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SUMMARY 

The investigation described in this thesis is a study 

of instantaneous heat fluxes (total and radiative) and their 

variation with operating conditions in a high swirl direct 

injection diesel engine. The problem is approached experimentally 

and methods for prediction of convective and radiative components 

are suggested. Total heat fluxes were measured using a· thin film 

type thermocouple developed in the course of the work, while the 

radiant flux was measured by a pyroelectric infrared detector. 

The experimental observations demonstrate variations in 

local heat fluxes which are moderate under motored conditions but 

large in the fired engine. Some of the observed features of flux 

variation with time and with location have been shown to be 

qualitatively explicable in terms of probable local events during 

the cycle. 

The prediction of instantaneous convective heat flux is 

attempted on the basis of existing data on heat transfer for flat 

plates and the observed solid swirl gas motion in the engine. 

A comparison of the experimental results with predictions by the 

new correlation and some previously proposed correlations are 

presented and discussed. Under fired operation, the bulk mean 

gas temperature was found inadequate for the prediction of local 

heat fluxes. A consideration of a simple two-zone temperature 

distribution (based on observed events) and of combustion induced 

swirl (based on conservation of momentum) improved the prediction 

of local heat fluxes. The prediction of surface mean heat fluxes 

on the basis of bulk mean temperature is shown to be valid. 

/ 
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The radiant flux measurements suggest that in high swirl 

engines the ratio of radiant to total heat transfer is much less 

than observed in quiescent chamber diesel engines. The analysis 

of present and published data on radiant emission from different 

diesel engines showed a large variation in flame absorption 

coefficients which seemed to be rela·ted mainly to the air-fuel 

mixing process. Therefore on the basis of similar flame temperatures 

observed in different diesel engines, and the evaluated flame 

absorption coefficients a ~ethod is outlined for reliable estimates 

of radiant flux in other diesel engines. 



-iii-

ACKNOWLEDGEMENTS 

The author wishes to express his sincere thanks to: 

Dr. J.C. Dent (Reader) for his helpful suggestions and 

supervision of this work. 

All members of the technical staff of the Mechanical 

Engineering Department. 

Mr. P.H. Clayton for his manufacture of the 1inkwork 

mechanism and help in the manufacture of other 

experimental equipment. 

Mr. M ,\V. Quelch for his assistance with the infrared 

detector amplifier design. 

Messrs. K. Topley and G. Hall for producing the photo

graphic plates appearing in the thesis. 

Mrs. J. Smith for typing the thesis. 

Plessey Company Limited for providing the pyroelectric 

infrared detector. 

The Iraqi Government for providing the scholarship support 

without which this work would not have been possible. 

Finally the author is also indebted to his wife for her patient 

support during the period of study. 



a 

a' 

A 

b 

B 

c i) -

ii) -

iii) -

c c -
1' 2 

c 
p 

CR 

D 

-iv-

NOMENClATURE 

multiplying factor for convective transfer (e.g. in 

equation 1.2) 

coefficient of gas temperature change with time 

(equation 1.4) 

2 
area (m ) 

index of Reynolds number 

zone width (m) 

(m) 

multiplying factor for radiant heat transfer (-) 

soot particle concentration,(number per unit volume) 

(equation 2 .12) 

specific heat of material (kJ/kg°K) 

first and second Planck constants 

specific heat of gas at constant pressure (kJ/kg °K) 

compression ratio 

cylinder diameter, characteristic dimension (m) 

E i) - hemispherical emissive power of a black or grey body (kW/m
2

) 

ii) - voltage output of transducer (V) 

EA monochromatic emissive power of a black or grey body (kW/m
2 

) 

EAg(E s) - EA for a gas (surface) 

f ( ) - denotes 'function of' 

frequency at which detector responsiveness = 0.707 its 

low frequency value (section 3.2) (Hz) 

f 
V 

volume fraction occupied by particles (section 2.2.4(b) ) 

Fwd 

angle factor between entrance and exit of opening (-) 

angle factor between viewing window and detector (-) 

direct-exchange area between gas and surface (m
2

) 

gse (gsw)- direct-exchange area in zoned right-circular cylinder, 

between gas zone and end (sidewall) zone. (m
2

) 
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direct-exchange area between gas zone i and surface zone j (m
2

) 

coefficient of heat transfer (local) 

surface mean heat transfer coefficient (kW/m
2 °K) 

general zone number 

intensity - radiant flux per unit solid angle of 

2 
divergence (kW /m ) 

intensity on entry into system of interest (kW/m
2

) 

general zone number 

equivalent grey-body absorption coefficient (1/m) 

extinction coefficient in equation 2.10 (1/m) 

absorption coefficient (1/m. (atm. or concentration) 

thermal conductivity 

proportionality constant in equation (2.20) 

absorption coefficient, concentration basis (pressure basis) 

monochromatic absorption coefficient 

absorption index 

length; mean free path (m) 

path length, distance, characterising dimension (m) 

mean beam length (m) 

average mean beam length (m) 

mass 

mass flow rate 

(kg) 

-1 
(kg.s ) 

polytropic index, refractive index 

Nusselt number, dimensionless ratio (h.L/K) 

partial pressure of gas (bar) 

absolute pressure (bar) 

polarisation coefficient of ferroelectric material 
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Prandtl number, dimensionless ratio 

heat flux 

q heat flow (energy) per unit time (kW) 

qR,(qg-s)- mean radiant flux (from gas to surface) 

Q heat transfer ( kJ) 

r local coordinate of combustion chamber radius (m) 

R 

t 

i)-

ii)-

i)-

gas constant 
0 

(kJ/kg K) 

electrical resistance (ohms) 

Reynolds number 

Entropy (units) 
swirl ratio 

time (s) 

dimensionless ratio 

(kJ/°K) 

ii)- time constant (chapter 3) (s) 

T(T ,T ,Tf) temperature (of gas, surface, flame) . ( 
0

K) 
g s 

temperature change with time 

u internal energy ! (kJ/kg) 

U(Ub,Uu) -velocity (of .burned, unburned mixture) (m/5) 

v or V- volume (m3) 

V p 
piston speed (m/s) 

V .s 
signal voltage of transducer (V) 

X general length coordinate (m) 
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i) thermal diffusivity, dimensionless 

ii) absorptivity, absorptance 

k 
<pc ) 

iii) excess air factor 
actual (air/fuel) ratio 

( sto1ch1ometr1c (a1r/fuel) rat1o) 

absorptivity of a gas for radiation from a surface 

adiabatic index (C /C ) 
p V 

boundary layer thickness (m) 

boundary layer momentum thickness (m) 

E: ,(E:g' E:s) emissivity (of a gas, of a surface) 

}J. 

p 

e 

Subscripts 

a 

b 

f 

g,s 

i,j 

m 

R.T 

apparent emissivity of grey body (monochromatic emissivity) 

wavelength }J. (micron) 

dynamic viscosity (kg/m.s) 

density 
3 

(kg/m ) 

Stefan-Boltzman constant 

" " 

56.7 X 10-l2 

56.7 X 10-4 

2 
(kW/m • 

(kW/m
2

• 

actual (fuel/air) ratio 
equivalence ratio ( ) 

stoichiometric (fuel/air) ratio 

angular velocity (rev/min) or (rad/sec) 

crank angle displacement (degrees) 

air, apparent 

burned product, black body 

flame 

gas, surface 

identification numbers of zones 

chemically correct mixture of air and fuel 

denotes radiant or total heat flux 



-viii-

Abbreviations 

ATDC 

BTDC 

Cl 

DC 

DI 

EVO 

FNL 

F407oL 

FB07oL 

IMEP 

IVC 

IDI 

MOT 

RPM 

SI 

after top dead centre 

before top dead centre 

compression ignition 

direct current 

direct injection 

exhaust valve open 

fired no load (engine operating condition) 

fired 40% load 

fired 80% load 

indicated mean effective pressure 

inlet valve closed 

indirect injection 

motored (engine operating condition) 

revolutions per minute 

spark ignition 

' 
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INTRODUCTION AND LITERATURE SURVEY 
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l.l Introduction 

Heat transfer in internal combustion engines is a complex 

process involving both convective and radiative modes, which are 

not yet clearly understood. The convective component of heat 

transfer is controlled mainly by gas motion, temperature difference 

between the working fluid and walls and fluid properties adjacent 

to the walls. The ~apidly varying conditions under which convection 

heat transfer takes place in reciprocating engines makes evaluation 

of the parameters influencing it difficult. 

Heat transfer by radiation may be divided into two types: 

non-luminous (banded emission spectra) gas radiation, due to changes 

of vibrational and rotational energy of the molecules, and luminous 

(continuous emission spectra) flame radiation due to solid carbon 

particles. At gas temperature levels reached in I.C. engines, the 

major ,contribution to gas radiation is from gases H
2
o and co

2 
(2.7, 

2. 8, 4.4 & 6. 3 p. ) . If the instantaneous concentration of the 

combustion products is known then gas radiation can be calculated in 

a relatively accurate manner. Luminous flame radiation is produced 

and controlled by carbon particle concentration (formed by thermal 

decomposition of the hydrocarbons), the flame size and temperature 

distribution within. These factors are complex under the rapid 

combustion conditions in the diesel engine which makes a prediction 

of diesel radiant emission from basic principles almost impossible. 

Under the condition of homogeneous combustion existing in the 

spark-ignition engine, no solid intermediate (carbon) products are 

formed, and only emission from H
2

0 and C0
2 

may be considered. On the 

other hand in compression ignition engines, solid ~arbon particles 

are formed in the diffusive flame of localised fuel droplets apparently 

by polymerisation and then condensation followed by graphitisation; 
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The incandescent carbon particles produce radiant emission which is 

approximately an order of magnitude greater than radiation from the non 

luminous gas radiation at the same temperature. 

Estimation of instantaneous heat transfer rates at the inter-

face of the working gas and the containing walls in internal combustion 

engines is of importance to the designer in order to: 

1) Improve engine cycle simulation on computers for investigation 

of performance and efficiency, and to assess the probable bulk 

and cost associated with disposal of heat rejected to the 

coolant. 

2) To solve the problem of cyclic thermal loading which impose a 

limit on the maximum power obtainable. 

Many attempts have been made to calculate instantaneous heat 

fluxes, but because of lack of data and knowledge on gas motion, the 

resulting empirical relations are unable to accurately predict the 

convective and radiative energy transfer from the working gas to the 

cylinder walls. In general, investigators have treated the transient 

heat transfer in engines as quasi-steady, and correlations of heat 

transfer coefficient h in terms of Nusselt and Reynolds numbers have 

been used. Furthermore a homogeneous mixture is usually assumed and 

the driving temperature for heat transfer is taken as the difference 

between the bulk mean gas tempera tu re and the wall , surface temperature. 

Therefore the instantaneous heat flux is expressed by: 

q = h (T - T ) g w 
( 1.1) 
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The relative importance of the radiant contribution to total 

heat transfer in compression-ignition engines has been the subject 

of debate for many years. Recently published v.ork shows measured 

radiant heat transfer amounting to between 20% and 40% of the·total 

heat transfer averaged over the complete engine cycle. The fact 

that radiant heat transfer depends on the fourth power of radiation 

source temperature compared to the linear dependance of convection 

transfer on the gas-wall temperature difference, makes the radiant 

component important. 

Therefore there is a need for further experimental data and 

alternative methods of approach in predicting the heat transfer in 

internal combustion engines. Hence, this project was undertaken to 

investigate convective heat transfer in the engine under both 

motored and fired operation and to study the relative importance of 

radiative heat transfer in a direct injection, high swirl diesel 

engine. 

1.2 Review of Previous Investigation 

The review of the previous work on heat transfer correlations 

is divided into two major sections. The first section will deal 

with a review of literature on total heat transfer measurements and 

correlations. The second section deals with that work which is more 

specifically related to the radiation heat transfer in engines and 

will comprise a review of current work in this field. To complete 

the survey, a brief outline of the theoretical investigations and 

its limitation is also given. 

In presenting the correlations of the various researchers, 

no attempt is made to rearrange the equations to any standard set 

of units, as the interest in this presentation is mostly in the form 
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of the correlation and the variables involved. In several cases, 

ranges of values for certain constants are·noted so that a more 

complete picture of the importance and effect of the various 

parameters in the correlation may be obtained. 

1.2.1 Total heat transfer correlations and measurements 

Before presenting the review, a classification of the 

available literature on the basis of the method used for evaluation 

of surface heat transfer, and methods of correlation with other 

engine .parameters is conSidered: The methods for evaluation 

of surface heat transfer due to convection are: 

a) Measured instantaneous heat transfer using surface temperature 

measuring devices. 

b) Measured time-averaged heat transfer obtained from heat 

balance. 

1~2.la Correlations and measurements based on instantaneous 

heat transfer 

The relevant literature on heat transfer in reciprocating 

engines has been reviewed by many researchers, but an outstanding 

discussion and analysis of the accepted heat transfer correlations 

for diesel and spark ignition engines has been presented by Annand (6). 

It is not necessary for the same ground to be covered here, instead 

most of the early correlations are listed in Table (1.1) with a 

brief discussion and critique of each. 

Annand analysed each correlation for dimensional homogeneity 

and form. He reasoned that if a correlation were to be used for 

extrapolation of a previously observed trend, it should be based on 

a dimensionless group of significant parameters within the engine, and 



------------------------------------------------------------------~------: 

TABLE (1,1) 

Total instantaneous (space mean) heat transfer correlations 

Basis of correlation or 
Researcher Correlation form supporting observation . 

2 ~· 4 4 Measurement of heat transfer Nusselt (1) qT=a(l+ b V )(P T ) T -T ]+ c(T -T ) 
{1923) 

p g g w g w from homogeneous mixture 
explosions in bombs and 
forced convection heat trans-
fer from plane surface 

Brilling { 6 ) Modified f{VP) in Nusselts correlation Measurement of time-averaged 
{1931) {1 + 1.24 V ) to {2.45 + ,185 V ) 

data on diesel engines 
p p 

Tijen (3) Modified ( l + 1.24 V ) to {3.19 + 0,885 V ) Survey of published tests on 
(1959) 

p p 
seven different oil engines 

Eichelberg qT = a(V ) {PT ) ! ( T - T J Measurement of instantaneous 
(5) ( 1939) 

p g g w heat transfer in large-slow 
diesel engines using sub-
surface thermocouples 

= a,b;f(V )(PT )! ( T - T ) Eichelberg & qT Measurement of time-mean heat 
P:flaum (7) p g . g w +(1.5 - 0,127'\,) transfer rate, high speed 

+ [ -(1951) where f (V ) = 3 - 2. 57 1 - e diesel engine at various p . 
manifold pressure 

+Ve if V > 11.8 p and -ve ifV<ll.B ft/s p 

Remarks 

Simple and separate terms 
for convection and 
radiation, but dimension-
ally incorrect 

Attempt to represent 
actual engine conditions, 
but still dimensionally 
incorrect, 

Same as above 

Simple, but radiation and 
convection lumped in one 
term, Not dimensionless, 

. 

Same as before but has 
factors a and b for. 
effect of manifold 
pressure and location in 
cylinder 

I 

"' I 



---------------------------------------------------------------------------·--- -

Pflaum (8) ci.r = a(P'l'g)t P
1
b[6.2- 5.2(5.7)-(.l Vp)" Measured local time-average heat Account for local 

(1962) flux using many thermocouples variation and manifold 

+ .025 V P J pressure but still 
dimensionally incorrect 

x ( Tg - Tw j 

Elser (12) qT 
ak 

(1 + b ~)(Re.Pr)~ (T - T ) Theoretical analysis and measure- No separate term for =o 
(1954) p g w ments on 2-stroke and 4-stroke radiation but considered 

diesel engines using subsurface effect of rate of heat 
thermocouples. Applied dimen- release by entropy 
sional analysis and resolved gas change ( S) per unit 
properties at (T + T )/2 mass g w 

Oguri (13) <i.T 
ak (1 +%8

> Re.Pr ~ (2 + Cos(e - 20) x Accepted above correlation and As above and introduced =n 
(1960) p modified by experiments on 4- a term Cos(e- - 20) to 

( Tg - Tw J 
stroke spark ignition engine account for gas motion. 
using a true surface thermo- e = CA degree ATDC 
couple 

Overbye (14) <i.T = 3600 Ki 'l'i 
( 

L.Vp i Cpi Measured instantaneous heat The driving temperature 
(1960) L ki ) flux in spark ignition engines T - T do not appear 

("26P X 10-4 using a surface thermocouple iB thewexpression, i.e. 
- 0.035) an important factor 

r Pi ignored. 

p 
+ 0.1 -p-

r, i 
- 0.02 

Taylor (11) 
k (fu)"75 [ T - Tw J Time-averaged data on large Valid only for time-mean qT = a. -

(1957) D g 
number of commercial engines heat transfer calcul-
(diesel and S.I. engines) a tion. Account for 

radiation lumped form. 

I 

"'' I 



- Fuel flow rate )0. 75 Alcock (19) qr= a ( Piston area 
(1961) 

Brock and In Alcock's equation, suggested 
Glasspool index = 0.6 
(28) (1964) 

French (29) Suggested index = 0.7- 1.2 
(1964) 

Time averaged data obtained by 
traversing thermocouples, in 
swirl, no-swirl and divided 
chamber diesel engines 

Same as above 

Same as above 

Application limited to 
types of engines tested 
because poor injection 
inadequate airflow and 
fuel calorific value 
could significantly 
affect fuel flow and 
heat transfer 

Different index to 
account for different 
locations 

I ..., 
I 
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that it must have two terms, to account for radiation and convection 

separately. He reasoned that because of the great difference in 

form of the radiant and convective heat transfer mechanisms, no 

relationship which lumped the two effects into a single term (e.g. 

Eichelberg's relationship) could prove adequate in describing heat 

transfer over any considerable range in operating variables. He 

also reasoned that in view of the difference in luminosity of spark 

ignition flames and diesel flames, some accommodation for these 

differences in the nature of combustion must be included, when 

considering the radiant heat transfer. 

Annand expressed some concern over the question of whether or 

not the concept of an instantaneous heat transfer coefficient was 

rigorously correct. He discussed the work of overbye (14) which 

showed a phase difference between the instantaneous. heat transfer 

and mean gas-wall temperature difference. Fortunately the.situation 

where heat transfer at the gas-wall interface occurs with driving 

temperature difference of zero (hence 1" CO heat transfer coefficient) 

is at positions in the engine cycle where low heat flow occurs and 

is relatively unimportant from a practical point of view. 

After his review and critique of the previous correlations, 

Annand presented a new correlation based on dimensionless groups 

with terms to account separately for both the convective and radiative 

transfer. His expression had the form: 

ci.r= 
a.k 

D 
(Re) b (T - T ) + e (T 4 

g w g 

Reynolds number was based on mean piston speed and cylinder 

bore, although the use of actual gas motion if available, was 

(1.2) 

preferable for a more precise expression. The values of the empirical 

constant a, b, and c were obtained from analysis of experimental data 
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on instantaneous heat transfer for 2-stroke and 4-stroke diesel 

engines by Elser (12 ). Annand suggested on the basis of 

correlation a value for (b) of 0.7 while the values of (a) and 

(c) depend on the engine type and position in the cycle. Higher 

values of (a) were obtained for the 2-stroke engine, which most 

probably reflects the effect of higher gas motion and different 

flow patterns in this type of engine. Values of 0.35 to 0.8 were 

proposed for (a), the value of (a) increasing as air charge motion 

increases. For the constant (c), Annand suggested a value of c~: = 0.0 

during the compression stroke. 

For the combustion period and the expansion stroke with 

-12 -13 4 
c = 1. 6 * 10 for diesel engine, and c = 2.1 * 10 Chu/ft2. k 

for spark ignition engines, Annand based his correlations on data 

from the compression and expansion strokes only and considers the 

correlation inapplicable for intake and exhaust processes. 

In conclusion, Annand stated that although formula (1.2) i.s 

strictly inapplicablebecause of the phase lag between gas temperature 

change and heat flux variation. which occurs because it is dimensionally 

consistent, and is compatible with a wide range of experimental data. 

