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The true critical Rayleigh number for the onset of a convective flow of a fluid in a rectangular box of
porous material heated from below is found for various box geometries. The preferred cellular mode of
the motion at Rayleigh numbers just above the critical is determined. In contrast with the established
results for the similar problem in a continuous fluid, the roll (a cell with only two nonzero velocity com-
ponents) is not the only cellular mode and the roll axis direction is such that there is the greatest degree
of “squareness” in the cross section of each roll. The invalidity of a frequently used form of
Darcy’s law and the present form of the energy method for the stability of flows in which fluid crosses the

boundaries is discussed.

1. INTRODUCTION

Studies associated with fluid flows in the ground
below the thermal areas in many parts of the world,
and in particular, in the North Island of New Zealand,
indicate that convection plays an important role in
both the fluid and heat transfer processes associated
with such regions. It is thus of considerable interest to
determine just when the fluid in a finite permeable
region heated from below might be unstable (con-
vecting) . This paper arises from a section of this study.

Most of the work on the onset of convection in a
porous medium is based on linear theory (see, for
example, the review in the paper by Nield'). The
critical Rayleigh number derived by such a theory
gives a necessary condition for stability (or, equiva-
lently, a sufficient condition for instability). In con-
trast, the energy method for convective instability,
developed by Joseph? for continuous fluids and sub-
sequently modified by Westbrook® for fluids in porous
media, gives a critical Rayleigh number which provides
a sufficient condition for stability of a motionless fluid.
This paper examines the effect of lateral walls on the
stability of a fluid saturating a porous medium heated
from below using both of the above approaches. A true
critical Rayleigh number is shown to be obtained. Dia-
grams are presented which make it possible, when the
dimensions of the box of porous material are given, to
determine the corresponding critical Rayleigh number
and the preferred cellular mode at Rayleigh numbers
just above the critical.

An analysis in the appendix illustrates the invalidity
of the inclusion of the nonlinear inertia term, of the
form taken by Lapwood,* in Darcy’s law. The energy
method in its present form is thus inapplicable to a
range of problems associated with fluid flows in porous
media. The approach is, however, shown to be valid for
initially stationary fluids.

II. THE GOVERNING EQUATIONS

Assuming rectangular axes with 0X and OY hor-
izontal and 0Z vertically downward, the walls of the
box are taken tobe at X ==-1}a, V=305, and Z=0, h.

The vertical side walls are assumed to be thermally
insulated while the upper and lower surfaces are main-
tained at the constant temperatures T, and T, respec-
tively, (71> 7To). All boundaries are assumed to be
impermeable to the contained fluid.

Under the Boussinesq approximation, the governing
equations are taken to be

Darcy’s law:

dq
—1 i
Y]

14

=[1—(T—To) Jgk—pi ' VP~ p

q, (1

heat conservation:

oT
(cp)m o +cpoq: VT =Kn VT, (2)
where
(GP)m= (1—5) (CP)J+GCP0-
continuity:
v-q=0, (3)

where q, T, and P are the macroscopic fluid velocity,
temperature, and pressure, respectively.

Here (cp)m, (cp),, and cpo, are the heat capacities
per unit volume of the saturated medium, the solid
material making up the porous medium, and the fluid,
respectively; g is the gravitational acceleration;  is the
permeability of the medium; K., is the thermal conduc-
tivity of the saturated medium; v is the volumetric
coefficient of thermal expansion of the fluid; e is the
porosity of the medium; py is the density of the fluid
[the (linear) density variation with temperature in the
critical body-force term having been allowed for in (1) J;
v is the kinematic viscosity of the fluid; and k is a unit
vector in the 0Z direction. All the above quantities
are assumed constant.

The problem is to investigate the stability of the
basic state (q*, T*),

q*=(0,0,0), T*=Tot+(T1—To)(Z/h), (4)

to any disturbance (q’, T') giving a temperature and
flow distribution satisfying the same boundary con-
ditions as the basic state.
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The equations governing such a disturbance are

’

3
e —‘% =—vgT'k—py ' Vp'~ gq’, ()

(co)m %It_" +epoq’ VT +cpoq’ + VT*= K, V*T', (6)
v-q'=0, (N
with
q-n=0 onX=z1q, Y=+1%}a, Z=0,k
(n dis the unit outward normal to the boundary surface)
an

T'=0 on Z=0, h,

on X=xH21a;, V=x%a. (8)
Here, p’ is the pressure disturbance corresponding to
the disturbance (q’, 7).

