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Data from the undisturbed period of the Rain in Cumulus over the Ocean (RICO) field study are used to create a test case for

large-eddy simulations of shallow, precipitating, trade-wind cumulus. Measurements upon which the test case are based are aug-

mented by a regional scale downscaling of meteorological analyses so as to provide forcing data consistent with the measurements.

Twelve large-eddy simulations, with a wide range of microphysical representations, are compared to each other, and to independent

measurements during RICO. The ensemble average of the simulations plausibly reproduces many features of the observed clouds,

including the vertical structure of cloud fraction, profiles of cloud and rain water, and to a lesser degree the population density of

rain drops. The simulations do show considerable departures from one another in the representation of the cloud microphysical

structure and the ensuant surface precipitation rates. There is a robust tendency for simulations that develop rain to produce a

shallower, somewhat more unstable cloud layer. Relations between cloud cover and precipitation are ambiguous.

1. Introduction

The interplay between cloud micro and macro-structure

remains poorly understood. Do aerosol or other micro-

physical perturbations meaningfully regulate the devel-

opment of precipitation, and how does precipitation in-

fluence the macroscopic evolution of clouds? Although

answers to these questions vary, it has become clear
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that the interplay between cloud micro and macrostruc-

ture is more subtle than is often appreciated – even for

the simplest of cloud regimes (Stevens and Feingold,

2009). In this paper we combine field measurements

with large-eddy simulation (LES) to explore the links be-

tween cloud micro and macro-structure , and the ability

of fine-scale simulations to represent them.

Scientifically we develop our questions around a sin-

gle cloud regime: trade-wind cumuli. Although the

clouds in the trade-winds vary in their vertical extent

(Riehl, 1954), here we have in mind relatively shallow

clouds yet deep enough (2 km or so) to be susceptible

to the development of precipitation. Shallow cumulus

clouds such as these have come to be appreciated as a

critical piece of the climate puzzle (Bony and Dufresne,

2006; Medeiros et al., 2008), they prevail in the trade-

wind regions and, as far as clouds go, their dynamics are

simple.

Methodologically our framework is that of the

GEWEX (Global Energy and Water Experiment) Cloud

Systems Studies (GCSS) boundary layer cloud group,

through which this intercomparison has been organized.

The GCSS framework (Randall et al., 2003) is based on

the development of well defined case studies centered

around specific questions, and then explored using as

many fine-scale models as can be assembled. The goal of

such a procedure is not to reproduce identically the data

from which the case-studies are often drawn, but rather

to identify the extent to which robust behavior emerges

across a suite of simulations produced using different nu-

merical methods and physical parameterizations. In the

present context such behavior might include the charac-

ter of precipitation as a function of the cloud evolution,

or the response of the cloud field to the development of

precipitation. To the extent one can identify such be-

havior, one is encouraged in the development of rules or

constraints that can be exploited when building parame-

terizations. This idea, of using LES to improve param-

eterizations by filling in process-level details missing in

observations of cloudy boundary layers, is at the heart of

the GCSS approach.

In practice the act of defining the cases has taught us

as much about the LES technique, and its limitations, as

it has about the interplay of processes that determine the

macroscopic characteristics of observed cloudy bound-

ary layers. For instance, through the work of GCSS it

has become clear that, to the extent the simulated flow

depends on the character of mixing in regions where the

length-scale of the turbulence ceases to be large as com-

pared to that resolvable by the simulations, significant

differences can emerge as a function of ones choice of

numerical methods, or sub-grid closure (Stevens et al.,

2005). Moreover, the relative contribution of different

sources of error is, in practice, not easy to isolate. Ad-

ditionally, recent work concentrating on stratocumulus

has shown that quantitative estimates of precipitation can

vary greatly among models, depending in uncertain ways

on the representation of cloud microphysical processes

within LES. And in certain situations this can even im-

pact the overall statistics of the simulations (Ackerman

et al., 2009). As a result the case-studies developed by

GCSS have developed into important benchmarks for the

broader scientific community.

Despite methodological uncertainties, by carefully

posing problems it often has proved possible to use

LES in the manner initially envisioned, that is to con-

strain or improve parameterizations of cloudy boundary-

layers. For instance, studies of the stratocumulus as

measured during DYCOMS-II have helped place upper

bounds on entrainment (Stevens et al., 2005). Because

such bounds are inconsistent with the hypothesis that en-

trainment can be significantly enhanced by buoyancy-

reversal processes alone (cf., Deardorff, 1980), the com-

munity has been forced to re-evaluate (and increasingly

reject) the idea that such processes may play a role in

determining basic features of the stratocumulus cloud

climatology. Likewise LES has shown that the entrain-

ment rate in stratocumulus depends on the precipitation

flux, even that associated with the weak sedimentation of

cloud droplets. Less cloud-top entrainment is associated

with enhanced cloud-top droplet sedimentation (Acker-

man et al., 2004; Bretherton et al., 2006; Ackerman et al.,

2009). This basic finding has proved key to understand-

ing how stratocumulus layers respond to perturbations in

their precipitation efficiency. Likewise our understand-

ing of lateral entrainment through the sides of shallow

cumulus (Siebesma and Cuijpers, 1995) has been con-

solidated through a series of case studies developed by

the GCSS (Stevens et al., 2001; Siebesma et al., 2003).

In the present study we use data abstracted from the

Rain in Cumulus over the Ocean (RICO) Field Campaign

(Rauber et al., 2007) to define a reference case for LES

of precipitating cumulus-topped boundary layers, and

evaluate the representation of the boundary layer from

an ensemble of large-eddy simulations. Our goals are

three fold: (i) methodologically we wish to understand

if LES can plausibly represent the microphysical evolu-

tion of trade-wind cumulus convection, and how sensi-
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tive the representation of precipitation is to ones choice

of microphysical model; (ii) physically we wish to ex-

plore whether precipitation robustly retards the growth

of the cumulus layer, as hypothesized by Stevens (2007),

and reduces cloud amount as hypothesized by Albrecht

(1989); and (iii) practically we wish to contribute to the

growing suite of benchmark cases that have been de-

veloped and explored through the efforts of the GCSS

boundary layer working group.

The remainder of this study is organized as follows.

In §2 we describe the construction and characteristics of

the reference case and the participating LES codes. §3 re-

views the basic behavior of the simulations. §4 explores

the simulations in-light of observations from RICO, with

a focus on the development of precipitation and the cloud

microphysical structure. §5 addresses methodological

question raised above, as to how sensitive precipitation

formation in these clouds is to the details of their micro-

physical representation. The physical questions relating

to the effects of precipitation on the simulation are taken

up in §6. Conclusions are presented in §7.

2. Case Definition

2.1. Data sources

The simulations are based on data collected during the

Rain in Cumulus over the Ocean (RICO) field study.

RICO was a comprehensive field study of shallow cu-

mulus convection which was located in the winter trade-

winds of the north-western Atlantic ocean, just upwind

of the Islands of Antigua and Barbuda. An overview

of the experiment is provided by Rauber et al. (2007).

