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CONVECTION IN ROTATING STARS
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SUMMARY

The influence of rotation on convection in stellar interiors is discussed. It is
shown that the character of convective motions can be affected in relatively
slowly rotating stars. Although the transport of energy by convection is
anisotropic, the requirement that the divergence of total energy flux vanishes
means that meridional circulation currents will be set up. These will mix the
material of a convective core in a time which is not much different from the
time taken by convection in the absence of rotation.

Although rotation does not seriously impede mixing processes in a convec-
tive core, the circulation transports angular momentum and changes the law
of rotation of the star. The final state of rotation cannot be determined until
the form of convection in a rotating star is better understood but it is possible
that the asymptotic state is closer to one of uniform angular momentum than
uniform angular velocity.

I. INTRODUCTION

It is well known that the criterion for the onset of thermal convection is affected
by rotation. A detailed discussion for the case of a Boussinesq fluid may be found
in Chandrasekhar (1961) and a discussion of the more limited progress made in the
case of a compressible fluid may be found in Cowling (1951). The influence of
rotation on the onset of convection is rather complicated. Because rotation intro-
duces a preferred direction into the system the effect is anisotropic; convective
motions in some directions are strongly inhibited whilst in other directions they
are scarcely affected. Although the effect of rotation on fully developed convection
is unclear, it seems certain that it will lead to both a reduction and an anisotropy
in convective heat transport and mixing processes. Despite this, in most calculations
of the interior structure of rotating stars, the influence of rotation on the properties
of convective zones has been neglected. This paper is concerned with investigating
whether this neglect is serious and particular emphasis is placed on the problem of
convective cores. The effect of rotation on convection in stellar envelopes, with
particular reference to the solar differential rotation, has previously been discussed
by many authors; see Durney (1972) and references therein.

It might be thought that the problem only arises in rapidly rotating stars but
this is not true. Convection is affected by rotation if a parameter measuring the
importance of rotational forces compared with gravity is comparable not with
unity but with the difference between the actual value of PdT/TdP in the convec-
tive zone and the adiabatic value. In convective cores, in particular, this difference
is very small and this means that rotation affects convection even in quite slowly
rotating stars. Because of this and for mathematical simplicity, in what follows we
restrict our attention to stars which are rotating so slowly that they may be assumed
to be spherically symmetrical. The results obtained should, however, also apply
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to stars which rotate so rapidly that they are seriously distorted from spherical
shape.

Another assumption, which is frequently made, is that convective cores rotate
uniformly. There have been arguments that convective zones must rotate as solid
bodies, but these are far from convincing, and the assumption is usually made for
mathematical simplicity. The main conclusion of this paper is that the ultimate
effect of the interference of rotation with convection in convective cores is not to
lead to an anisotropic transport of energy but to place strong constraints on the
way in which convective zones rotate.

For the simple case of a convective core assumed initially to rotate uniformly,
the argument is as follows. The energy transport by convection depends on the
value of V—V,q (where V = PdT/TdP and Vaq is its adiabatic value) and on the
polar angle 6 between the axis of rotation and the radial direction at the point
considered ; the latter dependence arises because of the interference of rotation with
convection. The simplest solution to the problem of the anisotropic flux of energy
would appear to be a slight departure of the surfaces of constant P and 7" so that
V —Vaq is also latitude dependent. This possibility is not, however, allowed by the
equation of motion which prescribes that surfaces of constant P and 7 must
coincide to a high degree of accuracy; such departures as exist are caused by the
convective motions and do not have a simple latitude dependence. It thus appears
that an anisotropic convective flux is unavoidable but this means that it (or the
sum of it and the radiative flux) cannot be divergence free, as is required by the
thermal equation in the absence of energy sources or sinks or of ordered motions.
Just as in the case of radiative zones in rotating stars, this flux divergence drives a
meridional circulation which mixes material and transports energy through the
convective zone and it is found that the mixing time is not greatly different from
that produced by convection if the influence of rotation on convection is neglected.

