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Convection Heat Transfer and Flow Calculations
Suitable for Electric Machines Thermal Models

David A. Staton and Andrea Cavagnino, Member, IEEE

Abstract—This paper deals with the formulations used to pre-
dict convection cooling and flow in electric machines. Empirical
dimensionless analysis formulations are used to calculate convec-
tion heat transfer. The particular formulation used is selected to
match the geometry of the surface under consideration and the
cooling type used. Flow network analysis, which is used to study
the ventilation inside the machine, is also presented. In order
to focus the discussion using examples, a commercial software
package dedicated to motor cooling optimization (Motor-CAD) is
considered. This paper provides guidelines for choosing suitable
thermal and flow network formulations and setting any calibration
parameters used. It may also be considered a reference paper that
brings together useful heat transfer and flow formulations that can
be successfully applied to thermal analysis of electrical machines.

Index Terms—Dimensionless correlations, electrical machines,
flow analysis, thermal model.

I. INTRODUCTION

OVER THE past decade, thermal analysis of electric ma-

chines has started to receive more attention. In fact,

with the increasing requirements for miniaturization, energy

efficiency, cost reduction, and the need to fully exploit new

topologies and materials, it is now necessary to analyze the

thermal circuit to the same extent as the electromagnetic design.

An increase in the level and sophistication of thermal analysis

used in the design process also gives benefits in terms of a

faster time to market and a greater chance that the developed

solution more closely matches the customer’s requirements.

During the same period, there has also been more interest in

thermal analysis of drives and power converters [1], [2].

The lumped parameter thermal network (LPTN) method has

been successfully used for thermal analysis of electric motors

and [3] represents a notable example. This commercial soft-

ware package provides near-instantaneous calculation speeds,

allowing “what-if” scenarios to be run in real time. The users

input geometric data for the design under consideration using

the radial and cross-sectional graphical editors. Materials and

the cooling system type to be used in the machine are then

selected. All thermal parameters, such as conduction, radiation,

and convection thermal resistances, are then calculated by the

program, and the thermal performance is evaluated.
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The formulations for the thermal resistances are quite simple.

The conduction resistance is equal to the path length divided

by the product of the path area and the material’s thermal

conductivity. The convection and radiation resistances are equal

to one divided by the product of the surface area and the heat

transfer coefficient. The radiation heat transfer coefficient is

simply a function of the surface properties, i.e., the emissivity

and the view factor. The emissivity is known for different

types of surface, and the view factor can be calculated based

on the geometry. An experimental approach to the radiation

phenomena that occurs both inside and outside the machine can

be found in [4].

The convection heat transfer coefficient is most often calcu-

lated using empirical formulations based on convection corre-

lations, which are readily available in the heat transfer literature

[5]–[8]. Fortunately, there is a wealth of convection correla-

tions for most of the basic geometric shapes used in electrical

machines, both for natural and forced convection cooling i.e.,

cylindrical surfaces, flat plates, open fin channels, closed fin

channels, etc. In this paper, the most common and useful

dimensionless correlations used for calculating convection heat

transfer in electrical machines are reported. Since forced con-

vection heat transfer from a given surface depends on the fluid

local velocity [9]–[14], flow network analysis is also presented.

In this case, empirical dimensionless formulations are used to

predict pressure drops due to flow restrictions, i.e., vents, bends,

contractions, and expansions, and, ultimately, to calculate the

airflow and resulting air velocity in all ventilation paths.

This paper aims at assisting non–heat transfer specialists in

their understanding of heat transfer and flow analysis. It may

also be considered a reference that brings together useful heat

transfer and flow formulations that can be successfully applied

to thermal analysis of electrical machines.

II. CONVECTION DIMENSIONLESS ANALYSIS

Convection is the heat transfer process due to fluid motion. In

natural convection, the fluid motion is due entirely to buoyancy

forces arising from density variations in the fluid. In a forced

convection system, the fluid movement is by an external force,

e.g., fan, blower, and pump. If the fluid velocity is large, then

turbulence is induced. In such cases, the mixing of hot and cold

air is more efficient, and there is an increase in heat transfer.

The turbulent flow will, however, result in a larger pressure

drop such that with a given fan/pump, the fluid flow rate will

be reduced.