One focus of RICO was on the statistical character of

the cloudy boundary layer, particularly on the character-

ization of precipitation in shallow cumulus. This focus

distinguishes RICO from earlier studies such as the Bar-

bados Oceanographic and Meteorological Experiment

(BOMEX Holland, 1972) and the Atlantic Trade-wind

Experiment (ATEX Augstein et al., 1973), which mea-

sured little in the way of clouds and precipitation.

The RICO study area from which our data is drawn

corresponds to the NE quadrant of a circular area some

300 km in diameter, centered around the Island of Bar-

buda. This study area almost always had a precipitat-

ing cloud within it, and while precipitation from individ-

ual clouds could be intense, individual echoes from 3-4

km deep clouds could reach above 50 dBZ, precipita-

tion averaged over the area as a whole was modest (Nui-

jens et al., 2009). The data naturally identify an undis-

turbed period between December 16 2004 and January

8 2005, during which precipitation fluctuated about its

mean value of about 21 W m−2. This is illustrated by

Fig. 1 which presents the area-averaged rain rates derived

from nearly horizontal surveillance scans (performed ev-

ery 20 minutes). The rain-rate, R is computed from the

equivalent radar reflectivity factor, Z, by inverting the

R(Z) relationship, Z = 148R1.55 which we take from

the Tropical Rainfall Measurement Mission (TRMM(1.)

protocol. Although not shown, the fraction of the ob-

served area with identifiable radar echoes averages about

3 % and varies in proportion to the overall area rain rate

(Nuijens et al., 2009).

Because the RICO measurement strategy was devel-

oped around the idea of constraining the temporally and

spatially averaged statistics of the lower troposphere over

many days, the data were not well suited to the defini-

tion of a case study drawn from a particular 6-10 hr re-

search flight. Unlike in past studies, RICO did not em-

ploy a sounding array so as to constrain spatial gradients,

and hence large-scale forcing, in the atmospheric state.

Hence, important aspects of the forcing, such as moisture

advection and vertical velocity, were not directly mea-

sured.

To estimate the mean forcing during the undis-

turbed RICO period we downscaled European Centre

for Medium Range Weather Forecasts to LES sized do-

mains using the Regional Atmospheric Climate Model

(RACMO). RACMO uses the same physical parameteri-

zations as the ECMWF integrated forecast system (IFS),

but on a finer (20 km) grid, and thus is well suited for

these purposes. RACMO hind-cast simulations were

performed for the entire two month (December 2004

through January 2005) period over a 1800 × 1800 km2

domain containing the RICO research area. New sim-

ulations were initialized every twenty-four hours using

the 1200 UTC ECMWF analysis. Output was generated

every 10 minutes on a 5◦× 5◦grid centered around the

RICO research area. The two month surface precipi-

tation time series from the S-Pol radar data shows that

the relative amount of precipitation produced in RACMO

(not shown) coincides reasonably well with the observa-

tions, and further motivates the use of RACMO to help

constrain estimates of quantities, such as the large-scale

forcing, that were poorly measured during RICO.

However, even with this approach it was difficult to

match the day to day variability seen during RICO with

that simulated using RACMO. This suggests that the

meso-scale forcing provided to RACMO by the ECMWF
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Figure 1: Area averaged precipitation for each S-pol radar (0,.5◦) surveillance scan plotted for the months of Decem-

ber 2004 and January 2005. The thick red line indicates what we refer to as the undisturbed period over which we

composite (see text). Ordinate values denote the maximum and average precipitation for the entire period.

analysis did not significantly constrain the behavior on

any particular day. For these reasons attempts to define

a reference case based on measurements on a single day

were abandoned in favor of a more idealized case based

on the composite structure of the atmosphere over this

undisturbed period. Here it is worth nothing that, at least

qualitatively, the composite lies within the span of the

samples, that is the composite constitutes a plausible day

during the RICO study period.

2.2. Initial and forcing data

2.2.1. Initial state

The initial profiles of potential temperature θ, specific

humidity qv and the horizontal winds u and v are con-

structed as piece-wise linear fits of the averaged pro-

files from the radiosondes, launched 2-6 times daily from

Spanish Point (Barbuda), throughout the field study. Fig-

ure 2 and Table 1 present the mean radiosonde profiles

together with initial profiles. The geostrophic wind did

not vary with time and is used also as the initial wind

profile. The initial state is chosen to have as simple a

vertical structure as possible given the uncertainty range

of the measurements. The main motivation for doing so

was twofold: (i) for such profiles it is easier to construct

a forcing whose different components sum to zero away

from regions where turbulent fluxes are expected to be

important; (ii) simple profiles identify fewer parameters

and thus facilitate sensitivity studies.

2.2.2. Forcing

Vertical profiles of the subsidence rate and temperature

and moisture tendencies due to horizontal advection have

been constructed from the RACMO data and are speci-

fied in table 1. Note that for the simulations most groups

only considered the effect of subsidence on the thermo-

dynamic quantities, the WVU simulations applied sub-

sidence tendencies to all prognostic variables, although

there was no indication that this made an important dif-

ference to the outcomes.

In line with previous trade-wind cumulus intercom-

parison studies, a net radiative forcing is prescribed

instead of being computed by an interactive radiation

scheme. This net radiative tendency has been obtained

by using an offline ECMWF radiation scheme initialized

with the above described profiles of temperature and hu-

midity. By averaging the results over twenty-four hours,

we obtained a profile that prescribes a cooling rate of 2

K day−1 close to the surface, decreasing to about 1 K

day−1 in the free atmosphere.

The surface momentum fluxes and thermodynamic

fluxes are parametrized using bulk aerodynamic formu-

lae, such that

w�θ� = −Ch�U�(θ − θ|z=0), (2.1)

w�q�t = −Cq�U�(qt − qsat|z=0), (2.2)

u�w� = −Cm�U�u, (2.3)

v�w� = −Cm�U�v, (2.4)

where we specified Cm = 0.001229, Ch = 0.001094
and Cq = 0.001133. The sea-surface temperature, Tz=0,
was also fixed at 299.8 K. The wind speed �U� was taken

from the model near surface winds. Because the vertical

grid was chosen to be 40 m, this implied that most mod-

els located their near surface winds at 20 m. For mod-

els having near surface winds valid at a different heights

transfer coefficients were specified to be scaled following
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Figure 2: Mean profiles of potential temperature θ , specific humidity qv and the zonal and meridional wind compo-

nents u and v of all radiosondes released from Spanish Point in the period from 16 Dec 2004 thru 8 Jan 2005, here

shown by thin black line. The shaded area denotes the mean value plus or minus the standard deviation. The dot-

ted black line in the second panel indicates the mean profile of saturation specific humidity during this period. The

specified initial profiles for the composite case are shown by the thick black line.

Table 1: Fixed points for piecewise linear profiles of θ, qv , u, v, the subsidence rate W and the large scale forcing of

heat and moisture. The large scale thermal (potential temperature) forcing is a combination of both the net radiative

forcing and the horizontal advection of temperature.

