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Abstract

Triple di�usive convection in water is modelled with properties like density, speci�c heat, thermal conductivity, thermal 
di�usivity and thermal expansion, modi�ed in the presence of salts. The Ginzburg–Landau equation is derived to study 
heat and mass transports of di�erent combinations of salts in water. A table is prepared documenting the actual values 
of thermophysical properties of water with di�erent salts and the critical Rayleigh number is calculated. This informa-
tion is used in the estimation of Nusselt and Sherwood numbers and their relative magnitudes are commented upon. A 
detailed study on di�erent single, double and triple di�usive systems is done and comparison is made of the results. The 
local nonlinear stability analysis made via a Ginzburg–Landau model mimics many properties of the original governing 
equations, namely, Hamiltonian character and a bounded solution.

Keywords Three component convection · Aqueous salt solutions · Thermophysical properties · Nusselt and Sherwood 
number · Ginzburg–Landau equation

Mathematics Subject Classi�cation 76E06

1 Introduction

Double di�usive convection is a well-studied topic when 
compared to systems with more than two components. 
Turner [1] was the �rst person to consider the two-compo-
nent convection problem by considering heat and solute 
as two components having their in�uence on density and 
which lead to the instability of the system. Huppert and 
Turner [2] studied experimentally the in�uence of heat and 
salinity in Lake Vanda and concluded that the obtained 
experimental results are applicable to large scale motions. 
Double di�usive convection and its applications are well 
documented in the book by Turner [3]. Rudraiah and Sid-
dheshwar [4] and Mokhtar and Khalidah [5] investigated 
the e�ects of cross-di�usion coe�cients in a double dif-
fusive system and they concluded that di�usive and �nger 

instabilities are possible by choosing suitable sign and 
magnitude of cross-di�usion coe�cients. Motivated by 
the above works, Malashetty and Kollur [6], Malashetty 
et al. [7] and Narayana et al. [8] studied the e�ect of exter-
nal constraints like magnetic �eld and rotation on the 
stability of a double di�usive system and concluded that 
these external constraints stabilize the system and reduce 
the heat and mass transports. The competing in�uences 
of various di�using components on the onset of convec-
tion in a three-component system make it a very inter-
esting problem. Gri�ths [9] pioneered the study of the 
linear stability of a triple di�usive system in a horizontal 
�uid layer of in�nite horizontal extent. Gri�ths [10] and 
Gri�ths [11] reported an experimental investigation of 
a three-component system and measured simultaneous 
�uxes of many dissolved solutes through the di�usive 
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interface of thermohaline convection. A good account of 
practical situations in which triple di�usive system arises 
is documented by Corriel et al. [12], Noulty and Leaist [13] 
and Terrones and Pearlstein [14]. One of the most com-
prehensive studies on triple di�usive convection is the 
work of Pearlstein et al. [15]. He showed that instabilities 
arise in an otherwise stable double di�usive system due 
to the presence of a third di�using component. Moroz [16] 
studied two-dimensional convection problem in a three 
di�usive system proposed by Gri�ths [9]. Lopez et al. [17] 
was the �rst to investigate the in�uence of a rigid bound-
ary on the onset of a triple di�usive system. It was Ter-
rones [18] who considered the e�ect of coupled molecu-
lar di�usion (cross di�usion) on the convective instability 
in a triple di�usive system. Straughan and Walker [19] 
examined various aspects of penetrative convection in 
three-component systems. Straughan and Tracey [20] 
considered the in�uence of internal heating (or cooling) 
on multi-component convection. Rionero [21] obtained 
conditions in closed-form that are su�cient for inhibit-
ing the onset of convection and that which guarantee 
the global nonlinear stability of the thermal conduction 
solution. Gentile and Straughan [22] studied tridispersive 
thermal convection in a porous medium of which one of 
the di�usive components is temperature. Raghunath et al. 
[23] investigated the problem of triple di�usive convec-
tion in an Oldroyd-B �uid with cross-di�usion. They found 

that viscoelastic parameters in�uence the stability of the 
stationary bifurcation.