Proven empirical heat transfer correlations based on dimen-

sionless analysis are used to predict the heat transfer coefficient

0278-0046/$25.00 © 2008 IEEE
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h [W/(m2 ◦C)] for all convection surfaces in the machine

[5]–[8], [15], [16]. Many such correlations are built in [3],

where the most appropriate formulation for a given surface and

flow condition is automatically chosen. This means that the

user need not be an expert in heat transfer analysis to use the

software effectively.

Forced convection heat transfer from a given surface is a

function of the local flow velocity. In order to predict the local

velocity, a flow network analysis can be used to calculate the

flow of fluid (air or liquid) inside the machine. Empirical di-

mensionless analysis formulations are used to predict pressure

drops for flow restrictions such as vents, bends, contractions,

and expansions.

For natural convection, the typical form of the convection

correlation is shown as follows:

Nu = a · (Gr · Pr)b. (1)

For forced convection, the typical form of the convection corre-

lation is

Nu = a · (Re)b · (Pr)c (2)

where a, b, and c are constants given in the correlation. The

following correlations also have to be considered:

Re = ρ · v · L/µ (3)

Gr =β · g · ∆T · ρ2 · L3/µ2 (4)

Pr = cp · µ/k (5)

Nu =h · L/k (6)

where

Nu Nusselt number;

Re Reynolds number;

Gr Grashof number;

Pr Prandtl number;

h heat transfer coefficient [W/(m2 ◦C)];
µ fluid dynamic viscosity (in kilograms per second

meter);

ρ fluid density (in kilograms per cubic meter);

k fluid thermal conductivity [W/(m ◦C)];
cp fluid specific heat capacity [kJ/(kg ◦C)];
v fluid velocity (in meters per second);

∆T difference between surface and fluid temperatures (in

degress Celsius);

L characteristic length of the surface (in meters);

β coefficient of cubical expansion [1/K]; for the gases,

β = 1/(273 + TFLUID)
g gravitational attraction force (in meters per second

squared).

The magnitude of Re is used to judge if there is laminar or

turbulent flow in a forced convection system. Similarly, the Gr ·
Pr product is used in natural convection systems.

The most important parameter to be considered is h. Once h
is known, it is possible to calculate the thermal resistance to put

Fig. 1. Examples of housing types that are suitable for a TENV cooling
system.

in the heat transfer network by the following equation, where

A [m2] is the surface area

R = 1/(h · A). (7)

Natural convection heat transfer is a primary function of the

fluid properties and of the temperature difference between the

considered solid component and the fluid. Forced convection is

a primary function of the fluid velocity and fluid properties, and

it is a secondary function of the temperature because the fluid

properties are temperature dependent.

The advantage of using empirical formulations based on

dimensionless analysis is that the same formulation can be used

for similarly shaped geometries with a size that is different from

that of the original experiments and/or with a different fluid. In

addition, altitude has a significant effect on convection cooling

and is fully accounted for, as the variation in air pressure,

density, and temperature variation with altitude can easily be

modeled.

The mixed heat transfer due to the combination of natural

and forced convection is estimated using

h3
Mixed = h3

Forced ± h3
Natural. (8)

The fluid flux direction determines the sign that has to be used

in (8): a + sign for assisting and transverse flow and a − sign

for opposing types of flow [5].

III. NATURAL CONVECTION: TENV COOLING SYSTEM

In a total enclosed nonventilated (TENV) electric machine,

the external surface of the housing dissipates heat by natural

convection and radiation. A few examples of housing types that

are designed for TENV cooling are shown in Fig. 1. In such a

cooling system, the outer surface is usually smooth. If fins are

used to increase the convection surface, they should be oriented

so as not to disturb the natural airflow, as shown in the radial fin

design in the motor on the right part of Fig. 1, where the fins are

perpendicular to the machine shaft, so the convection cooling

is only optimal if the motor is mounted horizontally in the

application. If a radial finned housing is used in an application

with a vertical mounting, then some derating must be applied.

This situation is depicted in Fig. 2.

The calculation of natural convection heat transfer is often

a requirement for axial finned housing used in fan-cooled

machines, as shown in Fig. 4. This is because natural convection

can dominate the cooling at low fan speeds, as in the case of

motors used in variable-speed drives.

Correlations for basic shapes such as horizontal and vertical

cylinders and flat plates can be used to predict the convection
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Fig. 2. Computational fluid dynamics (CFD) analysis results—radial fins with
vertical shaft mounting.

