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The onset of convection in a uniformly rotating vertical cylinder of height h and 
radius d heated from below is studied. For non-zero azimuthal wavenumber the 
instability is a Hopf bifurcation regardless of the Prandtl number of the fluid, and 
leads to precessing spiral patterns. The patterns typically precess counter to the 
rotation direction. Two types of modes are distinguished: the fast modes with 
relatively high precession velocity whose amplitude peaks near the sidewall, and the 
slow modes whose amplitude peaks near the centre. For aspect ratios r = d/h  of 
order one or less the fast modes alwfiys set in first as the Rayleigh number increases; 
for larger aspect ratios the slow modes are preferred provided that the rotation rate 
is sufficiently slow. The precession velocity of the slow modes vanishes as T+ 00. 

Thus it is these modes which provide the connection between the results for a finite- 
aspeot-ratio system and the unbounded layer in which the instability is a steady- 
state one, except in low Prandtl number fluids. 

The linear stability problem is solved for several different sets of boundary 
conditions, and the results compared with recent experiments. Results are presented 
for Prandtl numbers c in the range 6.7 < d 7.0 as a function of both the rotation 
rate and the aspect ratio. The results for rigid walls, thermally conducting top and 
bottom and an insulating sidewall agree well with the measured critical Rayleigh 
numbers and precession frequencies for water in a r= 1 cylinder. A conducting 
sidewall raises the critical Rayleigh number, while free-slip boundary conditions 
lower it. The difference between the critical Rayleigh numbers with no-slip and free- 
slip boundaries becomes small for dimensionless rotation rates 52h2/v 2 200, where v 
is the kinematic viscosity. 

1. Introduction and background 

Rayleigh-RBnard convection in a pure fluid has been studied in the past as a 
particularly simple system exhibiting spontaneous pattern formation when the 
Rayleigh number R exceeds a critical value (hereafter referred to as RJ. Substantial 
progress has been made in understanding the process of pattern selection at  small 
amplitudes, i.c. for IB-E,l 6 R,. Most theoretical treatments (see e.g. Chandrasekhar 
1961) assume that the system is unbounded in the horizontal plane. This assumption 
facilitates the solution of the linear stability problem and hence the location of R,. 
In a non-rotating system it is known that the resulting instability is a steady-state 
one, and leads to a pattern either of rolls or of hexagons. Rolls are found when the 
boundary conditions at top and bottom are identical and non-Boussinesq effects are 
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absent. If either of these requirements is not fulfilled the initial transition is 
hysteretic and gives rise to hexagons (Schluter, Lortz & Busse 1965; Busse 1978). 
The primary difference between these two cases is the absence of a reflection 
symmetry in the midplane of the layer in the latter case. The plane layer has another 
important reflection symmetry as well. This is a reflection in any vertical plane. 
When this symmetry is broken, e.g. by rotating the layer about the vertical, the 
initial instability may set in as overstability. Chandrasekhar (1961) shows that in an 
unbounded layer this occurs only for Prandtl numbers G < 0.68; for water (CT = 6.7) 

the instability continues to be a steady-state instability. The broken reflection 
symmetry in vertical planes has, however, a profound effect on the stability of the 
resulting rolls. As the rotation rate increases, the initial rolls lose stability to rolls 
oriented at approximately 59" with respect to the initial pattern in the direction of 
rotation, and these are in turn unstable to a roll pattern a t  another 59" relative to 
them, and so on (Kuppers & Lortz 1969). Thus for large enough rotation rates no 
stable rolls are present near onset, even in systems with a midplane reflection 
symmetry. The situation becomes quite different when the translation invariance of 
the plane layer is broken as well, e.g. by considering convection in a finite container. 
To preserve rotational invariance we consider here convection in cylindrical 
containers. In  the non-rotating case the onset of convection continues to be a steady- 
state one, although the pattern that forms near onset may take a form quite different 
from the roll pattern characteristic of the unbounded system. This pattern, first 
described by Jones & Moore (1979) and by Buell & Catton (1983a; see also Marques 
el al. 1992), is a reflection-symmetric spoke-like pattern with a non-zero azimuthal 
wavenumber m. Recent experiments on convection in water revealed, however, that 
in a rotating cylinder the corresponding pattern is no longer reflection symmetric (in 
fact it is an m-fold spiral) and that it precesses in the rotating frame (Zhong, Ecke 
& Steinberg 1991 ; Ecke, Zhong & Knobloch 1992). In  this paper these observations 
are supported by a detailed solution of the linear stability problem for the conduction 

solution in a uniformly rotating right circular cylinder heated from below. We find 
that the patterns do indeed precess and that there are in fact two families of such 
precessing patterns. The latter is in distinct contrast to the non-rotating problem in 
which only one type of unstable mode is present. We discuss the origin and properties 
of these unstable modes and determine the conditions under which one or other type 
of unstable mode is preferred. 