Height θ qv u v W ∂tθ|LS ∂tqv|LS

[m] [K] [g kg−1] [m s−1] [m s−1] [cm s−1] [K day−1] [g kg−1 day−1]

0 297.9 16.0 -9.9 -3.8 0.0 -2.5 -1.0

740 297.9 13.8 - - - - -

2260 - - - - -0.5 - -

2980 - - - - - - 0.3465

3260 - 2.4 - - - - -

4000 317.0 1.8 -1.9 -3.8 -0.5 -2.5 0.3465

(Stevens et al., 2001). Surface fluxes constructed in this

manner were found to well approximate those that were

actually measured during the latter part of the RICO field

study, when a research vessel was in the area (Nuijens

et al., 2009).

Combining the specified large-scale forcing with the

surface fluxes as parametrized, and assuming an addi-

tional term for precipitation of 21 W m−2 (the average

precipitation flux during the undisturbed composite pe-

riod obtained from the S-Pol radar observations) leads

to vertically integrated total budgets of heat and mois-

ture which are approximately closed. Additionally the

net large scale forcing in the upper part of the LES do-

main, away from the turbulent circulations, was set to

zero by construction.

2.2.3. Microphysics

To explore the role of microphysical effects we per-

form simulations that allow for the active evolution of

the cloud microphysical structure, through microphys-

ical (droplet kinetic) processes. The starting point for

such simulations is a specification of the droplet popu-

lation density, or the cloud-condensation nuclei (CCN)

population density, depending on how a particular model

is formulated.

For models which employ a fixed cloud-droplet pop-

ulation density the concentration was set at 70 cm−3.

Journal of Advances in Modeling Earth Systems – Discussion
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This value is based on a average of best estimates (rang-

ing from 50 to 100 cm−3) of the active cloud-droplet

population density of four (out of six) flights during the

composite period as measured by the Fast Forward Scat-

tering Spectrometer Probe (FFSSP) instrument (Bren-

guier et al., 1998). The active cloud-droplet population

density is taken by sub-sampling nearly adiabatic up-

drafts within the cloud, and it is thought to be the best

single number to represent the droplet amount playing a

role in rain formation (Pawlowska and Brenguier, 2000,

2003). The active cloud droplet population density dur-

ing the undisturbed period of RICO is roughly 20 to 30

cm−3 higher than a straightforward cloud droplet popu-

lation density averaged over all cloudy points.

For models that predict the cloud-droplet activation

spectrum the CCN spectrum is assumed fixed with a

population density of 100 cm−3 at 1% supersaturation;

this number is loosely based on data for the RICO cam-

paign (James Hudson, personal communication, 2007).

The shape of the distribution, if required by a model, is

based on in situ (PCASP) data from research flight 12

(RF12). These data were approximated by a bimodal

log-normal distribution of ammonium-bisulfate whose

geometric mean radii of 0.03 and 0.14 µm, geometric

standard deviations of 1.28 and 1.75 µm and CCN pop-

ulation densities of 90 and 15 cm−3 for the first and sec-

ond mode respectively, lead to an integrated CCN pop-

ulation density of roughly 100 cm−3 at 1% supersatura-

tion.

2.3. Participating groups

A total of twelve research groups successfully simulated

the case using LES. In addition one group simulated the

case with a 2D model, albeit employing higher-order clo-

sures . Information about the various models can be

found in Table 2. SAM, SAMEX and 2DSAM have

an (almost) identical dynamical core with 2DSAM be-

ing the two dimensional version of SAM and SAMEX

being SAM with an explicit microphysical scheme.

The microphysical parameterizations used by the

various groups can be divided into three groups based

on how the size distribution of cloud and rain drops is

discretized. Most groups use a bulk scheme wherein one

(total mass of rain) or two (mass and number) moments

of the drop distribution are prognosed. For the groups us-

ing two-moment bulk schemes, only two moments of the

rain-drop distribution are modeled–cloud water mass is

inferred from an equilibrium assumption. A few groups

use non-parametric approaches wherein the full distri-

bution is modeled by discretizing the size distribution.

These latter schemes are more fundamental than bulk ap-

proaches, but because they endeavor to resolve the en-

tire droplet distribution, they are computationally more

expensive. Indeed the computational demands of fully

resolving the evolution of the droplet spectrum are often

only partially met, which means that different implemen-

tations of such approaches can differ substantially from

one another as a result of their numerical implementa-

tion. To distinguish them from the bulk models they are

referred to as bin models as the droplet distribution is

represented discretely by a number of bins, or size cate-

gories. Microphysical schemes may additionally differ in

how, or whether they include processes. The MESO-NH

model and the Met Office LEM include ventilation ef-

fects in their representation of evaporation, DALES and

the WVU models are the only ones with a two moment

scheme that includes sedimentation of cloud droplets.

Several models (i.e., DHARMA, UCLA, WVU,

COAMPS, MetO, SAM, NHM, RAMS) participated in

the drizzling stratocumulus intercomparison case (Ack-

erman et al., 2009) and of those models further infor-

mation on their microphysical schemes can be found in

Appendix B of Ackerman et al. (2009). In the case of

the MetO model a different fall-speed relationship has

been used in the present study; see Abel and Shipway

(2007) for more details. MESO-NH and WVU include

a sub-grid-scale condensation parameterization, however

the results are not very sensitive to this innovation.

2.4. Experimental protocol

2.4.1. Model setup

Participants were asked to perform simulations with and

without droplet kinetics. Simulations with droplet kinet-

ics are often referred to as precipitating simulations al-

though precipitation does not necessarily develop. In the

absence of droplet kinetics rain will not develop, and liq-

uid water can be derived diagnostically. In this limit, for

those models that also neglect the sedimentation of cloud

droplets, liquid water follows the fluid motion to within

the accuracy of the numerical solvers. A duration time

of 24 hr was chosen for the simulations in order to al-

low plenty of time for the development of a mean state

that could support precipitating clouds in the case when

droplet kinetics were turned on. The horizontal domain

was specified to be 12.8 by 12.8 km, solved with 128 grid

points in each horizontal direction and 100 in the vertical

JAMES-D
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Table 2: Mode list and lead scientist name, configuration of the model and the amount of surface precipitation gener-

ated over the last four hours of the precipitating simulation. Four flavors of sub-grid scale (SGS) models are used: HoT

refers to the higher (3rd) order closure used by the 2D model, 2DSAM; DL refers to the prognostic TKE approach of

Deardorff (1980) and Lewellen (1977); SL refers to the Smagorinsky-Lilly approach; and DS revers to the dynamical

version of the Smagorinsky model. Advection of momentum and scalars are some flavor of monotone or positive

definite (denoted by M) or centered (denoted by C). The simulations are grouped in three categories as a function

of the complexity of their microphysical representation, with the one moment models, followed by the two-moment

models, followed by the bin models. The microphysical schemes are identified in the case of the most commonly

used schemes, these being: SB following Seifert and Beheng (2001) and Seifert and Beheng (2006); KK following

Khairoutdinov and Kogan (2000), and KKs which is a simplified version of the KK scheme.