Most of the reported works on single, double and triple 
di�usive systems that have been investigated are in very 
general contexts and do not pay attention to the ther-
mophysical properties of the base liquid (mainly water) 
and the aqueous solutions that are added to them. Bring-
ing into focus this unconsidered aspect of single, double 
and triple di�usive systems is the main objective of the 
paper. The analysis of the paper also di�ers from those of 
earlier investigations in the sense that the Ginzburg–Lan-
dau equation with cubic non-linearity is chosen to make 
a non-linear stability analysis. In this paper the obtained 
Ginzburg–Landau equation is tractable and hence an ana-
lytical solution is found. Alternately, one can use the HOBW 
method/Haar wavelet method used by Ali et al. [24–29].

2  Mathematical formulation

Consider a layer of Newtonian liquid confined between 
two infinite horizontal surfaces separated by a distance 
d apart. The z-axis is directed vertically upwards with the 
lower boundary in the xy−plane. A Cartesian coordinate 
system is taken with origin in the lower boundary and 
z-axis vertically upwards (see Fig. 1). Let �T ,�S1 and �S

2
 

Fig. 1  Physical con�guration of 
the triple di�usive convective 
system
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be the differences in temperature and solute concentra-
tions of the lower and the upper boundaries.

The governing equations of the two-dimensional 
triple diffusive thermoconvective problem in terms of 
stream function, �  , are:

Conservation of linear momentum

Conservation of Energy

Conservation of concentration of solute 1 

Conservation of concentration of solute 2 

where �
0
 is the density of the �uid, � is the stream func-

tion, t is the dimensional time, p is the dimensional 
dynamic pressure, � is the dynamic coe�cient of viscosity, 

�
t
 is the coe�cient of thermal expansion, T is the dimen-

sional temperature, S
1
 is the concentration of solute 1, �

S1
 

is the coe�cient of thermal expansion of the solute 1, S
2
 

is the concentration of solute 2, �
S2

 is the solutal analog 
of the coe�cient of thermal expansion of the solute 2, g 
is acceleration due to gravity, �

S1
 is the thermal di�usivity 

of solute 1, �
S2

 is the thermal di�usivity of solute 2, d is 
the dimensional liquid layer depth, x is the dimensional 
horizontal coordinate and z is the dimensional vertical 
coordinate.

The boundary conditions for momentum, heat and mass 
transport are given by:

(1)�0
�

�t

(

��

�z

)

= −
�p

�x
+ �∇2

(

��

�z

)

,

(2)

�0
�

�t

(

��

�x

)

= −
�p

�z
− �∇2

(

��

�x

)

− �0[1 − �t(T − T0)

+ �S1(S1 − S10) + �S2(S2 − S20)],

(3)
�T

�t
= �∇2

T +
�(� , T )

�(x , z)
,

(4)
�S1

�t
= �

S1
∇2

S1 +
�(� , S1)

�(x, z)
,

(5)
�S2

�t
= �

S2
∇2

S2 +
�(� , S2)

�(x, z)
,

(6)

��

�x
= 0,

��

�z
= 0, T = T0 + �T

S1 = S10 + �S1, S2 = S20 + �S2,

⎫
⎪
⎬
⎪
⎭

z = 0

��

�x
= 0,

��

�z
= 0;T = T0

S1 = S10, S2 = S20

⎫
⎪
⎬
⎪
⎭

z = d

These are the boundary conditions on the initial static 
state of the problem.

3  Stability analysis

The stability of the basic state is analyzed by introducing the 
following decomposition of the quantities as the sum of the 
basic state and the perturbed state values:

where the primes indicate that the quantities are 
perturbed.

Substituting Eq. (7) into the basic governing Eqs. (1)–(5), 
eliminating the pressure, making the resulting equations 
dimensionless using the following de�nitions:

we obtain the following dimensionless equations (after 
dropping the asterisk) :

where R
T
 is the Rayleigh number, R

S1
 is the Rayleigh num-

ber of solute 1, R
S2

 is the Rayleigh number of solute 2, Pr is 
the Prandtl number, � is the dimensionless stream func-
tion, � is the dimensionless temperature, �

S1
 is the dimen-

sionless concentration of solute 1 , �
S2

 is the dimensionless 
concentration of solute 2, �

1
 is the ratio of di�usivity of 

solute1 and the heat di�usivity and �
2
 is the ratio of the 

di�usivity of solute 2 and the heat di�usivity.