TABLE I
NATURAL CONVECTION CORRELATION COEFFICIENTS

heat transfer for the more simple smooth housing structures

found in electrical machines. Table I gives suitable values for

a and b coefficients to be used in (1) for such housing surfaces.

Values are given for both laminar and turbulent flow, together

with the Gr · Pr product at which the transition to turbulent flow

occurs [5]–[7].

For more complex housing types with finned structures,

correlations for horizontal and vertical U-shaped channels are

required.

For U-shaped vertical channels with laminar flow, (9), shown

at the bottom of the page, can be used [16], where S is the

fin spacing, L is the fin depth, α = S/L is the channel aspect

ratio, and r is the characteristic length (hydraulic radius) equal

to 2 · L · S/[2 · (L + S)] for the case under study.

For a U-shaped horizontal channel with laminar flow [17],

the following equation can be used:

Nu = 0.00067 · Gr · Pr ·
{

1 − e(−7640/Gr·Pr)0.44
}1.7

. (10)

In this case, the fin spacing is used as the characteristic length.

The convection correlation chosen for a particular housing

section depends on its geometry and orientation. Many corre-

Fig. 3. Comparison between the measured and calculated housing to ambient
natural convection thermal resistance for five four-pole 50-Hz 400-V TEFC
induction motors rated 4, 7.5, 15, 30, and 55 kW.

lation types are required to suit the varied housing geometries

used in practice. In many cases, the housing shape may be so

complex that a single correlation does not exist. In such cases,

separate correlations are used for the parts of the surface that

have a shape with a known correlation. An area-based average

is then carried out using the different correlations. For example,

the following basic geometric shapes can be seen in a horizon-

tally mounted radial finned motor housing (rightmost motor in

Fig. 1): a cylinder for the main body of the housing; vertical

fin channels on the two sides of the machine; and horizontal fin

channels on the top and bottom of the machine. However, when

the same machine is mounted with a vertical shaft orientation,

as shown in Fig. 2, a more complex formulation has to be

used. In this case, there is little air circulation at the base of

deep narrow fin channels fitted to the sides of the motor. For

such fin structures, terms are introduced into the formulation

to limit the dissipation area to a depth down the fin channel

equal to fin spacing. This is required so that the dissipation

from such finned housings with a suboptimal orientation is not

overpredicted. Indeed, good results can be obtained for such

housing types [18].

Fig. 3 proves that a good prediction of the natural convec-

tion can be achieved by using such complex correlations. The

machines have axial fins, rather than the radial fins considered

in the previous example. Natural convection is suboptimal in

this case, as the shaft is horizontal; so the fin channels are

perpendicular to the natural airflow. Fig. 3 shows close agree-

ment between the calculated and measured housing to ambient

thermal resistance for the motors shown in the diagram, with

the fan being at rest in this case [9].

Nu =
r

L
· Gr · Pr

Z
·
[

1 − e
−Z·

(

0.5
(r/L)·Gr·Pr

)0.75
]

Z = 24 · 1 − 0.483 · e−0.17/α

[{1 + α/2} · {1 + (1 − e−0.83·α) · (9.14 · √α · e−465·S − 0.61)}]3
(9)
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Fig. 4. Examples of housing types that are suitable for a TEFC cooling
system.

IV. FORCED CONVECTION: TEFC COOLING SYSTEM

In a total enclosed fan-cooled (TEFC) electric machine,

forced convection heat transfer gives improved dissipation,

compared to an equivalent TENV machine. Some examples

of the housing types optimized for external forced convection

are shown in Fig. 4. A fan is usually fitted to the end of the

shaft; the fan blows air in an axial direction over the outside

of the housing. If the surface is smooth, it is possible to use

the following well-known correlations, which are valid for flow

over a flat plate [5]–[7]:

Laminar flow (Re < 5 × 105) and (0.6 < Pr < 50)

Nu = 0.664 · Re0.5 · Pr0.33 (11)

Turbulent flow (Re > 5 × 105)

Nu = (0.037 · Re0.8 − 871) · Pr0.33. (12)