In a discussion of Annand's paper, Knight criticised the use 

of piston mean speed in Reynolds number. He concluded that in engine 

heat transfer calculations, some form of calculation must be made 

(on the basis of kinetic energy or momentum conservation) of the charge 

velocity variation with time. Hence the instantaneous heat flux is 

calculated and the mean (cycle averaged) heat flux can be readily 

computed. 
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Knight (16) put ·forward the concept of a "space mean velocity" 

defined as that corresponding to the total instantaneous kinetic 

energy of the gas charge in the cylinder, Based on the fact that 

gas boundary layer at the wall depends upon the instantaneous main 

stream gas velocity and the properties in the boundary layer, 

Knight computed the instantaneous heat transfer coefficient from 

the McAdams pipe flow correlations: 

Nu = (1.3) 

These results when compared with measurements using a sub

surface thermocouple were poor, the reason extended for this was 

wall roughness; Agreement between computed and experimental results 

was achieved when applying corrections which involved unacceptably 

large (0.3 - 0.5 mm p/p) roughness elements. Therefore it seems 

that the complete difference beuveen the actual and calculated gas 

flow patterns in the engine is at the root of the matter. 

Knight assumed radiation to be negligible compared to convection 

heat transfer, particularly at high engine speeds. Discussing this 

work, Annand suggested that influence of radiation was clearly 

described by the trend with which the multiplying factor (used in 

order to obtain agreement between the measured and calculated values) 

varied. The multiplying factor increased with increasing load and 

decreasing speed of the engine, which is the trend the radiant heat 

transfer is expected to take. 

Annand and Ma (15), investigated the instantaneous heat transfer, 

using a new form of thin film thermocouple constructed on the cylinder 

head surface of a small 4-stroke diesel engine. Heat fluxes were 

measured at five locations for several engine speeds and fuel-air 
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ratios. In this investigation, the relationship: 

cL = a k (Re )0 • 7 (T - T ) + c (T 4 
-r D g w g 

( 1.2) 

from Annand ( 6 ) was examined. However, here the Reynolds 

number was based on bore diameter (D) and the energy mean velocity 

of Knight (16). The other significant consideration in this study 

was some compensation for the non-steady nature of heat transfer 

by adding to the above quasi-steady relation, a term involving the 

time derivative of the bulk mean temperature. The modified equation 

was: 

a (T - T ) 
. g . w 

a' 
+w 

dT __ g 

dt 
T

4
)(1.4) w . 

Analysis of the experimental results, based on space averaged 

heat fluxes in terms of bulk mean properties yielded the following 

values for the coefficients: a = 0.12, a' =-0.2 and C' = 1.5 

It can be shown that the value assigned to (a) in Equation (1.4) 

is the same as the corresponding value in Equation (1.2 ). Taking the 

mean calculated value of gas velocity by conservation of kinetic 

energy (15) which is approximately equal to 4.2 times piston mean 

speed. Then (4.2)
0

"
7 x (a = 0.12) = 0.33, which compares with a = 0.38 

proposed originally in Equation ( 1. 2 ) for low swirl engines. 

Therefore, the significant difference between Equations (1. 2) 

and (1.4) are in the values of c and the introduction of 

a'd T 
g 

(...)dt 
term. 

The radiation term constant c = 1.5, is now 2.5 times larger 

than the value previously suggested. This reflects the fact that the 

actual radiation source temperature is much higher than the bulk mean 
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gas tempera tu re T • 
g 

It is felt, however, that this value of the 

constant c, would not compensate for the effects of the higher 

actual radiant temperatures raised to fourth power, e.g. in a 

diesel engine T="= 
g 

0 
1500 K near TDC. 

0 
Flame temperature TF~ 2000 K, 

Therefore c T 4 = 
g 

7,5 X 10
12 

while 

term 

T 
4 = (2000)

4 = 1,6 X 10
13 

F 

The prediction of measured heat fluxes without and with the 

a' d T ___ g 
(..) dt 

is shown in Figs, (1,1) and (1,2) respectively. 

The improvement effected by the introduction of this term seems to 

compensate reasonably for the phase shift between the driving 

temperature and heat flux, particularly at the steep rise during 

early combustion ·and after· combustion is complete~. 

Henein (18) studied instantaneous heat fluxes at the surface 

of the main chamber wall in a Lanova type divided chamber diesel 

engine. Local instantaneous heat fluxes evaluated from measured 

surface temperatures, were compared with predicted heat fluxes using 

Eichelberg's (5) equation (see Table 1.1). Good agreement for the 

compression stroke (Fig. 1,3) was obtained when instantaneous gas 

velocity rather than mean piston speed was used in the computation. 

The computed gas velocity was carried out using Alcock's method (19) 

based on momentu:m conservation from inlet valve closure. Fig, (1,4) 

shows the calculated gas velocity. It was noted that heat transfer 

coefficients calculated for the combustion and expansion period were 

much in excess of those predicted by Eichelberg's .relationship using 

the instantaneous gas velocity. The author suggested that this effect 

was due. to combustion induced gas motion leaving the energy cell, 

which was estimated to be about 500 m/s. An alternative reason, could 

be the possibility of flame front impingement on the surface thermo-

couple, and the contribution of radiation flux which is not accounted 
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for in the analysis presented. Support for this argument is given 

by the following tests, (Chapter 6). 

Work of Le Feuvre et al (20). Le Feuvre, et al, measured 

the local instantaneous heat fluxes at up to eight locations 

within the cylinder volume of a 4-stroke, direct injection diesel 

engine. The tests covered a range of 

Equivalent ratio 0 ~ cj:> ~ 0.72 

Manifold pressures 30" Hg ~ Pi vacuum~ 75" vac. 

Engine speed 1000 ~ RPM~ 2500 

Eight Bendersky (72) type surface thermocouples were installed 

... where the heat flow pa'ths were approximately one-;dimensiorial arid 

normal to the chamber ·~urfaces·. Output signals from the thermocouples 

were recorded on analog magnetic tape, and later an average cycle 

(over 50 cycles) digitised at every crank angle position. Data 

presented on local heat transfer rates shows large spatial and 

temporal variations throughout the cylinder. Values of the integrated 

time average heat fluxes were normally four times greater in the 

cylinder head area than in the cylinder sleeve. Peak rates of 

instantaneous heat transfer in the cylinder head deck area reached 

values as high as 5047 kW/m
2

. 

The average heat transfer rates in the cylinder head were 

shown to vary from 108 kW/m
2 

under motoring conditions to 529 kW/m
2 

at an equivalence ratio of 0.72. Supercharging (75" Hg inlet pressure) 

was shown to increase the average heat transfer in the cylinder head. 

2 2 from 300 kW/m (at 30" Hg) to 435 kW/m . The average rate of heat 

transfer in the head rose from 261 kW/m
2 

to 423 kW/m
2 

as the speed 

was increased from 1000 to 2500 rpm, while the average rates of heat 

transfer stayed relatively constant with a ± 10 degree variation in 
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fuel injection timing. 

A point of interest worth noting is that the heat flux data 

of Le Feuvre, et al, showed strong local variation in magnitude, 

the position of the maxima depending on the conditions of 

operation (motored or fired) of the engine. 

Le Feuvre presented predictions for instantaneous heat 

transfer rates obtained from the available heat transfer correlation 

in theliterature, and compared these results with experimental data 

as shown in Figs. (1.5) to (1.8). Since all previously proposed 

models are for spatially averaged conditions, the correlation 

cannot produce a variation in heat transfer with location as was 

observed experimentally. 

Except for the case of motored data, the correlations failed 

to predict the temporal variations which were obtained experimentally. 

The reason for the discrepancy observed in the fired engine is 

obviously due to the use of bulk mean gas temperature which is not 

adequate for prediction of local heat fluxes. 

Le Feuvre also made attempts to fit two new heat transfer 

models to his experimental data. His first attempt was an unsteady 

compression-conduction model as had been used by Wendland (22). 

This model treated the cylinder volume as a group of separate masses 

which could transfer energy to one another through conduction heat 

transfer or work transfer. The model then could be solved iteratively 

with time as the independent variable and be used to predict the 

conduction heat transfer to the wall from the gas layer adjacent to 

the wall. This model predicted lower values than measured for the 

heat transfer under motored conditions, because application of the 

model to engine conditions ignored gas velocities parallel to cylinder 

head and piston surfaces. 
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The second type of model presented by Le Feuvre was a convective 

heat transfer model using the swirl as the dominant velocity, and 

radius from the axis of cylinder as the characteristic distance. 

Solid body rotation of the gas was assumed. The form of the 

correlation was: 

qr 
k (Re )0. 8 (Pr)o. 33 [ T - Tw J = a 
r g 

( 1.5) 

where Re r
2W 

= --
V 

r = radius from bore axis 

w = swirl angular velocity 

V = kinematic viscosity 

Since this form incorporates the radius to the location 

under consideration, it does predict spatial variations in heat 

flux. However, Le Feuvre, has assumed a constant swirl velocity 

throughout the engine cycle, although he pointed out that both 

squish and swirl velocities would be expected to vary with position. 

Therefore, an important factor in time variation of gas motion has 

again been ignored. 

The value of 0.047 was suggested for the constant (a). Le-

Feuvre found that this model would predict both the spatial and 

temporal trends observed in his motored engine runs over the range 

of engine operating conditions studied. Attempts to extend the 

correlation to fired runs were not as successful. The changes in 

the relative'magnitude of local heat transfer rates could not be 

predicted by the model. Le Feuvre concluded that additional measure-

ments would be· required before a reliable model for diesel engine heat 

transfer could be developed. He suggested a need for information 
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concerning the spatial and temporal variation of local gas 

velocities in an operating engine and a need for reliable measure

ment of the radiant portion of the instantaneous heat transfer. 

In the review so far co~ered, the inadequate representation 

of gas motion in the engine cylinder by mean piston speed or its 

functions, is an obvious weakness which appeared in most of the 

correlations discussed. In an-attempt to obtain useful experimental 

data and to avoid the above weakness, Hassan, 1967 (37) studied 

the unsteady forced convective heat transfer under motored conditions, 

inside a specially designed pre-combustion chamber. Measurements 

were made of instantaneous gas velocity (using a constant-temperature 

hot wire anemometer) and the gas temperature (with the anemometer 

used as a resistance thermometer). Heat fluxes were computed from 

analysis of surface temperature records obtained with a thin film 

thermocouple. The tests covered a range of compression ratios 

(8.5, 9.8 and 11.5) at several engine speeds (600, 900 and 1100 rpm). 

It was shown that the experimental data could be represented by the 

relationship for forced convection from a flat surface: 

Nu = (1.~ 

where values of theconstant c varied between 0.0276 to 0.0184, in 

order to account for the difference observed between the compression 

and expansion stroke. Hassan reasoned this difference was due to 

slight underestimation of gas temperature (because of finite thermal 

inertia of the sensor) on the compression stroke and vice versa on 

the expansion stroke. 

Kim Dao, et.al (40),_studied the instantaneous heat transfer on 

a motored engine cylinder head, under a range of operating conditions: 



-17-

1. Engine speed (600 - 1200 rpm). 

2. Compression ratio (8-14). 

3. Intake pressure (14.5 - 30 psi). 

4. Swirl ratio (0.0 - 7.5). 

5. Shape of the piston top, that is, flat or with a cylindrical 

cavity. 

An interesting approach in the correlation of the data was 

also attempted. 

A heat flux meter consisting of a thin pyrex substrata 

(0.005 inch thick) having a thermistor (3 * 10-6 inch thick) 

deposited on both faces was used. The similarity between a heat 

flow-temperature field and electrical flow-voltage field was applied 

to obtain the surface heat flux. Most of the data presented was said 

to have been obtained with a thin oil layer on the sensor resulting 

from the movement of the piston. Its effect was estimated to result 

in an amplitude reduction of the heat fluxes of up to 26% and a 

phase shift of about 7°CA. 

The importance of induction-induced charge motion as compared 

to piston generated gas motion effects (flat piston) on instantaneous 

heat flux was demonstrated. Fig. (1.9) is the heat flux trace for 

two successive cycles without induction process between. Although 

the smooth recompression trace indicates clearly the absence of 

intake induced fluctuations, the reduction in peak heat flux must 

be partially attributed to lower gas temperature and pressure in the 

recompression cycle because of loss through blowb~· and heat transfer. 

It can be shown that by accounting for the cylinder pressure change 

as shown in Fig. (1.9) with a drop of 6% in peak value, and using 

the gas temperature at the beginning of the recompression cycle (heat 
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loss calculated by a typical correlation, e.g. Annand's), the peak 

gas temperature in the recompression cycle is about 10% less ·than 

in the first cycle. Thus a drop of at least 10% in heat flux 

which is attributed to losses in the recompression cycle. 

Data presented on swirl effects showed that, under high 

swirl conditions (described as being orderly flow with few eddies) 

heat fluxes were reproducible within 5% of peak value, On the 

other hand at low swirl conditions heat flux at TDC caried by as 

much as 50% from cycle to cycle and was characterised by spiky 

fluctuations which was explained by irregular flow with large 

eddies, Generally the peak heat flux increased with increase of 

swirl ratio as shown in Fig. (1.10), 

Interesting data were reported on local heat transfer 

variation when a flat piston crown and a piston with concentric 

cylindrical cavity was used. In the case of a flat piston it was 

shown that with high swirl ratio, there was a large decrease in peak 

heat flux from r = 0.3 (cylinder bore = 3.125 inch) to r = 0.8 inch 

(Fig. 1.11), followed by an increase from r = 0,8 to r = 1.46 inch. 

The initial decrease was reasoned as due to eddies, while the increase 

in the outer region was explained by the increased linear velocity. 

The trend perhaps reflects the fact that a uniform solid body type 

of rotational motion does not exist with flat pistons. Fig. (1.12) 

compares heat fluxes obtained with and without cavity in the piston. 

Note that except in the central part of the cylinder head surface, 

where the heat fluxes at the last measured point (r = 0.3 inch) are 

about the same, the presence of a bowl enhances the peak heat flux 

in the annular space by about 25% and by about lOO% near the outer 

radius of the cavity. The increase of heat fluxes in the annular 

region was explained by the additional turbulence created by the 

squish, The sharp increase in peak heat flux near the outer radius 
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of the cavity was reasoned by the eddies created at the edge of 

the bowl by the squish and by the increase in swirl velocity in 

the cavity. It was argued that'if angular momentum is considered 

to be conserved, the angular velocity in the cavity must be about 

three times higher than the angular velocity in the annular space, 

at near TDC.' This, however, is different to findings of Dent and 

Derham (62), Horvatin (67) and other workers in detecting approx

imately a solid body type of rotational motion. 

The effect of engine speed, intake pressure and compression 

ratio on peak heat flux were as shown in Figs. (1.13) to (1.15) 

respectively, which reflects the direct effect of these parameters 

on the gas motion, gas temperature and pressure, hence directly 

upon heat flux. 

The observed strong influence of compression ratio and engine 

speed on peak heat fluxes, suggested that the rate of compression 

work plays an important role in the energy transfer process. There

fore Kim Dao, et al, concluded that any method of calculation of 

the convective heat transfer rates in engines must as a minimum take 

into account at least two things: 

1. The pressure variation with time. 

2. The gas motion. 

The generation of energy by combustion is a third important 

factor which was not considered in their investigation. Kim Dao 

presented a one-dimensional model described by a system of non 

linear partial differential equations (the continuity and energy 

equations). The model was based upon the concept of a large reservoir 

of gas having uniform, but time-dependant properties and exchanging 

energy with local elements of the wall surfaces through thin layers 

of gas by compression, expansion, condution and convection. 
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This model was approximated by a linear partial differential 

equation that could be solved analytically. The solution of the 

linearised equations yielded the following formula for the 

calculation of the heat fluxes: 

q='lj_ 

where: 

K w 

H('T) = 

+ K *)(P*)(21l-l) x 
T 

F (T) [ __!_ T 
(1 -

w 

rr ff Tj 

H(T) 

T 

) -
0 
!~~~] 

F('T) Exp. [~ f P* 
L 

= 
(1 +KT*) 

G('T) = [ 

t* 

'T = f P* (1 

0 

+ K *) dt* 
T 

1 
F('T) 

or 

d ] 

A best fit of the data was used to calculate the parameters 

L and K * T which gave (L =·0.85) and: 

= 0.00156 [ :~ r 

c ]

0.75 
SR.CR 

(1.7) 

s 1(7 
X (- ) c 

T 0.58 
( Tw ) (1. 8) 

where: 

g 

Ti' Pi = gas temperature and pressure at inlet 

K 1 ~ 1 Vw = gas conductivity, thermal,diffusivity and w w 

P* 

kinematic viscosity at wall temperature 

= dimensionless eddy-thermal conductivity, 

= gas pressure/ambient pressure (P ), 
a 

T 
w 
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T 
- (_:!!.. 3 T*~ dimensionless temp. 

4 
+ 4 gas mean temperature (Tg) ). 

L = dimensionless constant, W ~ flywheel angular velocity, 

t*~ x time, S ~ distance between cylinder head and piston top, 

C ~ S at TDC, r ~ radius from cylinder axis, Y) ~ dummy variable for.T 

The well known concept of Prandtl mixing length and eddy-thermal 

conductivity K' 
T 

in pipe flows was used as a model for the interaction 

of the swirls with the walls. Thus the convective term for the effect 

of the swirl could be written as a conduction term in the energy 

equation as K, C>T 
- T 'SOY' This approach is promising, because it avoids 

the uncertainty caused by the application of heat transfer coefficient 

concept to the unsteady state heat transfer encountered in internal 

combustion engines, but others are introduced such as the variation of 

the mixing length with distance from the cylinder surface. However, due 

to the nature of the assumptions as related to the model used, the 

proposed formula is applicable only to flat combustion chambers with 

no combustion process, This renders it use!~ to the usually complex 

combustion chamber geometries and under normal operating conditions where 

combustion is present. 

l,2.l(b) Correlations and measurements based on time-averaged 
heat transfer 

To avoid confusion, the correlations reviewed in this section, 

are of two types. Those proposed by Woschni (2) and Si tkei (24) are 

for the prediction of instantaneous heat transfer in internal combustion 

engines, while those of C.F. Taylor (11), Alcock (19) etc. are to predict 

mean heat transfer rates. These investigators share in common the fact 

that the resulting correlations are verified by the measured time-mean 

heat transfer obtained either from energy balance, or by use of 

traversing thermocouples through the combustion chamber walls. 

To calculate the instantaneous mean heat transfer coefficient in 

piston engines, Woschni (2) suggested the use of the correlation for 

forced convective heat transfer in pipe flow for gases: 

Nu ~ 0.035 Re
0

·
8 

(1.9)_· ---



-22-

Considering the changes in the properties of the gas with 

pressure and temperature, the following relationship was 

derived: 

h=Cd-0 ' 2 0.8 
p 

g 
T -Q .53 

g 

Woschni indicated that, although the gas velocity is a 

function of piston mean speed, the exact functional relationship 

need not be the same throughout the engine cycle, and suggested 

the relation V = a.v where a is· constant and varies for 
p 

different parts of the cycle, 

wer·e done 
A series of experimentsAin which a 4-stroke engine was 

( 1.10) 

first run with every stroke a scavenging stroke (through use of a 

double lobed cam shaft) but supplied with hot air to simulate actual 

running conditions. The overall heat transfer rate measured 

provided Woschni with a scavengingheat transfer correlation: 

P0.8 (a.v )0.8 
. p 

T -0.53 
g J (T - T ) 

g w 
( 1.11) 

This scavenging correlation was then modified by adding the effect 

of compression-expansion processes in the motored engine. The 

difference between the scavenging process and the compression-expansion 

process obtained was in the intensity of corresponding gas motion, 

Woschni suggests values of: 

a = 6.18 for scavenging period 

a = 2.28 for compression-expansion strokes. 

Tests on the fired engine, resulted in larger measured heat 

transfer rates than those calculated from equation ( 1.11). Woschni 

argued that, due to the similarity of the scavenging and compression 
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process in both fired and motored engine (from the types of tests 

run), the excess heat transfer during the firing tests must be 

transferred during the combustion and expansion phase only. 

Woschni considered an additional combustion generated gas motion 

superimposed on the velocity caused by piston motion, to promote 

convective heat transfer during the combustion expansion phase. 

As a result of these tests, Woschni presented a correlation of 

the form: 

V T ].8 __ g (P- p ) 
Pl vl o 

(T - T ) 
g w 

( 1.12) 

A value of 3.24 x 10-3 was recommended for (b). 

Woschni suggested that radiant heat transfer would obey the 

law: 

( 1.13) 

where f: is the emissivity of the radiating agent and q; is the 

Stefan-Boltzman constant. The radiation from the working gas (H
2

0 

and co2 ) was considered negligible. Greater importance was 

attached to flame radiation and an emissivity of 0.6 for E 

(determined on steady diesel fuel flames) was suggested to be 

used in Equation 1.13 along with the mean gas temperature instead 

of unknown flame temperature. 