(7)

� = � �,

� = �0g
�
1 − {�S1�S1 − �S2�S2}(1 −

z

d
)

�
dz + p� + C ,

T = T0 + �T (1 −
z

d
) + T �,

S1 = S10 + �S�
1

�
1 −

z

d

�
+ S�

1
,

S2 = S20 + �S�
2

�
1 −

z

d

�
+ S�

2
,

⎫
⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

(8)

(x∗, y∗, z∗) =
� x

d
,
y

d
,
z

d

�
, t∗ =

t�

d2

�

, �∗ =
� �

�
,

�∗ =
T �

�T
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S�
1

�S1
, �∗S2 =

S�
2

�S2
,

⎫
⎪⎬⎪⎭

(9)

⎡
⎢
⎢
⎢
⎢
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−∇4 R
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2
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⎥
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�
S1

�
S2

⎤
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−
1

Pr

�

�t
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+
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⎥
⎥
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⎥
⎦
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4  Weakly nonlinear analysis

In this section, a local non-linear stability analysis of triple dif-
fusive convection is performed using the Ginzburg–Landau 
model. To make this study, we take Jacobians in the system 
(9) to be non-zero. We now introduce the following pertur-
bation expansion:

where R
0
 is the Rayleigh number at the onset of steady 

and triple−di�usive convection, R
2
 is the second−order 

correction to R
0
 , R

4
 is the fourth-order correction to R

0
 , 

�
i
, �

i
,�

S1i
,�

S2i
(i = 1, 2, 3) are the first, second and third 

order solutions to � , �,�
S1
,�

S2
 and � is the perturbation 

parameter.
Substituting Eq. (10) in Eq. (9) and introducing a small 

time scale �∗ = �
2t

1
 and comparing the coe�cients of like 

powers of � on either side of the resulting equations, we get 
the systems of linear inhomogeneous equations of di�erent 
orders.

The �rst-order system is given by

The boundary conditions to solve this first-order sys-
tem are given by

��1

�x
=

��1

�z
= �1 = �

S11
= �

S21
= 0; at z = 0, 1.

The solution of the first-order system subject to the 
above conditions

where k2 = �
2
+ �

2 is the wave number, A(�∗) is the ampli-
tude and R

0
 is the eigen value of the system which is given 

by

At the second-order, we have

(10)

R
T
= R0 + �2R2 + �4R4 + ...,

� = ��1 + �2�2 + �3�3 + ...,

� = ��1 + �2�2 + �3�3 + ...,

�
S1
= ��

S11
+ �2�

S12
+ �3�

S13
+ ...,

�
S2
= ��

S21
+ �2�

S22
+ �3�

S23
+ ...,

⎫
⎪
⎪
⎬
⎪
⎪
⎭

(11)

⎡
⎢
⎢
⎢
⎢
⎣

−∇
4 R

0

�

�x
− R
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�

�x
− R
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�

�x
�

�x
− ∇

2 0 0

�

�x
0 − �

1
∇

2 0

�

�x
0 0 − �

2
∇

2

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

�
1

�
1

�
S11

�
S21

⎤
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎣

0

0

0

0

⎤
⎥
⎥
⎥
⎦

.

(12)

�1 = A(�∗)sin(�x)sin(�z)

�1 = −
�

k2
A(�∗)cos(�x)sin(�z),

�S11
= −

�

k2�1
A(�∗)cos(�x)sin(�z),

�S21
= −

�

k2�2
A(�∗)cos(�x)sin(�z),

⎫
⎪
⎪
⎬
⎪
⎪
⎭

(13)R
st

0
=

RS1

�
1

+

RS2

�
2

+
k6

�
2
�
2
.

where

The boundary conditions to solve this second order 
system are given by

The second order system (14) has solutions as follows:

In this section, we focus attention primarily on the 
Nusselt number and the Sherwood numbers. The hori-
zontally averaged Nusselt number, Nu, and the Sher-
wood number corresponding to solute 1, Sh

1
 , and the 

Sherwood number corresponding to solute 2, Sh
2
 , are 

given by

(14)

⎡
⎢
⎢
⎢
⎢
⎣

−∇
4 R0

�

�x
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�

�x
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S2

�

�x
�

�x
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�x
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�
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2