It was pointed out by Goldstein & Knobloch (1991) and Ecke et al. (1992) that the 
observation of precessing patterns implies that the onset of convection is now a Hopf 
bifurcation, even though the fluid is water, and that in a rotating system a Hopf 
bifurcation is in fact to be expected whenever the azimuthal wavenumber m is non- 
zero. The argument goes as follows. Consider, say, the temperature perturbation 0 
from the conduction state. In  a cylindrical container, it follows that 

(1) 

where ( r ,  $, z )  are cylindrical coordinates, f m ( y ,  z )  is the eigenfunction of the mode m 

and a( t )  is its complex amplitude. Here, the omitted terms (...) involve spatial 
harmonics of the fundamental generated by nonlinear terms; these modes are 
'slaved' to the evolution of a. We assume that m $: 0 so that the instability breaks 
azimuthal symmetry. When the cylinder is non-rotating and the boundary conditions 
are homogeneous in $ the equation satisfied by a must commute with the following 
symmetries : 

O(r,  $, z ,  t )  = Re {a(t)  eim4fm(r, z ) }  + . . ., 

rotations $ + $ + 13 : a + a eime, (2) 
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reflections $ --f - 4 1 a +- a. (3) 

It follows that for e = (R-R,)/R, + 1 the amplitude a satisfies an equation of the 
form 

6 = g(laI2, 4 a, (4) 

where the function g is forced by (3) to be real. Since a is small, we may expand q in 
a Taylor series, 

6 = Ea+a(a12a+ ..., (5)  

obtaining A = d + U A 3 +  ..., & = o ,  (6) 

where a = A e" and A and @ are real. The equation &, = 0 is a, consequence of the 
reflection symmetry of the pattern. When the cylinder is rotated about the vertical 

with angular velocity D the reflection symmetry (3) is broken. Consequently the 
function g acquires an imaginary part, and (5) becomes 

6 = (c+iiS2S)a+(a+i52/3)la12a+ ..., (7) 

A = € 4 + a A 3 +  ..., 6 = 52(s+pA2+ ...). (8) 

where now E ,  6, a, and ,I3 are all functions of Q2. In terms of the real variables A ,  @ 
we now have 

Consequently the broken reflection symmetry turns the steady-state bifurcation in 
the non-rotating system into a Hopf bifurcation in the rotating system. Moreover, 
since 6 is the rate of change of the azimuthal phase, it is to be identified with the 
precession frequency up in the rotating frame. In particular, 0 takes the form 

f,(., 4 3  + . . . ' (9) 

The bifurcation is thus to a rotating wawe (Chossat 1982; Rand 1982). Equation (8) 

shows that the precession frequency of a steady-state pattern is given by 

@ = Re ( A  e'"'Kb+Wpt) 

up = D s--€ + 0 ( € 2 ) .  ( 3 
We denote the precession frequency at  onset (e = 0) by uc( = 526). The dependence of 
wp on 52 and c suggested by the above theory has been verified experimentally (Ecke 
et al. 1992), and the experimental fits were used to determine the values of 6 and P/a 

in the limit Q + O .  These observations motivate a re-examination of the linear 
stability problem for a rotating cylinder in order to seek quantitative agreement 
between the above theory and the experimental data. 

The linear stability problem in a rotating cylinder has been considered before by 
Sue11 & Catton ( 1  983b). These authors, influenced by Chandrasekhar, assumed that 
for CT of order one the initial instability will be a steady one, and forced the growth 
rate to be real. They failed to notice that such a solution could not converge, 
presumably because, as shown below, the precession frequency w, is rather small. Tn 
the present paper we solve the linear stability problem by two different methods and 
for two different sets of boundary conditions a t  top and bottom. We calculate R, and 
w, as a function of both the rotation rate and of the cylinder aspect ratio, and 
compare the results with existing experiments. We do not consider the nonlinear 
problem. We do, however, address the relation between the large-aspect-ratio linear 
stability results and those for moderate aspect ratios appropriate to the experiments. 
The remainder of the paper is organized as follows. In $ 2  we introduce the equations 
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and discuss the boundary conditions. In $ 3  we describe the two methods of solution 
we use. The results are presented in $4 and related to the experiments in $5. 

2. The equations 

We consider Boussinesq convection in a right cylinder of radius d and height h, 
filled with a pure fluid and rotating with constant and uniform angular velocity SZ 
about the vertical axis. We denote by r its aspect ratio d / h .  The linearized, non- 
dimensionalized equations of motion take the form (Chandrasekhar 1961) 

(a, - v2) o = w, 

v - u  = 0, 

where u = ur̂ +v4+wz" is the velocity field, 0 and p are the departures of the 
temperature and pressure from their conduction profiles, and z" is the unit vector in 
the vertical direction. The quantities F = 2Qh2/v, R = q a A T h 3 / ~ v ,  and CT E v/K 
denote, respectively, the square root of the Taylor number, the Rayleigh number, 
and the Prandtl number. In  these equations, length is in units of the layer thickness, 
h, and time is in units of the vertical thermal diffusion time, h2/K. Note that in 
writing (1 1) we have assumed that the centrifugal acceleration is sufficiently small 
that the effective gravity remains vertical. This assumption is justified for the 
rotation rates used by Zhong et al. (1991) for which dSZ2/g < 0.01 (F < 8548). 