These meridional motions transport angular momentum through the convective
core and must modify the initial law of rotation. The way in which the law is
modified depends on the precise form of anisotropy of convective motions but it
appears plausible that the tendency would be for the regions near the axis of rotation
to rotate more rapidly. It has previously been pointed out by Biermann (19;8)
and Kippenhahn (1963) that convective motions are almost certainly anisotropic,
with the preferred direction being the radial direction, even if the effect of rotation
on convection is neglected, and that this anisotropy also drives a meridional circula-
tion. Both of these effects must be considered before the law of rotation of convec-
tive cores is fully understood.

2. THE MIXING LENGTH THEORY OF CONVECTION

There is not at present a really reliable theory which calculates the energy
transport by fully developed convection. Probably the best in stellar conditions is
the mixing length theory introduced by Biermann (1932, 1945); for recent accounts
see Vitense (1953), Bohm-Vitense (1958). It will prove convenient to use it from
time to time in what follows and we therefore summarize some of the basic ideas
and formulae of the theory.

In the mixing length theory, elements whose sizes are of the order of mixing
length, [, are supposed to move almost adiabatically through a distance / before
they are mixed with their surroundings. The value of the mixing length is not
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prescribed but it is generally supposed to be of order the pressure scale height

= P/|dP|dr|); we shall not need to assume a particular value for / in most of
what follows. In the mixing length theory, the typical speed of a convective element
is

Veonv S —5575 H 17 (V Vaa)l’2, (2.1)

where g is the local value of the gravitational acceleration, and the convective flux
is

Pol/2[1/2
F conv ~ 5—8%;3 /2 (V - Vad)3/2
P l
NE :g;"_ (V—Vaa). (2.2)

In different versions of the mixing length theory, the numerical coeflicients in
(2.1)and (2.2) vary slightly.

There is, in reality, some problem in using the mixing length theory in con-
vective cores. In the mixing length theory, we implicitly assume that the scale of
convective motions is small compared with the size of the convective region,
whereas in a convective core the pressure scale height is often comparable with
the core radius. In this case, a single convection cell may extend throughout the
core. Although this would affect the detailed arguments of the present paper, it
should not affect the main conclusion, which is that large scale motions will exist
in a rotating convective core. If convection in the presence of rotation has a small
scale perpendicular to the axis of rotation, the meridional circulation discussed
in this paper will arise; otherwise convection itself will transport angular momen-
tum throughout the core.

3. ONSET OF CONVECTION IN THE PRESENCE OF ROTATION

At different stages in this paper it will prove convenient to use both spherical
polar coordinates (7, 0, ¢) and cylindrical polar coordinates (w, ¢, 2). Inthe discus-
sion of stability criteria, the system (w, ¢, 2) is more convenient.

In the absence of rotation, the condition for the instability of disturbances of
all types is the same, being the Schwarzschild criterion

V> Vag. (3.1)

This is no longer true in the presence of rotation and the ¢ independent and the
¢ dependent perturbations must be considered separately. The discussion of the
¢ independent perturbations is quite straightforward. These are interchange
perturbations of the type shown in Fig. 1 in which two tubes of material symmetrical
about the axis of rotation are interchanged, it being assumed that the interchange
is so rapid that the changes are adiabatic and each element conserves its angular
momentum. The system is unstable if the interchange releases energy. The stability
criteria are known as the Solberg-Hgiland criteria and they have been discussed
recently by Fricke & Smith (1971), for example. An interchange of the type shown
in Fig. 1 releases energy and is therefore unstable if and only if

c0820(V — V,q)022+ 2 cos 0 sin 0(V —Vyq) Swdz

.  4PQ2
+sin20 (V Vaa— og? sin? 0) dw2>o, (3.2)
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F16. 1. Interchange perturbations. An interchange perturbation occurs if a toroidal tube
of cross-section A is interchanged with a tube of cross-section As.

where p is the density and Q the (uniform) angular velocity of the star. In obtaining
this criterion it has been assumed that the perturbation does not change the gravi-
tational field in the star and that

Q23|GM <1, (3.3)

where M is the mass contained within radius 7, so that all equilibrium quantities
depend on 7 alone.

From (3.2), it can be seen that, if V> V,q, interchanges in the 2 direction are
possible (as is obvious intuitively) but that interchanges in the w direction are
only possible if

2
+ 4PQ

V >Vad m.