Woschni concluded that the importance of radiant transfer 

in diesel combustion chambers had been over-rated. 
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Sitkei (24) presented an anlysis of diesel engine heat 

transfer in which he divided the correlation of data into three 

parts: 

l. Convection. 

2. Gas radiation. 

3. Flame radiation. 

Sitkei started with the basic relationship for convective 

heat transfer for pipe flow. 

Nu 
n 

~ Const. x Re (1.14) 

and suggested a value of n ~ 0.7 on the basis of his experimental 

data. Furthermore, by taking the variation in k and _u as 

T and T 
0

· 7 
g g . proportional to respectively, the following 

correlation for convection heat transfer was obtained: 

q• = a (l + b) 
c 

4.V 

A 

PO. 7 V 0. 7 
-,----,-P"-=- ( T - T ) 
T0.2d0.3 g W 

g e 

is the "equivalent cylinder diameter" 

(1.15) 

The factors a = 0.033 (based on motored engine results), and 

b ranged from 0.0 to 0.4 as engine air turbulence increased as a 

function of combustion chamber configuration. In a later publication 

Sitkei and Ramanaiah (23) suggested .the following new values for 

these factors: 

a = 0.04 

and b varied for different types of combustion chambers as follows: 
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Direct combustion chamber (Hesselman type) 0 - 0.03 

Piston chamber 0.05- 0.1 

Swirl chamber (toroidal bowl) 0.15 - 0.25 

Precombustion chamber 0.25 - 0.35 

Sitkei (36) in his analysis, claimed up to 80% of heat 

transferred to the walls of the diesel engine he studied, was 

accounted for by convection. 

For gas radiation Sitkei considered the equation: 

The value of €, the non luminous gas emissivity, comes from an 
g 

analysis of the instantaneous concentration of co
2 

and H
2
o in the 

combustion products and emissivity charts, as presented by Hottel 

(51). His analysis of the potential for heat transfer from gas 

radiation yielded a value of 3.8% of the total. 

For flame radiation Sitkei used: 

<i f=E:f R· . c [ 

(1.16) 

(1. 17) 

Values for flame emissivity E:f' were obtained from analysis of the 

emissivities of oil burner furnace flames. His analysis-showed 

flame radiation responsible for 15.3% of the total engine heat 

transfer. However,· in a.recent study, Sitkei and Ramanaiah (23) 

modified the method of predicting radiation heat transfer in diesel 

engines, making use of measured radiation from precornbustion chamber 

of a Steyr diesel engine. This will be covered in the following 

section. 

I 
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In the above correlations, the constants in the expressions· 

were determined by fitting the time-averaged properties in the 

correlation to steady heat balance data for the engine, In such 

an approach one must realise that, although the predicted heat 

flux integrated over the whole cycle may give the same result 

as measured time average transfer "the temporal distribution of the 

instantaneous heat flux could be of any form, This fact could 

be noticed to some extent in Figs. (l6a) and (16b), where the 

correlation of Woschni is compared with measured instantaneous 

local heat transfer coefficient of Elser and Kind (2 ). 

While reasonable agreement is achieved for peak heat flux, the 

difference is significant at other parts of the cycle, Therefore, 

unless such correlations are verified by measured instantaneous 

mean heat fluxes, they should be used with certain reservation. 

An interesting approach, though not relevant to unsteady 

heat transfer, was proposed by Alcock (21). The time average heat 

transfer rate was related to the fuel flow rate by a power law. 

The data were obtained with a special thermocouple probe which could 

be positioned at various depths in a blind hole from the outside of 

the combustion chamber wall and thus obtained temperature gradients 

and heat fluxes. Alcock presented extensive. data of the variation 

of time averaged heat transfer rate as a function of location in 

the combustion chamber of spark ignition and diesel engines. He 

also varied engine load conditions and arrived at a correlation 

stating that the total heat loss (time averaged) was proportional to 

the 0.64 power of the fuel-input rate. 

Alcock (26) 1961, in another investigation on non-swirl and 

swirl-type direct injection diesel engines, suggested the following 

relationship: 
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(Local flux Chuj1n hr) = . 2 FF X [Fuel rate lb/in
2 

piston)0.75 
area hr 

FF defined as heat flux factor which is different for various 

parts of the combustion chamber. 

( 1.18) 

Similar relationships were reported by Brock and Glasspool (28) 

with index= 0.6, French (27) and French and Hartles (28) in which 

the power index suggested between 0.5-1.2 for various locations. 

It is obvious that application of such formulae is limited to the 

type of engine and the conditions under which tbe experiments are 

carried out, because poor fuel injection (inefficient combustion), 

inadequate air flow and the calorific value of the fuel are some 

of the variables which could alter the fuel flow considerably and 

the effect of these on heat transfer could be substantial. Also 

the index variations reported, are too wide for design purposes. 

1.2.2 Radiation Related Measurements and Correlations 

The study of this mode of heat transfer in internal combustion 

engines has taken a. smaller share of the total amount of work 

carried out on study of heat transfer in these machines. This 

perhaps reflects the difficulties involved in measuring or 

estimating this quantity. 

Nusselt (l ), with his work on heat transfer in spherical 

combustion bombs, provided a starting point for much of the engine 

heat transfer analysis that was to follow. He studied the influence 

of radiation by using gold-plated or blackened iside-surface coating 

on the combustion chamber to explore possible differences with and 

without radiant heat losses and suggested the following expression 

for radiant heat :transfer: 

= C (T 
4 

g ( 1.19) 
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Use of the constant given with this expression will give 

radiant heat transfer, that is, the order of magnitude of 5% of 

the total heat transfer predicted by the complete Nusselt formula 

quoted in Table (1.1). In view of recent studies (to be discussed 

below), the figure may well be correct for S.I. engines, for which 

it was basically developed, but it is unlikely to be so for c.I. 

engines. 

As part of a general investigation of combustion in spark 

ignition engines, Steel et al (30 ) investigated the radiant 

intensity from a region close to the spark plug and from the so 

called "detonation zone" using a sensitive antimony-bismuth vacuum 

thermocouple. The measured results of thermal radiation had no 

absolute significance. However, it was possible to make quantitative 

comparison of data. All observations on the engine indicated that 

infrared radiation from the gas explosion appeared very largely in 

the spectral regions characteristic of radiation from water vapour 

and carbon dioxide. It was stated that no appreciable energy 

relative to the total amount measured, was radiated by incandescent 

carbon particles, even with excessively rich mixtures giving bright 

red-yellow flames. This point proved the fact that carbon particle 

radiation is not significant in S.I. engines. 

Myers and Uyehara (42) used a two colour pyrometer technique 

for the measurement of flame temperatures in a pre-combustion 

chamber diesel engine. To obtain temperature Myers and Uyehara 

compared the relative intensities of two wavelengths in the visible 

and near infrared. This relative intensity ratio combined with 

Hottels (43) data on the emissivity of carbon particles as a 

function of wavelength, allowed the calculation of apparent radiation 

/ 
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temperature. The temperatures reported by Myers and Uyehara were 

in the range 2lll°K to 2250°K, and were relatively constant for 

a time period of 50 or 60 degrees of engine crank rotation after 

TDC. Most sources agree that the luminosity of diesel flame was 

caused by the radiation from carbon particles formed in the flame. 

In a study designed to explore the infrared emission spectra 

for diesel and spark ignition engine combustion reactions, Lyn (31) 

found that during the combustion and the early part of the expansion 

period in a diesel engine, emission from the carbon particles in 

the flame was very high. The relative emission from the combustion 

chamber was presented as a function of wavelength and time during 

the engine cycle. Only relative values could be presented because 

of the uncertainties in transmissivity of the combustion chamber 

window deposits. Lyn's data demonstrated that the radiation emitted 

by the carbon particles in the engine formed a continuous spectral 

distribution of an intensity between wavelengths of 1-6~, such that 

the non luminous gas radiation due to co
2 

and H
2

0 was obscured. 

Fig. (1.17) shows the spectra obtained with 80 psi BMEP and 1100 rpm 

using gas oil. Lyn compared the relative intensity versus wavelength 

dispersion from the diesel combustion with the data generated by 

use of Hottel's correlation describing the wavelength dependance of 

carbon particle emissivity, and a common radiation temperature for 

all wavelengths substituted into Wein's Law. The·comparison of the 

data revealed that, with the values of optical thickness that Lyn 

assumed, Hottel's model for hot carbon particle emission would not 

explain the measured intensity variation as a function of wavelength. 

After making this comparison, Lyn resorted to the evaluation of what 

he called "distribution temperature". He noted that if his data 

were plotted showing 5 
Ln (IA. X) versus 1/A, a straight line was 

obtained (Fig. 1.18) over the region between 1~ and 2.4/J. 
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This fact, along with analysis of the equation for emission from 

a grey body using Wein's Law yielded the following relationship: 

·c 
2 ( .! ) + Const. 

TR f.. 
(1.20) 

The slope of the curve in the logarithmic plot could be used to 

evaluate apparent temperature. Analysis of the slopes of these 

0 
plots yielded temperatures as high as 1960 K during combustion. 

These results are somewhat lower than those reported by Myers and 

Uyehara ( 42) • 

In contrast, Lyn's measurements on the flame of spark ignition 

engines showed almost no continuous spectra. The radiation detected 

was related to specific spectral lines of such components as water 

vapour, carbon d·ioxide, and hydrocarbon combustion intermediaries, 

as reported by Steel (30). 

Although Lyn's data could not be used for the calculation of 

potential radiant heat transfer, they did point to the fact that 

the continuous emission of the carbon particles was more likely to 

be of importance to radiant heat transfer than the banded gaseous 

emission. 

Ebersole et al (32) made measurements of the value of the 

steady state ratio of radiant heat transfer to total heat transfer 

rates in an open chamber two stroke diesel engine. To accomplish. 

this, a plug containing a surface thermocouple was placed in the 

cylinder head deck of the engine. The steady state rates of total 

heat transfer to the head were determined by measuring the temperature 

difference across the plug. Data were taken at various fuel air 

ratios and a constant speed with the engine inlet manifold pressure 

at 39 inch Hg.abs. The plug was then replaced by a similar surface 

thermocouple but with the couple junction shielded from conductive 
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and convective heat transfer by a sapphire window, so that only 

the radiative component of heat transfer could be detected. 

Ebersole's data for the radiant to total heat transfer 

ratio, when plotted against engine power output is shown in 

Fig. ( 1.19) • The ratio rises to 40% at about 85% of the engine's 

rated output for the 1200 rpm operating speed. Tests were run 

with both a n-heptane oil mixture and a No. 2 diesel fuel. Also 

included were tests using thermocouples with clean metal surfaces 

and soot covered surfaces. The results of the tests revealed that 

the radiant to total heat transfer ratio was higher when the soot 

covered thermocouples were used, and that the ratio was also higher 

for No. 2 diesel fuel than for the heptane oil mixtures • 

• The results of Ebersole's tests indicate that radiation should 

be considered a significant contributor to total engine heat transfer. 

Also of note was the fact that the results obtained with the clean 

and soot covered thermocouples agreed with what one might expect and 

theoretically predict assuming that the soot covered surface exhibits 

a higher emissivity than the clean metal surface and therefore, 

absorbed a greater amount of the incident radiant energy. The results 

of the tests with different fuels also tend to agreed with the well 

established fact that the normal paraffins are lowest of all hydro-

carbons in their affinity for smoke or carbon particle formation, 

of course accepting that most of the radiant emission in the engine 

arises from carbon particle radiation. 

Qguri and Inaba (33) used a technique similar to Ebersole's 

(32), but, measured the instantaneous rate of radiant heat transfer 

and simultaneously measured the total rate of heat transfer by 

similar unshielded thermocouples. In order to avoid errors due to 



-32-

soot accumulation on the viewing window, Oguri resorted to sudden 

firing and loading of the previously motored test cylinder and 

applied a correction to the transient signal which was superimposed 

on the steadily rising mean surface temperature signal. The data 

obtained for three direct injection, medium and high speed diesel 

engines of differing sizes confirmed, once again, the importance 

of the radiant heat transfer in the diesel engine. Comparison 

of the measured radiation heat fluxes with calculated values 

using the radiant term in the original formula recommended by 

Annand (6) showed good agreement (Fig. 1.20) except in the case 

of the supercharged engine, where the low mass averaged gas 

temperature .resulted in low calculated values. The ratio q /<iT 
R 

increased continuously with IMEP for the sooty thermocouples. 

For the clean thermocouples this ratio increased initially with 

IMEP but levelled off at higher load conditions. This was probably 

due to the fact that the change of the detected radiant heat flux 

with increasing load did not exceed the one for total heat flux. 

Fig. (1.21) shows the ratio <i~<iT plotted as a percentage of the 

engine maximum IMEP. It indicated that larger and higher output 

engine curves lie above the ones for smaller and lower output 

engines. The result suggests radiation heat loss could be very 

significant in large, slow speed engines where convective transfer 

is expected to be low because of low air motion. 

Sitkei and Ramanaiah (23) made an attempt to improve the 

prediction of instantaneous heat transfer and in particular, the 

radiant heat transfer in diesel engines. Through detailed calculations, 

they suggested that gas radiation is a negligible part of the total 

heat transfer, but considered flame radiation to be relatively 

significant and therefore cannot be ignored as suggested by some 

researchers, Knight ( 16) and Woschni ( 2 ) . 
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Sitkei's approach was based on estimating the radiating 

flame emissivity and its variation with time. Assuming the flame 

a grey body, he measured the black body temperature in the pre-

combustion chamber of the diesel engine using a quick response 

photo-electric pyrometer. The actual flame temperature was not 

measured, but after a survey of the relevant literature which, 

according to Sitkei, revealed that flame temperatures in different 

engines are nearly of the same magnitude and vary little with load, 

be accepted flame temperatures measured by Belinskiy (25) in a small 

(140 mm bore) open chamber diesel engine with minor modification near 

TDC, (using two colour method and assuming grey body radiation). 

Hence, flame emissivity as a function of both time (CA degree) and 

load (excess air ratio) was calculated by: 

T 4 
b 

T 4 
f 

The results thus obtained for the precombustion chamber were 

generalised by expressing emissivity as follows: 

and a factor k known as "absorption factor" was calculated as a 

function of time and load, Fig. (1.22). These values of k, which 

correspond to measurements from the precombustion chamber, were said 

to be universally applicable for all designs of engines operating 

with various load conditions. Calculated flame emissi vi ties in the 

main chamber of a Styer engine and the corresponding flame radiation 

heat transfer are shown in Figs. (1.23) and (1.24). 

(1.21) 

( 1.22) 
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Sitkei concluded that radiant heat transfer in diesel 

engines is mainly due to carbon particles and amounts to 20-30% 

of the total heat transfer at full load. Flame emissivity, in the 

main combustion chamber increased with load, whereas in pre-or 

swirl-combustion chambers, flame emissivities increased up to a 

certain load and then decreased. This decrease of radiation was 

believed to result from excessive radiation absorption by increased 

concentration of decomposed hydrocarbon at heavy load. 

Work of Flynn et al (34). A most significant and up to date 

experimental work on investigation of the radiant heat transfer in 

diesel engines was carried out at the University of Wisconsin by 

Flynn et~al (34). An instrument and data.reduction system were 

developed to obtain instantaneous rates of radiant heat transfer 

within an operating direct injection diesel engine. Data were 

obtained over a speed range (1000 - 2500 rpm), load (equivalent 

ratio 0.23- 0.749), inlet manifold pressure (30.1 - 75.4 inch Hg.abs) 

and fuel injection timing (10- 30° CA BTDC). Data were also obtained 

with different fuels and fuel additives. 

A photo-conductor sensor and infrared monochromator were chosen 

for intensity measurement and wavelength identification. The value 

of the absolute monochromatic emission intensity. at any instant was 

measured with reference to a tungsten filament radiation source, so 

that obscuration of windows by soot were accounted for in the 

calibration. 

The data, as extracted by the acquisition system, took .the 

form of seven distinct emission measurements at seven different 

wavelengths (1, 1.5, 2, 2.5, 3, 3.5 and 4f1m), averaged over 50 

cycles, for each crank angle of engine rotation. These seven emission 
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values represented points on a curve describing emission as a 

function of wavelength. In order to obtain the Emissive Power 

(radiant heat transfer) from the combustion products, Flynn 

abandoned the idea of evaluating the area under the spectral 

emission curve by numerical integration technique for the following 

reasons: 

1. Limited accuracy when obtaining the integral with only 

seven points representing the emission-wavelength relation-

ship. 

2. No information could be gained concerning the apparent 

radiant emission temperature or emissivities which are 

concealed in the emission intensity-wavelength distribution 

of the radiating agent. 

Instead he attempted to fit various forms of radiant emission 

models to the available data in order to extract further information. 

The attempt to fit a grey body emission model was not satisfactory, 

but a very good fit of the data was obtained with an emiss.ion model 

proposed by Hottel (43) for a system of very small particles in 

thermal equilibrium described by: 

E)_= l-e (1.23) 

This formula was combined with Planck's radiation dist.ribution 

function to obtain a relationship for energy emission as a function 

of wavelength: 

-kL/'}..0.95 

= (1 - e ) [ ( 1.24) 
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This relationship was then used to obtain the radiating temperature 

and values of the apparent optical thickness (kL) which yielded a 

fit to the seven observations for each crank angle position. 

Once fitting the model to the experimental data was established, 

a closed form solution of the integral of the model over all 

wavelengths (0 -oo) proved unsuccessful. Therefore Flynn resorted 

to a numerical technique to determine the model integral over the 

wavelength range between 0.5 p. to lOJ.I. which contained nearly 95% 

of the energy emitted by the particles. The numerical integral 

was combined with the numerical integral of Planck's radiation 

distribution function over the same wavelength interval to extract 

an apparent emissivity as shown below: 

- 1) 

d)\ 

This apparent emissivity was then combined with the apparent 

temperature to calculate the emissive power (radiant heat transfer 

rates) by: 

A further attempt was made by Flynn to overcome the difficulty 

faced in obtaining a closed form solution for the emission model 

integral. His analysis of the pseudo-grey emissivity integral 

suggested, to a good approximation, that emissivity (€ ) is a a 

(1.25) 

(1.26) 

unique function of the product of TR kL. The function, thus obtained, 

took the following form: 
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(a =- 10.04 + 6.092 Ln(TR kL) - 1.36 (ln(TR kL) )
2 

+ 

+ 0.1315 (Ln(TR kL) )
3

- 0.004546 (Lh(TR kL) )
4 

Therefore, the combination of the expressions for E: 
a 

and 

allowed the direct evaluation of emission power once values for 

TR and kL were known. 

The engine observations showed radiant emission from the 

combustion process within a diesel engine to be significant. 

Figs. (1.25) to (1.29) show the experimental results of instantaneous 

radiation emission,. extracted kL, TR, emissivity and heat release 

as affected by operating conditions. Radiant temperatures as high 

as 2395°K and peak emission rates (1640 kW/m
2

) (nearly equivalent 

to that of a black body at this radiant temperature) were observed. 

The apparent time averaged radiant heat transfer rate increased with 

increased inlet manifold pressure at fixed F/A, nearly proportionately. 

Injection timing advance showed large increase in emission rates which 

appeared to be associated with corresponding changes in the engine 

cycle temperature history. 

Data from runs in which engine speed was varied yielded 

increasing apparent time averaged rates of radiant heat transfer 

as engine speed was increased up to 2000 rpm. Above this speed the 

emission rate ceased to increase. The increased time-averaged heat 

transfer with speed is not surprising as the duration (in terms of 

CA degrees) of high radiation increase correspondingly, if one 

associated a more or less fixed time interval for combustion. The 

radiant transfer may cease to increase at higher speeds by less 

efficient combustion of soot formed because of the short time 

available. Tests varying the F /A while holding other variables 

constant, .:i;.ndicated a sharp rise in emission as F/A was increased 
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to an equivalent ratio of 0.514. At an equivalent ratio above 

0.514 the emission rate was observed to drop sharply. The observed 

trend may be explained by the fact that the spray orientation used, 

would result in air-fuel mixture zones in the viewing field, much 

richer than the overall mixture. Hence increased soot concentration 

under the high cylinder pressures, according to Macfarlane and 

Holederness (45) and Kunitomo {46), which prevent transmission of 

the radiant emission from the hotter particles in the reaction zone 

to the detector. 

The foregoing discussion suggests that, in addition to the 

problem of the formation of carbon particles under the transient 

conditions in the engine, we must also consider that of combustion 

of the particles. 