Equations (5), (6), and (7) and the boundary
conditions (8) are reduced to dimensionless form by
the substitutions:

q’'= Ral2(x/h)v, T'=ph8,
t’'= Ra'%(uxpo/k)p,  t=(K/0)r, 9
X=hr, V=hy, Z=hs,
hm=a/k, h=as/h,
where?
k=Kpn/cpy, B= max|VT¥| Ra="FkyBght/«v.

(10)
From Eq. (4),
VT*=[(T1—To)/h]k,
thus,
B=(T1—To)/h,  Ra=ky(T1—To)gh/w,
with
Pr=rFkx/vh, H={(cp)m/cm (11

and V now defined by

(330
" \ox’ oy’ az)’

(infinitesimal) disturb-{disturbance.

Fi16. 1. Schematic diagram of the
relationship between the various
critical Rayleigh numbers.

= Ra
Unstable to any

the dimensionless disturbance equations are therefore

av
Pr— =— Ra'k—Vp—v, (12)
dar
a0
H -+ Ral%v-Vo+ Rav-k=v4,  (13)
T
V.v=0, (14)
with
ven=0 onx=xin, y==xih, 2z=0,1,
6=0 on z=0, 1, (15)
il
— =0 onax=o1ih, y==%h.
an

There are two methods that may be applied to in-
vestigate the stability of disturbances governed by
these equations: the linear method and the energy
method.

III. THE LINEAR METHOD

Here, we assume that the disturbance (v, #) is small
enough for second-order terms to be neglected. Thus,
Eq. (13) reduces to

H% = — Ra'?v.k+V%. (16)
The other Eqs. (12) and (14) are unaltered.

In the same manner as Davis,® we can write Egs. (12)
and (16) as a vector equation which includes a self-
adjoint matrix operator, thereby guaranteeing that the
onset of convection is characterized by monotonic
growth (the principle of exchange of stabilities). Hence,
the stability boundary is determined by the marginal
stability equations:

RU2y. k= Vg, (17)
RVBk+v=—Vp, (18)

together with (14) and the boundary conditions (15).
The critical Rayleigh number (Ra)un, according to
this linear theory, is the smallest eigenvalue of this
problem. This critical Rayleigh number, however, gives
only a necessary condition for stability, and, therefore,

(Rac) linz (Ra-c) truey (19)

where (Ra,) e is the true critical Rayleigh number.
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Fi6. 2. Preferred cellular mode, (m, n), as a function of A, k. The figure is symmetric with respect to the line s =/}, The change
between the rolls (m, 0) and (m+1, 0) occurs at &y =[m(m-+1) 2.

IV. THE ENERGY METHOD

Here, any disturbance (v,8) satisfying the con-
tinuity equation (14), the boundary conditions (15),
and belonging to a class of suitably differentiable
functions is admissible. The full equations (12) and (13)
are utilized.

The method was adapted for flow in a porous medium
by Westbrook.? Both Westbrook’s theory and its sub-
sequent extension and modification by Wankat and
Schowalter” require the nonlinear inertia term q-Vq
to be included in Darcy’s law for a general theory to
be available. This term is specifically required to take
into account any kinetic energy being transferred over
the boundaries. As it appears that the inclusion of this
term leads to an underspecified flow problem (see
Appendix A), the analysis carried out in this paper has
been restricted to the case in which there is no kinetic
energy transferred over the boundaries, that is, there is
no normal component of velocity at any boundary.
In this event the energy method is fully applicable to
the assumed ‘“‘reduced” Eq. (1) and an analysis parallel
to that of Westbrook can be carried out [starting from
the disturbance equations (12), (13), and (14) ] except
that his requirement that the energy decrease mono-
tonically [Westbrook,? Eq. (25)] does not insure
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asymptotic stability in the mean and must be replaced
by a theorem analogous to theorem I of Joseph.® This
analysis leads to the critical Rayleigh number being
defined by the smallest eigenvalue of Egs. (17) and (18)
under the same conditions, satisfaction of continuity
(14), and the boundary conditions (15), as in the
linear method. Thus, the same eigenvalue problem
applies for both approaches.

In this case, however, if (Ra.)en is the critical
Rayleigh number given by the energy method

(Ra'c) en S (Rac) truey (20)

since in the energy method one establishes stability
relative to arbitrary disturbances subject only to the
equation of continuity and the appropriate boundary
conditions. For an exact stability criterion, we need
only establish stability relative to a subclass of these
disturbances, viz., those that satisfy the hydrodynami-
cal disturbance equations. Figure 1 is a schematic
diagram of the situation.

