figure 2(c) 
gives TE polarized emission (E �eld parallel to grating strip). Both the thermal emission and absorption spectra 
of the MTS in Fig. 2(c) show the similar peculiarity as phonon at 12.5 um given in Fig. 2(a). Here, MR cannot be 
excited, and only phonon contribute to the emission and absorption. �erefore, these curves are very like those in 
Fig. 2(a). �e calculation agree with experiment quite well.

On the other hand, for TM polarized emission of MTS (E �eld perpendicular to grating strip) in Fig. 2(d), 
it is quite di�erent from TE emission in Fig. 2(a). Here, phonon resonance can be still found at the wavelength 
12.5 µm. At the same time, the MR can be excited at the same wavelength. �is makes MR and phonon over-
lapped with each other. As a result, the strong coupling occurs between MR and phonon, which will produce 
two resonance peaks in the curve. In Fig. 2(d), two prominent peaks are obtained at wavelength 11.8 µm and 
13.29 µm, which lie on the two sides of 12.5 µm, and are di�erent from peaks of the phonon (Fig. 2(a)) and the 
MR (Fig. 2(b)). In simulations, with including phonon of SiO2 in the program, the simulated absorption spectra 
of sample with periodic Λ  =  6.5 µm and width d =  3 µm also features two pronounced peaks as denoted by the 
black triangle symbolic line given in Fig. 2(d). �e simulated and measured absorption spectra agree well, which 
are both in accordance with the thermal emission spectrum. In the following, we will provide a theory model to 
explain the coupling mechanism.

�e absorption and emission polarization dependence of sample can be described by the ratio of TM over 
TE: P =  ITM/ITE. For SiO2/Al �lm, there is no polarization dependence for phonon mode and P =  1. While, for 
MTS, strong anisotropic property is demonstrated for both theoretical and experimental results as shown in 
Fig. 3 (experimental result: red line, and theoretical result: blue line). We can see P is very large for the wave-
length around the two resonance peaks, while it will approximate unit when the wavelength is far away from the 
peaks. It means that the polarization dependence is caused by the strong resonance mode of MTS. In the �gure, 

Figure 1. �e sketch plot (a) and SEM top view (b) of sandwiched structure. In experiments, the periodic and 
height are �xed with Λ  =  6.5 µm and h =  0.05 µm, d is changed from 2.6 to 3.6 µm.
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P amounted to forty-fold in calculations, and only about �ve-fold in experiment. �is large discrepancy between 
theory and experiment is caused by the defects of samples and the aberrations in adjusting the polarizations. 
Despite all this, the modi�ed anisotropic thermal emission of phonon was still clearly discerned. Beside polariza-
tion dependence, the angular dependence of emission and absorption is also changed by MTS. Figure 4(a) and (c) 
give the results of SiO2/Al, in which only phonon exists. As given in ref. 63, phonon near 12.5 µm includes both 
LO and TO pair mode in the range 1160–1200 cm−1. Due to Berreman e�ect of LO phonon in thin �lm66, the 
interaction between phonon and light will be enhanced by increasing the angle. �en, as shown in Fig. 4(a) and 
(c), the absorption and thermal emission of SiO2/Al �lm became stronger at larger emission or incident angle. 
While for MTS in Fig. 4(b) and (d), both the two resonance modes obtain their maximum absorption and emis-
sion e�ciency at normal angle. For the mode at wavelength 11.8 µm, the absorption and emission do not change 

Figure 2. Emission (red bracket) spectra and absorption spectra of experiment (blue triangle) and of 
calculation (black triangle) for SiO2/Al �lm (a), for Al/SiO2/Al MTS under TE polarization (c) and for Al/SiO2/
Al MTS under TM (d). (b) Simulated absorption of Al/SiO2/Al MTS without SiO2 phonons under TM.

Figure 3. Anisotropic ability P versus wavelength for sandwiched MTS with experiment (the red line) and 
calculation (the blue line). 



www.nature.com/scientificreports/

4Scientific RepoRts | 7:41858 | DOI: 10.1038/srep41858

much with angle. While, for the mode at wavelength 13.29 µm, the emission and absorption is reduced greatly 
around 50 degree. �is is caused by strong Bragg scattering at this angle.