Tests with No. 2 diesel fuel and 50/50 blend of secondary 

diesel fuels yielded nearly equivalent emission rates, while a test 

run with normal heptane produced lower emission rates, as had been 

previously shown by Ebersole (32). Rotation of the nozzle hole 

pattern relative to the viewing access port indicated increased 

emission rates when no fuel was deliberately injected into the 

viewing hole. 

Under all operating conditions, the peak values of radiant 

heat transfer were significant (20% - 50%) compared to peak values 

of total heat transfer measured in the same engine with slightly 

different combustion chamber by Le Feuvre (20). The time average 

values of radiant heat transfer amounted to approximately 20% of 

the time average total heat transfer reported by Le Feuvre. This 

ratio is low compared to Ebersole's findings of up to 40% and it was 

reasoned to be the difference in combustion chambers employed by Le 

Feuvre and Ebersole as well as their specific observation locations 
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in the combustion chamber in relation to viewing field and local 

gas motion. 

Flynn et al indicated that extensive analysis of the data 

uncovered no basic method for predicting values of apparent 

radiant temperature and optical path length as a function of time 

during the engine cycle. Therefore an empirical function for the 

instantaneous radiant emission was fitted to the engine observations 

using a form similar to the Wiebe function used for heat release 

rate correlation. The correlation function was as follows: 

t- t a t- t O:+ 1 
% = (2 %> (b) (a+ 1) [ 360 1] exp [-b( 3601) J 

The values for the qR, a, b and t
1 

parameters were fitted with 

interpolation formulae including first and second order terms in 

each of. the independent variables used in the test runs (e.g. engine 

speed, inlet manifold pressure, etc). 

The above function was used by Flynn et al to serve as a dis-

tribution function with the shape desired for correlation. Thus 

the interpolation formulae which are fitted to the results obtained 

by Flynn, are applicable only to the engine used, and will have to 

be modified for any other application. 

Finally a comparison of the results obtained by Flynn with 

the results of Oguri and Sitkei, showed that under normal operating 

conditions, the radiant emission starts rising between 10-5° CA BTDC 

with peak values attained between TDC. to 10° CA ATDC in the case 

of Flynn's tests, compared to emission increase at 5 to 10° CA ATDC 

( 1.28) 

with peaks between 20 to 40° CA ATDC in the case of Oguri and Sitkei's 

observations. This fact raises some doubts about the sensitivity 

of the detection devices used by Oguri and Si tkei. The other possibility 
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is that radiant emission from precombustion chambers, as observed 

by Sitkei, may behave differently from the main chamber because 

of the rich mixtures involved which affect ignition delay. 

1.2.3 Theoretical investigations 

Many theoretical researches are reported on periodic heat 

transmission in reciprocating engines. The majority have 

considered the problem as one of heat conduction through the 

engine cylinder head and liner walls. A few have considered the 

convective and radiative aspects of the problem. 

1.2.3(a) Heat transfer considering conduction in the solid 
wall 

The familiar one-dimensional Fourier equation for unsteady 

heat transfer is: 

where: ex 
k 

=pc is the thermal diffusivity of the solid material. 

Now, if the time variation of the wall surface temperature 

is known, then a solution of Equation 1-29 is possible, from which 

the calculation of periodic surface heat flux follows. Equation 1.29 

is a second order partial differential equation which requires two 

boundary conditions for its solution. In engine work, because the 

transient heat transfer is required, the inner surface temperature 

with time is used and the outer wall temperature in addition to the 

assumption of one-dimensional heat flow. However, the surface 

temperature variation due to cyclic changes in the gas is not 

( 1.29) 

readily predictable (see below), but reliance has been on experimentally 

recorded surface temperature to obtain actual heat flux at the surface. 
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This approach is made to evaluate the experimental heat fluxes 

(Appendix A). 

1.2.3(b) Heat transfer considering the gas region 

The theory of heat transfer in the cylinder gases has been 

tackled by few researchers. Pfriem (10) investigated widely the 

problem of non-steady heat transfer from the working gases and. laid 

the foundation to this theme. Elser (12), improved Pfriem's results 

. and was able to compare the results of theoretical calculations with 

his own experiments. Both Elser and Pfriem calculated the heat 

flow to the metallic wall from the gas zone assuming adiabatic 

compression and expansion. Recently Oguri (13) extended the 

investigation to include heat generation in the gas at constant 

volume as the case in spark ignition engines. The calculated results 

showed fair agreement with the experimental results. Jacob (53) has 

treated the case of periodic change in the temperature of a medium 

in contact with the plane surface of an infinitely thick plate. As 

the simplifying assumptions made by Jacob, were all those used in 

deriving equation 1.29, from the general equation for energy within a 

control volume, the results of the analysis were purely of theoretical 

interest. Elser's analysis makes the same simplifying assumptions 

except that the pressure work and internal energy conversion are not 

taken as zero, but assumed to vary periodically with time. Thus the 

energy equation for a small control volume becomes: 

OTg CT 1 OP qi 

6t = ~ 
__ g 

+ --- ot + 
(1.30) 

g 
Ox

2 ({JC) ( pc)g g 

At a great distance from the wall, conduction is zero. If 

the gas temperature Tgco in this region is: 
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T = Tco sin (...) t 
gco 

it is possible to continue and obtain 

using continuity at the wall (T = T 
g w 

a solution to equation 

and k bTw - k 0Tg 
w()X-gox at x = O) 

as a boundary condition. The procedure is summarised by Overby et 

al (14). The result of the analysis showed that: 

1. The wall surface temperature is in phase with gas temperature 

at a great distance from the wall and is a miniature replica 

of it. 

2~ The heat flux through surface leads both gas temperature 

1T and surface temperature by exactly 4 . 

However, the later derivation will lead to positively and 

negatively infinite values of h if the steady state definition of 

heat transfer coefficient is used. 

q = h (T - T ) O 
gc:o W X= (1.31) 

It must·be pointed out that the assumptions made in the above 

analysis are very unrealistic, in that they consider the gas density 

to be constant. However, development of the basic theory has helped 

to some extent in understanding the mechanism of unsteady heat 

transfer in IC engines in respect of the effect of different parameters 

on heat transfer and in showing the presence of a phase lag between 

heat flux and the driving temperature. 

Due to the difficulties involved in the exact solution of 

unsteady heat transfer problems, which require many unrealistic 

simplifying assumptions, Elser (12) concluded that valid quantitative 

data on the non steady heat transfer in lC engines can only be obtained 
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experimentally. Therefore, Elser and other worlters have resorted 

to dimensional ~nalysis to define relationships between the 

engine heat transfer and certain selected variables. The most 

recent empirical equations obtained on the basis of dimensional 

analysis and experimental results are those proposed by Annand (6 

and 15) and Le Feuvre·et al (20). 

1.3 Summary of Discussion and Conclusions 

The majority of the formulae discussed so far with the 

exception of Le Feuvre's (20), are for prediction of mean 

instantaneous heat transfer rates for the whole combustion chamber 

surface. Therefore it is expected that measured local heat transfer 

rates will not be predictable by most of the correlations, even if 

used for some engines on which the correlations were originally 

established. This was clearly demonstrated by Le Feuvre as in 

Figs. (1.5) to (1.8). Comp~rison of the predicted heat fluxes in 

engines by various correlations, were also presented by Woschni (2) 

as in Fig.(l.30),bY Walker (36), as in Fig.(l.3l)and by Hassan (37) 

as in Fig.(l.32). The wide variation observed of predicted heat 

flux is not surprising if one considers the following facts: 

a) Dimensionally incorrect correlations (e.g. Nusselt's and 

Eichelberg's) applied to engines operating under conditions 

far removed from those under which the correlations were 

obtained. 

b) Correlations based on dimensional analysis, such as Annand's 

and those based on pipe flow heat transfer such as Woschni's, 

appear more hopeful, but in the use of piston mean speed in 

evaluating Re, they do not account accurately for spatial or 

temporal variation of gas velocity during the cycle. 
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c) The relative importance attached to radiation heat transfer 

varies in each correlation, e.g. woschni and Knight did not 

consider radiation to be significant, while Eichelberg 

accounted for radiation in lumped form with convection. 

Others (1, 6, 23) considered radiant heat transfer relatively 

important in diesel engines and expressed it by a separate 

term. 

The prediction of the radiant heat transfer component also 

involves difficulties. The factors that control the radiant heat 

transfer (e.g. flame shape and its absorption coefficient and the 

effective radiant temperature) are not readily predictable and their 

variation with time in the diesel engine is not yet accurately known. 

It is worth remarking here that conditions (pressure and rate of heat 

release) in small high speed engines are very different from those 

found in boiler furnaces, so that direct application of furnace flame 

data is not possible. Nevertheless, the results obtained by 

Macfarlane and Holderness (45) and by Kunimoto and Kodama (46) on 

luminous flames of liquid fuels under steady conditions, represents 

a practical demonstration of the effects of pressure and excess air 

on carbon formation and radiation. The combined effects of pressure 

and excess air (o: ) on soot formation may give an insight into the 

mechanism of diesel engine combustion so far as radiation is concerned. 

Fig. ( 1.33) illustrates the variation of flame radiation with the 

equivalent ratio, at four operational pressures, obtained by Macfarlane --
and Holderness (45) for atomized kerosene flames. It is interesting 

to note that the intensity of flame radiation decreases with very 

rich mixtures, due· to the absorption effect of the carbon particles 

and decomposed hydrocarbon molecules.· This trend was observed by 
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Flynn et al (34) at high equivalence ratio. 

Kunitomo and Kodama (46), computed average flame absorption 

coefficients and the average non-luminous absorption coefficients 

as a function of excess air ratio and pressure which are shown 

in Fig.(l.34). The workers claimed close agreement with experimental 

measurements and had no doubt about the applicability of the 

calculation procedure to pressures larger than 20 atmospheres. 

Application of their method and correlations require knowledge of 

excess air factor, which is expe·cted to vary locally in diesel 

engines. However, calculations on the assumption of homogeneous 

mixtures of excess air factors 0.8, 0.9, 1.0 and 1.15 produced the 

following results. 

Excess Air Absorption Coefficients m -1 Overall 
Factor Gas Flame Emis'>ivity 

0.8 0.45 328 1 

0.9 0.5 50 0.966 

1.0 0.51 15.5 0.622 

1.15 0.46 1 0.06 

It is intere'>ting to note the high emissivities for rich mixtures· 

and the sharp drop when excess air (weaker than stoichiometric) is 

available for reaction, thus minimising soot formation. The 

observation of high emissivities in diesel engines (23 and 34) 

normally running with excess air factor~ 1.15, suggest presence 

of rich (q}:>l} mixture zones during combustion. 

In the foregaing review and discussion of the previous work 

on unsteady heat transfer, the following conclusions may be drawn: 

1. A correlation to predict accurately the spatial and temporal 

variation of instantaneouS convection heat transfer in various 
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reciprocating engines does not exist. In order to arrive 

at such correlation, experimental and theoretical information 

concerning spatial and temporal gas velocities and effective 

temperatures within the engine is needed. 

2. Although there have been differences in opinion concerning 

the relative importance of various modes of heat transfer 

in the diesel engine, recent investigations show that radiant 

heat transfer may be significant. The effect of gas motion 

on radiant heat transfer through lower soot formation and its 

effect on enhancing convection require further investigation, 

in order to verify the expected effect on reducing the 

(radiant/total) heat transfer as gas motion increases. 

3. Need for a satisfactory model of the combustion process, 

that would enable both the rate of burning and the 

development of the flame shape to be predicted. Also more 

information on soot formation-combustion processes which 

affect flame emissivity under engine conditions is needed. 

1. 4 Objectives 

The overall objective of this study is to contribute in 

better understanding of instantaneous heat transfer in diesel 

engines and to suggest a method for accurate prediction of spatial 

and temporal heat transfer utilising measured local instantaneous 

gas velocities. Also, to determine the relative importance of 

radiation heat transfer. In order to accomplish this, the following 

tasks were undertaken. 
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1. Design and develop a device for the determination of total 

local instantaneous heat transfer at various points in the 

combustion chamber. 

2. Devise a system for the determination of instantaneous 

radiation heat transfer based on current advances in infra

red technology. 

3. Obtain experimental data on instantaneous heat transfer at 

various locations on cylinder head and piston crown, oVer 

a wide range of engine loads, speed. 

Obtain data on instantaneous radiation heat transfer taken 

in the same engine and under the same conditions above. 

4. To establish methods of predicting instantaneous convective 

and radiative hest transfer. 
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Fig, ( 1. 32) Measured and calculated heat flux in pre.:;omDas rea chamber under motored conditions Hassan ( 37) 
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CHAPTER 2 

GENERAL CONSIDERATIONS RElATING 

TO INSTANTANEOUS HEAT TRANSFER 

IN ENGINES 
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2.1 Convection Heat Transfer 

2.1.1 General considerations 

It has been generally accepted that due to the intense 

movement of the gas in the combustion chamber, the dominant 

component of heat transfer in reciprocating engines is by forced 

convection. The gas movement primarily caused by piston motion 

and manifold configuration, usually induces a flow pattern in the 

form of swirl and squish. In most cases, small scale eddies 

created by viscous dissipation are also superimposed upon the 

primary motion. In compression-ignition engines, where combustion 

often starts at several individual zones, rapid movement of the 

charge is expected. This combustion-induced turbulence would be 

additional to the existing movement before combustion. 

It is the difficulty in describing phenomena, such as charge 

motion and temperature distribution involved that makes analytical 

solution impossible (Chapter 1). The usual approach has, .therefore, 

been to obtain empirical relations, where the gas motion is 

represented by the mean piston speed and the gas bulk mean temperature 

as the driving temperature for heat transfer. 

In Chapter 1 it was concluded that all the empirical relations 

proposed to date, have a limited range of application. This is not 

surprising because: 

a) No precise description of charge motion and driving temperature 

has been possible or available. 

b) Experimental observations indicate large variation in the 

magnitude of convective heat transfer from engine to engine 

or even from point to point in the same engine. 
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Fortunately, in the present engine, the instantaneous charge 

motion under motored conditions is known, Derham (44). Thus it 

was hoped that this information will lead to a relationship for 

periodic heat transfer of wider application than previous attempts, 

and also to recognise any effect of combustion-induced turbulence. 

2.1.2 Validity of quasi-steady model 

As mentioned before, the concept of heat transfer coefficient 

as applied to steady conditions has been used in the study of 

periodic heat transfer in engines. This assumes that heat flux 

is proportional to the driving temperature difference between the 

fluid and the surface and in phase with it: 

q = h (T - T ) 
g w 

Theoretical analysis of heat transfer (Chapter 1) suggests 

(2.1) 

the possibility of a phase difference between the driving temperature 

and the resulting surface heat flux. This arises because of the 

finite thermal capacity of the boundary layer and by effect of 

rate of change of pressure work (6 and 14). The seriousness of 

this problem is reduced by the fact that in real engine cycles, 

the phase differences are not as great as predicted by theoretical 

analysis. Also the periods during which the heat transfer coefficient 

(h) becomes infinite occurs in those parts of the cycle where heat 

transfer is not significant. 

Le Feuvre et al (20) pointed out that if the diffusion time 

(defined as the time for a charge in the free stream condition 

diffuse through a laminar boundary layer approximately equals 
' 

where 0 = boundary layer thickness, and V the momentum diffusivity 
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in the boundary layer) is small, relative to other significant 

times in.the problem, the boundary layer may be considered quasi-

steady. For turbulent engine conditions, a diffusion time of 

0 0.5 CA was estimated, on the basis of which a quasi-steady model 

was said to be justified.; 

In calculating the diffusion time (0.5° CA), Le Feuvre et 

al (20) assumed the boundary layer thickness which presents the 

greatest resistance to diffusion, to be where velocity achieves 

50% of its maximum value in the region of the boundary layer. 

Instead of this arbitrary assumption, the momentum thickness 0. 
]. 

(related to loss of momentum in the boundary layer as compared with 

potential flow) across which the velocity gradient is large, can be 

assumed to present the greatest resistance to diffusion. The 

relationship for the momentum thickness for turbulent flow over 

flat plates, derived (Schlichting 99) on the basis of l/7th power 

law velocity distribution is: 

O. = 0.036x 
l.x 

-1/5 
(Re ) 

X 

where the subscript x denotes location x on the flat plate. 

Therefore, substituting the conditions near TDC in the fired 

engine at 1050 rpm (solid swirl = 21 000 rpm) and for mean radius 

location r = 0.025m, the bulk mean temperature may be taken as 

l500°K at which air viscosity is found to be approximately 

-5 3 
5.4 x 10 kg/m.s, and knowing the density p = 13 kg/m a 

" -5 value of ui = 4.9 x 10 m is obtained. 

(2 .la) 
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Hence the defined diffusion time 

2 
~i 
V 

= 5.75 x 10-
4 sec. which 

is equivalent to 3.6° CA at an engine speed of 1050 rpm. The 

diffusion time calculated for the conditions at the end of 

0 induction correspond to only 1.4 CA. These diffusion times 

are small compared to other times of major changes, e.g. of gas 

temperature and pressure which are significant between 90° CA BTDC 

0 to 90 CA ATDC. Therefore the assumption of quasi-steady model 

for heat transfer in internal combustion engines is reasonable. 

2.1.3 Present convection heat transfer model 

Theoretical analysis (modifications of the Reynolds analogy) 

of heat transfer in the turbulent boundary layer on a flat plate, 

combined with empirical relations describing skin friction, have 

been used to obtain the following relationship: 

where Nux = local Nusselt number 

Re = local Reynolds number 
X 

Pr = Prandtl number. 

For a plate length L, an average Nusselt number may be 

evaluated by integration: 

Nu 
08 ~ = 0.037 (Re) • (Pr) 

This relation assumes that the boundary layer is fully turbulent 

(2.2) 

(2.3) 

from the leading edge of the plate. In spite of the many simplifications, 
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relation (2.3) is found to give adequate results if the fluid 

properties are evaluated at the mean film temperature (Eckert 

and Drake 98) and as long as Pr~ 1. 

From equation (2.3) it is seen that if a correlation 

containing some spatial variation is to be developed, the 

significant velocities and/or significant distances must be 

spatially dependent. The other significant quantities involved 

are essentially all functions of the gas temperature which must 

be determined from the cylinder press?re and density which are 

assumed to be spatially independent. 

Equation (2.3) was chosen for predicting heat transfer to 

the combustion chamber walls for the following reasons: 

1) Gas velocity measurements by Derham (44) showed that after 

approximately 90° CA during the induction period, an orderly 

swirl is developed which continues to exist throughout the 

compression period. The bulk of the gas was found to exhibit 

a forced vortex velocity profile. Thus the gas velocity 

variation with radius will allow for spatial variation of 

predicted heat flux in equation (2.3). 

2) The forced vortex velocity profile implies that instantaneous 

gas velocity is constant at radius r and parallel to the 

surface. Therefore equation (2.3) is applicable to the flat 

cylinder head and the flat portion of the piston crown. 

Even in the piston bowl, the surface can be considered flat 

in the direction of the gas motion. 
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3) Equation (2.3) gives the mean heat transfer coefficient 

over a flat plate length L under fully developed turbulent 

conditions. Taking the characteristic length in the 

combustion chamber as 2~ r (constant velocity path length) 

the spatial mean heat transfer coefficient at any radius 

can be represented. 

The above discussion indicates that a relation would follow 

from equation (2.4) such that the average Nusselt number at radius 

r is given by: 

0.8 

= 0 •037 [P.(217 ;)· 211' r J 

where = mean heat transfer coefficient at radius 

(2~r)= characteristic length. 

(2~rW)= gas velocity (Vr) at radius r. 
' 
~ = swirl in rpm. 

Integration of equation (2.4) over the cylinder head surface 

. D 
or piston area (r = 0- 2) will give 

a surface mean heat transfer 

coefficient:-

- 1[ 1/3 
h =~D 0.037 (Pr) 

from which it follows that: 

-
h (11' D) 

k 

r 

113 
Pr (2.4) 

(2.5) 
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The instantaneous beat flux at radius r is calculated 

by substituting h 
r obtained from equation (2.4) into equation 

(2.1): 

= h~ (T - T ) • g w 

In the motored engine, the driving temperature is taken as 

the difference between the bulk mean gas temperature and 

wall surface temperature, In the fired engine, however, the 

temperature distribution is very complex and a representation by 

the bulk mean temperature will be unrealistic, This fact was 

clearly indicated by the large differences in the local heat fluxes 

(2,6) 

observed experimentally (section 6. 5). In an attempt to approximate 

to actual conditions, a two zone temperature field is necessary to 

be considered .In .the region where most of the combustion takes 

place (e.g. piston bowl), the temperature may be represented by 

that of a chemically correct mixture. On the other band, other 

regions may be considered to consist of air, at least early during 

combustion (section 6.8). 