The flat plate correlation can be used for a cylindrical hous-

ing when the airflow is along its axial length, as the surface

is flat for each filament of air. In the TEFC machine, axial

fins are usually included on the housing surface to increase

the convection heat transfer. Furthermore, in the majority of

TEFC machines, the fin channels are semiopen, and the most

common external and internal flow correlations are not directly

applicable. A special formulation for semiopen channels can be

used. This is based on the extensive testing carried out by Heiles

on finned induction motor housings of various sizes and shapes

[15]. In the correlation, it is assumed that the flow is always

turbulent due to the fact that the radial fans and cowlings used in

such machines create turbulence. The convection heat transfer

coefficient h is calculated using

h =
ρ · cp · D · v

4 · L · (1 − e−m) (13)

m = 0.1448 · L0.946

D1.16
·
(

k

ρ · cp · v

)0.214

(14)

where v is the inlet air velocity in the fin channels, D is the

hydraulic diameter (four times the channel area divided by the

channel perimeter, including the open side), and L is the axial

length of cooling fins. Heiles recommends that h is multiplied

by a turbulence factor. The experimental tests indicated typical

turbulence factor values in the range of 1.7–1.9, and this is

independent of the flow velocity.

The inlet air velocity v has to be estimated. It is possible to

use experimental data, such as those shown in Fig. 5, which

are valid for four-pole 50-Hz machines. This shows the average

air velocity at the start of the fin channels (fan side) for five

TEFC induction motors. As expected, the air velocity versus

Fig. 5. Fin channel inlet air velocity versus the rotor speed for the TEFC
induction motors shown in Fig. 3.

Fig. 6. Fin channel air velocity versus the distance from fan (the base speed
is the inlet air velocity in the fin channels).

the shaft speed is a linear relationship. The actual velocity from

channel to channel can vary significantly and is a function of

the fan direction. In fact, in many TEFC machines, some of the

fin channels on the machine frame may be blocked by bolt lugs

and terminal boxes [19].

Alternatively, it is possible to consider the volume flow rate.

If the channel dimensions and the inner cowling diameter are

known, the inlet velocity can be calculated on the base of the

cross-sectional area available for flow.

A factor that must be taken account of in a TEFC machine

is that air tends to leak out of the open channels. Consequently,

the local air velocity at the drive end is lower than that at the

non–drive end (fan side).

The typical form of the reduction in velocity versus the

distance from the fan is shown in Fig. 6. The prediction of

the actual reduction in velocity is a complex function of many

factors, including the fan type, the fin and cowling design,

and the rotational speed. Using experimental data and/or CFD

results, it is possible to define a more accurate model for the

finned housing [9], [20]. For machines similar to the TEFC

induction motors shown in Fig. 3, the relationships shown in

Figs. 5 and 6 can be used to obtain a reasonable starting value

of the air velocity along the fin channels.
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Fig. 7. Examples of liquid cooling system types.

V. FORCED CONVECTION: WATER JACKETS

Liquid cooling methods such as spiral grooves and zigzag

arrangements of axial covered channels are often used in highly

loaded machines. Fig. 7 shows examples of typical liquid

cooling duct systems. Correlations that are suitable for internal

flow are used to calculate the heat transfer coefficient in such

cases. The heating effect of the fluid is also taken into account

in the formulation.

A. Laminar Flow

Depending on the channel shapes, different correlations have

to be used [7]. In particular, (15) is for round channels, (16) is

for rectangular channels, and (17) is for concentric cylinders.

We have

Nu = 3.66 +
0.065 · (D/L) · Re · Pr

1 + 0.04 · ((D/L) · Re · Pr)2/3
(15)

Nu = 7.49 − 17.02 · H

W
+ 22.43 ·

(

H

W

)2

− 9.94 ·
(

H

W

)3

+
0.065 · (D/L) · Re · Pr

1 + 0.04 · ((D/L) · Re · Pr)2/3
(16)

Nu = 7.54 +
0.03 · (D/L) · Re · Pr

1 + 0.016 · ((D/L) · Re · Pr)2/3
(17)

where the H/W ratio is the channel height-to-width ratio, and

D is the channel hydraulic diameter, which is two times the

gap for concentric cylinders and four times the channel cross-

sectional area divided by the channel perimeter for round and

rectangular channels. The variable part of the above equation

is the entrance length correction, which accounts for entrance

lengths where the velocity and temperature profiles are not fully

developed [21].