In above discussion, we know that the coupling between phonon and MR will produce two resonance peaks. In 
physics, it is like the normal mode splitting of atoms in cavity67–69. By putting atom into high-�nesse optical cav-
ity, and tuning the parameters of the cavity, the spontaneous emission spectra of the atom featured anti-crossing 
line-shape, which was attributed to the strong coupling occurred between the atom and cavity. Actually, such 
mode splitting was also possibly for magnetic polariton structures55. In our system, if the MR can be regarded as 
a cavity and phonon as an atom, the two peaks can be seen as the result of mode splitting. �en if we tune the MR 
by changing structure parameter, it is possible to produce anti-crossing line-shape near the phonon resonance. 
For the MTS in Fig. 1(a), its MR resonance wavelength is dependent on the grating width d. �en we can tune 
MR through changing d. FDTD simulations were performed with varied grating width d of MTS. Figure 5(a) 
depicted the simulated absorption spectra versus the photon energy and the grating width d, which was changed 
from 2.6 to 3.6 µm. Pronounced anticrossing behaviour was demonstrated in the absorption spectra, indicating 
the presence of the strong coupling between MR and the phonon. In experiment, a series of samples with varied 
width d and �xed period Λ  =  6.5 µm were synthesized through changing the exposure time in the process of 
photolithography. �e measured thermal emission spectra of the varied width d grating were shown in Fig. 5(b), 
where the measurements were performed in normal angle under TM polarization. �e pronounced anticrossing 
behaviour near phonon energy ω =  0.1 ev (λ =  12.5 µm) was also demonstrated in both Fig. 5(a) and (b). �e 
excellent agreement between simulation and experiment render the strong coupling convincible in this system.

Theory
In this part, a coupled mode theory64 is established to describe the physical mechanism of the strong coupling 
between the MR and the phonon. Firstly, let’s recur to the common equations that describe two coupled oscilla-
tors as:
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Figure 4. Simulated absorption (a) (b) and measured thermal emission (c) (d) spectra of SiO2 �lm (a) (c) and 
Al/SiO2/Al sandwiched MTS (b) (d), respectively.
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where µ1, µ2 are the displacements of oscillators under excitation, respectively, and g1, g2 are coupling factor 
between oscillators and incident �eld, κ is the coupling factor between the two oscillators64. δ is the resonance 
frequency di�erence between µ1 and µ2. γ1 and γ2 are dissipation losses of oscillators µ1, µ2, respectively. Here, 
we choose oscillator µ2 as the phonon, with inherent resonant frequency ω0. And the MR oscillator µ1 can be 
manipulated through changing the parameters of the MTS. �e Hamiltonian of this two oscillators system can 
be presented as:

δ ω γ κ

κ ω γ
=





+ −

−






H
i

i (2)

0 1

0 2

Due to the coupling term in Hamiltonian, the mode splitting happens and the two eigen frequencies can be 
obtained as:
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When the MR resonant frequency is near the phonon frequency ω = 0.1 ev, namely, δ ≈  0, the strong coupling 
may occur if κ >  >  (γ 1− γ 2)

2 67–69, and the coupled system has two eigen energies, the normal mode splits into two 
modes, and thus two peaks will be found in absorption spectra.

Here, the mode splitting is like the Rabi splitting of atom in cavity and the Rabi frequency is67–69:

κ γ γΩ = − −2 ( )
1

4
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2

1 2
2   

Based on the equation (3), the eigen frequencies of the MTS with varied grating width were numerically calcu-
lated, where the parameters of SiO2 phonon γ2 =  0.65254(ev) were �tted from the Lorentz formulation. Figure 6 
displays the eigen-wavelength versus the grating width d from coupled mode theory (the blanket triangles) and 
FDTD simulation (the solid red dots). �e green dotted line in Fig. 6 indicates the phonon resonance wavelength, 
and the purple dotted line depicts the MR wavelength varied with the grating width, the error bar gave out the 
di�erence value between them and the experiment results. It is evident that the coupled mode theory calculation, 
the FDTD simulation and the experiment agrees quite well. All the three spectra feature anticrossing characteriza-
tion. �e narrowest frequency is located rightly at the phonon resonant frequency, ω = 0.1 ev, with γ1 =  1.06896(ev), 
and thus the detuning δ =  0. Substitute these parameters into formula (4), the coupling coe�cient can be obtained 
as κ =  0.65265(ev). Clearly, κ2 > > (γ 1− γ 2)

2, satis�es the strong coupling condition67–69. Substituting these param-

eters into Rabi splitting energy band formula (5)    κ γ γΩ = − −2 ( ) ( )rabi
2 1

4 1 2
2 67,70,71, and we get the Rabi 

splitting band gap in the anisotropic magnetic MTS as ħΩrabi =  1.237(ev). Hitherto, from the excellent agreement 
between simulation and experiment results, we conclude that the thermal emission of SiO2 phonon at ω =  0.1 ev 
can be controlled by MTS.

Summary
In this work, we use MTS to control the thermal emission of phonon. �e emission peak, polarization and radi-
ation angle can be well manipulated in the process. A coupled mode theory is established to calculate the mode 

Figure 5. Simulated absorption (a) and measured emission (b) spectra versus photon energy and grating width d.
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splitting and anti-crossing e�ect, which agrees with experiment well. In this work, we only consider the phonon 
inside SiO2. Actually, this method can be used to any other materials with di�erent phonon wavelength as the 
MR can be �exibly tuned to any wavelength. If the fabrication is improved and the MTS have larger resonance Q 
factor, the plasmon-phonon coupling can be further enhanced. In the future, it can be anticipated that MTS will 
have many other interesting applications in thermal emission devices.
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