2,2 Radiation Heat Transfer 

2.2.1 General considerations 

The problem of evaluating the expected radiant heat trans-

mission from flames received early attention (Hottel and Schack) 

because of its practical importance in the design of industrial 

furnaces and the evaluation of heat transmission in internal combustion 

engines. In the latter case, the contribution of radiative heat 

transfer, though small compared with the convective component, varies 
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considerably with the type of combustion process and increases 

rapidly with increase in temperature levels. 

Radiation from gaseous media is dependent on the path 

length, or dimensions of the space containing the gas. If it is 

assumed that no solid carbon particles are formed during combustion 

and expansion periods, as is commonly taken to be the case in spark 

ignition combustion, then radiation may be justifiably ignored on 

the grounds that path lengths are small and the. gas mass non 

luminous. In the diesel engine, combustion proceeds by means of 

a diffusion flame between unmixed fuel and air. There are many 

sources of ignition and the production of highly luminous flame 

involves the formation of solid carbon particles as an intermediate 

step. It is a ·difficult task to calculate the spatial distribution 

of the unburned gas and combustion products. The usual application 

of shape factors to account for the variation in the incidence angle 

of the radiation over any given surface, becomes a difficult procedure 

in the case of the often complex geometry of the engine combustion 

space. 

A survey of the literature (23, 31, 42, 39 and 49) indicated 

that in different engines, the measured flame temperatures are not 

very different. Thus an attempt is made to combine this knowledge 

with observed data in order to predict radiant heat flux in diesel 

engines. 

2.2.2 Thermal radiation laws and the concept of a black body 

The term thermal radiation is used broadly to describe radiant 

energy emitted as a consequence of the temperature of a body. Like 

the ideal gas, the black body is a theoretical concept which can only 

be approximated in practice. The laws related to this ideal body 
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are presented below. 

Kirchoff's Law; states that at thermal equilibrium the 

ratio of the emissive power of a surface to its absorptivity 

is the same for all bodies. Kirchoff's laws place an upper limit 

on the emissive power of a body, which occurs when absorptivity 

has its maximum value of unity, a condition which applied precisely 

to a black body. The emissive power of a black body depends on 

its temperature only, and is given by: 

(2.7) 

which is known as the Stefan-Boltzman law (Wiebelt 96) and the 

proportionality constant a- is known as the Stefan-Bol tzman constant 

-12 2 
(56.7 X 10 kW/m). 

Other properties of blackbody radiation of interest in heat 

transfer is the spectral distribution of the emissive power and 

the shift of that distribution with temperature. If E~ is the 

monochromatic emission power at wavelength A such that EbA .dA 

is the energy emitted from a surface throughout a hemispherical 

angle per unit area per unit time in the wavelength interval A to 

the relation among EbA' A and T is given by Plancks Law (56) 

= (2.8) 

where A = wavelength in 

T temperature of 0 
= the.body K 

3. 7415 X 10
4 

W 
-2 

micron 
4 

cl = cm 

c2 = 1.43879 x 10
4 

micron OK 
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At temperatures of engineering interest, the emissive power 

is appreciable over wavelengths from 0,3 to at least 50.,.u. 

The wavelength of maximum intensity is seen to be inversely 

proportional to the absolute temperature (Wein's displacement Law). 

The relation (Wiebelt 96) is: 

-. T = 0.2898 cm °K 
"max. 

Radiation from real surfaces or bodies including gas, differs 

in several aspects from black body radiation. According to 

Kirchoff's Law, a real surface or body always radiates less than 

a blackbody at the same temperature. For the purpose of heat-

transfer calculations, real sources are usually regarded as grey, 

and its emissive power E is given by: 

E = (2.9) 

where €a = apparent grey body emissivity 

= 

In order to add more light to the problem of gas radiation, 

the basic attenuation laws and definitions of gas emissivity are 

first briefly discussed, 
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2,2,3 Attenuation laws and gas emissivity 

The attenuation -di due to absorption of a beam of collimated 

monochromatic radiation of intensity (I) on passage through a 

differential slab (dl) is proportional to the intensity and.the 

path length traversed, 

-di ~ K I dl (2,10) 

and the proportionality constant K (related to a narrow bandwidth) 

is variously known as the attenuation or total extinction coefficient, 

If the beam is incident on a slab of thickness L with 

intensity (I ) and if 
0 

(K) is independent of position, integration 

of equation (2.10) for monochromatic radiation or for total radiation 

in a grey medium gives the relation: 

I = I 
0 

-KL e (2 ,11) 

If one considers the interceptions of a collimated beam of radiation 

by large black particles, then in Equation (2,10): 

K ~ (number of particles per unit volume (C) ) * (projected area 

per particle (A) ) 

= CA. 

For a gas it is customary to define an absorption coefficient k 
c 

for use in combination with molecular concentration, or k with 
p 

partial pressure of the gas, again considering a narrow bandwidth: 

(2.13) 
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k has the dimension of area and is sometimes called the capture 
c 

cross section of a molecule, The extinction law written in terms 

of the absorption coefficient: 

I = I 
0 

e 
-k CL 

c 

is the familiar Beer's Law. 

A complete measure of the gas properties necess·ary for the 

(2,14) 

calculation of the radiative exchange between an isothermal gas mass 

and its surroundings is given by monochromatic absorption coefficient 

(kA) as a function of wavelength, temperature and the pressures of 

all the gases in the radiation mixture. Experimental measurements 

of ~ are complicated by the limit of resolution of spectrometers, 

and have been made for only a very narrow range of conditions. 

Emissivities and absorptivities over wavelength regions including 

many lines or over the entire spectrum are more frequently measured, 

The term gas emissivity has meaning only in reference to 

emission from an isothermal gas shape to a specified portion of its 

bounding surface. The standard emissivity of a gas is the radiation 

from an isothermal gas hemisphere to a spot on the centre of its. 

base, expressed as a ratio to hemispherical black body radiation. 

Kirchoff's law applied to toal radiation, is equally valid 

for monochromatic radiation, that is, at thermal equilibrium the 

monochromatic absorptivity ~A of any surface is equal to its 

monochromatic emissivity EA. Therefore from Beer's Law: 

(2.15) 
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The total emissivity or absorptivity may be obtained by 

integration over all wavelengths: 

"' 
ofe"A E ).g df.. 

00 

E:g 
1 f("A E d:\ (2.16) = 

JE df.. 

= 
O"T4 "Ag 

Ag g 
0 

0 

"' 
ofcr/.. E"As 

CO 

and = 
df.. 1 f~"A o: gs 

]\s =. 
4 E"As df.. 

df.. O"T 
s 

0 

0 

eo· 

1 J(x E df.. (2.17) = 
O"T4 AS 

s 
0 

where E ).,g and E AS are Planck's functions - the hermi-

spherical monochromatic black emissive power evaluated at the gas 

and wall surface temperatures respectively, in order to evaluate 

2.2.4 Thermal radiation in diesel engines 

The major contribution from flames and gases of conventional 

fuels is thermal radiation from water vapour, carbon dioxide, soot 

and carbon monoxide. Carbon monoxide is generally present to such 

small extent that its contribution can be neglected; and if attention 

is momentarily restricted to non-luminous flames, co
2 

and H
2

0 are 

left as the major sources of flame radiation. 
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2.2.4(a) Radiation from non-luminous gases 

Radiation from gases at temperature levels reached in I.e. 

engines and furnaces is of importance only in the case of heter-

apolar gases, of which co2 and H
2
o are .the major contributors. 

If the radiating gas is assumed to be isothermal, then the 

variables required to define total gas emissivity and absorptivity 

are given by: 

(2.18) 

a: = f 2 (L, p, P, T , T ) 
p g s 

(2.19) 

Ex.perimentally determined total emissivi ties of co
2

, H
2

0 

and CO in the form of charts have been available since the 1930's. 

The emissivity is expressed as a function of Tg and PL. Hottel 

(51) introduced a correction factor to allow for pressure broadening 

effects (i.e. greater emission or absorption at wings of a line) 

dependent on p and P, . and another correction factor to account for 

the overlap among the emission bands of the different molecules, 

because each gas is somewhat opaque to the other. Therefore knowing 

the products of the combustion, the partial pressures of H
2

0 and co
2 

can be calculated. To account for the shape of the radiating gas, 

the mean beam length L has to be evaluated, hence the gas emissivity 

from the charts can be read. 

2.2.4(b) Radiation from clouds of luminous particles 

The treatment of radiation from powdered coal or atomised oil 

flames, and from flames made luminous by the thermal decomposition of 

hydrocarbonsto soot involves the evaluation of radiation from clouds 
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of particles. Evidence of the dominant rate of luminosity in 

radiation from many industrial-furnace flames is long-standing. 

In diesel engines, Lyn (31) found that radiation emitted by the 

carbon particles in the luminous diesel flame formed a continuous 

spectral distribution of an intensity so high that it obscured 

the emission from gas radiation. Flynn et al (34) measured total 

flame emissivities up to 0.9, attributed mainly to soot particles. 

Considering flames, the luminosity of which are due primarily 

to soot rather than to suspended macroscopic particles, the mono-

chromatic absorption coefficient of the cloud is proportional to 

the volume fraction f of space occupied by particles, and to 
V 

reciprocal wavelength 1/A. The proportionality constant k depends 

on the refractive index n and absorption index k' (Hottel and 

Sarrafim (52), Chapter 12). The emissivity is then given by: 

- [ k(n,k') f L/A] 
EA= l - e v (2.20) 

If the soot composition, mass concentration and the optical 

properties (which are a function of wavelength and C/H ratio) of 

soot are known, it is then possible to estimate the flame emissivity. 

If for simplicity, it is assumed that n and k' are independent of 

wavelength and temperature, i.e. k(n,k'·) =constant in equation (2.20) 

the total emissivity may be calculated, with spectral distribution of 

black body radiation expressed by Wein's equation· rather than Planck's 

because of low AT range of main interest. 
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00 
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~ l - (2.21) 

Based on various experimental work, Hottel recommended a 

value of 
-10 -1 

k/c2 ~ 5 cm K • 

Hottel and Broughton (43) made an analysis of the variation 

in emissivity of carbon particles as a function of wavelength, 

which leads to a formula for the wavelength variation of emissivity 

as follows: 

(2.22) 

In this empirical expression, k and L combine to determine 

the optical thickness of the radiating carbon particle layer, and 

the power to which was raised was obtained to give agreement 

with the experimentally observed variation in emissivity with wave-

length. Hottel suggested a value of: 

ex ~ 0.95 for range A~ 0.8- lO 

cc ~ 1. 39 for range up to A ~ 0. 8 



-64-

Libert (34) in a recent study of soot emissivities also 

suggested the above correlation for soot emissivity versus wave-

length. Further justification for a model using an emissivity 

variation with wavelength was obtained by examining the suggested 

relationship for emission from very small particles (~ 0.6 times 

the wavelength of radiation under consideration). Hottel (52) 

presented a theoretically derived relationship of the form: 

(2.23) 

Flynn et al (34) used the relation in 

combination with Wein's Law and experimental measurement of 

radiation at two wavelengths, to evaluate the emissivity of the 

radiating flame. 

Despite this background of understanding of the mechanism 

of radiation from particulate matter, the mechanism of formation 

of soot in flames is not quantitatively understood. There is no 

present possibility in the rigorous approach to flame radiation in 

diesel engines, of finding from first principles how much soot 

will be generated at particular locations in the flame. Reliance 

must instead be put on empirical extrapolation of experimental 

data on existing furnaces and diesel engines, to provide an 

engineering approximation as to how much luminosity may be expected, 

and how it is distributed in space in a combustion chamber when a 

given fuel is burned in a given way. 

2.2.5 Prediction of radiant heat transfer from flames using 
Hottel's approach 

2.2.5(a) Mean beam length and exchange area-factors 

Allowance for the shape of an enclosure is usually presented 
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in one of the two forms, as an exchange area or as a mean beam 

length (Hottel 52), starting from the exchange between a hemi-

spherical gas body of radius L and a spot in the centre of its 

base where the total length of each radiating beam equals L. 

Any other gas body may be replaced by an equivalent hemispherical 

body of radius L known as the mean beam length of. the shape. 
e 

Hottel defined the direct-exchange area for the gas (grey 

isothermal) - surface (black) total radiative exchange by: 

where 

; E 
g 

gs (KL) 
A 

E ; emissive power of a black body at the temperature 
g 

of the gas, 

qg~s; mean flux density at surface element 

gs (KL) is the exchange area which is a function of 

equivalent grey body absorption coefficient K 

(2.24) 

of the medium, some characteristic length L, the 

shape of the gas and surface and their relative 

orientation. 

The relationship between direct-exchange. area gs and standard 

gas emissivity corresponding to a fixed path length of gas as found 

in a hemisphere (radius Le) radiating to a spot on the centre of 

its base is given by: 

1 - e 
-KL 

e 
; [ gs (KL) ) /A (2.25) 
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Instead of Le (equal to ~ when K = 0) which is dependent 

on K., a constant Lm known as "average· mean beam length" is 

chosen such that minimum error is introduced in the range of K 

values of practical interest .. 

Hottel and Egbert (57) have calculated average mean beam 

length of various geometrical bodies radiating to a particular 

point or to the whole surface, It was pointed out that for a gas 

mass of arbitrary shape, 

L ""'= 3. 6 V /A 
m 

and 

More accurate determination of radiation interchange 

necessitates evaluation of gas-surface interchange factors (g5 ) 

for the shape in question. This approach is particularly useful 

when account of non-uniform.. distribution of temperature is 

considered. The direct-exchange areas are evaluated in the followfng 

manner: 
I dV 
I 
I 
I 
I 
I r 
le 
I 
I 

dA 

For a grey gas the radiation flux at the surface element dA 

from a differential volume dV equals: 

( 4 k dV E 

emission by dV 

in 4 1( s teradians 

[ dA Cos 9 1 
41T r

2 

fraction directed 
toward dA 

[ 'T(r) 1 
fraction 

transmitted 

(2.26) 
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Integration of this equation over the appropriate surfaces 

or volumes yields gs • 

. )t-·.:::i_d_V-.:1::... _dA_1(_,J,_· -:-;;:c-s_e.::i __ < r_) 

Hottel and Sarrafim (52) numerically evaluated the direct-

exchange factors for gas-gas, gas-surface and surface-surface zone 

interchange for rectangular parallel pipedsand cylinders. 

Rectangles are divided into small cubes and square zones, while 

cylinders are subdivided into right circular coaxial gas cylinders 

ac ors and coaxial cylinder wall and end ring zones. The f t 

are determined for all possible 

/ 
,. 

combination of interchange and 

are plotted or tabulated for g ·. g 

sr-
range KB = 0 - 1.25 for cylinder w • i w 

! 
and KB = 0 - 14 for rectangles, 

e e 
where B is the characteristic length of the zones. 

From these factors one can determine the net exchange factor 

for any zone pair, making due allowance for interaction with all 

other zones. 

2.2.5(b) Prediction of radiant flux from a medium of known 

absorption coefficient 

Knowing the absorption coefficient K, the exchange factor 

gs for the combustion chamber under study can be determined. The 

combustion chamber may first be approximated by a cylinder which is 

divided into a number of coaxial cylinders, each characterised by 

(2.27) 
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thickness B. The gs of each gas element to the surface element 

considered is summed to obtain the resultant factor: 

L gs w I (KB) a2 

Net exchange factors from cylindrical gas volume to a particular 

cylinder end surface element or the cylinder wall surface element 

as a function of gas absorption coefficients, are shown in Fig. (2.1). 

The curves would correspond to any cylindrical combustion·chambers 

of diesel engines which can be divided to equal number of zones as 

shown (Fig. 2.1) as long as the range of KB are not exceeded. 

Hence the radiant flux at the required surface may be 

calculated if the radiant temperature is known: 

[ gse I (KB) 
(2.28) 

A 

where A is the area of the zone considered 

T~ is the flame temperature. 

2.2.6 calculation of radiant heat flux in the diesel engine 

Experimental work on radiation heat transfer from diesel 

engines (Lynn, Flynn and Sitkei) have shown negligible co2 and H20 

radiation compared to the continuous radiation from the luminous 

soot particles in the combustion process. It is obvious from 

previous discussions that detailed theoretical calculation of gas 

emissivity is very complicated, and usually involves simplifying 

assumptions. Therefore reliance must instead be put on experimental 
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data obtained on diesel engines to provide reliable estimates 

of radiation heat transfer, The available data (present and 

past) on diesel engines could be generalised in the following 

manner: 

1) The literature reveals that flame temperature in diesel 

engines may be assumed the same in magnitude and rate of 

change near TDC. The measured flame temperature in several 

diesel engines plotted in Fig. (6.49). shows close agreement 

considering the difficulty and errors involved in measuring 

it. 

2) An approximate average mean beam length for the particular 

combustion chamber at a particular time can be calculated 

Accurate allowance for the effect of shape 

,can also be calculated following the method presented by 

Hottel (52) (Section 2.2.5). 

3) Instantaneous apparent flame emissivity can. be estimated 

from measured instantaneous radiant flux and the assumed 

flame temperature (measured in a similar engine): 

(2,29) 

4) A corresponding absorption coefficient (K) for the flame can 

be calculated using the. definition: 

(2.30) 
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5) In the present investigation, the absorption coefficient 

. t . . r = 1 - e-KL was obtained w~thou us1ng the relationsh1p: ~ 

Instead, the combustion chamber was simulated by a cylinder, 

subdivided into a number of zones (section 2.2.5). The 

overall shape factor of all gas zones in relation to the 

measurement location (surface zone) was obtained as a 

function of absorption coefficient as shown in Fig. (2.1). 

Thus, the value of[2:gs I (KB) B
2 

] * (KB) obtained :from 

equation (2.28) was used to obtain K from Fig. (2.1). 

6) The estimated absorption coefficient could then be used 

in combination with an approximation of the flame shape to 

predict heat flux in other diesel engines. The shape of 

the combustion chamber may be represented by a mean path 

length, or more accurately by exchange area factors as 

outlined in previous section. 

An example of the foregoing procedure can be shown as follows: 

Consider a diesel engine combustion chamber of dimensions 6.4 cm 

diameter and 1.28 cm deep near TDC position. The approximate average 

mean beam length would be: 

L = 3 A6V = O.Ol8m 

0 
Assuming a flame temperature of 2000 K, and measured radiant 

2 
flux of 500 kW/m at the cylinder end, following steps (3) and (4), 

equation (2.29) give an apparent grey body emissivity: 

500 = 0.55 
56.7 * lo-

12 * (2000)
4 
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Then from equation (2.30): 

0.55 = 1 -
-KL e 

KL = 0.8 and hence K 
-1 = 44 m 

on the other hand, following step (5) above, the cylinder is 

divided to 10 co-axial cylindrical zones, each characterised by 

thickness B = 0.64 cm. Then substitution of measured qR assumed 

Tf' B and surface area (A) of zone considered (corresponding to 

measured flux location) in equation (2.28). It is found that 

[:L gs ] * KB = 5.19. 

Now this value represents a point on the relevant curve in Fig. 

(2.1) corresponding to KB = 0.26 and~ gs = 20. Hence a value 

of K 
.26 

B 

-1 = 41 m which is approximately the same as the 

-1 
above estimated value of 44 m • 

It is obvious, therefore, that a knowledge of absorption 

coefficient and flame temperature would enable the estimate of 

radiant flux by calculation in reverse of the above procedure. 
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3.1 Design and Development of the Surface Thermocouple 

3.1.1 Introduction 

In internal combustion engines, the analysis of instantaneous 

heat transfer and estimates of thermal stresses in the combustion 

chamber require the temperature history of metal surface. This 

has previously been achieved (Overbye et al (14), Le Feuvre et al 

(20), Law (39), Hassan (37) etc) using Hackmann (71) or 

Bendersky (72) type surface thermocouples, the construction of 

which is shown in Fig. (~D. This type of thermocouple is simple 

in construction and cheap, but suffers from the following dis-

advantages: 

i) Deterioration with use as result of damage to oxide coating 

which perhaps is weakened in the manufacturing (crimping) 

process. 

ii) Excessive electrical noise interference caused by central 

wire vibration. 

iii) Its use for heat transfer studies limited to iron or steel 

walls. 