⎤
⎥
⎥
⎥
⎥
⎦
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⎢
⎢
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S12

�
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⎤
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⎥
⎥
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=

⎡
⎢
⎢
⎢
⎣

R21

R22
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R24

⎤
⎥
⎥
⎥
⎦

,

(15)

R21 = 0,

R22 =
�(�1 ,�1)

�(x,z)
= −

�2�

2k2
A2(�∗)sin(2�z),

R23 =
�(�1 ,�S11

)

�(x,z)
= −

�2�

2k2�2
1

A2(�∗)sin(2�z),

R24 =
�(�1 ,�S21

)

�(x,z)
= −

�2�

2k2�2
2

A2(�∗)sin(2�z).

⎫
⎪
⎪
⎬
⎪
⎪
⎭

.

��2

�x
=

��2

�z
= �2 = �

S12
= �

S22
= 0;at z = 0, 1

(16)

�2 = 0,

�2 = −
�2

8�k2
A2(�∗)sin(2�z),

�S12
= −

�2�

8�k2�2
1

A2(�∗)sin(2�z),

�S22
= −

�2�

8�k2�2
2

A2(�∗)sin(2�z).

⎫
⎪
⎪
⎬
⎪
⎪
⎭

(17)Nu(�∗) =1 +

[

�

2�
∫

2�

�

0

d

dz
(1 − z + �2)dx

]

z=0
[

�

2�
∫

2�

�

0

d

dz
(1 − z)dx

]

z=0

,

(18)Sh1(�
∗) =1 +

[

�

2�
∫

2�

�

0

d

dz
(1 − z + �S12

)dx

]
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�

2�
∫

2�

�

0

d

dz
(1 − z)dx

]

z=0

,

(19)Sh
2
(�∗) =1 +

[

�

2�
∫

2�

�

0

d

dz
(1 − z + �S22

)dx

]

z=0
[

�

2�
∫

2�

�

0

d

dz
(1 − z)dx

]

z=0
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Substituting �
2
 , �

S12
 and �

S22
 from Eq. (16) into the Eqs. (17) 

to (19) and simplifying, we obtain:

At the third order, we have

where

The boundary conditions to solve this second-order system 
are given by 

��3

�x
=

��3

�z
= �3 = �

S13
= �

S23
= 0; at z = 0, 1.

For the existence of the solution of the third-order 
system (23), the Fredholm solvability condition needs 
to apply which is given by:

where [�̂1, �̂1,
̂�
S11
, ̂�

S22
]T  is the solution of the adjoint of 

the �rst-order system, viz.,

The solution of the system (26) is given by

(20)Nu(�∗) =1 +
�
2

4k2
A
2(�∗),

(21)Sh1(�
∗) =1 +

�
2

4k2�2
1

A
2(�∗),

(22)Sh
2
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�
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4k2�2
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A
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(24)
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�

��∗
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�

�x
{�1},

R32 = −
�

��∗
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�(�1 ,�2)

�(x,z)
,

R33 = −
�

��∗
{�

S11
} +

�(�1 ,�S12

�(x,z)
,

R34 = −
�

��∗
{�

S21
} +

�(�1 ,�S22

�(x,z)
.

⎫
⎪
⎪
⎬
⎪
⎪
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(25)

∫
1

z=0
∫

2�

�

x=0

[�̂
1
R
31
+ �̂

1
R
32
+ ̂�S11

R
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+ ̂�S22
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]dxdz = 0.
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1
∇
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�x
0 0 − �

2
∇

2

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

�̂
1

�̂
1

̂�
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̂�
S22

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎣
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0

0

⎤
⎥
⎥
⎥
⎦
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(27)

�̂1 = A(�∗)sin(�x)sin(�z),

�̂1 =
�R0

k2
A(�∗)cos(�x)sin(�z),

̂�S11
= −

�Rs1

k2
A(�∗)cos(�x)sin(�z),

̂�S22
= −

�Rs2

k2
A(�∗)cos(�x)sin(�z).