LES name scientist SGS mom. scal. microph. Psrf

adv. adv. scheme [W m−2]

1 Moment Schemes

2DSAM A. Cheng HoT M C KKs 31.2

EULAG J. Slawinska SL M M 13.8

MESO-NH F. Couvreux DL C C 25.9

NHM A. Noda DL C C 12.7

SAM M. Khairoutdinov DL M C KKs 11.1

COAMPS S. Wang DL C M KK 5.5

DALES M.C. van Zanten DL C C SB 2.5

MetO B. Shipway SL C C 26.7

UCLA B. Stevens SL C M SB 2.3

WVU D.C. Lewellen DL C M KK 0.0

DHARMA A.S. Ackerman DS M M 25 5.9

RAMS H. Jiang DL C M 66 0.1

SAMEX D. Mechem DL M C 34 7.5

(equally spaced in 40 m increments). Sensitivity studies

at a variety of resolutions and domain sizes (including

much finer grids spanning a larger area) were performed

by a number of groups (e.g., Stevens and Seifert, 2008;

Nuijens, 2010; Matheou et al., 2010).

2.4.2. Analysis methods

Each group was asked to standardize their output fol-

lowing the variable list provided in tables 4-6 in the ap-

pendix. The required output consists of hourly averaged

profile data, including fluxes and conditionally sampled

fields, as well as more frequent output of scalar quanti-

ties. Subsequent analysis is based on this standardized

output.

From this output two ’master’ ensembles, one for the

precipitating case and another for the non-precipitating

case, have been constructed from all of the three dimen-

sional models that submitted results consistent with the

case specification.

Our analysis is centered over the last four hours of

the simulation, unless otherwise noted. For the relatively

small domain we simulate, relatively few precipitating

clouds, or cloud clusters are evident in the domain at

any given time. This means that the domain-averaged

precipitation signal fluctuates significantly in time, and

incoherently among models. Such fluctuations are still

pronounced for domains whose area is an order of mag-

nitude larger. Hence the averaging period was chosen

to ameliorate the effects of these fluctuations as the life-

Journal of Advances in Modeling Earth Systems – Discussion
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time of any particular event is on the order of tens of

minutes to an hour.

For some of the analysis conditional sampling over

cumulus clouds is performed, following the cloud (qc >
0.01 g kg−1), and cloud-core (qc > 0.01 g kg−1 and

positively buoyant) criteria used in previous studies

(Siebesma et al., 2003). In addition two further sampling

criteria were introduced for purposes of our analysis.

One identifies rain-water grid boxes, as ones in which

rain water qr is present above a threshold of 0.001 g kg−1

and the other identified precipitating grid boxes as ones

in which the precipitation flux is higher than 3.65×10−5

kg kg−1 m s−1. The first is used to calculate a mean

rain drop population over rainy grid boxes only and the

second is applied in the calculation of conditionally sam-

pled precipitation fluxes. The threshold for a gridbox to

be defined as rainy is chosen to equal the cutoff precip-

itation flux of the S-Pol radar data, given the assumed

S-Pol rain-reflectivity relationship.

3. Simulated evolution and structure

3.1. General structure

The simulations paint a consistent picture of the gen-

eral cloud structure, one that conforms with our under-

standing of the structure of the trade-wind region as

has been developed on the basis of many past studies

(e.g., Malkus, 1956; Nitta and Esbensen, 1974; Som-

meria, 1976; Stevens et al., 2001; Siebesma et al., 2003).

This is illustrated by Figs. 3 and 4, where we focus on the

inter-quartile variability (the dark gray areas showing the

spread of the central fifty percent of the distribution). Be-

cause the simulation domain is relatively small, the tem-

poral variability is sensitive to the evolution of the one

or two larger cloud clusters that develop within it. For

many variables, particularly the cloud and precipitation

related statistics in the right half of Fig. 3, this temporal

variability dominates the full spread among simulations.

The first couple of hours of simulation time are dom-

inated by the spin-up of the turbulence and the initial

development of the cloud layer. A longer adjustment

timescale is also evident in the thermodynamics state

of the subcloud layer: latent heat fluxes initially de-

crease, reaching a minimum after about eight hours, and

cloud base height evolves more markedly over the first

twelve hours than it does thereafter. In the second half

of the simulation period the temporal evolution is mod-

est but secular. The layer deepens continuously, latent

heat fluxes increase as more dry air is brought to the sur-

face, the mass flux and cloud cover remain relatively con-

stant, while the liquid water path and the rain water path

increase in association with the deepening cloud layer

(Fig. 3). Values of cloud cover, surface fluxes, and the

general depth of the convective layer are consistent with

observations during RICO, (e.g., Nuijens et al., 2009) as

well as past observations of trade-wind clouds.

Likewise the vertical structure of the clouds is con-

sistent with the general picture of such cloud layers as

has been developed over the years. Cloud fraction peaks

near cloud base, where low-level winds maximize and

moisture gradients are relatively large (compare Fig. 4

with Stevens et al., 2001). More significant differences

among the simulations are evident near cloud top (around

2300 m), where simulations show, to differing degrees,

the emergence of local maxima in liquid water and cloud

fraction (lower panels of Fig. 4). These differences are

also associated with the development of a sharp increase

in static stability, as measured by the increase in dθl/dz
as compared to its initial value at that level. Note that

this zone of enhanced stability (the trade-inversion) de-

velops spontaneously among the simulations, as in con-

trast to past intercomparison cases of trade-wind con-

vection, such a feature was not specified as part of the

initial conditions. The somewhat larger differences that

develop among the simulations in this region are not sur-

prising, as the turbulence eddies are not well resolved by

our grid-mesh in these zones of more marked stability

(cf., Stevens et al., 2001).

Experiments in which the RICO case was rerun us-

ing a single model (in this case the UCLA-LES Matheou

et al., 2010; Nuijens, 2010), but with different numerical

schemes for advection, time-stepping, or even as a func-

tion of the mean wind used in the Galilean transform,

produced commensurate (or even larger) differences as

those shown across the models here. In these tests the

representation of scalar advection and the still relatively

coarse computational mesh emerge as key issues.

Important for the parameterization of clouds and

precipitation is the vertical structure of the mass flux,

updrafts, and the entrainment/detrainment length-scales

(Siebesma and Cuijpers, 1995). In their summary of

existing studies Siebesma et al. (2003) argued that a

mass flux profile that maximized near cloud base and de-

creases through the cloud layer, is a generic feature of the

trade-wind cloud layer. Such a structure is less marked

in our simulations, where the mass flux is much more

constant with height through the bulk of the cloud layer.

In retrospect the lack of a marked decrease in the mass
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Figure 3: Time series of various simulation diagnostics (see Appendix for a full listing and nomenclature): inversion

height, zi; lowest cloud base, zcb; surface sensible, ρ0cpw�θ�, and latent, ρ0Lvw�q�t, heat flux; cloud core mass-flux

at the height of the largest cloud fraction; fraction of cloudy columns cc; liquid water path, LWP; and rain water

path, RWP. Both the mean of the simulations in which precipitation is allowed to develop (solid line) and prohibited

(dashed line) are shown. Ensemble (inter-quartile) spread is given by the shading. Ensemble spread is shown only

for the precipitating simulations, although results for the non-precipitating ensemble are similar. The ordinate values

represent statistics over the last four hours of the simulation, respectively the minimum and maximum value (for the

full ensemble) and the four hour mean, except for zi where the four hour mean of the no precipitation ensemble is also

included.

flux through the cloud layer is also evident in the simu-

lations of shallow cumulus convection observed during

ATEX (Stevens et al., 2001), raising the possibility that

the shape of the mass flux profile is more sensitive to en-

vironmental factors than has previously been acknowl-

edged. Conditionally sampled vertical velocities within

the cloud layer of the present simulations are somewhat

larger and the entrainment/detrainment rates are some-

what smaller than for either BOMEX or ATEX, both of

which likely reflect the nearly two-fold deeper cloud lay-

ers simulated in the present case.