Thin film elements (resistance or thermocouples) with time 

constant in the micro-second range have been developed (72, 73, 84 

. 0 
and 85) which will be adequate for present investigation where 1 CA 

corresponds to about lOO p.s at· maximum engine speed. These devices 

possess negligible thermal capacity and are in intimate contact with 

the surface examined. Ma (17} prepared a composite film surface 

thermocouple deposited directly on the combustion chamber of a 

diesel engine. The major set back in the design was the use· of 

pressure contacts between the thin films and wire leads which 

produced electrical noise interference, and that a new set of thermo-
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couple junctions had to be deposited when carbon deposit became 

excessive, because of difficulty in cleaning without damaging 

the unprotected metal films. 

3.1.2 Design and development of the surface thermocouple 

A surface thermocouple, essentially a development of Ma's (17) 

composite-film thermocouple, was designed for the present 

investigation. The construction of the thermocouple is shown in 

Fig. (3.2). The essential features of the thermocouple are: 

i) Body. 

ii) Thermocouple wires. 

iii) Electrical insulation. 

iv) Thin·films (vacuum deposited). 

i) Thermocouple Body 

The test engine cylinder head and piston material were not 

sui table for vacuum deposition processes due to. their porous 

structure. A material (HE28 W.P. BS) in the form of a drawn bar 

(non-porous) which has similar thermal conductivity to cylinder head 

(LM14 BS) and piston (LM13 BS) materials (0.33 cal/cm.s.°C compared 
0 

to 0.35-0.4 and 0.34 cal/cm.s. c respectively). The thermal conduct-

ivities were also checked by measuring the electrical conductivities 

of the metal and using Lorenz' constant (89). Thermal conductivities 

within 15% of the specified values were obtained. 

ii) Thermocouple wires 

The combustion chamber wall temperature in internal combustion 

engines (less than 400°C) is not a limiting factor in the choice of 
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thermocouple wire materials which was based on the following 

factors: 

a) Materials most suitable for vacuum evaporation and which 

form thin films adherent to the thermocouple body material 

or to dielectric materials. 

b) Pairs of materials with largest emf per degree in temperature. 

In the light of these factors, iron, constantan, nickel and 

copper were tested. Iron and constantan proved most successful. 

iii) Electrical insulation 

From the sketch shown in Fig. 3.2, it is evident that the 

electrical insulation between the thermocouple wires, thin metal 

film and the substrata must be maintained. The insulation between 

the wires and the body was achieved by using Pyrex tubes. The 

difficult problem encountered in the preparation of the thermocouple 

and indeed the most critical process, was the filling of the cavity 

between the end of the wires and the body (point X in Fig .. 3.2) 

with a non-conducting material. The material must adhere to both 

metals and provide a surface between the end of the wires and the 

thermocouple body, suitable for deposition of films by the vacuum 

technique. Araldite epoxy resin could not be used because it burns 

0 at about 180 C. On the other hand, ceramic materials or ordinary 

glass could not be used because of their higher melting temperatures 

than that of aluminium alloy used for thermocouple body. 

A glazing flux, used by Pyrotenax Limited, for sealing the end 

of sheathed cables was utilised for the present surface thermocouple. 

This glazing flux is of glass base, suitable for application in the 

temperature range 180°C to 350°C. The maximum temperature being 

limited by the melting point of the flux. The glazing flux, initially 
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of fine powder, is run into the cavity by using a drip wire. The 

wire is coated with a thick layer of glazing flux by heating to 

red, then dipping it in the powdered flux and puddling the molten 

flux into the cavity. The procedure is repeated until the seal 

cavity is full. The quality of the filling was affected by several 

factors, such as flame intensity, substrata temperature, etc. 

Therefore the process of cavity filling may be repeated several 

times before a satisfactory filling is obtained. 

iv) Vacuum deposited thin films 

The leads for the thermo-junction of the thermocouple are 

deposited in thin film form on top of electrically non-conducting 

layer, previously deposited on the metal substrate. The vacuum 

deposition was carried out using an Edward Vacuum Ltd. unit type 

E500. 

A popular material for dielectric films for electrical purposes 

MgO and Sio
2 

are all well known 

0 
as dielectric materials and a·layor of less than 1000 A of one of 

these materials would be sui table. MgF
2 

is preferred to Sio
2 

and 

A1
2 

0
3 

for two reasons: 

a) Ease of evaporation. 

b) It provided the most adherent film with thermocouple plug 

material. 

The shape of the junction leads, dielectric layers and contact 

areas were formed by evaporating, the film material through alternative 

masks of thin aluminium foil strips held in position by holders. 

The metals were evaporated using the standard techniques described 

by Holland (SO). 
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The vacuum evaporation process, the problems involved in· 

the development of the surface thermocouples and step-by-step 

procedure of the manufacturing has been described in detail in a 

departmental report (70). Fig. (3.4) shows one of the manufactured 

surface thermocouples used in the present investigation for measure-

ments on the cylinder head, 

3.1.3 Calibration of surface film thermocouple 

3.1.3.1 Static calibration of surface thermocouples 

According to Marshall et al (76), the thermal emf characteristics 

of thin film thermocouples is affected by film thickness and 

deposition conditions. Therefore the calibration of individual 

thermocouples produced was necessary. Several thermocouples could 

. 0 
be calibrated at the same time, in the termpature range 20-200 C 

using a silicon oil bath. The bath was enclosed in a suitable 

container and brought up to temperature by means of a controlled 

heater. The bath temperature was measured using a standard iron-

constantan thermocouple. The oil bath was later replaced by a furnace 

which had an exceptionally uniform temperature zone, with control.to 

within~ 1°c at 2oo0c. The result of the calibration showed good 

agreement between the surface thermocouples and the standard iron-

constantan thermocouple. The thermal emf characteristic of one batch 

of tbermocouples produced together were exceptionally similar. 

Typical curves for iron-constantan thermocouples are given in Fig.(3.5). 

3.1.3.2 Dynamic response of the surface thermocouple 

The aim of tbis test was to present an observation on the 

dynamic behaviour of the surface thermocouple, or rather the 

behaviour of the surface thermocouple followed by an amplifier and 

then a magnetic tape recorder or oscilloscope which were used together 

for recording surface temperature changes in the engine combustion 
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chamber. The intention here was to compare the dynamic characteristic 

of the surface thermocouple with the known characteristics of Ki:>tler 

pressure transducer type 601H (resonant frequency = 130 kHz, rise 

time. 3 microseconds). 

The two transducers were mounted at the end of a shock tube, 

with the sensing elements in the same plane, This was to ensure 

simultaneous response of the two devices by the shock impact. 

Fig. (3.6~) shows the signal obtained from a pressure trans

ducer used to determine the velocity of the shock wave, This trans

ducer was located 31.8 cm ahead of the test pressure transducer 

fixed adjacent to the surface thermocouple. The speed of the shock 

was estimated to be 482 m/s. 

Fig, (3.6b) shows the signal obtained for the pressure and 

surface temperature changes caused by the shock impact, It is 

obvious from these traces that the initial surface temperature rise 

a-b is caused by the shock impact, while the later slow rise b-e 

is mainly by conduction heat transfer from the compressed gas, The 

time taken for the pressure and surface temperature signals to reach 

inaximum value induced by shock were 50 }ls and 200 }ls respectively.· 

Therefore if the time constant is defined as the time taken for the 

signal to reach 63.3% of its maximum value, the time constant for 

the surface thermocouple is 125 JJ.s. 

At the maximum engine speed (1750 rpm) investigated, the time 

corresponding to 1 deg. CA is 96 }ls. Under such conditions, the 

thermocouple is capable of detecting any significant heat release in 

125 JJ.s, i.e. over 1.25 deg CA. This time is relatively short when 

compared to the usual combustion time of 30-40 deg CA. Hence the 

thermocouple is considered adequate for the measurement of heat flux 

in IC engines, particularly at engine speeds <:2000 rpm. 
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3.2 Infrared Radiation Detection System 

3.2.1 Introduction 

Infrared radiation is a form of electromagnetic energy. 

It is therefore possible to detect by absorbing it and hence 

convertingthe energy to heat. This was the basis of early 

experiments using a blackened thermometer bulb. However this is 

slow, insensitive and inconvenient .. A· device that gives an 

electrical output is more desirable. 

3.2.2 Infrared detector types 

Radiation detectors fall into two basic categories, heat 

sensors and photon counters. The first of these categories contain 

all devices in which the energy of the absorbed photons is re

distributed as a thermal excitation. This change in thermal 

excitation is then measured by observation of some parameter such 

as an expansion, deformation or thermoelectric potential. Devices 

such as thermocouples, bolometE!rs and Golay cells fall into this 

ea tegory. None of these devices possess the required frequency 

response (e.g. 104 Hz corresponding to 1° CA interval at engine 

speed of 1750 rpm) for engine work, because of their dependance on 

their thermal inertia.· 

The second category of detectors contains those in which the 

energy of the absorbed photon causes a direct change in the electrical 

state of electrons within a crystal. Most of these devices can be 

categorised as semi-conductors in which the absorption of a photon 

moves bound electrons, from the valence electron band of the 

material into one of the conduction electron bands and thereby 

greatly changes the electrical character of the material. This change 

in the electrical nature can then be measured by a variety of means, 
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such as measurement of resistance change in a photoconductor or 

voltage output .from a photovoltaic cell. 

The frequency response of these photon detectors is 

associated with the electron mobility within the crystal lattice 

of the material. The time constant in these devices ranges 

between 1 to lOO ~s, which is quite suitable for engine work. 

The signal level for photon devices is also high when linked to 

amplifiers with good impedance matching. The one problem with 

photon detection devices is that their output is a function of 

photon arrival rate and not their power (i.e. response to short 

wavelength (high energy) photons is similar to their response to 

long wavelength (low .energy) photons). To eliminate this problem 

a device to separate the photons on a wavelength basis must be used 

to identify the power input to the detector. This makes the system 

using a photodetector more complex. 

Another type of thermal detector which uses the pyroelectric 

effect of some ferro-electric materials, has recently emerged. 

These detectors, which could be made with short time.constants (less 

than 1 Jls, Kimmit et al (91) ) and still retain a useful sensitivity. 

This type of detector will be described in more detail below 

(Section 3.2. 5). 

3.2.3 Choice of a detector for engine work 

To investigate the importance of the radiant component of 

instantaneous heat transfer in a diesel engine, the detection system 

must be chosen on the basis of: 

i) Spectral range important in such heat transfer. 

ii) Overall accuracy and sensitivity. 

iii) Frequency response required. 
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In the following text, each of these topics will be 

discussed briefly in relation to the choice of the final 

detector. 

Flynn et al (34) reported peak radiant heat fluxes in a 

diesel engine of the order of 1200 kW/m
2

• lf this fact was 

considered along with the range of temperatures that could occur 

0 
in the combustion chamber (up to 2300 K, Myers et al (42) ), then 

boundaries can be drawn for the requirements of the sensing system 

as far as spectral range and sensitivity are concerned. 

It is desirable to be able to detect and identify with some 

2 
accuracy, heat transfer rates of the order of 20 kW/m • This heat 

transfer was used to define a minimum apparent radiating temperature 

as follows: 

Solving for an apparent lower limit temperature from the above 

equation (assuming· an apparent grey body emissivity of 0.5),.900°K 

was obtained as a minimum important temperature. The upper temperature 

(flame temperature) observed in different diesel engines appears to be 

0 
similar (Section 6.10.2) and is of the order of 2200 K. 

Considering Planck's distribution function (Section 2.2) for 

radiant emission, it can be shown that 90.4% of the emission from 

a grey or black body falls in the spectrum such· that AT is greater 

than 2100 micron degree Kelvin. Also 90.2% of the radiation falls 

into the spectrum such that AT is less than 9440 micron degree Kelvin. 

With these boundaries on AT and the potentially important temperature 

range, the boundaries on the spectrum containing approximately 80% 

of the power emitted by a black or grey radiation source were: 
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0.95 4.2 micron 

2.3 - 10.5 micron 

The required frequency response for a system to measure 

radiation was determined from examination of the time span in 

which it was desirable to detect a change in measured radiation. 

If the engine operated at 1750 rpm (maximum test speed) and it 

was desirable to be able to define radiation in terms of what was 

happening within one crank angle degree of engine rotation, 

calculations could yield a required time constant of the order of 

100 ps. With the criterion outlined above, it was possible to 

consider various types of detectors. 

Most photon detectors are known (58, 90) to be useful in the 

range 0.5 to 7 micron (which falls short of the spectral limit 

10.5 micron, important at the lower limit temperature 900°K in the 

diesel engine) and possess time constants in the range of one micro-'' 

second, which is more than adequa,te for engine work. However, photon 

detectors with associated amplifiers are rather expensive and are 

ideal when used with a monochromator for spectral emission measure

ments because of their high sensitivity. The whole system, detector

monOchrometer, however, becomes complex and a s:i,mpler system for 

overall radiant emission detection (irrespective of wavelength) was 

considered more useful in the present investigation. The combined 

advantage of response to wide bandwidth, small time constant (adequate 

for engine work) and a relatively low cost was found in pyroelectric 

detectors (91, 92 and 58). 

Having defined the spectral characteristics in the diesel 

engine and chosen a pyroelectric detector (sensitive in range visible 

35 microns), the next step was to select a window material to transmit 
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the radiant energy from cylinder charge to the detector. 

Considering the strength, spectral characteristics, cost and 

availability, Kodak 'Irtran 4' with spectral transmission visible 

to 21 microns, was chosen as a window material. 

3.2.4 The pyroelectric effect 

Crystals of single domain structure of materials such as 

Triglycine Sulphate (TGS) which are ferro-electric, exhibit a 

large spontaneous electrical polarisation at temperatures below 

their Curie points, and if the temperature of the material is 

altered, the degree of polarisation is changed. The change in 

polarisation (P ) can be observed as electrical signals if electrodes 
s 

are placed on opposite faces of a thin slice of the material to form 

a capacitor. When polarisation changes, the charge induced on the 

electrodes can either flow as a current through a comparatively low 

external impedance, or produce a voltage across the slice if the 

external impedance is comparatively high. The detector will only 

give an electrical signal when the temperature changes, that is, 

when the level of incident radiation changes. The magnitude of the 

signal appearing across a load resistor (R) connected across the 

crystal in the direction of the polar axis is: 

6.V = AR 

d p 
s 

dt = AR ( 
d p 

s 
dT 

providing that the modulation frequency GJ(= 2~f) is greater than 

the reciprocal RC time constant of the crystal load circuit, and 

R is less than the leakage resistance R' of the crystal. A is 

the electroded area and 
d PS 

dT 
is the pyroelectric coefficient of 

( 3 .1) 
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the material. Thus ferro-electric crystals may be used as 

thermal detectors of electromagnetic radiation. They are, however, 

different from other thermal detectors in that the output signal 

is proportional to the rate of change of temperature and so does 

not depend on the crystal reaching thermal equilibrium with the 

radiation. Consequently, pyroelectric detectors are capable of 

operating at much higher frequencies, yet retaining the 'black 

body' response of thermal detectors. 

To calculate the pyroelectric detector performance, both 

the thermal and electrical characteristics must be considered in 

detail and the sources contributing to the detectors noise must be 

enumerated. These aspects are discussed in detail by Cooper (92), 

Putley (58, Chapter 6, page 259) and Glass (93). Also in a 

departmental report (94). 

3.2.5 The present detector and associated electronics 

The detector used in the present study was provided by Plessey 

Components Ltd. The element of the detector (ceramic pyroelectric 

PBZT) was sensitive in the spectral range, visible to 35 microns 

wave length. 
2 

The element was a chip of i mm and l micron thick, 

fixed to the centre pin of a standard BNC plug to facilitate dire·ct 

attachment to the associated (preamplifier) electronics. Some of 

the relevant properties of the ceramic pyroelectric material are 

given in Table (3.1) .. 

The preamplifier is one of the most critical components in 

the entire system. The primary requirement is for a noise level 

·that is so low that the noise from the detector is the limiting 

source of noise in the system. A low output impedance is desirable 

in order to permit the use of low-impedance connecting cables. 
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The desired voltage gain of the preamplifier depends on the 

system application, it is affected by the distance from the 

preamplifier to the rest of the signal processor, the mechanical 

and electrical environment, and the maximum undistorted output 

swing of the preamplifier. To maintain a low noise level for the 

system, a voltage gain of about 10 in the preamplifier will ensure 

that the noise contribution of succeeding stages is negligible. 

If other noise sources are anticipated, such as microphonic or 

cable pick up, the gain should be increased. 

Most transistorised preamplifiers begin to saturate when 

the output exceeds a few volts. A conservative designer will 

assume a maximum output swing of 1 volt, and about lOO volts for 

vacuum tubes. The dynamic range of the preamplifier is therefore 

limited by the detector noise level at its input and the maximum 

allowable output swing. 

A low output impedance of the preamplifier of 100 to 1000 ohms 

is desirable, in order to minimise the pick up in low noise shielded 

cables running to the rest of the signal processor. In systems with 

a high information rate, a low output impedance ensures that the 

capacitance of the cable will not attenuate the high frequency 

components of the signal. 

In this investigation, where the detector is exposed to fairly 

severe vibration and audible noise, plus the restricted space 

available for the detector and preamplifier on the cylinder head of 

the Ruston 3~VA engine, the use of the vacuum tube was not considered. 

Therefore the alternative was the use of a transistor preamplifier 

which exhibits good microphonic performance and requires less space. 

Field-effect transistors (FET) have proved useful in preamplifiers 
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because of their low noise factor and high input impedance, 

Therefore an FET was utilised in order to match the high impedance 

of the pyroelectric detector used in this investigation. Before 

the construction of the preamplifier, calculations were carried 

out for the detector-amplifier system to fulfil the following 

requirements:-

i) Flat frequency response of the system up to the value that 

will produce a realistic representation of the high rate 

, fluctuations of radiant flux expected in diesel engines 

(10
4

Hz, Section 3.2.2). 

ii) To produce a high signal to noise ratio at low irradiance 

-3 2 
levels of about 3 * 10 W/cm , estimated at the detector 

after passing through a small opening and window, 

To fulfil these requirements, the circuit shown in Fig. (3.7) 

was considered, A low noise FET type BF818 and low noise resistors 

(provided by the Royal Radar Establishment) 1vere used in constructing 

this preamplifier, A load resistor of 818 kft produced an electrical 

time constant for the circuit of: 

tE ·=RC = 8,18 * 105 * 18 * lo-
12 

-6 
= 15 * 10 sec 

which is equivalent to electrical cut-off frequency of: 

f 
1 

= --=----= -6 
15 X 10 

= 6.67 * 10
4

Hz 

(3.2) 
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This is well above the estimated value necessary for engine work 

4 (10 Hz). The use of smaller load resistors would provide flat 

response over a wider frequency range, but reduce voltage 

responsiveness. Thus, the load resistor of 818 kft was selected 

to obtain the responsiveness versus bandwidth trade off that is 

most appropriate for the present application.· 

In constructing the preamplifier, the cables between the 

detector and preamplifier were made as short as possible to add 

no capacitance which may reduce the time constant of the system and 

to avoid cable noise. The circuit was built as compact as possible 

on a rigid frame fixed inside a brass casing. The latter was 

provided with a male BNC socket at each end, one for the detector 

attachment and the other for the output. Fig. (3.9) shows the 

detector, preamplifier casing and viewing window adaptor. 

3.2.6 Calibration and performance of the detector 

i) Calibration test rig 

The black body type source used for calibration purposes 

have an emissivity somewhat less than unity (probably independent 

of wavelength). 

In 1880, Kirchoff pointed out that the radiation within an 

isothermal enclosure is black body radiator, therefore if a small 

hole is cut through the wall of the enclosure, the radiation leaving 

this hole should closely simulate that from a black body. A typical 

configuration utilised for black body sources, is the conical cavity 

characterised by the depth of the. cavity L and the diameter of the 

opening (2r). On this basis, a conical cavity of opening radius 

r = 1 cm and 
L = 8 was fabricated from 18-8 series stainless ·steel, 
r 
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which has good thermal conductivity. Heating the surface to 

above 800°C formed a stable oxide film on the surface, which 

according to Snyder (58) has an emissivity of 0.85. 

If the emissivity of the cavity surface is assumed to be 

0.85, the effective emissivity calculated for the cavity is 

0.99 (Gauffe (58) ). 

This cor.e was placed in a muffle furnace which could be 

0 heated to 900 c. The temperature was controlled by a variac, 

chromel-alumel thermocouple combination. The temperature variation 

near the end of the cor.e was effectively eliminated by shielding 

with insulating plate. The limiting aperture (simulation of the 

combustion chamber viewing passage) and the effect of the radiation 

viewing window were included in the calibration set up. 