⎫
⎪
⎪
⎬
⎪
⎪
⎭

Substituting Eqs. (24) and (27) into Eq. (25), we arrive at 
the autonomous Ginzburg–Landau equation in the form:

where

The analytical solution of the Ginzburg–Landau equa-
tion (28), subject to the initial condition A(0) = 1 , is given 
by

5  Results and discussion

Triple di�usive convection in water is studied in the paper 
with heat as one di�using component and two aqueous 
solutions as the other two components. Aqueous solutions 
of KCl, NaCl, CaCl

2
 , BaCl

2
 are considered in the paper and 

the thermophysical properties of water and the aqueous 
solutions are used in making de�nite predictions about 
thermal convection in water, four di�erent double di�usive 
systems and six triple di�usive systems. The thermophysi-
cal properties of water and the four aqueous solutions are 
shown in Tables 1 and 2. The tables provide a clear picture 
on the typical values of thermophysical quantities, and 

the predictions on onset and heat and mass transports 
are quite accurate.

A linear stability analysis of the thermal system, four 
double-di�usive systems and six triple di�usive systems 
gives identical results in terms of the critical wave number. 
The cell size at onset is same for all the eleven systems and 
these have the wave length to be 8.88576. This result is 
documented in Tables 3 and 4 which further reveals that

(28)A1

d

d�∗
[A(�∗)] = A2A(�

∗) − A3A
3(�∗),

(29)

A1 =
k2

Pr
−

�
2

k4

�
R0 −

Rs1

�
2

1

−

Rs2

�
2

2

�
;

A2 =
Ra2�

2

k2
;A3 =

�
R0 −

Rs1

�
3

1

−

Rs2

�
3

2

�
�
4

8k4

⎫
⎪⎬⎪⎭
.

(30)A(�∗) =

Exp

[

A2

A1
�
∗

]

√

1 +
A3

A2

{

Exp

[

2A2

A1
�
∗

]

− 1

}

.

R
BaCl2
c > R

NaCl

c
> R

KCl

c
> R

CaCl2
c ,

R
NaCl+BaCl2
c > R

KCl+BaCl2
c > R

BaCl2+CaCl2
c > R

KCl+NaCl

c
> R

NaCl+CaCl2
c

> R
KCl+CaCl2
c .
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If one were to analyse this result then it is pretty obvious 
that the thermal conductivity of the aqueous solutions pre-
dominantly dictate such results. In respect of thermal con-
ductivity, we have the result k

BaCl2
c < kNaCl

c
< kKCl

c
< k

CaCl2
c .

Though the other thermophysical properties of the 
other aqueous solutions do not have an ordering like 
that of the thermal conductivity, it is apparent that the 
thermal conductivity is the deciding factor. From Table 4, 
it becomes clear that the addition of one more di�using 

component to the double di�usive systems does not alter 
the cell size. These, however, contribute to the critical Ray-
leigh number. Table 5 and Figs. 2 and 3 present the follow-
ing results in the case of the Nusselt and the Sherwood 
numbers:

Nu
BaCl2 < Nu

NaCl
< Nu

KCl
< Nu

CaCl2

Sh
KCl

1
> Sh

NaCl

1
< Sh

CaCl2

1
> Sh

BaCl2

1
.

Table 3  Critical Rayleigh 
number and wave number of 
di�erent aqueous solutions in 
double di�usive convection

For water, Rc = 657.511, ac = 0.707107and�c = 8.88576

Aqueous solution R
c
 for 

�S
1
= 0.000013

R
c
 for �S

1
= 0.0005 a

c �
c
=

2�

ac

Aqueous solution BaCl
2

722.716 3100.98 0.707107 8.88576

Aqueous solution NaCl 700.15 2303.36 0.707107 8.88576

Aqueous solution KCl 694.819 2083.05 0.707107 8.88576

Aqueous solution CaCl
2

682.257 1603.01 0.707107 8.88576

Table 4  Critical Rayleigh number and wave number of di�erent aqueous solutions in triple di�usive convection

For water, Rc = 657.511, ac = 0.707107and�c = 8.88576

Aqueous solution R
c

a
c �

c
=

2�

ac

Water + aqueous solution NaCl (Solute 1) + aqueous solution BaCl2 (Solute 2) 830.559 0.707107 8.88576

Water + aqueous solution KCl (Solute 1) + aqueous solution BaCl
2
 (Solute 2) 825.227 0.707107 8.88576