(3-4)

At the equator (where sin 6 = 1), @ interchanges are in the radial direction, which
is the direction in which we expect convection to transport energy. Clearly inter-
changes there will be seriously affected by rotation if

4PQ2[pg%(V —Vaa) 2 1. (3-5)
Criterion (3.5) can be rewritten, by using dP/dr = —pg, as
4QPH, g(V—Vao) 2 1. (3.6)

If, in addition, we assume that the mixing length theory of convection is valid and
use equation (2.1) we can write (3.6) as

Qzlz/”corw2 21, (3 . 7)

which has an appealing simplicity. It states that interchanges will be significantly
affected by rotation if the lifetime of a convective element (~//vcony) exceeds the
rotation period of the star; this means that Coriolis force can have a significant
effect on an element. This sounds like a general result which must transcend the
uncertainties of the mixing length theory of convection.

Before discussing non-axisymmetric disturbances, we should perhaps discuss
the validity of considering the interchange of complete toroidal rings. Such a
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coherent disturbance is presumably only possible if sound propagates many times
around a toroidal ring in its lifetime. Thus we require to order of magnitude

72/(P|p) <1?[vconv?,
o r2| Hyg < 12[veony?. (3.8)
If once again (2.1) is used, (3.8) becomes
V—Vaa<Hp2/r". (3-9)

This criterion will certainly be satisfied in a convective core, where Hy is comparable
in size with 7 or greater and V—V,4< 1, but it may well be violated in convective
envelopes.

Above we have considered only the axisymmetric perturbations which may not
be the most important instabilities. It is not possible to obtain, in a closed form,
a criterion which expresses the influence of rotation on all possible m # o distur-
bances. It is however possible to study stability against very localized perturbations,
which essentially means perturbations of wavelength small compared to a scale
height. This was done by Cowling (1951). In the present notation, he showed that
a uniformly rotating star would be unstable if

4PO? k.2 (3.1
pg® R+ (k, cos O—k, sin )7 3

where &, kj, k, are wavenumbers in the @, ¢ and z directions (k; = m/r).

This criterion can be seen to include those for m = o as a special case; in
particular (3.4) can be obtained by putting k; = o and k, = 0. Although the
implications of (3.10) are more complicated than those of the m = o criterion, it
is clear that only a small set of perturbations will be seriously affected by rotation
if 4PQ2%/pg%(V —V,aq)<1 but that a significant number will be affected once (3.3)
is satisfied. As it is believed that the perturbations which are most effective in
carrying energy are comparable in size with Hp, an extension of (3.10) to non-
localized disturbances is really needed. Cowling expressed the view that the effect of
rotation on long wavelength disturbances would not be very different from the effect
on localized disturbances but this has not been proved rigorously. He also pointed
out that some of the disturbances which are allowed by (3.10) involve significant
motions perpendicular to the rotation axis so that it is not easy to decide how aniso-
tropic the flow of energy will be. We shall have something further to say about non-
axisymmetric disturbances later but at present we will simply adopt (3.5) as the
condition for rotation to affect convection seriously.

A recent discussion of thermal instabilities in rapidly rotating systems is by
Busse (19770). He has studied the onset of convection in a sphere using the Boussinesq
approximation and has found that marginally stable modes are aligned along the
axis of rotation.

Criterion (3.5), or equivalently (3.6) or (3.7) can be satisfied quite easily in
a convective core of a star which is not rotating extremely rapidly, since V—V,q is
very small in convective cores. A crude estimate of V—V,q at a typical point in the
convective core of a star of 10 M gives a value between 1075 and 1076, If we
calculate 4Q22H/g at a corresponding point for a surface rotation speed of 100 km s—1
we obtain 4Q2Hp/gx 5% 1075, so that the criterion for significant influence of
rotation on convection is comfortably satisfied and it would probably also be satis-
fied for a surface speed of 30 km s—1. With the values chosen, the maximum value

V>Vaa+
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of Q%3/GM is 2-5x 1073 so that (3.3) is satisfied and the star can be assumed
spherical. In addition, with a typical value of Hp2/r2 not much less than unity,
(3.9) is easily satisfied.