3.2. Development of precipitation

Although the general evolution and structure of the cloud

field is quite similar among models, the same cannot be

said about the development of precipitation. Among the

inter-quartile of the simulations one can find a many fold

difference in the rain-water path (bottom right panel of

Fig. 3) as well as the surface precipitation (Table 2). The

variability in rain rates is also shown in Fig. 6. All but

two of the simulations develop sufficient precipitation to

reach the surface by the final four hours of the simulated

cloud evolution, but how soon precipitation develops and

the amount that develops varies greatly from one simula-

tion to another.

As compared to other quantities we have explored,

the vertical structure and character of the precipitation

field among the simulations differ more markedly. Even

so some points of agreement among the simulation do

emerge. An interesting one is the tendency of the precip-

itation flux to maximize at cloud top (Fig. 6). If precipi-

tation principally fell through a well developed cloud one

would expect, as is the case for stratocumulus, the pre-

cipitation rate to maximize near cloud base. As it is the

simulations show, albeit less markedly among the one-

moment schemes, that the evaporation of precipitation is

concentrated in the cloud-layer itself. This may result

from the fact that in many cases the precipitation forms

near the end of the cloud lifecycle (Stevens and Seifert,

Journal of Advances in Modeling Earth Systems – Discussion
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Figure 4: Mean thermodynamic state of the last four hours of the precipitating (solid line) and no precipitation (dashed

line) ensemble. Profiles shown are of the liquid water potential temperature θl , total water specific humidity qt , hor-

izontal winds u and v, condensed water ql and rain water qr and cloud and cloud core fraction cfrac and cofrac. The

shading convention follows that of the previous figure.

2008), or because of vertical shear, so that rain that de-

velops near cloud top falls outside of the clouds tilted by

the vertical shear of the horizontal winds.

By dividing the precipitation rate by the mass of rain

water one can derive a bulk fall speed for hydrometeors,

profiles of which are shown in the upper panel of Fig. 6.

The simulations differ both in terms of the effective fall

speed of the hydrometeors they produce and the variation

of this fall speed with height. There does not appear to

be a strong relationship between how much rain is pro-

duced by a model, and the size of the raindrops as mea-

sured by the bulk fall speed of the rain. The bin and two

moment schemes do show a consistent evolution toward

larger bulk fall velocities as the surface is approached, a

feature that the one moment schemes appear incapable

of representing.

Based on this analysis there is little evidence that

the actual amount of precipitation is more robustly de-

termined by one class of scheme than the other. Pre-

cipitation rates vary as much among the bin schemes as

they do among the one moment schemes. However, if

one is interested in the structure of the precipitation field,

including for instance the distribution of evaporation in

the cloud versus subcloud layer, there is some evidence

that such features are systematically distorted by the one-

moment schemes
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Figure 5: Profiles of core mass-flux, cloudy and core vertical velocity, fractional entrainment rate � and fractional de-

tainment rate δ averaged over the last four hours of the simulations. Entrainment and detrainment rates are diagnosed

using Eq. 16 of Stevens et al. (2001) for qt . Lines and shadings follow the conventions of Fig. 3. The mean value in

the cloud layer of � and δ is denoted and the range of values as encountered in the BOMEX case is also indicated.

4. Observational Constraints

As compared to previous case studies of clouds in the

trade-winds, RICO has the advantage of a great wealth

of in situ and remote sensing data — particularly of the

clouds themselves. In this section we attempt to exploit

this wealth of data, although several factors conspire to

make this more challenging to do so, at least in a decisive

way. Underlying all of the challenges is the sampling is-

sue. Our case-study is based on the composite forcing,

which means that the behavior of the simulated clouds

cannot a priori match any particular day, but should fall

within the range of observed cases on similar days. How-

ever similar days are relatively infrequent, as the com-

posite period fell in between the intensive field opera-

tions, when aircraft data are more sparse. The In situ

measurements that are available are biased by a flight

strategy that sought to maximize penetrations of active

cumuli growing through the flight level. Although these

issues limit our ability to make decisive statements, the

type of comparisons we are able to make still represent a

great step forward in studies of cumulus convection.

A basic question is whether the simulated cloud

cover is consistent with what was observed. The median

cloud cover among the simulations, averaged over the

last four hours, is 0.19, which compares favorably with

the value of 0.17 obtained through an analysis of lidar

data (Nuijens et al., 2009). This degree of correspon-

dence is probably fortuitous. Not only is there consider-

able scatter in cloud cover among the simulations, cloud

cover can vary by a factor of two for any given model as a

function of its resolution and numerical methods (Math-

eou et al., 2010). Likewise observational estimates vary

significantly, both as a function of ones retrieval method

and ones choice of sensor (Zhao and Di Girolamo, 2007).

These caveats aside the cloud cover is almost certainly

between 0.1 and 0.3, and given this range of uncertainty

it appears to be well represented by the simulations.

To compare the vertical profile of cloudiness with the

lidar data we define an effective cumulative cloud cover,
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Figure 6: Precipitation flux profile (upper-left); ’bulk’ fall velocity (upper-right); histograms of surface rain rates as

a function of intensity (for last hour only, bottom right). In the rainrate histograms the black lines denote the SPol

data converted using either the TRMM (solid) or RICO (dashed) reflectivity-rainrate relationship. Lines are otherwise

colored following the degrees of freedom available for the microphysical scheme, green for bin, blue for two moment

and red for one moment schemes (note because of an output diagnostic problem the UCLA-LES is not included in the

’bulk’ fall velocity plot).

at some level k, for each model as

cck =

N�

j=0

αjcj (4.1)

where α is an overlap constant, and cj is the cloud frac-

tion in layer j (with j = 0 denoting the first layer in

which cloud fraction is non-zero, and j = N the surface

base). The overlap constant, α, is positive definite and

less than or equal to one (no overlap) and is chosen differ-

ently for each model so that ccN equals the cloud cover

produced by that model. This method for reconstructing

the effective increment in cumulative cloud fraction, due

to clouds at different layers, was necessitated by our lack

of foresight in creating an output diagnostic that more

naturally compares to the cumulative cloud amount as

measured by lidar.