Water + aqueous solution BaCl
2
 (Solute 1) + aqueous solution CaCl

2
 (Solute 2) 812.654 0.707107 8.88576

Water + aqueous solution KCl (Solute 1) + aqueous solution NaCl (Solute 2) 780.104 0.707107 8.88576

Water + aqueous solution NaCl (Solute 1) + aqueous solution CaCl
2
 (Solute 2) 749.618 0.707107 8.88576

Water + aqueous solution KCl (Solute 1) + aqueous solution CaCl
2
 (Solute 2) 744.311 0.707107 8.88576

Table 1  Thermophysical properties of aqueous solutions at 300K

Aqueous solution

Density � 

(

kg

m3

)

Speci�c heat 
(

J
KgK

)

Cp

Thermal conductivity 
(

W

mK

)

k

Thermal di�usivity 
(

×107
)

(

m2

s

)

�
 = �

�Cp

Thermal expan-
sion 

(

1

�

)

(

×105
)

�

Water [33] 997 4179 0.608 1.45927 2.56

Water + KCl [30] 1044.2 2993 0.586 1.43515 3.5

Water + NaCl [31] 1049.4 3843 0.581 1.44912 4.1

Water+ CaCl
2
 [32] 1133.5 3365 0.5916 1.55171 2.5

Water+ BaCl
2
 [30] 1222 3018 0.559 1.48653 5.5

Table 2  Ratio of di�usivity, 
solutal Rayleigh number and 
Prandtl number of di�erent 
aqueous solutions

Aqueous solution � R
s
 for �S

1
 

= 0.000013

R
s
 for �S

1
 = 0.0005 Pr

Aqueous solution BaCl
2

1.01873 64.7202 2489.24 4.80505

Aqueous solution NaCl 0.993147 42.4987 1634.57 5.91283

Aqueous solution KCl 0.983518 36.453 1402.04 5.93894

Aqueous solution CaCl
2

1.0634 26.1415 1005.44 5.05986
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From this �nding, we may conclude that heat transport 
is the highest in that double di�usive system in which the 
onset is earlier. We also �nd that the Nusselt number of 
aqueous solution of CaCl

2
 and BaCl

2
 is greater than the 

Sherwood number whereas it is opposite in the case of 
KCl and NaCl. The value of the di�usivity ratio of such solu-
tions decides this result.

Table 6 and Figs. 4, 5 and 6 present several important 
results on triple diffusive systems. The results tabulated 
in Table 6 essentially decide the nature of results on heat 
transfer in triple diffusive systems. There is a discernible 
pattern pertaining to Sherwood and Nusselt numbers 
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Fig. 2  Plot of Nusselt number, Nu, versus time, t, for di�erent aque-
ous solutions for double di�usive convection

Fig. 3  Plot of Sherwood number, Sh
1
 , versus time, t, for di�erent 

aqueous solutions for double di�usive convection
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The results on this observation are mentioned below:

In order to compare the quantum of heat and mass trans-
port, we consider Eqs. (20)–(22) to obtain the following 
results (Table 6): 

   
Table 7 presents qualitative results on the quantum of 

heat and mass transports. The value of the di�usivity ratio, 
being less than or greater than unity decides whether heat 
transport dominates or the mass transport.

Table 8 carries a summary of the results of table 5.
Figures 7, 8, 9 and 10, consider four di�erent possibili-

ties with Rs
1
 and Rs

2
 , namely, 

Nu
KCl+CaCl2 < Nu

NaCl+CaCl2 < Nu
KCl+NaCl

< Nu
CaCl2+BaCl2 <

Nu
KCl+BaCL2 < Nu

NaCl+BaCl2 ,

Sh
BaCl2+CaCl2

1
< Sh

NaCl+CaCl2

1
< Sh

KCl+CaCl2

1
< Sh

KCl+NaCl

1
<

Sh
NaCl+BaCl2

1
< Sh

KCl+BaCL2

1
,

Sh
KCl+CaCl2

2
< Sh

NaCl+CaCl2

2
< Sh

BaCl2+CaCl2

2
< Sh

KCl+BaCL2

2
<

Sh
NaCl+KCl

2
< Sh

NaCl+BaCL2

2
.