4. THE STRUCTURE OF ROTATING CONVECTIVE CORES

Having indicated that the flow of energy by convection is likely to be aniso-
tropic both in the sense that it will be latitude dependent and that at most points
the flow will not be in the radial direction, it is necessary to ask what effect this
has on the structure of the convective core. The first naive idea is that, as the flow
of energy would like to be spherically symmetrical, small deviations between the
surfaces of constant P and constant 7" are produced, so that V—Vgq varies with
latitude and the isotropic flow of energy is restored. It is, however, easy to see that
this cannot be true by considering the dynamical equation.

If the inertial forces due to the convective motions are neglected, the equation
of hydrostatic equilibrium in a uniformly rotating star is

grad P = pgrad ¥, (4.1)
where

Y = @ +1Q%x2 (4.2)
and @ is the gravitational potential. It can be deduced immediately from equation
(4.1) that surfaces of constant P, p and ¥ are coincident as are the surfaces of
constant 7. This implies that V is constant on ¥ surfaces, or in a slowly rotating
star on spheres, to a high degree of approximation.

In fact there will be variations of V—Vgq around a sphere which will be com-
parable with V — Vgq itself. It is easy to understand this if we first consider convec-
tion in a non-rotating star, as according to the mixing length theory rising and
falling elements, which move essentially adiabatically, have ‘temperature gradients’
Vaa following their motions instead of the mean gradient V. The result can also
be verified by considering the inertial terms due to the convective motions in
equation (4.1). To a first approximation

P‘Uconvz/lz 8(V —Vad), (4 . 3)

where 8(V—Vaq) is its variation from its mean value. Using the expression
(2.1) for veonv, (4-3) becomes
8(V=Vad) v (V=Vaa). (4-4)
4Hp
Although (4.4) appears to contradict our earlier statement that V—V,q is con-
strained to be constant on spheres, the contradiction is not really serious. In order
to produce a symmetrical flow of energy by convection, V—Vaq would have to
vary in a specific latitude dependent way determined by the manner in which
rotation affects convection, whereas the variations in V—Vgyq due to convection
itself are irregular fluctuations of order V—Vyq on the characteristic scale of a
mixing length.*
If it is accepted that V— V,q4 cannot vary on a sphere so as to produce a spherical
outflow of energy, it is necessary to ask what are the consequences of a latitude
dependent convective flux. Ideally a theory of fully developed convection in the

* As mentioned in Section 2, this statement will need to be modified if a single convection
cell extends from pole to equator.

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

220z 1snBny 0z uo 1s8nB Ad 0€2£09Z/6€/1/S91/8101ME/SEIUW/WOS" dNO"DIWSPEDE//:SRY WOy POPEOjUMOd


http://adsabs.harvard.edu/abs/1973MNRAS.165...39T

FI973WNRAS, 165- ~.739T'!

No. 1, 1973 Convection in rotating stars 45

presence of rotation would give the exact dependence of flux on latitude but such
a theory does not exist at present. In the past, there has been considerable dispute
about the effect of rotation on the flow of energy by convection, as opposed to its
effect on the criterion for the onset of convection. The early studies were confined
to the axisymmetric perturbations which will carry energy preferentially in the
direction of the axis of rotation. It is easy to picture these large scale interchanges,
which are similar to convective rolls observed in experiments on convection in
rotating liquids, but that is not enough to demonstrate that they are the disturbances
which carry energy most efficiently. Cowling (1951) studied non-axisymmetric
disturbances in an attempt to discover whether convection would indeed be more
efficient parallel to the axis of rotation. He showed, as can be seen from criterion
(3.10) and from the corresponding expressions for the velocity components at
marginal stability, that there are non-axisymmetric disturbances which are not
stabilized by rotation and which involve significant motions perpendicular to the
axis of rotation. As he did not study large amplitude motions, he was unable to
reach a definite conclusion about the latitude dependence of energy transport but
he suggested that energy transport perpendicular to the axis of rotation might be less
efficient than transport parallel to the axis. Unlike the interchange modes, it is
not easy to visualize the large scale structure of non-axisymmetric disturbances.