We use two types of boundary conditions. Type A, 

a,u=a,v=w=@=O on x = O , l ,  

u=v=w=ar0=O on r = T ,  

correspond to free-slip, impenetrable, infinitely conducting horizontal plates at  top 
and bottom, and a rigid, impenetrable, insulating sidewall. These boundary 
conditions are mathematically convenient in that they allow separation of variables 
in the vertical and azimuthal directions. Consequently an essentially exact solution 
of the eigenvalue problem is possible (see below). From an experimental point of view 
the free-slip boundary conditions at  top and bottom are unrealistic. We therefore 
also solve (11)-(13) with the boundary conditions B :  

u = v = w = @ = O  on z = O , I ,  

u=v=w=ar@=O on r = T .  

These boundary conditions correspond to rigid (i.e. no-slip) boundaries everywhere. 
The temperature boundary conditions on the sidewall are not critical to either 
method as long as they are independent of g5. We choose an insulating sidewall since 
this approximates best the experimental conditions (see $5) .  

The conduction solution, u = v = w = 8 = 0, is stable to small perturbations 
below some critical value of the Rayleigh number, R,, which depends, in general, on 
the aspect ratio, the Taylor number, and the Prandtl number, as well as on the 
boundary conditions. In  other words, if we write the time dependence of a solution 
to the linear problem as est, then Re (s) < 0 for all solutions when R < R,. At R = R, 
there is for the first time a neutrally stable solution to the linear problem, i.e. 
Re (s) = 0. Tf Tm (8) = 0, the bifurcation is steady state, and if Im (s) = w, += 0, we 
have a Hopf bifurcation with Hopf frequency w,. 
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3. Method of solution 

In  this section we provide a brief description of both methods that we use to solve 
the problem (1 1)-( 13) with boundary conditions A or B. The first method (cf. Jones 
& Moore 1979) constructs exact solutions of the problem (11)-(13), (14)-(15) but is 
not available for the boundary conditions (16)-( 17). 

3.1. Exact solution 

Equations (11)-(13) can be combined into a single equation for 0, 

[(:at-v2r ( ~ , - V ) V ~ - R V ;  -a,-v2 +Y2a;(at--v2) 8 = o, (: 1 1 (18) 

where V: is the two-dimensional Laplacian in the horizontal coordinates. In  view of 
the boundary Conditions (14)-(15), equation (18) has solutions of the form (cf. (1)) 

@rm(r, q5,z;k) = Re{Jm(kr)ei(m#+wt))sin ( E X ) ,  (19) 

where m is a non-zero integer and k = k(R,  w ,  Y, u) is a solution to the dispersion 
relation, 

obtained by substituting (19) into (18). The solution (19) satisfies the boundary 
conditions at the top and bottom of the layer but not on the sidewall. I n  order to 
satisfy the boundary conditions on the sidewall, we note that (20) is quartic in k2, and 
so has eight solutions & k,, j = 1 , 2 , 3 , 4 .  We can therefore write 0, as the linear 
combination 

4 

0, = C A, J,(k, r )  ei(m#+wt) sin (nz), (21) 

where the A, are complex amplitudes to be determined by the boundary conditions. 
It is understood here and in what follow that the physical quantities are the real 
parts of the given solutions. Note that we need not explicitly use the solutions 
corresponding to the -k , ,  since J,( -2) = ( -  l)m Jm(z) ,  and those solutions are 
therefore not linearly independent. 

The corresponding velocity field may now be derived from (21) and the system 
(11)-(13). It is 

j=1 

4 

W ,  = Aj a* Jm(k, r )  e'(m$+wt) sin (EX), 
5=1 

where 
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We now impose the boundary conditions (15) at the sidewall, r = r, to obtain a set 
of linear, homogeneous equations for the A j  of the form 

where M is a 4 x 4 complex-valued matrix which depends on the parameters both 
explicitly and implicitly through the k j .  The system (26) has a non-trivial solution for 
the A, if and only if det (M) = 0. Since M is complex-valued, we must make the real 
and imaginary parts of the determinant vanish simultaneously. To find the non- 
trivial solutions to the linear problem with the required boundary conditions, we 

therefore hold the four parameters F,  g, m, and T fixed and solve the system 

Re (det (M(R,  w ;  F,  (T, m, r))) = 0, 

Im (det (M(R,  o; F,  (T, m, r))) = 0 

(27) 

(28) 

numerically for R = Rim' and o = okrn). The values of Rim) can then be minimized over 
m to determine the wavenumber of the mode that sets in first; the corresponding 
Rayleigh number and precession frequency will be denoted by R, and o,, respectively. 
We emphasize that while (27), (28) cannot be solved analytically, the implicit 
solutions solve the linear boundary-value problem exactly. 