The effective cloud cover at layer (zk), as defined by

(Eq. 4.1), is presented in Fig. 7 alongside the cumulative

cloud cover as measured by the lidar. The most marked

difference between the simulated and measured cloud is

the tendency of cloud cover to decrease more markedly

(almost exponentially) through the cloud layer in the ob-

servations. This difference likely reflects the fact that

the lidar cloud cover is a composite over cloud layers

whose depth varies significantly. It may also reflect in-

sufficient variability or insufficient representation of very

small clouds in the simulations, both of which might be

expected given the restrictions on the size of the simu-

lation domain, and the relatively coarse effective resolu-

tion. Given the possible discrepancy this issue merits fur-

ther study, especially in light of the ability of space-borne

remote sensing to routinely measure the cloud cover as a

function of height (Medeiros et al., 2010), and the in-

terest in using LES to help inform parameterizations of

cloud cover.

Important aspects of the simulated microphysical

structure of the clouds appears consistent with the ob-

servations. This conclusion is based on Fig. 8 wich com-
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Figure 7: Lidar and effective LES cloud cover. The lidar cloud cover, shown by the dashed line, is the cumulative

cloud cover and must monotonically increase as one traverses the layer (from top to bottom). The total cloud cover

is given by the cloud fraction at cloud base. For LES the effective cloud cover is given by Eq. 4.1 and the plotting

convection follows that of FIg. 3

pares vertical profiles of flight data from six C-130 flights

during the composite period (details of processing of the

aircraft data is provided in an appendix), with the multi-

model mean from the simulations. The simulations plau-

sibly represent the profiles of cloud and rain water, and

the raindrop population density profile. Although the

cloud-drop population density profile is also reasonably

well captured, this is largely by design; droplet/CCN

population densities were specified so as to reasonably

represent the active cloud droplet concentrations. Of the

varied data, the profile of cloud water is perhaps the

quantity that is best constrained by the measurements,

and the best captured by the models. Both simulated

and observed liquid-water lapse rates in the lower 500

m of the cloud layer are about half their adiabatic value.

Higher in the cloud layer there is some evidence that the

models realize more liquid water than is usually mea-

sured, but the sampling of clouds at these levels is poorer

and so the comparison with the simulations is more un-

certain.

Beyond the order of magnitude agreement emerge

some apparent discrepancies, particularly in the distri-

bution of the rain-water which is less constrained in its

evolution than is the cloud water. The third panel of

Fig. 8 suggests that the observed raindrop population

density is constant below cloud base and increases grad-

ually through the cloud layer, with little indication of the

cloud base level in the data. This is less true in the sim-

ulations where cloud base is marked by a rather sharp

change in the raindrop population density. The simulated

rainwater content also appears to be at the upper end of

what is observed, although the more or less constant ver-

tical structure is quite similar to what one finds in the

measurements. Taken together these results suggest that

the simulations have more smaller drops that evaporate

more readily in the sub-cloud layer, but contribute little

to the rain water content.

The observed area of precipitation during RICO var-

ied between 0 and 10 % with a mean between 2-3 %.

This area was defined as the frequency of echoes (in the

0.5◦surveillance scans) with a reflectivity greater than

7 dBZ. Simulated surface precipitation areas, defined as

regions where the surface precipitation rate would cor-

respond to a reflectivity greater than 7 dBZ (given the

relationship between radar-reflectivity and rain rate used

by Nuijens et al., 2009), vary between 0 and 3 % with
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Figure 8: Vertical structure of cloud microphysical properties as derived from five flights (shading and dots) as well

as the LES, dashed solid line. Shown are the cloud droplet population density (a); cloud water content (b); rain-water

population density (c); rain-water content (d). The shaded gray lines show estimates based on the simulations. The

light gray shading denotes the 5-95 percentiles of the aircraft data, the dark gray denotes the 25-75 percentile. Median

values are indicated by the gray vertical line.

an average of 1.3 %. Given the uncertainty in retriev-

ing the precipitation rate from the radar reflectivity using

fixed Z-R relationships, and the variability both among

the simulations and in the measurements over the com-

posite period, it seems fair to conclude that the simula-

tions are not grossly misrepresenting the structure of the

precipitation field.

On average the distribution of rain events approach

those observed, particularly in the most strongly precipi-

tating simulations. This is evident in the rain intensity

histograms shown in Fig. 6. These histograms show

however that most simulations produced less precipita-

tion than was observed, and for those that precipitate

most weakly, strong showers were under-represented.

A similar inference can be made on the basis of the

bulk rain intensity. To judge this we normalize the net

precipitation (for events stronger than the detection limit

of the observations) by the area fraction of the echos.

Doing so for the S-band radar measurements during the

undisturbed period of RICO yields a raining-area rain-

rate,

Rp =
R

ap

where R is the average rain rate, and ap is the rain-rate

area, of about 25 mm d−1 as compared to a simulated

value of about 20 mm d−1. That said the intensity of the

rain-rate varies greatly, as echoes greater than 50 dBZ
(equivalently 160 mm d−1 given the Z–R relationship
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Figure 9: Raining area as a function of net surface rain-rate.

Table 3: Rain rate conversion factors, where the conversion to dBz is based on the TRMM and the Snodgrass et al.

(2009) reflectivity rain-rate relationships that have been used for the RICO data.

mm d−1 W m−2 dBZ (TRMM) dBZ (RICO)

1.0 28.5 0.3 - 1.5

3.5 100.0 8.7 6.8

2.7 77.0 7.0 5.1

82.3 2346.2 30.0 27.6

used by Nuijens et al., 2009) were observed from shal-

low systems, and 30 dBZ (82 mm d−1, to convert to

other units see Table 3) echoes were routine. Such values

are not incommensurate with those evident in the rain-

intensity histograms (Fig. 6) constructed using data from

the simulations.

Looking across simulations there is a tendency for

the rain-area, ap, to increase with the total rainfall, R.
This point is illustrated in Fig. 9, and corresponds to what

was also found in the RICO radar data (cf., Fig 5b of Nui-

jens et al., 2009), although the relationship that emerges

from an analysis of the observations is somewhat flat-

ter (as indicated by the lines in Fig. 9), consistent with

the somewhat larger (2.5 versus 2.0 cm d−1) raining-area

rain-rates in the data.

Note that a one-to-one line on Fig. 9 implies that an

increase in the rain rate can be explained entirely by an

increase in the rain area. The observations fall along a

line whose slope in Fig. 9 is somewhat less than one,

while the simulations define a slope somewhat greater

than one. This suggests that to the extent they disagree,

as rain-rates increase the observations indicate that the

additional rain is carried by somewhat stronger, not just

more, showers, relative to the simulations.

There is some indication that the simulations produce

rain whose spatial distribution is more uniform than what

is observed. To arrive at this conclusion we compare the

incidence of precipitation in the LES domain with that

taken from subdomains of the radar. Because the large-

size of the radar domain allows us to sub-sample smaller
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Figure 10: Probability of precipitation in subdomains of size �. Circles show the LES data, with symbols as in Fig. 9.

Almost all the points, except for three of the two-moment simulations, group under the black dots near a probability

of unity, indicating that precipitation was almost always present in the LES.

subdomains it is possible to explore the probability of

precipitation as a function of spatial scale with the radar

data.

The result of this analysis is presented in Fig. 10.