B. Turbulent Flow

For fully developed turbulent flow (i.e., 3000 < Re < 106,

the following correlation is available [22]:

Nu =
f

8
· (Re − 1000) · Pr

1 + 12.7 · (f/8)0.5 · (Pr2/3 −1)
(18)

where f is the friction factor, and for a smooth wall, it can be

estimated by

f = [0.790 · Ln(Re) − 1.64]−2. (19)

The flow is assumed to be fully laminar when Re < 2300
in round and rectangular channels and when Re < 2800 in

concentric cylinders. The flow is assumed to be fully turbulent

Fig. 8. Enclosed channel forced convection heat transfer coefficient versus the
fluid velocity.

when Re > 3000, even if, in practice, the flow may not be fully

turbulent until Re > 10 000. The transition between laminar

and turbulent flow is assumed for Re values between those

given above. Typical results showing transition from a laminar

to a turbulent flow are shown in Fig. 8 for the enclosed channel

correlation. Fig. 8 highlights that the two formulations do not

join each other and a small transition zone (starting from the

critical Re number, which is dependent upon the channel shape

up to 3000) is used to make the two functions join and to obtain

numerical stability. A weighted average (based on Re) is then

used to calculate Nu in the transition zone.

VI. FORCED CONVECTION: END-SPACE REGIONS

Convection for all surfaces within the internal sections of

the machine must be modeled; this is particularly important

for the end-windings since they are typically the hottest point

in the machine. The convection cooling of internal surfaces can

be complex because the fluid flow depends on many factors,

including the end-winding shape and length, added fanning

effects due to wafters (i.e., simple fan features that are included

on induction motor squirrel-cage end-rings), simple internal

fans, surface finish of the rotor end sections, and turbulence.

Several authors have studied such a cooling phenomenon, and

in general, they propose the following equation as a useful

formulation [9]:

h = k1 ·
[

1 + k2 · vk3
]

(20)

where k1, k2, and k3 are curve fit coefficients, and v is the av-

erage air velocity for the surface under consideration. There are

several surfaces within the end-space (i.e., end winding inner

and outer surfaces, endcap inner surface, housing inner surface,

shaft surface, etc.), all with different average air velocities. For

example, the outer surface of the endwinding will have a much

lower velocity, compared to the inner surface, as it is shielded

from the air movement within the endcaps, which is induced

by rotational fanning effects. It is usual to try to estimate

each surface average air velocity based on the maximum rotor

peripheral velocity, the size of any internal fans, and the amount

by which a surface is shielded from the main rotational airflow.
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Fig. 9. End-space convection heat transfer coefficients versus the inner air
velocity.

Fig. 9 shows some published correlations related to the end-

space cooling. It is interesting that all the references show much

the same trends. A detailed discussion about these topics can be

found in [23].

VII. FORCED CONVECTION: AIR-GAP HEAT TRANSFER

The traditional method to account for heat transfer across the

electrical machine air gaps is to use the dimensionless convec-

tion correlations developed from testing on smooth concentric

rotating cylinders by Taylor [24].

In order to judge if the flow in the air gap is laminar, vortex,

or turbulent, the Taylor number (Ta) has to be calculated using

Ta = Re · (lg/Rr)
0.5 (21)

where lg is the air-gap radial thickness, Rr is the rotor outer

radius, and Re = lg · v/µ.

The flow is laminar if Ta < 41. In this case, Nu = 2, and heat

transfer is by conduction only. If 41 < Ta < 100, the flow takes

on a vortex form with enhanced heat transfer; in this case, the

following equation has to be used:

Nu = 0.202 · Ta0.63 · Pr0.27. (22)

If Ta > 100, the flow becomes fully turbulent, and a further

increase in heat transfer results. In this condition, the following

equation is used to calculate Nu:

Nu = 0.386 · Ta0.5 · Pr0.27. (23)

Gazley [10] investigated the effect of both rotor and stator

slotting on the air-gap heat transfer. He found that slotting gave

a relatively minor change in air-gap heat transfer in most cases.

There was a small decrease in heat transfer for the laminar flow

and a small increase in heat transfer for the vortex flow. He

found that there could be a significant increase in heat transfer

due to slotting with highly turbulent flow, but equations were

not given to quantify the effect.

VIII. FORCED CONVECTION: THROUGH VENTILATION

In the through-ventilation model, the airflow through the ma-

chine can be calculated using flow network analysis [11]–[14].

Fig. 10. Examples of typical inner ventilation duct types.

Fig. 11. Fan and system resistance characteristics screenshot in [3].