For the problem being considered in this paper, we
have

(Rac)en= (Ra-c) lin,

implying that the common value obtained is the true
critical Rayleigh number for the system.
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F16. 3. Variation of Ra, with /i, k,. As either &, or k; becomes large, Ra, quickly approaches 4x?%, the value for a horizontally unbounded
saturated porous medium.

V. SOLUTION OF THE EIGENVALUE PROBLEM This eigenvalue problem has separable eigenfunctions

Let v=(v, v, v5) and eliminate p from (18), then of the form
we have w= sin (bmr) (14 (22/m) ] cos (bnm) [+ (29/h) JU (3),
oz Oy " il .
oy " TR =0 te= cos (3mm) (14 (2/y) Jsin (4nm) [1+ (29/h) IV (3),
w= cos(3mm)[ 1+ (22/h1) ] cos(3nm)[1+ (2y/ha) JW (2),
%_%_‘_}n/zﬂ_o (21)
dx 02 ox 0= (b)) cos(3mn)[14 (2x/M) ]
o _m X cos(bnm)[1+ (29/h) 18(2)  (23)
9 dy where m, n=0, 1, 2, -+ but m+#n>0 and
Equations (14) and (17) give, respectively,
b=[(m*/I*)+ (n*/hs) 2. (24)
O M pme=ve (22)
ox oy oz e We now have the pair of ordinary differential equa-
The boundary conditions (15) become tions: W — 225 — RV @ =0 (25)
u=0  onz=dih, " — 250 — RmbW =0, (26)
=0  on y=o1h,, with
=0 onz=0,1, B(z)=0=W(z) atz=0,1. (27)
(%;0_ - on x= £, :‘r};e eigenfunctions of the problem (25), (26), and (27)
: O(z) = sinlrz=W (2) (28)
a6
6—y =0 ony=:tih, with corresponding eigenvalues
0=0 on 2=0, 1. R==b+ (I¢/b) 7.
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The critical Rayleigh number is, therefore,
Ra,=7® min [+ (?/b)}

{,m,n)

=x?min (b+51)%
(m,n)

(29)

This minimization problem over the set of pairs of
nonnegative integers has been solved with the comple-
mentary use of numerical and analytical techniques.
The pertinent value of 7 and » for the minimum eigen-
value depends directly on 4, and k. The relationship is
illustrated in Fig. 2. This diagram can also be inter-
preted as giving, for a particular (4, k), the preferred
cellular mode for the convective circulation at Rayleigh
numbers just above the critical value.

Figure 3 exhibits the dependence of Ra, on the box
geometry parameters k; and /. It can be seen from (29)
that the absolute minimum of Ra, is 4% (given by b=1),
the value obtained by Lapwood* for a horizontally
unbounded fluid layer in a porous medium heated from
below. Thus, bounding the fluid tends to make it more
stable.

VI. DISCUSSION

The above analysis has shown that for this particular
problem the critical Rayleigh numbers given by the
linear method and the energy method coincide. Thus,
the inequalities (19) and (20) become equalities and
subcritical (sublinear) instabilities cannot exist. This
conclusion must also apply to the stability of any
system featuring a motionless fluid which is contained
in a porous medium of arbitrary shape and “heated
from below”,® provided any bounding surface is both
rigid and impermeable. For in this case, the basic state
(q*, T*) is described by q*= (0, 0, 0) and T*=8Z+T,
where the Z axis is taken to be in the direction of the
gravitational field, 8 is the (constant) temperature
gradient throughout the fluid, and T is the temperature
at Z=0. The situation is, therefore, similar to that
discussed in the analysis above and the eigenvalue
problems resulting from the application of the linear
and energy methods will be identical. The differential
equations of this common eigenvalue problem will be
the same as (14), (17), and (18) and these must be
solved subject to the flow boundary condition v-n=0
on all bounding surfaces and a temperature boundary
condition on any bounding surface which is consistent
with the basic temperature distribution T*.

It is of interest to note that it is only in very narrow,
tall boxes that the lateral walls have much effect on
the critical Rayleigh number (see Fig. 3). This lack of
influence of the walls on Ra,. is to be expected since,
unlike the corresponding case of a continuous fluid,?
there is no viscous dissipation at the lateral walls. The
only effect of the walls is thus a geometric one by which
those cellular modes which give an approximately
square cross section tend to be selected so that there
will be an approximate balance between release of
potential energy and of viscous dissipation in each cell.$