To discuss further the structure of a rotating convective core, we consider the
consequences of an energy transport by convection which is extremely anisotropic
and in which there is no energy transport except in the direction of the axis of
rotation. The expression for the convective flux is purely illustrative and is certainly
not meant to be taken seriously but a study of it may enable some conclusions to be
drawn about less anisotropic fluxes. Suppose then that the convective flux has the
form

L . aon
Feonv = jiggy (z.1)%%, (4-5)

where Z and ¥ are unit vectors in the x and 7 directions; the energy transport is
always in the z direction, is greatest at the pole and vanishes at the equator and the
expression is normalized so that Leony is the total convective luminosity.

What is quite clear is that, if there is an anisotropic flow of energy by convection,
div Feonv does not vanish. The inclusion of energy transport by radiation does not
correct for this as, with the star assumed spherical, the radiative transport does not
vary with latitude. The anisotropic flow of energy by convection is not consistent
with the surfaces of constant temperature being spheres and a meridional circula-
tion must be set up to balance div Feony. Although the cause is quite different, this
circulation resembles that driven by rotation in radiative zones of non-spherical
stars.

The value of div Feonv, from purely dimensional considerations, is likely to be
of order Leony/4773 and using the particular expression (4.5)

diV Fconv= — 2 COos 0 Cos ZGLQan/’ITTs. (4. . 6)

The radial component of the circulation velocity can then be calculated from the
thermal equation

. aT Td
div Feony= — pcy [E—(V_ I) ; zi] Deires 7 (4-7)
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where y is the ratio of specific heats and ¢, the specific heat at constant volume of
the material. This leads to

Vade

Veire, r = m) P div Feony. (4.8)

Using equation (4.7) and takingy = 5/3, this becomes

_ 4HpLeony o s 0p
SmPri(V—Va) cos § cos 20. (4-9)

Oeire, r= —

The equation of continuity
divpv = o (4-10)

can now be used to obtain an expression for the § component of the circulation
velocity. If (4.9) is used, we obtain

. _ I d HchonvP] . 0
Veire, g = srpr dr [”(V~—Va,d) sin 20 cos 0. (4.11)

Thus we conclude that there will be a large scale circulation in the convective
core which, with the presumed predominance of energy transport in the z direction,
has the form shown in Fig. 2*. Motion is inwards at the pole and outwards near

o

k2v)

Fic. 2. Circulation pattern. The stream lines of the circulation have the qualitative form
shown. The arrows indicate the direction of flow. The exact behaviour of circulation near
the centre of the core depends on account being taken of nuclear energy release and it must
be stressed that an extreme law of energy transport by convection has been assumed.

the equator. If, initially, we ignore the overall change of V—V,q caused by the
inhibition of convection by rotation and if we use the mixing length theory, we
see that

Veire, r/Vconv X 4 cos 0 cos 20lfr = Ir. (4.12)

It is then easy to see that the time taken by circulation to travel through the core
of the star is comparable with the mixing time due to convection if rotation is

* In this discussion, we have neglected the energy generation in the core but it is a
simple matter to include it.
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neglected. Thus, if the two times are 7¢ire and 7cony and noting that convective
mixing is a random walk process

Teire X 7[Teire, 1y
(4-13)
Tconv ~ (l/‘vconv) (7’/1)2 = Vz/lvconv ~ 7’/‘Ucirc, e

Thus the mixing of material in a convective core is not affected seriously by rotation
even if it assumed that rotation causes convection to take the form (4.5). The
mode of mixing is different but the time scale is similar. In fact the relation between
the circulation speed and the convective velocity in the absence of rotation will
not be quite as given in (4.12) because the partial suppression of convection by
rotation means that V—Vyq must be rather greater in the rotating star. However,
it is unlikely that 7¢ire and 7eony differ by more than an order of magnitude and
they will both remain very much smaller than stellar evolution times in most cases.
The increase in V— Vaq produced by rotation will not have a significant effect
on the overall structure of the convective core or the entire star and mixing by
convection and circulation will normally ensure that the chemical composition of
the core is homogeneous. It therefore appears that the effect of slow rotation on
the structure of convective cores can safely be ignored. However, in saying this
we are ignoring the transport of angular momentum by circulation and the effect
that this has on the rotation law of the core. So far we have assumed that the con-
vective core rotates uniformly but in the following section we discuss that assump-

tion.