A variable speed motor was modified to carry a square wave 

chopper in order to generate the desired waveform of the chopped 

pulse. The detector was mounted on a rigid stand, and alignment 

o.f the detector with the cavity axis was achieved by looking through 

the muffle furnace from the opposite side (core removed). 

A low noise Brookdeal amplifier type LA 350 (Section 4) that 

permits a choice of upper and lower frequency out off was used to 

further amplify the signal. It also incorporated an r.m.s. meter. 

The amplified signal was then displayed on a general purpose 

oscilloscope. A schematic diagram of the calibration test is shown 

in Fig. ( 3. 8 ) . 
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ii) Calibration test results 

In order to avoid inaccuracies caused by the introduction of 

. shape factors due to configuration, the detector-window and 

opening arrangement in the cylinder head was simulated exactly 

for the calibration test, as shown in Fig. (3.8). With this 

arrangement, the outer hole of the passag.e in front of the window 

acts as the limiting aperture. The only correction ~ecessary ·' 

compared to the engine setting was for the sma11 distance (0.5 cm) 

between the limiting aperture and the black body source. 

In the calibration test, the output signal of the detector-

amplifier system at various black body temperatures (chopping 

frequency constant at 200 c/s) was observed. The effect of chopping 

frequency on the output signal was also investigated. Table 3.2 

gives the observed results. 

The emissive power of the black body source is calculated 

using Kirchoff's law of radiation. 

where E: 

(T 4 - T 4) 
s eh 

~ 0.99 the effective emissivity of the source. 

Tch ~ the chopper blade temperature. 

The radiant flux density calculated for source temperatures of 800, 

0 2 
1000 and 1200 K were 2.24, 5.547 and 11.565 w/cm respectively. 

The radiant flux at the limiting aperture is effectively 

( 3. 3) 

' 

the same as the emissive power of the source calculated from equation 

(3.3). A plot of the radiant emittance against the detector-amplifier 

output is shown in Fig. (3.10). The linear relationship gives a 

constant factor of 11.2 w/cm2 heat flux at the limiting aperture per 
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volt output of the detector-amplifier system. Thus, the 

corresponding radiant heat flux at the surface of the cylinder 

head could readily be calculated from the signal output of the 

detector when fitted on the engine. 

On the other hand, to determine the responsiveness of the 

detector, irradiance at the detector must be calculated, taking 

into account all the factors causing attenuation of the radiant 

flux as it passes through the opening and window. This was 

calculated as follows: 

a) Distribution of energy in the spectrum of a black body. 

The spectral response of the detector is visible to 35~, 

but that transmitted by the window is limited visible to 

21 ~. Therefore the fraction of the total radiant power in 

this region only must be considered. This was determined 

from the tables giving relative energy below AT. 

Therefore for AT = 222 - 9330: 278 - 11 667: 333 - 13 889 . WK· 

% Total power 0.976 0.988 0.991 

b) Transmittance of the window material (Irtran 4): The trans

mittance of this material of thickness 2 mm is approximately 

62% (Hudson (58) ) over the range 0.5 - 21~. The window 

used in the present work was 1.9 mm thick, and assuming 

thickness effect to be linear, a transmittance of 65% was 

obtained. 

c) Radiation through openings: In.the passage between the 

limiting aperture and the window, the net radiation energy 

reaching the window is less than the total energy at the 

entrance. The net energy reaching the window is given by: 
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= FIR 
2 

= the angle factor between entrance and exit 

of the opening 

= Cross-sectional area of opening 

radiant emittance at sections 1 and 2. 

For openings with 
Diameter ==.::...:.= = 0.47, Length FlR = 0.37 chart 

2 
in Jacob (53), Vol. 2, page 62. 

d) Radiation between circular surface (window) and differential 

area (detector): The net radiant energy at the detector is 

given by: 

'l,indow 

where F is the. angle factor defined by the angular 
wd 

relationships describing the mutual position of 

-4 
the two surfaces, and is equal to 1.272 * 10 • 

Hence the irradiance at the detector. 

Considering all the above factors, the following table was 

obtained for radiation levels from the source to the detector. 

( 3 .4) 

( 3. 5) 
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Radiation source temperature OK· BOO 1000 1200 
I 

Radiant emittance w/cm 
2 

2.24 5.547 11.565 : 

Net radiant energy at window W: 0.5875 1.455 3.033 

Net radiant energy through 
0.263 0.659 1.378 window W: 

Net radiant energy at detector w: 3.345 8.383 17.53 * 10-5 

Irradiance w/cm 
2 

3.345 8.383 17.53 * 10-3 : 

Irradiance (r.m.s) w/cm 
2 

1.505 3.772 7.889 * 10-3 : 

Detector output (r.m.s) volts: 0.1 0.24 0.48 * 
10-3 

Responsiveness V/w: 6.6 6.4 6.2 

The responsiveness of the detector as a function of chopping 

frequency is described by Fig. (3.11). The maximum chopping frequency 

was limited by the motor used. However, by extrapolation of the curve 

to the high frequency region, one may conclude that a reasonably flat 

response up to the design frequency is not unexpected. 

As mentioned before, the configuration and the detector view 

of the radiating agent was kept the same for both the calibration and 

engine tests. Therefore, by keeping the detector-amplifier system 

set up condition constant, a direct conversion of the system output 

(volts) to heat flux at the cylinder head surface is possible with 

the calibration curve of Fig. 3.10. Hence: 

Instantaneous radiant heat flux = 112 x E kW/m2 

where: E =instantaneous voltage output of the detector-amplifier 

system. 

112 
2 

= calibration constant in kW/m /volts. 
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The time constant provides a convenient number to describe 

the speed with which a detector responds to a change in incident 

flux. For many detectors the variation of response with frequency 

can be described by: 

where 

R 
0 

Rf = responsiveness·at frequency f. 

R = responsiveness at low frequency. 
0 

t = time constant. 

Taking f
1 

as the frequency at which the responsiveness is 

0.707 times its low-frequency value, the time constant is given 

by: 

1 t = 

From the frequency response curve of the present detector 

(Fig. 4.18), the test frequency was limited, but if it is assumed 

that Rf = 0.707, ··its maximum value at about 3000Hz, the 

calculated value of t is 50 Jlsec. This again is well below the 

suggested design requirement of lOO ps in order to respond to 

changes in radiant emission within 1° CA at 1750 rpm. 

. ( 3. 6) 

(3.7) 
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TABLE 3.1 

Some properties of the PBZ pyroelectric ceramic element of the 

radiation detector. 

Pyroelectric coefficient P 
-8 . 2 0 

3.5 * 10 Columb/cm K 

Resistivity 5 * 10
9 

- 7 * 10
12 

Ohm.cm 

Dielectric constant e (50 kHz) 

Volume specific heat c' 

Grain size 

Curie temperature T c 
. 

TABLE 3.2 

260 - 300 

2.2 J/cm
3 

°K 

1 micron 

Observed results of the infrared-detector calibration test (chopping 

frequency= 200 c/s. Frequency band 3Hz to 10kHz). 

B1ackbody source temperature 
0 

K: 800 1000 1200 

Output peak/peak volts: 0.25 0.53 1.06 

Output r.m.s. volts: 0.10 0.24 0.48 

Approximate chopper blade 
50 60 tempera tu re 0c: 70 

Effect of Chopping Frequency 

{Black body temperature = 8oo°K 

Frequency c/s: 10 25 50 lOO 250 

Output P/P volts: 0.24 0.25 0.25 0.24 0.24 
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Fig . (3.4) A Thi n Film Surface Thermocouple used for 
Measurements on Cyl inder Head 
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Fig. (3.9) Radiation De t ection System 



2 0 

18 

16 

C'l 14 ~ 
(.) 

'-.. 
=::: 

/ 

/ 
(!) 
>-. 
;::l 

12 +' 
>-. 
C> 
0. 
ro 

/ 
/ 

+' 
ro 
>. 10 +' 

·rl 
Ul 
c 
(!) 

'0 

X 
;::l 

8 rl 
'H 

+' 
c 
ro 
·.-i 
'0 
ro 

6 0:: 

/ y 
Slope 11. 2 

w/cm 
= volt / 

/ 
/ 

V 
/ 

V 

4 

2 

0.2 0.4 0.6 0. 8 1.0 1.2 1.4 

Detector-amplifier syste m output- volts 

Fig. ( 3 jQ) Ca l ibration curve of the i nfrared d e t ec tor 



Detecto r r esponsivi ty V j w 

0 

Responsivity (De t ect or- amplifi e r system) V/ w 



CHAPTER 4 

EXPERIMENTAL EQUI~~ENT AND 

MODIFICATIONS 
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4.1 The Test Engine 

The engine chosen for use in this investigation was a 

Ruston and Hornsby 3YWA, three cylinder, dire ct injection, air 

cooled, four stroke open chamber diesel engine. The engine was 

the same as that used by Derham (44) for measurements of 

instantaneous air motion within the cylinder under motored 

conditions. A view of the engine and the arrangement of the 

display and recording systems is shown in Fig. (4.1). Some of 

the technical data of the engine are as follows: 

Bore x stroke 

Piston displacement (one cylinder) 

Connecting rod l ength 

Compression ratio (present) 

Inlet valve opening 

Exhaust valve closing 

Inlet valve closing 

Exhaust valve opening 

Nozzle tip 

4.2 Engine Modifications 

102 X 104 . 8 mm 

849 cu.cm. 

213 mm 

15 .3: 1 

1 6° BTDC 

15° ATDC 

36° ABDC 

45° BBDC 

4 hole 

0.27 mm diameter holes 

150° spray cone 

In order to adapt the engine for use in determining the 

instantaneous total and radiative heat transfe r, it was ne cessary 

to modify it to allow access for mounting of the instrumentation. 

The modifications were carried out for the centre cylinder of the 

engine which was used as the test cylinder. 
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4.2.1 Cylinder head and piston crown 

The existing cylinder head was modified to allow installation 

of three f'in diameter surface thermocouple plugs, and the pressure 

transducer (Kistler type 628B). The choice of the locations for 

the thermocouples was limited by the space avai l able , and an 

attempt to keep to regions of one dimensional heat flow. The 

facility to mount the pressure transducer was provided such that 

replacement by a radiation window and detector adaptor could be 

made when required. A view of the modified cylinder head showing 

positions of three surface thermocouples, pressure measurement 

vent and injector l ocation is shown in Fig. (4.2). 

The initial planning of radiation measurements in the 

centre of the combustion chamber, required displacement of the 

injector (1.3 cm) from the original position . To minimise the 

effect of t his displacement on the combustion process, the piston 

0 with the offset bowl was rotated through 180 , thus bringing the 

injector towards the centre of the combustion bowl. Measurement of 

radiant heat flux at a second location, required the use of another 

cylinder head which was also modified to accommodate the radiation 

window-detector system. 

The measurement of instanteous heat transfer on the piston 

was achieved by use of a "false" crown which carried the surface 

thermocouples. Fig. (4.3), illustrates the modified combustion 

chamber, cylinder head and piston thermocouple positions. Note 

that the radiation measurement location (R2) was actually provided 

on a second cylinder head because of space l imitation on the modified 

cylinder he ad. 
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Facility for fixing a special 4-pin plug was made on the 

underside of the piston crown as shown in Fig. (4.4). The 4-pin 

plug which fitted a corresponding socket fixed on the piston skirt 

wa s connected via leads on a linkage (Sec tion 4.2.2) l eading to 

the amplifying-recording system. This arrangement of the piston 

crown, would reduce the amount of labour involved in installing 

the thermocoup l e plugs to the piston locations and avoid repeated 

removal of the entire piston and connec ting r o d assembly from the 

engine. Because of limited space on the piston crown, it was 

necessary to use thermocouple plugs of smaller size (~" diame t er ) 

than those u sed on the cylinder head. 

4.2.2 Swinging link mechanism 

Mounting the probes on the piston crown a l so involves the 

extraction of the l eads via some mechanism to the e n gine casing. 

The higher spe eds found in modern engines offe r distinct problems 

in instrumenting pistons. Consequently an L shape d l ink , similar to 

that used by Furuhama a n d Enomoto {66), was designed whi ch could be 

a ttached be~veen the piston and the extended engine case. The 

details of the method of l eading thermocouples and linkage dimensions 

are shown in Fig. ( 4. 5) . The linl\: @ is fi xe d to the lowe r part of 

the piston skirt @. One end @) of the L link ('j) is inserted in 

the link @ and moves rectilinearly with the piston for a piston 

stroke . The other end @ placed a t an appropriate position, would 

limit its movement to about 4 mm only for one stroke of t h e piston. 

The reason the L-link is divided into nvo parts, separated 

at ® is to e nable the insertion of the piston into the cylinder, 

after the L- linl{ without part @ is fixe d to the piston. In ideal 
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cases , the l ength of swing link {Y and position of the stationary 

point @ are d e t ermine d a fte r considera tion of the L-links 

strength (Furuhama and Enomoto ( 66 ) ). Extension of the engine 

case @ supporte d the stationary point @, and a slider @, 
fixe d t o the crank case, ke pt the link in the same plane . '1\vo 

major problems were faced with the link d e vice. One of the m is 

the me thod of p assing the the rmo couple wires a long the linl{ and 

to the piston from joint @ The wire s were cast with Araldi t e 

in a groove machined o n the side of the L-link. To continue the 

l ead s at joint @, a pin and socke t arra n gement was utilise d as 

shown in Fig . (4 . 6) . Initia lly, it was planne d to pass the l ead s 

at end @) of the L-link in the form of a coil, through the joint 

pin @. Howeve r, the s mall space (5 mm) availabl e be tween the 

joint @ and the connecting r o d was not e nough for the l eads 

curvature . Instead , the the rmocouple wires , wound togethe r and 

protected by a rubber compound @ are passed around the collar 

of link (j) and fixe d to it. Then it loop s be fore passing throu gh 

a n y lon tube in a hole in link ~ to pre vent its rubbing with the 

meta l. In one stroke , the be nd ing of the wire s is ve ry small to 

cause any damage . At joint CV, the wires, protected by rubber 

compounds , loope d from the side of the link @ through pin @ 

and into pin @ which l ead the wire s to the outside of the engine 

case . The actua l link mecha nism a nd wire l eads are shown in Fig . 

(4.6). 

The oth e r problem is that the L-link may bre ak at t h e corner . 

The t es ts carried out showed smooth operation at 1500 rpm for more 

tha n half an hour. Opera tion at 1050 rpm cause d no proble ms for 

many prolonge d tests, but i n e x cess of 1250 rpm, e l ectrical noise 

interference was obse rved on the surface t h ermocouple signal. 
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The linkage was made of dura lumi ni um, which exhibits 

high s trength to weight r a t io . Compl e t e fulfilment o f the de s ign 

condi t ions, de scribed by Furuhama (66) , could not be achie ve d 

because of the limita tions imposed by the spa ce available in the 

c ranl< case for the linkage mecha nism to ope rate. The ele ctrical 

inte rfe r e nce on the signal from the piston ther.mocouple s at speeds 

e xceeding 1200 rpm was puzzling . It was mainly associa t e d with 

the high accele ration and dece l e ration at TDC and BDC. Pe rhaps a t 

these instants, excessive stre s s was caused at the wire s or in 

the vacuum deposited me t a l films of the thermocouple s . 

4 . 2.3 Engine adapta tion for radiation flux measurement 

As indica ted be fore , two adaptors, one for the pre ssure trans 

duce r and the other for holding a window and accommodating the 

r adiation de t e e tor, we r e required t o fit t he s a me loca tion on the 

cy linder head. Fig. (4 . 7) shows the de tail of the two a dapt ors . 

De rham (44) proved that the sma ll pa ssage <i inch dia me t e r) in the 

pressure transducer adaptor, had no effect on the r e corde d pressure . 

A second adaptor was pre pa r e d for radia tion measurement at 

position (R2) to fit another cylinder head, because of space 

limitation on the modified cylinde r head. The viewing configuration 

r e lative to the de t e ctor was ke pt exactly the same as in the firs t 

ada ptor in order to mainta in the same calibration coe fficient of 

the de t ector. 

The window chosen for use was Kodak' s ··r rtran 4·; the spec t r a 1 

and physical characteristics of which ar e given by Hudson (58). 

The thickness of the window was 2 mm, which for unsupporte d diamete r 

o f i inch, would s t and the peak worki ng pressures (58 bar) wi t h a 
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s a f ety factor of 3 . The window b e ing at about 10 mm from the 

inne r cylinde r h e ad surface prov i d e d a poc ket o f a ir which 

prote cted it from soot d e posi t ion. The transmis sion ca libra tion 

afte r half an hour engine running under medium loa d, showed a 

r e duction in peak to peal{ radiat i on signal from a black body 

source of less than 10%. 

4 .2.4 Engine motoring and firing arrangements 

The engine when used for gas velocity measurements (44), wa s 

coupled via a reducing pulley system to a D.C. motor . Thus to 

opera t e the engine unde r fired conditions, it was n e ce ssary to 

modif y the motor to work a s a ge n e rator coupled direc tly to the 

engine . The output wa s absorbe d by supplying s e veral immers ion 

h eate rs with electric power . 

In order to run the t e st cylinder und e r both motor e d and/ or 

fire d conditions, a simple me cha nism consisting of a pin actuate d 

by a spring was designed to lock the fue l pump plunger at the 

maximum displace ment, while the e ngine was running . The release of 

the plunge r, by pulling the pin out, induce d fuel pumping and 

immediately firing commenced in the test cylinder. A s e parate fuel 

suppl y and measure me nt system was provide d for the t e st cylinder. 

The r e fore for motore d ope ration testing the two e nd cylinde rs were 

use d as the driving cylinde rs and for fired t ests, all three cylinde rs 

we r e driving the ge nerator. 

4.2.5 Trans duce rs and amplifying syste m and the recording e quipment 

4.2.5 . 1 Timing pulse 

Accura t e timi ng r e f e r e nce was esse ntial for the prese nt worl< 

whe r e the instanta ne ous r e sults d e rive d from pressure s igna ls are 
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very sensitive to random phase shift. The TDC crank position 

(beginning of the induction strok e ) was sensed by a magnetic 

pi cl{ up conditioned with a high frequency Schmidt trigger circuit 

which converted the output to a square wave pulse. This square 

wave provided a definite voltage leve l for use in data sampling . 

4.2.5 . 2 Total heat flux probes and signal amplifier 

The output of the surface thermocouples, described in 

Section (3.1) were utilised for calculation of total instantaneous 

heat flux from the working fluid. A Hewlett Packard type DY-2461- A- Ml 

(wide band 350 CPs - 25 kc, high gain chopper-stabilised of all 

transistor design) amplifier was used for signal amplification. 

Hassan (37) investigated the frequency response of the amplifier at 

high gain and reporte d excellent characteristics for surface t e mp

erature signal conditioning. 

4.2.5.3 Radiation flux probe and signal amplifier 

A ceramic pyroelectric radiation detector, described in 

Section (3.2) was used . The detector output was amplified by a 

Brookdeal Model LA-350 low nois e amplifier. The frequency range of 

the amplifier was 3 Hz to 300 kHz with total harmonic distortion of 

less than 0.075% at 1Hz for 2 volts r.m.s. The input impedance of 

the amplifier is selectable to match high and low source impedance . 

4.2.5 . 4 Cylinder pressure 

Fired and motored engine pressure were obtained using a 

Kistler type 628B capacitive pressure transducer and the associated 

charge amplifier type 5001. 
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4.2.5.5 F ue l line p ressure and ne edle lift 

Fuel line pressure was measured by a Kistle r fue l l i ne 

trans ducer l ocated 23 cm from t he inje ctor nozzle (measured 

a l ong the fue l line pa th). The injection time was derived from 

n eedle l if t measure d by a ' Dis t e c 915 ' , n on-contacting , inductive 

displacement transducer which was calibra ted prior t o the t es ts. 

Uppe r freque n c y of the displacement transduce r was 20 kHz , and 

h e nce the s hort rise time a t the beginning of the injection could 

be e ffective ly monitored . 

4. 2 .5.6 Signal recording system 

The na ture of the present investigation r equired simul taneous 

r ecording of the differe nt instant aneous signa l s in orde r to obtain 

a r ea l istic inter-re l a t ion of these p arameters . The ' Raca l Store 4 ' 

FM t ape r e corde r was use d to r ecord the various sen sor s.ignals afte r 

appropriate conditioning . A tape s peed of 15 inch e s per second , which 

r epresented a n uppe r freque ncy limit of 5kHz , was used. This 

frequency limi t was ade quate for all e n gine data col l ec t e d unde r the 

present t est cond i tions. 