3.2. Method based on velocity potentials 

Velocity potentials have proved extremely useful in a variety of problems in 
incompressible hydrodynamics. Their main purpose is to guarantee automatically 
the solenoidal nature of the velocity field. Moreover, depending on the geometry of 
the system, it is often possible to write the velocity field in terms of two scalar 
potentials which remain uncoupled a t  the boundaries. In  the present problem any 
non-axisymmetric velocity field can be written in the form 

u = v x (x i+@?) ,  (29) 

where x and $ are the scalar potentials. The existence of both these potentials is 
guaranteed by the geometry and the no-slip boundary conditions on the sidewall (cf. 
Marques 1990). In  this case (11)-(13) are equivalent to 

(a, - vz) o = w, (32) - 
where o = (w,,w6,w,)  is the vorticity, V2 = V2+2r-1a,+r-Z, and 

@ = -  (35) 
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Boundary conditions ( 1  4)-( 15) and (1 6)-( 17)  become 

In the axisymmetric case a significant reduction in the order of the resulting 
equations is possible. For more details see Mercader, Net & Falques (1991). The 
above formulation becomes particularly useful for the nonlinear problem since it 
yields equations for two scalar functions only. 

Equations (30)-(37) are solved by expanding the fields $, x, and 0 in a Fourier 
series : 

~ ( r ,  4, z, t )  = ieSt C. xm(r,  x )  eim#, (38) 
m 

$ ( r ,  $, z ,  t )  = i est C lClm(r, z )  eim+, 

Q(r, 4, z, t )  = ert C @m(r> z )  eim+, 

m 

m 

(39) 

yielding a set of coupled equations for ($m,  xm,  0,) for each m. To solve these for the 
eigenvalue s given R, it  is necessary to impose regularity conditions a t  r = 0, the 
central axis of the cylinder. The following boundary conditions suffice at r = 0: 

x = $ = w ,  = w z = o ;  (41) 

if m = 1 the last but one condition is replaced by a,w, = 0. 
For stress-free boundaries at top and bottom we expand the vertical structure of 

the eigenfunctions in a Fourier series. If 0 = 0 at z = 0 , l  this series collapses to just 
a single term (see (19)). For rigid boundary conditions the vertical structure is 
expanded in Chebyshev polynomials. Tn both cases we have used Chebyshev 
polynomials for the radial dependence. The resulting problem is solved by a modified 
collocation method using the numerical techniques discussed in Marques et al. (1992). 

The procedure has been used to determine the onset of convection in a non- 
rotating cylinder for both sets of boundary conditions, and the results compared with 
existing ones obtained by other methods (Catton & Edwards 1970; Joseph 1971, for 
boundary conditions A, and Rue11 & Catton 1983a; Xabry 1984, for boundary 
conditions B). In addition, the results were confirmed using a different choice of the 
velocity potentials (MarquBs et al. 1992) ; however, the formulation (29) was found to 
improve the accuracy for a given number of modes and was therefore adopted as the 
formulation of choice. The results presented below were typically obtained with 18 

collocation points in the vertical and 16 in the horizontal. For boundary conditions 
B, the resulting errors are estimated to be 1.25% in R, and 0.5% in w, for I-'= 1 ,  
i2 = 2.5 x lo3, increasing to 1.5 YO in R, and 2 YO in w, for r = 2.5, Q = lo3. Here and 
hereafter the symbol 52 is used to denote the dimensionless rotation rate ;.F. For 
boundary conditions A the accuracy of the procedure can be checked against the 
exact results. The details of this comparison are presented in table 1. The agreement 
is excellent (< 1 YO) in all the cases considered. 

4. Results 

In this section, we describe our results for the two sets of boundary conditions. The 
results for case A were obtained using the procedure described in $3.1 and are 
essentially exact ; those for boundary conditions B were obtained using the technique 
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FIGURE 1. The linear stability results for the fast modes in a r= 1 cylinder with boundary 
conditions A and CT = 7.0. (a) The critical Rayleigh number R:m) and (b) the onset precession 
frequency w:"' as functions of the rotation rate Q for several different values of the azimuthal 
wavenumber m. The dashed line in (a) indicates the corresponding result for an unbounded plane 
layer (Chandrasekhar 1961). 