5. THE ROTATION LAW OF CONVECTIVE CORES

Although most, but not all, authors have assumed that convective cores rotate
uniformly, there is considerable uncertainty about this point. It is often argued
that the effect of viscosity must be to lead to uniform rotation. Although ordinary
viscosity (molecular or radiative) is too small to change the rotation law of a star,
motions in a convective core may produce a turbulent viscosity which causes the
core to rotate uniformly. The problem is not however this simple as we shall see
by considering the possible states of steady motion of a viscous fluid. In a steady
motion the viscous force must vanish. If the coefficient of viscosity, u, is assumed
to be a scalar, the viscous force has the form

Svise = % w grad div v—pu curl curl v+grad pxcurl v
+2(grad M.V)v—g grad pdivyv.  (5.1)

If we consider first the case of constant u, which is certainly not valid in a star,
and assume that the motion is purely one of rotation about the z axis, then

v = (0, v, (@, 2), 0), (5.2)
divv= o, (5-3)
and the condition for the viscous force to vanish is

curl curl v = o. (5-4)
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One possibility is that curl v = o, which is only possible if
v, = Ciw, (5.5)
where Cj is a constant. Otherwise equation (5.4) can be written
%0 010
2Ty 127 =
72w {w@ - (W¢)> © (5-6)
One solution of (5.6) is
v, = Cyw, (5-7)

which is solid body rotation. In general there are other solutions including for
example
v, = Cswz (5-8)

in which the two hemispheres rotate in an opposite sense but in a convective core
in which V & Vyq this solution is not possible. For V = V,q, the equation of motion
demands that v depends on o alone (see e.g. Mestel (1965)) and this must be
almost eaxctly true in a real convective core.

It is clear that solid body rotation is not the only steady state of rotation of a
fluid of constant viscosity, although it might be argued that it is the only reasonable
one. Against this it can be argued that, if viscosity causes an arbitrary law of rotation
to tend towards the state (5.5) in which the velocity is singular on the axis of
rotation, the fluid cannot foresee that it is heading towards a singular state. There
exists the possibility that solution (5. 5), which represents constant angular momen-
tum per unit mass is the valid law except very close to the axis of rotation where
there might be a thin column in solid body rotation. Indeed, if we suppose that
energy is largely carried by interchanges in which each element conserves its
own angular momentum until it merges with its surroundings, it is quite natural
to suppose that the role of convection is to lead to an equalization of angular
momentum rather than angular velocity. However, as Cowling (1951) stressed,
elements in non-axisymmetric perturbations do not conserve their angular momen-
tum.
A combination of two arguments led Gough & Lynden-Bell (1968) to suggest
that the correct law of rotation of a convection zone is no rotation at all. They
argued as above that elements would tend to exchange angular momentum and to
produce zones with uniform angular momentum per unit mass, &, and they noted
that this would lead to the singularity on the axis of rotation. They also noted that
Weiss (1966), studying the effect of convection on magnetic fields, showed that
magnetic fields tend to be expelled from convection zones. Using an analogy bet-
ween the equations of hydrodynamics and magnetohydrodynamics, they argued
that vorticity might also be expelled by convection and that the true final state
for a rotating convective region was one of zero rotation. An experiment, which
they performed, appeared to confirm their suggestion but this result has not been
obtained in a later investigation (Strittmatter, Illingworth & Freeman 1970) in
which it was suggested that the result of Gough & Lynden-Bell resulted from their
initial conditions.

The argument which has been given above concerning the possible steady laws
of rotation must be modified if the viscosity though scalar is a function of position;
for example we might consider u(r). If this is done, the only law of rotation which
is possible independent of the form of the viscosity is solid body rotation. Once
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the form of the viscosity is known, it is possible to find other rotation laws for
which the viscous force vanishes and one of these approximates to a state of
uniform . However, such a rotation law does not have vy a function of = alone,
which means that it cannot be a true steady state of convective core.