IN POROUS

MATERIAL 1381

If we define a finite roll as a cell with only two non-
zero velocity components, we see that the cellular
modes (m, 0) and (0, n) correspond to finite rolls
parallel to the y axis and x axis, respectively. However,
contrary to the behavior of a continuous fluid where the
preferred mode just after the onset of convection is
some number of finite rolls with axes parallel to the
shorter side,® we find that in a porous medium rolls are
invariably preferred whenever the height is not the
smallest dimension but that this is no longer the case
when the height is less than both lateral dimensions.
(Davis® has a linear temperature distribution specified
on his lateral walls rather than insulating walls as in
this study. However, since viscous dissipation at the
walls and the geometry of the box are the dominating
influence on the cellular mode, it was felt that the
results obtained by Davis would give at least a quali-
tative description of the ceilular behavior of a contin-
uous fluid bounded laterally by insulating walls.)
Furthermore, when rolls do form, they are not neces-
sarily parallel to the shorter side. The overriding rule
for the formation of rolls appears to be for the number
of rolls and the direction of their axes to be such that
each roll has the closest approximation to a square
cross section possible. Thus for #,=2.75 and hy=0.75,
three rolls form parallel to the y axis whereas an increase
of h; to 1.0 results in a single roll parallel to the x axis.

To compare the results of this analysis with the linear
analysis of Sutton!® for the stability of a quiescent fluid
in a bounded two-dimensional porous medium heated
from below, we must first decide which special case of
the three-dimensional system actually corresponds to
the two-dimensional motion considered by Sutton. The
only possible conclusion is that motion restricted to the
(x,2) plane must correspond to motion in a cross
section perpendicular to the axis of a roll which lies
parallel to the y axis, i.e., the three-dimensional system
with #=0. In this case, from (24):

b= m/hl,
so that (29) gives
Ra,=#?min [(m/h)+ (b/m) P

m=1,2, e,

(30)

which is the critical value obtained by Sutton. The
value of m given by Sutton for this minimum

m=integral part of [3+}(1+442)12]

agrees with the analysis in this study where it is found
that the change from m rolls to m+1 rolls occurs at
h=[m(m+1) ]2 for h small. (The pertinent value
of &, is some small value since if we look upon the motion
considered by Sutton as a special case of the three-
dimensional system, we see that she is effectively
assuming that the #=0 mode occurs for all . From
Fig. 2, this is only possible if %, is small.)

As shown in Appendix A, the nonlinear inertia term
of the form used by Lapwood* and others working on
instability of fluids in porous media is not acceptable in
Darcy’s law. This means that the energy method in its
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present form cannot be applied to porous medium
systems Into which fluid is being injected and removed
through the walls. At present, an attempt is being made
to modify this method to suit such conditions. Indica-
tions are that in some cases of interest, (Ra,)e and
(Ra,)1in will not be equal as they have been found to
be in this impermeable wall case.
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APPENDIX A: CORRECTION TO DARCY’S LAW

It seems that it has not previously been realized that
including the term q- Vq in Darcy’s law raises the order
of the equation in such a way that the specification of
only the normal component of velocity on the boundary
leads, in general, to an underspecified system, whereas
the specification of the velocity distribution on the
boundary gives an overspecified system (that is, in
general, it is not possible to satisfy all the boundary
conditions). This difficulty has not been noticed pre-
viously because those authors (Lapwood,* Nield,! etc.)
including the term in Darcy’s law have usually applied
a linear analysis to the stability of a motionless fluid.
In this case the contributions from the nonlinear term
vanish, This may be seen in Lapwood’s linear analysis*
of the stability of a horizontally unbounded layer of
quiescent fluid in a porous medium heated from below,
where he obtains a fourth-order ordinary differential
equation with four boundary conditions because the
contributions from the q-Vq term vanish. However,
if one considers the linear stability of a constant vertical
upflow through Lapwood’s system, a contribution from
the non-linear term remains, producing a fifth-order
ordinary differential equation which is subject to only
four boundary conditions. Specifically, if we let W* be
the magnitude of the upflow, the stability of the basic
state (q*, T*),

q.*= (07 0; _W*)y

_ Thi—Tp exp(—W*h/x)+ (Tov—T1) exp(—W*Z/x)
h 1— exp(—W*k/x)

T*
(A1)

to a small disturbance (q’, T”) is to be examined. (The
fluid saturating the porous medium is confined be-
tween two horizontal, perfectly conducting, rigid
planes at Z=0 and Z=#. The Z axis is vertically down-
ward and the upper and lower boundaries are at
temperatures T and 77, respectively.)

Under the Boussinesq approximation, the governing
equations are taken to be the “modified” Darcy’s law:

3 1
24 S @ Va=[1—7(T~To) Bk—aVp— 7 4,

(A2)
together with (2) and (3).