Typically, there are three parallel flow paths inside the machine:

1) stator ducts; 2) rotor ducts; and 3) the air gap. Examples of

typical duct types are shown in Fig. 10. The total flow through

the machine is determined from the intersection of the fan

characteristic and the system flow resistance characteristic, as

shown in Fig. 11 [3]. The flow velocity in each section of the

flow circuit is calculated from the local flow rate and the local

cross-sectional area. The velocity information is then used to

calculate the local heat transfer coefficients and, subsequently,

the thermal resistances.

IX. FLOW NETWORK ANALYSIS

The governing equation that relates pressure drop P (flow

equivalent of electrical voltage, in pascals) to volume flow

rate Q (equivalent to electrical current, [m3/s]) and flow

resistance R [kg/m7] is

P = R · Q2. (24)

It is important to highlight that in (24), the formulation is in

terms of Q2 rather than Q due to the turbulent nature of the

flow. Two types of flow resistance exist: 1) where there is a

change in flow condition, such as expansions and contractions

and bends, and 2) due to the fluid friction at the duct wall

surface; in electrical machines, this is usually negligible

compared to the first resistance type due to the comparatively

short flow paths. The flow resistance is calculated for all

changes in the flow path using

R =
k · ρ
2 · A2

. (25)
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Fig. 12. Inlet grill k factor.

Fig. 13. Outlet grill k factor.

In (25), k is the dimensionless coefficient of local fluid

resistance (sometimes called minor loss factor), ρ (in kilograms

per cubic meter) is the air density, and A (in square meters)

is the area of the flow section that is defined in the minor

loss factor formulation. The value of k depends upon the

local flow condition, i.e., if there is an obstruction, expansion,

contraction, etc. Suitable formulations are available to calculate

the k factors for all changes in the flow section within the

motor. A feature of the thermal tool [3] is that it automatically

selects the most appropriate formulation for all the flow path

components in the through-ventilation scheme selected, i.e.,

a sudden contraction when air enters the stator/rotor ducts, a

90◦ bend where the air passes around the end winding, etc.

Five types of flow resistance are used to model the flow

through the machine:

1) inlet grill/guard;

2) outlet grill/guard;

3) sharp bend;

4) sudden expansion;

5) sudden contraction.

A. Inlet and Outlet Grill/Guards

The characteristic shown in Fig. 12 is used to calculate

pressure drop at entry to system due to a grill/filter over the inlet

Fig. 14. k factor values for bends.

Fig. 15. Sudden expansion k factor.

vents. A similar characteristic is used for outlet vents as well,

as shown in Fig. 13. Both use a data combination from Woods

of Colchester Ltd., [12] and Lightband and Bicknell [13]. The

arrows in these pictures relate to which area is used in the flow

resistance calculation.

B. Sharp Bend

The worst case of a right angle bend is assumed in the flow

calculation (k = 1). It is possible to use the average area at

each end of the bend. Fig. 14 shows k data for other types of

bend [12].

C. Sudden Expansions and Contractions

The k factor for a sudden expansion can be calculated using

(26) [12], [13]. A plot of the formulation is shown in Fig. 15.

We have

k = (1 − Area1/Area2)
2. (26)

The k factor for a sudden contraction is shown in Fig. 16.

Note that the arrows shown in Figs. 15 and 16 indicate

which area should be used in (25). Modified k factors

are also available for graded expansions and contractions

[11]–[13].

The k factor for the rotor duct entry contraction can be

adjusted for rotation effects using [14]

krot = kstatic ·
V 2

rot + V 2
air

V 2
air

(27)
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Fig. 16. Sudden contraction k factor.

where

krot minor loss factor with rotation;

kstatic minor loss factor with no rotation;

Vrot average peripheral velocity of rotor ducts;

Vair axial velocity of air through the ducts.

This takes into account the increase in the pressure drop due

to the rotational speed in rotating ducts. This adjustment is

applied to all ducts on the rotor. It is more questionable if such

an adjustment should also be applied to the air gap and the user

is free to make a choice.

X. CONCLUSION

In this paper, a comprehensive set of convection heat transfer

and flow resistance formulations that are suitable for thermal

analysis of electric machines has been presented. Most of the

formulations are empirical based and in terms of dimensionless

numbers. This gives benefits in terms of maximum reuse of

the relationships developed, i.e., the same formulation can be

used for similarly shaped geometries with a size that is different

from that of the original experiments and/or with a different

fluid. This paper can be considered as a reference that brings

together useful formulations for calculating convection and

flow in electrical machines.
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