Sh1(�
∗) − 1

Nu(�∗) − 1
=

1

�
2

1

;
Sh2(�

∗) − 1

Nu(�∗) − 1
=

1

�
2

2

;

Sh1(�
∗) − 1

Sh2(�
∗) − 1

=
�
2

2

�
2

1

Fig. 4  Plot of Nusselt number, Nu, versus time, t, for di�erent aque-
ous solutions for triple di�usive convection

Fig. 5  Plot of Sherwood number, Sh
1
 , versus time, t, for di�erent 

aqueous solutions for triple di�usive convection

Fig. 6  Plot of Sherwood number, Sh
2
 , versus time, t, for di�erent 

aqueous solutions for triple di�usive convection

in the case of triple diffusive systems. This can be seen 
in Table 5 and Figs. 4, 5 and 6. The values of the diffusiv-
ity ratios �

1
 and �

2
 being less than unity or greater than 

unity will decide on whether heat transport is more or 
mass transport is more in the system. Further which of 
the diffusing components facilitates higher heat transfer 
and in combination with which other components can 
be seen in Table 5 and Figs. 4, 5 and 6.
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Table 7  Comparison of Nusselt 
and Sherwood numbers in 
double di�usive convection

� Observation

< 1 Sh(�∗) > Nu(�∗)

> 1 Sh(�∗) < Nu(�∗)

Table 8  Comparison of Nusselt and Sherwood numbers in triple 
di�usive convection

�
1

�
2

Observation

< 1 Any value Sh
1
(�∗) > Nu(�∗)

> 1 Any value Sh
1
(�∗) < Nu(�∗)

Any value < 1 Sh
2
(�∗) > Nu(�∗)

Any value > 1 Sh
2
(�∗) < Nu(�∗)

< �
1

– Sh
1
(�∗) > Sh

2
(�∗)

> �
2

– Sh
1
(�∗) < Sh

2
(�∗)

Fig. 7  Plot of Nusselt number, Nu, versus time, t, for di�erent aque-
ous solutions for both Rs

1
 and Rs

2
 positive

1. Rs1 > 0 and Rs2 > 0,

2. Rs1 < 0 and Rs2 < 0,

3. Rs1 > 0 and Rs2 < 0,

4. Rs
1
< 0 and Rs

2
> 0.

The general results obtained in the case 1 above is quali-
tatively di�erent from other three cases. Figures 7, 8, 9 and 
10 clearly indicate such a result.

Representative single, double and triple di�usive sys-
tems are considered and conclusions of a general nature 
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are made. In these representative aqueous solutions, we 
obtained the following results from Figs. 11 and 12:

Nu
Water+KCl+NaCl

> Nu
Water+KCl

> Nu
Water ,

Sh
Water+KCl+NaCl

1
> Sh

Water+KCl

1
.

Fig. 8  Plot of Nusselt number, Nu, versus time, t, for di�erent aque-
ous solutions for both Rs

1
 and Rs

2
 negative

Fig. 9  Plot of Nusselt number, Nu, versus time, t, for di�erent aque-
ous solutions for Rs

1
 positive and Rs

2
 negative

Fig. 10  Plot of Nusselt number, Nu, versus time, t, for di�erent 
aqueous solutions for Rs

1
 negative and Rs

2
 positive

Fig. 11  Plot of Nusselt number, Nu, versus time, t, for single, double 
and triple di�usive convections, where Rs

1
> 0 and Rs

2
> 0

We have refrained from making a plot of Sh
2
 versus �∗ for 

water + KCl + NaCl , as this variation is similar to the cor-
responding variation of Sh

1
 in Fig. 12.
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6  Conclusion

The following are the conclusions drawn from the study: 

1. The critical values of the Rayleigh, Nusselt and Sher-
wood numbers obtained in the study are based on 
best estimated values of the thermophysical proper-
ties of the aqueous solutions.

2. The values of di�usivity ratios in triple di�usive con-
vection decide whether the heat transport is more or 
mass transport is more, but in the case of double dif-
fusive convection heat transport is more always.

3. Water as a heat transport medium may be inadequate 
in some situations and hence there is a need for using 
aqueous solutions in it.

4. Use of CaCl
2
 and BaCl

2
 with other salts enhances the 

heat transport which seems a very attractive proposi-
tion for cooling, whereas use of KCl and NaCl increases 
the mass transport and seems a good proposition for 
thermal storage.
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