Exact Collocation 

R, 01, RC % D nz 

10 1 1535.87 7.96 1535.87 7.96 
20 2 1990.26 8.68 1990.24 8.68 

250 4 17 620.48 22.69 17 620.48 22.69 

TABLE 1. Comparison of critical Rayleigh number and Hopf frequency obtained by exact and 
collocation methods for boundary conditions A, with r = 1.0 and u = 6.7 

50 3 3945.30 12.22 3945.30 12.22 



Convection in a rotating cylinder. Part 1 591 

FIGURE 2. A plot of 8 (z  = t )  for an m = 5 fast mode at SZ = 500, cr = 7.0 in a r = 1 cylinder, 
for boundary conditions A. For this mode RL5) = 35989.6, = 26.884. 

of 5 3.2. The system is specified by three parameters : the dimensionless rotation rate 
Q, the aspect ratio r, and the Prandtl number IJ. In all the calculations we use 
Prandtl numbers in the range 6.7 < o- < 7.0 appropriate to the experiments of Zhong 
et al. (1991) and Ecke et al. (1992). The experiment was carried out for aspect ratio 
T = 1 ; new cells of aspect ratio r = 2.5 and 5 have been built and results for these 
will therefore be forthcoming. In  the following we focus on the dependence of Rim) 
and ulm) on both 4 and r for different values of the azimuthal wavenumber m. 

The results for boundary conditions A, (14)-(15), are presented in figure 1. Figure 
1 (a)  shows Rkm) as a function of 4 for r = 1, IJ = 7.0. Each curve is labelled by its 
m-value. Figure 1 (b )  shows the corresponding frequencies uim). Note that the m = 0 
state (concentric circular rolls) does not precess. This is because it does not break 
the SO(2) symmetry of the system. For small rotation rates, m = 1 is the preferred 
mode (i.e. the one with the lowest critical Rayleigh number) in agreement with the 
non-rotating result (MarquBs et al. 1992) ; with increasing 4, the preferred value of 
m increases. Note that R,, the critical Rayleigh number minimized over m, is 
typically significantly smaller than that predicted for an unbounded layer 
(Chandrasekhar 1961), and that for m > 2 the increase of Rim) with 52 is noticeably 
slower than that of RY). 

All of the modes represented in figure 1 are of the spiral type observed by Zhong 
et aE. (1991) and Ecke et al. (1992). In figure 2 we show a plot of the contours of 8 
at the midplane, x = +, for an m = 5 mode and typical parameter values of their 
experiments: r = 1 ,  A2 = 500, o- = 7. For these parameter values Ri5) = 35989.6 and 
wi5) = 26.884. These modes are characterized by a small amplitude in the centre of 
the container and peak amplitude near the boundary and are, except for their 
precession, similar to the spoke-like pattern described by Buell & Catton (1983b). We 
refer to them as the fast modes, on account of their relatively large precession 
frequency ulm). Figure 3(a)  shows Rim) for the fast modes as EL function of r for 
4 = 500 and several different values of m. Figure 3 ( b )  shows the corresponding 
frequencies 6~:~). Observe that the preferred mode number m slowly increases with I', 
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FIGURE 3. As for figure 1 but showing (a )  RLm) and (b )  o$) as functions of r for SZ = 500. 

r 

but that the difference between the critical Rayleigh numbers for the different m- 

values remains small, a t  least for modes with m 3. Note also that the RLm) 
appear to increase rapidly with increasing r, as does the corresponding precession 
frequency, at  least initially. 

In  addition to the fast modes described above, another type of precessing mode is 
present as well. These modes have a completely different character and the 
precession rate is typically two or three orders of magnitude slower than that of the 
fast modes. Consequently, we refer to them as the slow modes. In  contrast to the fast 
modes the critical Rayleigh number (figure 4 a )  and the precession frequency (figure 
46) of these modes both decrease with increasing aspect ratio, albeit in an oscillatory 
manner. Moreover, with increasing aspect ratio a fast mode with a given mode 
number m is always superseded by the corresponding slow mode although there may 
be other fast modes with yet lower values of R,. For the example illustrated in figure 
5 the critical Rayleigh number for the slow m = 1 mode crosses that for the 
corresponding fast mode a t  r = 1.01 ; for larger values of r the slow mode has a lower 
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FIGURE 4. As for figure 3 but for the slow modes with m = 1 and m = 2. The value of R, for an 
unbounded layer is indicated by a dashed line. 

r 

critical Rayleigh number (solid line) than the fast mode (dotted line). For m = 2 the 
corresponding critical aspect ratio is 1.84. From figures 4 and 5 it appears that i t  is 
the slow modes that approach Chandrasekhar’s linear stability result as T+ 00, i.e. 
R, -+ R,, w, +. 0, expected for a u = 7.0 fluid in an unbounded layer. This conclusion 
is supported by the structure of the slow modes. Figures 6 and 7 compare the fast and 
slow modes with m = 2 and rn = 5 for D = 500, u = 7.0 at the critical aspect ratios 
at  which the slow modes supersede the corresponding fast modes, i.e. at  r = 1.84 for 
m = 2 and r = 4.39 for m = 5. The fast modes are in effect wall-driven modes, of 
negligible amplitude near the centre of the cylinder, and large amplitude near the 
sidewall. In contrast, the slow modes are body modes, with large amplitude in the 
inner part of the cylinder away from the sidewall, and low amplitude near it. As a 
consequence, if one measures the degree of asymmetry of the fast and slow modes, 
this asymmetry is more pronounced in the fast modes and less in the slow modes (see 
figure 8). Since the precession rate depends on the asymmetry of the modes, one 
expects the body modes to indeed precess more slowly than the wall modes, as 
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FIGURE 5. The transition from the fast modes with m = 1 and m = 2 for B = 500, u = 7.0 to the 
corresponding slow modes with increasing aspect ratio, for boundary conditions A. (a) The critical 
Rayleigh numbers, and ( b )  the corresponding precession frequencies. 