We will now consider what happens to an initially uniformly rotating convective
core if the convective energy transport is given by the law (4. 5) and if the meridional
circulation given by (4.9), (4.11) results. Such an anisotropic energy transport
is unrealistic but the discussion should indicate in an exaggerated way what may
happen if convection is strongest in the z direction. Convection of the type (4.5)
would produce an effective tensor viscosity which, if the rotation were not already
uniform, would lead to a core rotating on cylinders but would not force uniform
rotation. We can now ask what effect the meridional circulation will have on the
rotation law.

To do this we use a neat argument due to Kippenhahn (1964). If the core is
rotating uniformly, % increases with 7 along any radius vector. Near the surface
of the core the circulation velocity v, is carrying high 4 material towards the axis
of the star whilst near to the centre low % material is being carried away from the
axis. It is easy to see that the net effect is to transport angular momentum towards
the axis. Thus, as mass must be conserved in the motion,

lfoopvgr dr| = ]fr pvgr dr|, (5.9)

where 7 is the radius of the convective core and 7o the radius at which v, vanishes.
Then, comparison of the transport of angular momentum in the two regions gives

|f00p7)0hr dr| < !frcpvghr dr|, (5.10)

so that angular momentum is transported towards the axis. If the law of energy
transport being considered really were correct, it would appear that, as angular
momentum was carried towards the axis of the star, convection would mix angular
momentum parallel to the rotation axis, so that the core would continue to rotate
on cylinders to a first approximation. There would then be a tendency away from
a state of uniform angular velocity towards one of uniform angular momentum.
If the effect of convection on rotation were to enhance convection on the equator
relative to the poles, the transport of angular momentum by circulation would be
in the opposite direction; such an effect in the solar atmosphere related to the
observed equatorial acceleration has been proposed by several authors including
Weiss (1965) and Durney (1972).

It is impossible to discuss the ultimate effect of the meridional circulation on
the rotation law without discussing the effect of non-uniform rotation on convection
and, of course, there is no need to start by considering uniform rotation if that has
no permanence. It is once again easy to obtain the interchange criteria. The criterion
equivalent to (3.4), which is applicable on the equator (sin § = 1), was obtained
by Walén (1946) and is

V>Vad+?P%)~ —8@.
pgiw 0w

(5.11)

It can be seen from (5.11) that rotation always exerts a stabilizing influence on
equatorial interchanges provided that % increases outwards but that the stabilizing

4
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influence vanishes in the case of uniform 4. It can readily be shown that this is
true for arbitrary interchanges. Although this rotation law cannot be valid right
to the axis, it once again appears as an attractive possibility for the asymptotic
law through much of the core, if the initial effect of rotation is to reduce convection
near to the equator and to drive meridional circulation which carries angular
momentum towards the rotation axis.

The main problem once again is that of the non-axisymmetric modes. These
were considered by Cowling (1951), who also rederived the criteria for the inter-
change modes. He showed that, if rotation was non-uniform, it was no longer
possible to obtain meaningful criteria for non-axisymmetric modes by a local
analysis. He was not able to obtain completely general results but he did show that
not only do there exist some perturbations which are not seriously affected by
rotation but that non-uniform rotation can introduce new shear flow instabilities.
It was not however clear that such instabilities would lead to convective energy
transport and Cowling tentatively concluded that non-uniform rotation would
have an inhibiting effect on energy transport by non-axisymmetric modes.

Before concluding this discussion of the possible effect of convection on the
rotation laws of convective regions, it is necessary to mention some very important
work by Biermann (1958) and Kippenhahn (1963, 1964), in which they were
mainly trying to explain the observed equatorial acceleration of the Sun. In their
work they neglected the influence of rotation on convection, though they mentioned
that it needed to be studied, and they concentrated on the effect of convection on
rotation. They first pointed out that, although energy transport by convection is
not latitude dependent, if the effect of rotation on convection is ignored, at any
point the convective motions are anisotropic. This suggests that the turbulent
viscosity due to convection must be a tensor rather than a scalar. They used a form
for the viscous stress tensor first derived by Wasiutynski (1946)* and assumed that,
in spherical polar coordinates, the viscosity was a diagonal tensor with

Moo = Hgp = Sterr. (5.12)

With such a tensor viscosity, solid body rotation is no longer a possible steady
state. Biermann and Kippenhahn showed that viscous forces only vanish if the
fluid rotates on spheres with the rotation law

Qecr2-, (5.13)

This law, for s = o which implies that viscosity only acts in the radial direction,
has constant angular momentum along any radius vector which is to be expected.