J. L. BECK

The linearized equations governing the disturbance
are
aq’ 1 aq v
“1-2 ¥ — = — T K- ) 1 .
o T alVigy =™ P VP PR

’

o7’ oT
(Gp)m E‘ +6poq’. VT*—CpoW* a—Z = mV2T,, (A3)

v-q'=0,
with
¢ n=0 and T'=0 at Z=0,h4
These equations and the boundary conditions are

reduced to dimensionless form by the substitutions (9),
(10), and (11) together with

a=W*h/«x.
From (Al),
% (T1—To) (W*/K) _ W*Z
VT*= T— exp(—W*h/x) exp( p )k.
Thus,
8= max | VT*| = (11— To) (W¥/k) (A4)

1— exp(—W*h/x)

The dimensionless disturbance equations are, therefore,

3 ,
Y %Y Ramk—vp—v, (AS)
T € 02

a0 a0
H— —a — =—Ra'%**v.-k+ V%, (A6)

or 9z
V.v=0 (A7)

with

ven=0 and =0 at 2z=0,1. (A8)

Let v= (v, 15, 73) and eliminate p from (AS) using (A7),
then

[Pr 9 _ Pr 29 + 1] V= —Ral?v%, (A9)
T €92
where
o 8’
V 2= — T
r=oet 3y
From (A6), we get

0
[H 9 —— — V’] ¢=—Ral%>=y;,  (A10)
or 0z

Let
(o, v; |=€""f(, ¥) [@(Z), W(s) ]; (A11)

where Vyf=—a¥. Let D=d/dz, then substituting
(A11) in (A9) and (A10), we get
[Pra— Prip+ 1](D2—02)W= Ral2a®® (A12)
€
[Ho—oaD—(D?*—a?) 0= —RaZe W, (Al3)

with
() =0=W(z) at 2z=0,1.
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Thus, we have a fifth-order ordinary differential equa-
tion in W but only four boundary conditions, that is,
an underspecified system is obtained. It may be thought
that this difficulty could be overcome by introducing
the no-slip boundary conditions used in continuous fluid
studies. However, this would give the additional con-
ditions
DW(z)=0 at 2=0,1.

so that we have six boundary conditions and an over-
specified system results.

To obtain a fourth-order ordinary differential equa-
tion, we must exclude the term Pr{a/e) D. This arises
from the q-Vq term in the original equations. We
therefore conclude that this nonlinear term must be
omitted from Darcy’s law.

It appears that if any nonlinear inertia term should
be included at all, it should be of the form ¢q (see,
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for example, Irmay"). However, an order of magnitude
analysis of the terms in Darcy’s law shows that such an
inertia term may be neglected, provided the Reynolds
number based on the flow through the pores does not
exceed O(1). This is satisfied for most cases of interest
in the practical applications of stability theory.
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In connection with recent experimental results, the stability of a two-component fluid layer heated
from below is examined taking into account the concentration gradient due to thermal diffusion. With
the use of a variational method (local potential technique) developed by Glansdorff and Prigogine, an
approximate solution is proposed for dilute solutions. The critical Rayleigh number increases for negative
thermal diffusion factors and decreases for positive ones.

I. INTRODUCTION

The study of the hydrodynamic stability of a thin
horizontal layer of fluid heated from below is a classical
subject. A detailed analysis of this stability problem can
be found in the monograph by Chandrasekhar.! It is
shown that the fluid layer at rest becomes unstable when
the temperature gradient exceeds a critical value, more
precisely when the Rayleigh number, defined as

Ra=goBd*/Ky, (1)

exceeds the value 1708 for a liquid layer confined be-
tween two rigid boundaries. In (1), g denotes the ac-
celeration due to the gravity, « is the thermal expan-
sion coefficient, 8 is the adverse temperature gradient,
K is the thermal diffusivity, » is the kinematic viscosity,
and 4 is the thickness of the layer.

This study, however, applies to pure liquid layers.
For liquid mixture layers, thermal diffusion (Soret
effect) must be taken into account, so we expect a quite
different behavior for the fluid layer. Indeed, the density
gradient is the result of the thermal expansion of the
liquid and also of the mass fraction distribution due to
thermal diffusion, if we allow the density to be a func-
tion of temperature and mass fraction.

For a positive Soret coefficient (D’/D>0), the more
dense component migrates toward the cold plate (upper
boundary) and reinforces the “thermal” density gra-
dient. We expect the fluid layer to be less stable than
in the pure liquid case. On the contrary, a negative
Soret coefficient would produce an opposite effect.

Recently, some experimental results>~* did not com-
pletely confirm those crude prediction. Legros et al.
observed a stabilizing effect in H{O-CH;OH and H,0-
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