observed. Note, finally, that typically wLm) > 0, i.e. the precession frequency is 
counter to the direction of rotation, although for the slow modes it is possible in 
certain cases to get precession in the rotation direction. Another way to look at the 
transition between the fast and slow modes is to consider a fixed-aspect-ratio 
cylinder and increase 51. For example, for r = 1 and boundary conditions A one finds 
several transitions between the fast and slow m = 1 modes as 51 increases (figure 9). 
For wt > 1 the fast mode always has a lower critical Rayleigh number. The delicate 
behaviour of the m = 1 modes is present in this case because the m = 1 fast and slow 
modes cross at T = 1.01 when IR = 500, c = 6.7. Note that when a slow mode in a 

small to moderate aspect ratio cylinder (e.g. r = 1) is preferred over a fast mode of 
the same mode number, there is generally a fast mode of a different wavenumber that 
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FIGURE 6. As for figure 2 but for (a) an m = 2 mode with r = 1.84, and (a) an m = 5 mode 
with r= 4.39. For these modes RL’) = 93682, ,La) = 59.8, and Ri6) = 92486, wL5) = 60.1. 

is already unstable. This is no longer so for larger aspect ratios, where a slow mode 
can be the first to set in (see below). 

For comparison we include in figure 10 curves of Rkm) as a function of the rotation 
rate for r = 1 ,  d = 6.7 and a conducting sidewall and stress-free boundaries at top 
and bottom. In this case the mode iyn = 1 continues to be preferred for small rotation 
rates, but m = 0 is selected for 9 < 52 < 22, followed by m = 2 and higher values of 
m as 0 increases. These modes are all fast. The critical Rayleigh numbers are 
somewhat higher than the corresponding ones for an insulating sidewall for all 
rotation rates examined. This effect of the sidewall conductivity had already been 
observed for the non-rotating cylinder with no-slip boundary conditions by Buell & 
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FIGURE 7 .  As for figurc 6 but  for slow modes. (u) ryL = 2 mode with = 1.84 and ( b )  m = 5 mode 
with r= 4.39. For these modes Rha) = 93682, ~ 1 . 2 )  = 0.0457, and R f )  = 92486, of’’ = 0.00344. 

Catton (1983a). More relevant to the experiments is the case of an insulating sidewall 
and rigid (no-slip) boundaries at  the top and bottom. In figure 11 (a, b )  we show a 

comparison between the marginal stability boundaries R, for boundary conditions A 
and B together with the corresponding precession frequencies o, as a function of 52. 
Data from the experiment of Zhong et al. (1991) are also included. For large rotation 
rates (52 2 2 x lo2), there is very little difference between the marginal stability curve 
for stress-free and no-slip boundaries; a similar result for an unbounded layer (and 
hence for non-precessing patterns) is well-known (Niiler & Bisshopp 1965). However, 
an analogous result for rapidly rotating cylinders by Homsy & Hudson (1971) is 
suspect since the possibility of precession was not recognized. In contrast, for small 
52 the critical Rayleigh numbers are substantially larger for no-slip boundary 
conditions (cf. Marques et al. 1992), while the precession velocities are lower. An 
important qualitative difference between the results for boundary conditions A and 
B is that it  is the mode m = 0 that is now preferred in r = 1 cylinders. As already 
explained, this mode does not precess. At 0 = 28 this mode is superseded by an 
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FIGURE 8. Contour plots of @(z = +) = 0 for the modes depicted in figures 6 and 7 : (a) m = 2 slow 
mode, (6) rn = 5 slow mode, (c)  m = 2 fast mode, and ( d )  MI = 6 fast mode. The axes are scaled in 
units of r /T .  

m = 2 fast mode; this mode does precess. and its precession rate is once again counter 
to the rotation, increasing monotonically with 52 from its value at 51 = 28 (see figure 
l l b ) .  