It suggests that given the size of the LES domain, pre-

cipitation occurs too frequently in most of the simula-

tions. Although a couple of simulations precipitate with

a frequency commensurate with the observations these

greatly under-estimate the total precipitation. Our inter-

pretation of this result is that the observed precipitation

during RICO is organized on larger scales (by a factor of

2-8) than what can be captured by the LES domains used

for our comparison. This inference is also supported by

large-domain simulations (G. Matheou, personal com-

munication) that shows as larger-scales are allowed to

develop regions of precipitation and relatively clear ar-

eas organize themselves on these scales.

5. Sensitivity to microphysics

Differences in the amount of precipitation across the en-

semble of simulations appear to be significantly influ-

enced by the representation of microphysical processes.

To arrive at this conclusion we compare the simulated

liquid water amount for a non-precipitating simulation

of a given model, with the precipitation that the model

produces when microphysical processes are allowed to

become active. Our hypothesis is that if the rain amounts

depend principally on how much liquid water a partic-

ular model produces in its clouds, then we would ex-

pect to see a relationship between rain rate in the pre-

cipitating case, and cloud water in the non-precipitating

case. Fig. 11 indicates that such a relationship does not

strongly emerge, which suggests to us that how much

rain a particular simulation produces depends signifi-

cantly on the details of the microphysical representa-

tion. This inference is also supported by simulations

with a single code wherein microphysical representa-

tions were modeled differently, leading to large changes

in the amount of rain produced (Stevens and Seifert,

2008). Although microphysical differences appear to be

more decisive than dynamical differences in our simu-

lations ensemble, this may also reflect the homogene-

ity in the dynamic representation of the clouds. Simu-

lations with much finer resolution, for instance, can pro-

duce significantly larger rates of precipitation for a given

microphysical representation (Stevens and Seifert, 2008;

Matheou et al., 2010). Additionally, small changes in the

dynamical environment can have profound changes for

the development of the cloud layer and the precipitation
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Figure 11: Relationship between LWP in non-precipitating simulations and precipitation that develops at cloud base

in precipitating simulations.

(Stevens and Seifert, 2008; Nuijens, 2010).

6. Sensitivity of the cloud layer to precipitation

development

The effect of allowing precipitation to develop in the sim-

ulations is, even at the modest amounts considered here,

evident if not dramatic. These effects include a marked

(100 m, e.g., upper panel of Fig. 3) reduction in the

growth of the cloud layer; and a cooling of the sub-cloud

layer which in turn is responsible for a slight increase in

sensible heat fluxes (e.g., third panel of Fig. 3). The tem-

perature profile in simulations that are allowed to precip-

itate is somewhat more stable (as measured by its depar-

ture from the moist-adiabat) than the non-precipitating

simulations. The effect of precipitation on the structure

of the cloud layer is also evident in Fig. 12, where the

shallower, and somewhat stabler cloud layer of the pre-

cipitating ensemble is readily evident. This result sup-

port the hypothesis in earlier work (Riehl et al., 1951;

Betts, 1973; Stevens, 2007), that the principal mech-

anism through which the trade-wind layer deepens is

through the evaporation of liquid water in the stable air

within, and above, the trade inversion, thus gradually im-

buing these layers with the properties of the cloud layer

below.

The somewhat deeper clouds in the non-precipitating

cases are also more vigorous, say as measured by the

vertical velocity variance within the cloud and sub-cloud

layers, or by vertical velocity conditioned over cloudy, or

cloud-core areas (e.g., upper panels of Fig. 5). Sharper

gradients near cloud top enhance scalar variances there.

There is also a hint that the somewhat more vigorous

convection in the non-precipitating ensemble is associ-

ated with more mixing, as measured by a diagnoses of

the entrainment and detrainment rates (e.g., Fig. 5).

Systematic differences in the overall amount of

cloud or liquid water between the precipitating and non-

precipitating simulations are more difficult to establish;

differences among models for the non-precipitating case

are as large as those for a single model when precipita-

tion is allowed to develop. Fig. 13 shows that for light

precipitation most models tend to produce an increase in

cloud cover, while for heavier precipitation more mod-

els experience a reduction in cloud cover. The signal

is weak, but it echoes the results of Stevens and Seifert

(2008) where one model was used and the precipitation

efficiency in that model was varied. Overall it suggests
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Figure 12: Difference in the final depth of the marine layer between the precipitating and non-precipitating simulation

for each model as a function of the rate of precipitation in the precipitating simulation.

that the response of cloud cover to an increase in precip-

itation depends on the state of the cloud layer. This con-

siderably complicates efforts to parametrize and evaluate

the so called lifetime effects in large-scale models (cf.,

Stevens and Feingold, 2009).

7. Conclusions

A case study is defined to explore the evolution of clouds

similar to those observed during an undisturbed period

of measurements during the Rain in Cumulus Over the

Ocean (RICO) field study. The initial data are drawn

from the RICO measurements, the forcing is derived

from a local downscaling of meteorological analyses.

Twelve groups submitted a pair of large-eddy simula-

tions that conformed to the specifications of the case

study. This pair consisted of two twenty-four hour peri-

ods, one for which precipitation is inhibited in the model,

another for which precipitation is allowed to developed.

Precipitation development within a model depends on

the microphysical parameterization employed, with ap-

proaches differing considerably among the participating

LESs.

The simulations agree on the broad structure of the

cloud field that develops given the initial data and forc-

ing, and this structure plausibly reproduces many fea-

tures of the observed layer. Thermodynamically and

energetically the simulations are similar to past simu-

lations of clouds in the trade-winds, although the cloud

mass flux decreases less evidently with height as com-

pared to simulations of shallower cloud layers, e.g., as

observed during BOMEX or ATEX. In contrast to past

studies of clouds in the trade-winds, the RICO data al-

low us to more quantitatively evaluate the representation

of the cloud and precipitation fields by the simulations

— although sampling issues associated with the relative

sparcity of clouds make this data challenging to use in a

decisive way. That said, the vertical structure of cloudi-

ness and cloud water, the order of magnitude of precip-

itation rate, and rain-water content are plausibly repre-

sented by the simulations, as are some aspects of the vari-

ability in the data, for instance the general tendency for

more rain to scale with the raining area.

The simulations differ substantially in the amount of

rain they produce, and in the microphysical details of

the cloud evolution itself. Despite these differences the

simulations all produce precipitation profiles that maxi-

mize near cloud top, with most of the re-evaporation of

rain concentrated in the cloud layer itself. This differs

from the typical picture of convective clouds, wherein
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Figure 13: Difference in cloud cover between simulations with and without precipitation by each model as a function

of the precipitation rate in the precipitating simulation.

the rain falls through the cloud-itself, thereby maximiz-

ing the precipitation flux near cloud base, and concen-

trating re-evaporation in the subcloud layer.

Differences in the simulated structure and amount of

precipitation appears to be related to microphysical as-

sumptions made in the models, rather than cloud macro-

structure. That is, when one looks across models, the

thickness of the clouds produced in a non-precipitating

simulation is not a good predictor of how much precip-

itation will develop in the precipitating simulation. The

behavior and variability of explicit (or bin) representa-

tions of microphysical processes is not significantly dif-

ferent than that of much simpler two moment schemes,

suggesting that the latter may be adequate for most pur-

poses. There is some evidence that one moment schemes

systematically misrepresent the vertical structure of the

rain-water and precipitation fields, which might make

them unsuitable for models that wish to explore the inter-

action between shallow rain, the developing cloud layer,

and ensuing dynamic circulations, let alone aerosol cloud

interactions.