Although the viscous forces vanish only if Q has the form (5. 11), it is impossible
to have equilibrium in an adiabatic zone unless Q is Q(w), as has already been
mentioned. Biermann (1958) concluded that a circulation must be driven by the
failure to satisfy the equation of motion and that this must occur on a dynamical
timescale. Kippenhahn (1963) calculated the first order change in the rotation law
due to the circulation and he showed that equatorial acceleration could only be
obtained with s>1. No argument was given for the appropriate value of 5. A
recent discussion of this topic is by Kohler (1970). He considered an anisotropic and
spatially dependent viscosity, which was smaller in the radial direction, and found
an equatorial acceleration in good agreement with observations of the Sun.

* A more recent and accessible derivation is by Elasisser (1966).
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A complete discussion of the mutual interaction of convection and rotation
must combine the considerations of Kippenhahn with those of the earlier part of
this paper. The natural anisotropy of convective motions combined with those
produced by the effects of rotation will lead to some effective tensor viscosity.
Several authors including Mestel (1965) have mentioned the desirability of con-
sidering a latitude dependent s but the actual form of the viscosity is likely to be
more complicated than (5.12). It seems certain that some meridional circulation
will be driven, either on a dynamical or a thermal time scale. If the largest compo-
nents of viscosity act in the z direction or the » direction, it appears that the effect
of the circulation will be to try to equalize angular momentum through the convec-
tive region, rather than to lead to solid body rotation.

6. CONCLUSIONS

In this paper we have discussed some of the interactions between rotation and
convection in stellar interiors. In particular, we have discussed two questions:

(i) What effect does rotation have on the character of convection and on mixing
processes in a convective region?

(il) What is likely to be the ultimate law of rotation in a convective region?
In fact, it is artificial to separate these two problems.

With regard to (i) our conclusion is as follows. Although rotation causes the
flow of energy due to convection to be anisotropic the total enmergy flux cannot
be anisotropic in a spherical star. As a result a meridional circulation is set up and
the speed of the circulation and its character are such that material is mixed through
the convective region in a time comparable with that taken by convection in a
non-rotating star. If it were not for the transport of angular momentum by the
circulation, the interaction of rotation with convection would have negligible effect
on the overall properties of a star.

The circulation does transport angular momentum and in an initially uniformly
rotating star its effect is to make regions of the core near to the rotation axis rotate
more rapidly than regions away from the axis. The ultimate state may be one in
which the bulk of the core has constant angular momentum per unit mass, except
very near to the rotation axis, but this certainly has not been proved.

One reason why our discussion is far from complete is that any ultimate steady
state of rotation will be determined by the turbulent viscosity as well as by the
circulation. Because convective motions are anisotropic, the turbulent viscosity is
a tensor and this is even true when rotation does not interfere with convection.
At present we have no clear understanding of the form of the viscosity tensor when
the natural anisotropy of convective motions is modified by the influence of rotation
and this is the major problem requiring solution.

Although we have referred mainly to convective cores, much of what we have
to say also applies to convective envelopes. The influence of rotation on convec-
tion is, however, generally less in convective envelopes unless the stars are rotating
extremely rapidly, because the value of V—Vaq is much higher than in typical
cores. In other ways the discussion may be better adapted to envelopes. We have
discussed convection and turbulent viscosity in a way which suggests that the size
of typical convective elements is very small compared to the size of the convection
zone. Whilst this is true in convective envelopes, it is probably not true in con-
vective cores. This will have the effect of smearing out some of the conclusions
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which we have reached and should deal with the threatened singularity on the
axis of rotation.

The paper can finally be summarized in one sentence. In calculating the struc-
ture of rotating stars with convective cores it is probably not necessary to take
account of an anisotropic flow of energy due to convection but it is important to
worry about whether the correct law of rotation is being used.
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