We conclude this section by presenting the corresponding results for r = 2.5 with 
both sets of boundary conditions and (r = 6.8. Figure 12(a) shows R, as a function 
of l2, compared with the experimental values obtained by R. Ecke and F. Zhong 
(private communication). Figure 12 (b )  shows the corresponding wc, together with the 
preferred values of' m. Figures I2 (c) arid 12 ( d )  show enlargements of figure 12 ( b )  for 
boundary conditions A and B. respectively, and small rotation rates 0. For 
boundary conditions A the mode that first appears for 0 < !2 Q 4.6 is an  m = 1 slow 
mode. With increasing 52 the selected azimuthal wavenumber jumps successively to 
m = 2, m = 0, and then rn = 1. All these modes are slow modes (i.e. body modes) and 
in some intervals of 52 (e.g. 4.6 < 52 4 5.4) they precess in the direction of rotation. 
For 11.8 < 51 < 18.4 the first unstable mode is an m = 6 fast mode; for larger D the 
first unstable modes are all fast modes, with ever-increasing azimuthal wavenumbers. 
I n  contrast, for boundary conditions B one finds that for 52 < 9 it is the m = 0 mode 
that is selected ; for 9 d Q d 25 the preferred mode is an m = 1 slow mode while the 
m = 2 slow mode is preferred for 25 < 51 d 38.5. At Q w 38.5 the preferred mode 
jumps to an m = 8 fast mode and remains a fast mode thereafter, with the mode 
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FIWJRE 9. The competition between the fast and slow modes for different values of m as a function 
of Q for fixed r = 1, u = 6.7, and boundary conditions A. Note that for m > 2 the fast modes 
always have lower critical Rayleigh number than the corresponding slow modes; for m = 1 it is 
either the fast or the slow mode that has a lower critical Rayleigh number, depending on Q. 

sz 
FIGURE 10. The critical Rayleigh number for fast modes in a r= 1 cylinder with boundary 
conditions A, but thermally conducting sidewall, and u = 6.7. The points indicate the data from 
Zhong et al. (1991). The slow modes always have a higher critical Rayleigh number than the 
corresponding fast modes. 

number gradually increasing with Q (see figure 12b). The identification of the modes 
as slow and fast modes in the above discussion is based not only on the precession 
frequencies but also on their spatial structure. 

Note, finally, that for both r= 1 and 2.5 the mode that is selected in case B for 
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D 
FIGURE 11. A comparison between (a)  the critical Rayleigh numbers R,  minimized over m and ( b )  
the corresponding precession frequencies for boundary conditions A ( - - - - - )  and B (--) as a 

function of 52 when r = 1, cr = 6.7. The selected mode numbers are indicated in ( b ) .  The results for 
the rigid boundary conditions, B, agree well with the experimental data of Zhong et aE. (1991), 
shown as stars. 

small Q is m = 0. Consequently the suggestion by Ecke et al. (1992) that for small Q 
one should find w, = SSZ + O(Q3) only applies to boundary conditions A. For I' = 1, 
r~ = 6.7 one then finds that the preferred mode has m = 1, with 6 = 0.127. This value 
is close to  that deduced for boundary conditions B by Ecke et al. i.e. 6 = 0.1 10.02, 
although it must be recognized that the latter is an approximation to the jagged 
curve shown in figure 11 (b ) ,  and is not valid as 8 + 0 .  
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FIGURE 12 (a, b).  For caption see facing page. 

5. Discussion 

In this paper we have considered the linear stability problem for the onset of 
convection in a uniformly rotating right circular cylinder heated from below. We 
found, in contrast to earlier work of Buell & Catton (1983b), but in agreement with 
a generic argument based on the absence of reflection symmetry in vertical planes, 
that the convective instability is a Hopf bifurcation whenever the azimuthal 
wavenumber of the mode is non-zero. Such an instability therefore gives rise to a 
type of precessing pattern called a rotating wave. We found there are two types of 
such precessing patterns, distinguished by both their structure and their precession 
rate. We have called these the fast and the slow modes. For small to moderate aspect 
ratios the conduction state always loses stability to a fast mode as the Rayleigh 
number increases ; these take the form of m-armed spirals much like those observed 
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FIGURE 12. (a) The critical Rayleigh number R, minimized over m and ( b )  the corresponding 
precession frequency as a function of Q in a r = 2.5 cylinder with u = 6.8 and boundary conditions 
A (----) and B (-). The data points show unpublished data kindly provided by R. Ecke and F. 
Zhong. (c, d )  Enlargements of ( b )  for small Q :  (c) boundary conditions A; ( d )  boundary conditions 
B. 

by Zhong et al. (1991), Ecke et al. (1992). The amplitude of these modes peaks near 
the sidewall and they may be called wall modes. For larger aspect ratios the first 
mode to go unstable may be a slow mode provided the rotation rate is sufficiently 
slow. In contrast to the fast modes, the amplitude of the slow modes is low near the 
sidewall and peaks in the inner part of the cylinder. Such modes may therefore be 
called body modes. The slow modes play an important role in understanding both the 
large-aspect-ratio limit of the present calculation, and the experiments. As r 
increases, the precession rate of the slow modes tends toward zero, while the critical 
Rayleigh number for their onset approaches the Chandrasekhar result. These results 

20 FLY 240 
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enable us for the first time to establish the connection between the solution of the 
linear stability problem in a rotating unbounded plane layer and in a rotating 
cylinder of large but finite aspect ratio. In  particular, our analysis enables us to 
reconcile Chandrasekhar’s result that unless the Prandtl number is small the 
instability is a steady-state one and the symmetry argument showing that in a 
cylindrical container the instability should always be a Hopf bifurcation, regardless 
of the value of the Prandtl number. The only exception to the argument is provided 
by a pattern of concentric rolls, which does not break the circular symmetry and does 
not precess. In  nearly all cases the precession was found to be counter to the rotation 
rate, although with boundary conditions A it  is possible to find parameter values 
when r = 2.5 such that the first mode to set in precesses in the direction of rotation. 
We have found no examples of this behaviour with boundary conditions B. 