Across models some robust tendencies emerge in re-

sponse to the development of precipitation. As precipita-

tion develops there is a systematic tendency for the cloud

layer to deepen less rapidly, the stability within the cloud

layer is enhanced, and there is some sign that the cloud

circulations become less vigorous. The response of cloud

cover is more ambiguous. There is some evidence that

it increases when precipitation is light, and decreases as

precipitation becomes stronger. Many of these findings

are consistent with those of earlier studies based on a sin-

gle model.
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A. Details of data preparation

The rainwater data from the aircraft was taken by sum-

ming the liquid water concentrations from the 260X

probe over the range from 85 µm and the 2DP data

for drops larger than 300 µm in diameter. Raindrops

in the LES are defined to be those drops with a diam-

eter larger than 80 µm. The data is processed using a

10 Hz sampling rate. To be more commensurate with

the sampling of the LES the data was also reprocessed

with a sampling rate of 1 Hz, corresponding roughly to

100 m scales. These data showed some reduction in the

cloud droplet concentration and liquid water profiles, es-

pecially on flights such as RF06 when the cumulus were

small. However relative to the overall scatter the effect

of the sampling frequency was relatively minor.

For the plots of Nr he WVU data was not included

in the plot due to an apparent sampling error.

B. Output templates

Tables 4-6 provide the list of output variables of the

RICO case and are as such a description of the available

NetCDF files. The output files of the two master ensem-

bles contain the mean, variance, minimum and maximum

and inner and outer quartile values of the variables of Ta-

bles 4 and 5.
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Table 4: Scalars provided as a time-series often a the sampling interval with which profile statistics were accumulated

(0.5-5.0 min)

symbol NetCDF

var. name Description Units

time Time [s]

zi zi Mean height of grid cells with largest potential temperature gradient [m]

zcb zcb Height of bottom of lowermost cloudy grid cells [m]

zct zct Height of top of highest cloudy grid cells [m]

zmaxcfrac Height of bottom of grid level with highest mean cloud fraction [m]

M zmaxcfrac Cloud core mass-flux at zmaxfrac height [kg m−2 s−1 ]

LWP LWP Mean liquid water path [g m−2]

LWP var Liquid water path variance [g2 m−4]

RWP RWP Mean rain water path [gm−2]

cc cc Fraction of columns with number of cloudy grid cells ¿0 []

w�θ� shf Mean upward surface sensible heat flux [K ms−1]

w�q� lhf Mean upward surface latent heat flux [kg kg−1 m s−1]

Nc Nc Mean cloud droplet concentration [cm−3]

Nr Nr Mean rain drop concentration [cm−3]

tke Vertically integrated TKE (sgs plus resolved), not density weighted [m3 s−2]

prec srf Mean (downward) precipitation flux at the surface [kg kg−1 m s−1]

prec 500 Mean (downward) precipitation flux at 500 m [kg kg−1 m s−1]

prec 980 Mean (downward) precipitation flux at 980 m [kg kg−1 m s−1]

prec 1500 Mean (downward) precipitation flux at 1500 m [kg kg−1 m s−1]

prec 1980 Mean (downward) precipitation flux at 1980 m [kg kg−1 m s−1]

prec 2500 Mean (downward) precipitation flux at 2500 m [kg kg−1 m s−1]

prec srf prc Precipitation flux (downward) at the surface, kg kg−1 m s−1

averaged over precipitating surface grid cells only

prec 500 prc Precipitation flux (downward)at 500m, [kg kg−1 m s−1]

averaged over precipitating grid cells at 500 m only

prec fracsrf Fraction of surface grid cells with a surface [-]

precipitation flux of 3.65e-5 [kg kg−1 m s−1] or higher
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Table 5: Profile statistics, which are constructed by temporally and horizontally averaging the various fields.

symbol NetCDF

var. name Description Units

time Time [s]

zf Altitude of layer mid-points [m]

llim Value of the left limit of the bins in the histogram [kg kg−1 ms−1]

u u Zonal wind [m s−1]

v v Meridional wind [m s−1]

θl thetal Liquid water potential temperature [K]

qt qt Total water (vapor+liquid) [g kg−1]

ql ql Condensed water [g kg−1]

qr qr Rain water [g kg−1]

u�u� u var Resolved variance of zonal wind [m2 s−2]

v�v� v var Resolved variance of meridional wind [m2 s−2]

w�w� w var Resolved variance of vertical wind [m2 s−2]

w skw Resolved (w�3)/(w�2)−1.5 [-]

θ�lθ
�

l thetal var Resolved variance of θl [K2]

q�tq
�

t qt var Resolved variance of qt [kg2 kg−2]

w�θ�l tot wthl Total θl flux, including subgrid-scale [K m s−1]

sgs wthl Subgrid-scale θl flux [K m s−1]

w�q�t tot wqt Total qt flux, including subgrid-scale [kg kg−1 m s−1]

sgs wqt Subgrid-scale qt flux [kg kg−1 m s−1]

w�θ�v tot wthv Total θv flux [K m s−1]

u�w� tot uw Total (sgs plus resolved) zonal momentum flux [m2 s−2]

v�w� tot vw Total (sgs plus resolved) meridional momentum flux [m2 s−2]

res tke Resolved TKE [m2 s−2]

sgs tke Subgrid TKE [m2 s−2]

res buoy Resolved buoyancy TKE production [m2 s−3]

res shr Resolved shear TKE production [m2 s−3]

res transport Resolved TKE transport (turbulent plus pressure) [m2 s−3]

res diss TKE dissipation (explicit plus numerical) [m2 s−3]

cfrac cfrac Fraction of cloudy grid cells [-]

prec Precipitation flux [kg kg−1 m s−1]

prec prc Prec. flux averaged over prec. grid cells only [kg kg−1 m s−1]

frac prc Fraction of prec. grid cells with a [-]

prec. flux of 3.65e-5 [kg kg−1 m s−1] or higher

Nr Nr Mean rain drop population density [cm−3]

Nc Nc Mean cloud droplet population density [cm−3]
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Table 6: Conditionally averaged profile statistics, which are constructed by temporally and horizontally averaging the

various fields given some indicator (cloud, or core) function (Siebesma et al., 2003).

symbol NetCDF

var. name Description Units

wcld w cld average over all cloudy grid points of w [m s−1]

thl cld average over all cloudy grid points of θl [K]

qt cld average over all cloudy grid points of qt [g kg−1]

ql cld average over all cloudy grid points of ql [g kg−1]

thv cld average over all cloudy grid points of θv [K]

cofrac cofrac Fraction of cloud core grid points [-]

wcore w core average over all cloud core grid points of w [m s−1]

thl core average over all cloud core grid points of θl [K]

qt core average over all cloud core grid points of qt [g kg−1]

ql core average over all cloud core grid points of ql [g kg−1]

thv core average over all cloud core grid points of θv [K]

histo srf Histogram of surface precipitation
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