Although a slow mode always supersedes a fast mode with the same mode number 
as the aspect ratio increases, when this happens in moderate-aspect-ratio (r 5 O( 1)) 
cylinders there is always a fast mode with a different mode number that is already 
slightly unstable. However, even in this case the slow mode may manifest itself. 
Indeed, in the experiments the fast mode appears to be present for only slightly 
supercritical Rayleigh numbers ; with increasing R the observed pattern evolves into 
one that looks like the slow mode, i.e. the central region of the cylinder fills in 
relatively abruptly once the Rayleigh number is sufficiently large. We interpret this 
transition as a secondary bifurcation from a branch of pure fast modes with 
increasing Rayleigh number. Such a bifurcation gives rise to a mixed mode, 
consisting of a nonlinear superposition of the wall and body modes, with the body 
modes dominating with increasing R, in qualitative agreement with observations (R. 
Ecke, private communication). Note that such a mixed mode will in fact be quasi- 
periodic, although the slow frequency may be too small to be detected ex- 
perimentally. I n  smaller-aspect-ratio cylinders a similar mechanism is responsible for 
the observed transitions between fast modes with different azimuthal wavenumbers 
(cf. Zhong et al. 1991), while in larger-aspect-ratio cylinders it may be the slow mode 
that is the primary mode of instability, a t  least for sufficiently small rotation rates. 
In all cases examined we have found that with increasing rotation rate the primary 
mode changes from a slow mode with a low azimuthal wavenumber to a fast mode 
with a significantly larger azimuthal wavenumber. We do not know whether there is 
a critical aspect ratio r, such that for r > r, the first unstable mode is a slow mode 
for all rotation rates. This question should be answerable by examining the r+ 00 or 
equivalently the k+ 00 limit of the dispersion relation (27) ,  (28). 

To facilitate comparison with the experiments, we have included in figures 10 and 
11 the measured values of R, and o, from the Zhong et al. (1991) experiment. This 
experiment was carried out for water with a Prandtl number of 6.7 in a cylinder of 
aspect ratio r = 1, with a thermally insulating Plexiglas sidewall. The sapphire top 
and copper bottom are both excellent thermal conductors. Consequently the 
experiment is best modelled by our boundary conditions B (equations (16)-( 17)) ,  and 
indeed we observe in general a very good agreement between the theoretical linear 
stability results for these boundary conditions. The agreement inR, is better, with the 
experimental points falling (with one exception) slightly above the theoretical ones. 
The precession frequencies fall above the predicted values by about 8% for larger 
rotation rates (52 700), but below them (by about 13%) for smaller rotation rates 
(52 d 500). With a conducting sidewall the critical Rayleigh number is shifted 
towards larger values and the agreement with the data is worse (see figure 10). This 
is also the case for stress-free boundaries which yield critical Rayleigh numbers that 
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are, for slow rotation rates, substantially lower than those for no-slip boundary 
conditions. 

It is also important to compare the predicted values of the azimuthal mode 
number m with the measured ones. With boundary conditions B and = 6.7 we find 
that m = 3for44 < 52 < 130, m = 4for 130 < 52 < 1500andm = 5forl2 > 1500 (see 
figure 11). In contrast Zhong et al. (1991) find that at 52 = 142 the observed value of 
m is 3, while m = 4 is observed in the range 290 < 52 < 1100, and m = 5 is observed 
at l2 = 2145 and 52 = 4274. These results are not far from the predicted ones, but the 
origin of the discrepancy remains unclear. It is likely to be related to the proximity 
of the critical Rayleigh numbers of the various m-values (see e.g. figure 3a).  
Similarly, we have included in figure 12 unpublished data provided by R. Ecke and 
F. Zhong from their ongoing experiments with a r = 2.5 cylinder. As for r = 1, the 
quantitative agreement is excellent. 

The results presented in this paper were obtained by two methods, of which the 
first is in principle exact for boundary conditions A, but does not generalize to other 
boundary conditions. The second method is spectral and uses a formulation of the 
problem in terms of velocity potentials. This method can be used not only for a 
variety of boundary conditions, but the formulation is in addition designed to enable 
us to tackle the nonlinear problem. The linear stability results presented here are a 
first step in this direction. 

We are indebted to R. Ecke and F. Zhong for providing us with detailed data from 
their experiments. E.K. would like to thank J. M. Massaguer for his invitation to 
Barcelona, where this collaboration began. The work at  Berkeley was supported by 
an INCOR grant from Los Alamos National Laboratory; that in Barcelona was 
supported by a DGYCIT grant PB91-0595. 
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