4 . 2.6 Othe r measurements a nd e quipment 

i) Air flow r ate . Direct r eading of the air flow was made from 

a calibr ated i ncline d ma nome t e r incorporated with a large 

surge tank and a standard orifice plate . A correction for 

the a mbient conditions of the measured flow was n e cessary . 
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ii) Fue l flow rate. T i ming the cons umption of 50 cc of fuel 

unde r operating conditions provided the fuel flow 

measurement. The commercially a vailabl e diese l fue l was used for 

t h is inve stiga t ion. 

iii) Engine s peed - was measure d by a t achometer . 

iv) Steady surface t e mperature. A multi c hannel 'Kent' r ecording 

potentiometer was used to record the steady output of the 

thermocouples. A 'Cambridge ' pote ntiome t er was u sed to 

check the mean output of the surface thermocouples and to 

provide calibration voltages for the r ecorded surface 

temperature s i gna l. 

v) Smol(e concentration . a "Har t ridge ' smoke me t er was u sed 

for measurements in the exha us t manifold. 





Fig . (4.2) A View of Cylinde r Head fitted wi th Surfa ce Thermocouples 
a nd s howing Pressure ( or Radia tion ) and I njec tor Vents 
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Fig. (4.4) False Piston Crown and Machined Piston Top Showing 4- pin 

and Socket Arrangement for Thermocouple Leads 
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CHAPTER 5 

EXPERI MENTAL PROCEDURE AND DATA ANALYSIS 
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5.1 Te st Prog ramme 

In response to the succe ss a chie ve d in the pre liminary 

t es ts of the constructe d surfa c e the rmocouple , in r e spe ct of 

its rigidity and high s e nsitivity at all speeds, a ri gorous 

test programme was planne d to obtain fundamental data on the 

transient heat transfe r in a die s e l e ngine. The t e sts fall 

into thre e categorie s according to operating conditions and 

obje ctive sought as follows: 

a) Motore d operation tests , whe re the variable of che mical 

reaction is eliminated and radiation is absent, to 

investigate the conve ctive component of instantaneous 

heat transfer . 

b) Fired operation t e sts to investigate the total instantane ous 

heat transfer. 

c) Fire d operation tests to inve stigate the radiative compone nt 

of instantaneous heat transfer and its relative importance 

in the test e n gine . 

All test conditions covered are listed in Table (5.1). As 

the e xpe riments involved items of ce rtain life expectancy, notably 

the surface thermocouples under fire d conditions and the link work 

me chanism with fle xing l e ads, most tests were repe ated s e ve ral 

time s in order to obtain all the required measurements. 

5 . 2 I nstallation of Surface The rmocouples 

The prepared surface thermocouples were fitted with extreme 

ca r e to the cylinder h e ad or piston crown of the t e st cylinde r. 
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High torque on fitting was not applied in order to avoid stress 

of vacuum de posited surface films. All surface the rmocouple 

wi r es were screened individua lly and brought to a low noise 

multipoint switch, whe r e they could be s e parately directe d to 

the amplifier-recorder system. This reduced the hi gh noise 

level experienced in the e arlie r stage of work to an acceptable 

level. Some attempts made to eliminate the high fre que ncy hash 

present on the trace by filtering, resulte d in attenuation of the 

signal as shown in Fig. (5 . 1) . Hence it was decided to use 

unfiltered signals for analysis. 

The wall backing temperature directly behind the sensitive 

junction at a depth of 1 . 3 cm were measure d by conventional iron

constantan thermocouples attache d to the plug s prior to installation. 

All the the rmocouple s measured the temperature relative to Jue lting 

ice. Fig. (5.2) shows a sch e ma t ic diagram for t e mpe r a ture measure 

ments . 

5 . 3 Motore d and Fired Test Te chnique and Associated Proble ms 

A test procedure was adopted to provide the maximum amount 

of data per test run. Cylinder head thermocouple results were first 

obtained without the instrumented piston and link work , this reduced 

the time r equired for a test, e specially as au~iliary equipment 

(amplifiers, recording channe ls, etc), were not sufficiently nume rous 

to deal with all records required simultane ously . The tests were to 

be r e pe ated later with the instrume nted piston to obtain piston 

tempe ratures, and the n for radiation measurements under the same 

conditions . 
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In the tests unde r motore d conditions, the gas side surfacl:} 

tempe rature usually reache d a steady state in about 10 minute s. 

As the' surface thermocouples would operate indefinitely in the 

motore d engine, 20 minutes was usually allowe d before the signals 

we re recorded . One proble m face d in the motored tests, was the 

formation of a thin oil layer on the surface thermo coupl e , which 

attenuate d the signal as will be shown in the following chapter . 

A special oil scraper ring was fitted which r e duce d this problem 

but did not cure it comple t e l y . Hence most of the r e sults were 

obtained with a thin oil film on the surface of the thermocouple . 

In the fired e ngine , soot formation has been a trouble some 

proble m during the t es t run. It was found that at some locations 

(name ly H3), as the carbon was g r a dually built up ove r the surface 

thermocouple junction, the tempe rature response became slow and 

the swing diminishe d . As the a nalysis of heat flux was based on 

the assumption of the e xistence of a clean surface, it wa s highly 

important that the experimental r esults should be take n before the 

carbon deposit became exce ssive. To reduce carbon deposition, the 

test cylinder wa s first warmed up unde r motore d conditions after 

which it was fire d by releasing the fuel pump plunger. Signals we r e 

recorded as soon as the steady component of sur face t emperature had 

attained r easonably invariant conditions. The effect of continuous 

build up of carbon on the the rmocouple junction was further reduced 

by comple ting the tests at the three load conditions at a fixe d speed 

in two runs. The FNL and F40~L tests we r e first carried out in one 

run, after which the cylinder h e ad was r emoved and the thermocouples 

cleaned . The h e avy load t e st wa s carrie d out immediately after this 

proce ss while the e n gin e was sti ll warm . The surface the rmocouples 

could b e cleane d with some care using acetone and a s oft paint 

brush. 
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The number of t es t runs f or da t a a cquisition f r om the pis t on 

crown we r e increased because of the limite d numbe r of si gnals tha t 

could be transmitted through the link me chanism. Only two surfa ce 

t empe rature signals from the piston crown could be r e corde d simul

taneously. On the othe r hand t he engine speed range was limited 

to 1200 rpm, by ele ctrical noise inte rference on the t empe r a ture 

signal. The mean temperature gradient in the piston crown, to 

determine the steady heat tra nsfer, was obtaine d by repeating the 

t ests and using a conventional diffe rential thermocouple, built on 

plugs similar to the surface the rmocouple plugs. 

During the course of the work, the rmocouple s were insta lle d in 

three locations in the cylinde r head and six locations on the piston 

c rown . The loca tions are shown in Fig . (4.3) . 

In r e ceiving the r adi ant compone nt through the viewing 

window, s oot accumulation was a probl em ove r pe riods o f engine 

running grea t e r than half an hour , pa r t icul a rly unde r heavy l oad 

conditions. It was a s sumed tha t the high swirl in the t es t engine 

which improve s air- fuel mixing was the main factor in producing l ess 

soot accumulation on the window than r e porte d by previous worker s 

(32, 33, 34). Howeve r, as radiation heat trans f e r is expect e d to be 

l e s s depe ndant on s t e ady conditi ons, the radiation de tector s i gnals 

wer e r e corded as s oon as the cylinde r fired and e ngine speed and 

loa d adjuste d . It wa s found tha t r e lia ble r adiation r e sults could be 

obtained by recordi ng radiati on da t a for FNL and F40%L condi t ions in 

one run, and the he avy load t est in a s e cond run imme dia te l y af t e r 

cleaning the viewing window. 
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5.4 Data Recording and Re duction 

In order to obtain a r e liable representation of the engine 

transient heat transfer data, modern recording systems, analog-

to digital conve rter and high speed digital computer facilities 

were utilised. Fig. (5.3) shows the data processing sequence for 

a single voltage trace and associated timing pulse channel. The 

signal was conditioned by the amplification stage and a D.C. voltage 

bias such that the maximum and minimum voltages of the trace l ay 

+ within the acceptance band (zero to - 3 volts) of the ' Racal Store 

4 ' freq uency modulating recorder. On completion of the data 

recording process, k nown calibration voltages were also recorded 

and hence modified by the same circuitry. 

The recorded signal was the n r eplayed to the input channel 

of a high speed A/D converter on a Hewlett Packard 5451A computer. 

A s mall computer prog ram was use d to average any require d number 

of input traces. Origin of the time scale on individual sample 

traces was maintained constant by using a magnetic pick up output 

as a triggering vo l tage on the A/D converter unit . He nce a typical , 

or mean voltage time trace was generated and stored in the computer 

data core , with sampling ordinates at inte rvals as defined by the 

A/D converter setting. The averaged trace was thenoutput via a 

high speed paper tape punch. 

The engine data recording system was use d to record a large 

number of consecutive cycles over a pproximate ly 20 feet of magne tic 

tape for each load condition. Da ta r ecorded include d gas-side 

s u rface temperature, cylinder pressure, e ngine TDC position, radiation 

emission, needle lift and injection pressure. A typical set of the 

r ecorde d signals are shown in Fig . ( 5.4 ). 



-108-

In the case of the trans ient heat transfer analysis , nvo 

pape r tape s corre sponding to the voltage -time trace s a ve rage d 

over 15-20 cycles of the surface temperature , were there fore 

created for each measureme nt loca tion. Voltage l eve ls on the 

paper tape did not represent actual test vol tages due to the 

bias and amplification process. There fore the similarly recorded 

calibration voltage s were also digitised onto paper tape . Signal 

paper tapes and associate d calibration l eve l pape r tapes, were then 

processed by an ICL 1904 digital computer using a simple conversion 

program to r e late the ' punched ' voltages on the p aper tape to 

' actual ' vol tage s from the calibration l eve ls. ·"Actual' voltage

time trace s thus genera ted were output on punche d card and therefore 

formed data for the relevant processing program. 

For the purpose of the transient surface heat flux analysis, 

Overbye et al (14), Knight (16) and Hassan (37), who use d the Fourier 

serie s representation of the time - surface temperature, showed that 

the use of 72 harmonics was a compromise between accuracy and 

practicality . In the prese nt investigation, the averaged surface 

tempe rature signal over one cycle was r epresented by 150-250 ordinates 

for motored tests and 200-350 ordinates for fired tests, with h armonics 

i n creasing for high speed. 

The instantaneous heat flux was calculated by a method of 

harmonic analysis of the surface temperature r e cord (Overbye (14) ). 

The me thod and the computer program used are give n in Appendix (A) . 
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5. 5 Calc ula tio n of Gas Bulk- Mean Temperature 

Most o f the analys i s by past worke r s in c onnec tion with 

hea t transfe r h a s utilise d the conce pt of bulk mean gas 

t empera ture . The insta nta n eous gas me an t e mpe r a ture du r ing the 

compression and e xpa nsion s t r o ke s may be ca lcula t e d from a 

·knowle d ge of the trappe d mas s , the ins tantaneous gas pre s s ure 

and volume by application of the gas l a w: 

whe r e 

PV m R T 
g 

m = tra ppe d ma ss . 

( 5 .1) 

The trappe d mass could no t be de t e rmine d from the me a s ure d 

a ir flow because o f i nle t a nd e xha us t va lves overla p. A r easonab l e 

approxima tion wa s obta ine d by suppos ing the cylinder pressure a t 

I VC e qua l t o the a mbi e nt pressure. The n ass um i ng t he gas t e mpe ra ture 

a t t h is po int i s s uch tha t a volumetri c e ff icien cy of 0.9- 0. 85 

( e sti ma t e d from litera t ure on simi l a r a ir coole d e n gine s) is ach ieve d 

for no-loa d a nd full load conditions r espec t ively. 

For the compression s troke a nd l a t e r parts of t he e xpansion 

stroke it s eems pla usible t o s uppose tha t the t e mpe rature will be 

fairly uniform a nd wi ll be sa t isfactori l y r e presente d b y the mean 

so c a lcula t e d. For combus tion phase such a calc ulation i s unrealistic 

and fo r this r eason a s implified t wo- zone t e mpe ra ture distribution 

wa s cons ide r e d in orde r to r e p resent the driving t emperatur e for 

h eat tra nsfe r for this phase (see Results ) . 

It was found tha t for motore d ope r a tion , the polytr opic 

r e latio n PVn = consta nt (n = 1 .35) produced good agr eeme n t wi th the 

me a s ure d pressu r e , a ssumi n g t h e p r e s s ure at I VC e qua l t o the a mbie n t 

pressur e . The refore the poly tropic r e l ationship was us e d t o pr e dict 
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the gas t e mpe rature in the motore d e ngine assuming gas temperature 

at !VC of magnitude to produce 'Y] l = 0 . 94 ( 60 ) . vo 

5 . 6 Gas Composition and Properties 

In any ana l ysis of h eat transfer in internal combustion 

engines, the thermodynamic properties and composition of the 

working fluid must be known. Attempts to r e present the working 

fluid in the fired engine as having the properties of air throughout 

the cycle are inadequate , simpl y because air is not representative 

of the working f l uid in an engine. Furthermore , because of chemical 

reaction, the chemical species concentration comprising the working 

f l uid changes continuously during the cycle. Knowing that the 

major constituent is always nitroge n, the assumption of a simple 

triangular combustion r a te (over 35-40° CA) with peak at mid-

point (Lyn (61) ) is considered adequate for estimating products 

constituents . The dissociation and re-association processes usual ly 

occurring in combustion engines was not considered in the present 

investigation as any e ffect would be swamped in the unreality of 

the assumption of uniformity of properties throughout the combustion 

space. The working fluid thermodynamic properties and equilibrium 

chemical species concentration in the engine at any temperature and 

pressure can b e determined following the method outlined by Annand (6). 

The gases to be considered are air, nitrogen, carbon dioxide , 

water vapour and fuel vapour. For the individual gases comprising 

the mixture which forms the working fluid, the specific heats C 
p 

were correlated with fifth degree polynomials: 

and the expression used to represent the viscosity in: 

0 
K cal/kg K (5 . 2) 
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}J. = Jlo To . 645 kg/m.s. 

}.1. is the constituent viscosity at zero t e mperature. 
0 

For mixtures of n gases, if the molar fraction of the jth 

component i s X. , the mean prope rties are : 
J 

whe r e 

c 
p 

M 

}1 = 

M. 
J 

L (X. M.) 
n J J 

c . )/M 
PJ 

L (X . Jl · ~) n J J V "'j 

M = molecular weight. 

The mean the rmal conductivity is estimated from the 

r e l a tions hip: 

k = 
c }J.. 

p 
(P ) 

r 

In view of the pre dominance of air or nitrogen in all like ly 

mixtures, it seems adequate to t a ke Prandtl numbe r (P ) = 0 . 7 for 
r 

the calculation of k. 

( 5. 3) 

( 5.4) 

(5 .5) 

(5 . 6) 

(5.7') 

All the properties we r e eva luated at the bulk- mean t e mperature 

calculated from the measure d pre ssure . In ce rtain cases, where 

the effec t of t emperature zoning was indicated by the measure me nts , 

the local gas p r operties are evalua t e d at the relevant zone 

t e mpe rature . The computer program use d for e valuating the working 

fluid composition and properti es and the predi c t ion of ins t a ntaneous 

hea t fluxes i s given in Appendix (B). 
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TABLE 5. 1 

Test Conditions Investigated 

a) Equivalence r atio and (fuel consumption gm/s) for range of 
engine speed and load conditions studied 

~ 600 1050 1500 1750 
0 

Motored 0.0 0 . 0 0.0 0 . 0 

Fired no load (FNL)* 
0.278 0.289 0.283 0.285 

(0. 122) (0 . 142) (0 .2) (0.23) 

Fired 40% load (F40%L) 0. 323 0 . 369 0.378 0.367 
(0.134) (O .175 ) (0.26) (0.29) 

Fired 80% load (F801~) 0.405 0.474 0.512 0.487 
(0.161) (0.22) (0 .34 ) (0.38) 

b) Measure d mode of heat transfer, location and r ange of conditions 
covered 

Heat transfer mode 
Area of Range of test 

Measurement conditions 

Total heat transfer Cylinder he ad All condit ions in 
(3 locations) Table 5. l a plus super-

charge (MOT) of 0.34 & 
0.69 bar at 1050 rpm 

Total heat transfer Piston crown All conditions at 600 
(4 locations in and 1050 rpm 
bowl and 2 loc -
ations on flat 
rim 

Radiant heat transfer Position Rl All exce pt 600 rpm 
Position R2 All except 1750 F80%L 

* It should be noted that engine running unde r fired no load (FNL) 

condition represe nte d no useful power from t he engine- gene rator 

system, but unde r the condition the inertia and friction load of 

arroa ture was impose d on the engine. F40%L and F801~ conditions 

corresponde d to similar pe rce ntage s of the max imum powe r output 

of the genera tor. The indica t e d mean e f fec tive p ressure fo r 

each condition i s g ive n i n Sec tion 6. 
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CHAPTER 6 

RESULTS AND DISCUSSION 
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6 .1 Pre vious Work on t he Test Engine 

This project was an exte nsion of a previous study (44 ) on 

the measurement of gas motion in a high swirl diesel engine . 

Derham (44) measured the gas velocity during the induction-

compression stroke and up to 4cP ATDC, under motored conditions. 

0 The ga s motion was found to be come orde rly at about 90 CA BTDC 

in the compression stroke , t hus f o rming a solid vorte x . 

Fig . (6.1) shows the measure d me an swirl for three engine speeds. 

These curve s were the result of dire ctional measurements at many 

loca tions on the piston crown . Theoretical analysis ba s e d on 

mome ntum conservation l e d to a mode l for prediction of swirl in 

the engine . 

The me asured ga s velocity and the forced vorte x be havi our 

of t he flow, we r e combi ne d wi th the equation for the f orced 

convective hea t tra nsfer to a fl a t surface (modifie d to a ccount 

f o r cha nges in hea t trans f e r with r adial location) to pred ic t loca l 

heat fluxe s under motored and fire d conditions of engine ope ration . 

6.2 Pre liminary Tests to Explore the Validity of the Pre pa r ed 

Surface Thermocouple 

The failure of many prepared prototype surface the rmocouples 

l e d e ventua lly to one (built on 1" plug ) s ui table f or e ngine use . 

The the rmocouple was fitte d to a cylinde r he ad whi ch wa s used 

pre vious ly t o accommodate a simi l a r plug for holding ane mome t e r 

probe s for gas veloci t y measurements, the s ensitive junc tion was at 

4 cm radius from the cylinde r axi s. The the rmocouple was suitably 

s hie lded and grounde d (88). The signal output from the thermocouple 
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together with cylinder pressure and TDC trigger signal, were 

recorded on a four channel, FM Analog tape recorder over an 

engine speed range of 600, 1050, 1500 and 1750 rpm. The Fourier 

analysis of these records produced the instantaneous heat fluxes 

shown in Fig. (6.2).. The instantaneous and time averaged surface 

heat fluxes generally showed an increase with increasing engine 

speed as would be expected, Table (6.1) summarises the results 

obtained. 

TABLE 6.1 

Some results of the preliminary motored tests obtained by a thermo-

couple 4 cm from cylinder axis 

Engine speed 560 1050 1500 1750 RPM 

Peak heat flux 793 1243 1692 1872 kW/m
2 

Mean heat flux 74 126 155 183 kiV/m
2 

Surface temperature swing 5.04 5.9 6.4 6.55 oc 

Peak flux position 363 360 362 363 oCA 

Peak surface temperature 
386 384 383 380 . OCA 

position 

Since the gas temperature and pressure histories on a CA basis 

are not significantly affected by variation in engine speed, the 

increase in heat transfer with speed must be mainly attributed to 

gas velocity and rate effects. The rate of compression of the boundary 

layer is obviously proportional to the engine speed. 

Kim nao (40) showed that heat flux varied in an approximately 

linear manner with air swirl (Chapter 1). Similar trends were 

also observed, in the present investigation (Fig. 6.3(a) ). 
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6.3 Reproducibility of the Results 

6.3.1 Effect of surface condition on total heat transfer 

In the early motored engine tests the observation of the 

peak-to-peak value of the surface temperature signal of a newly 

fitted (clean surface) thermocouple was found to reduce by about 

5% after a period of 5-15 minutes engine running and remained 

constant at the reduced level. The cause for this was found to 

be the formation of a thin layer of oi 1 on the surface. A 1 though 

special oil control rings were fitted, data were obtained with a 

very thin oil layer on the sensor. The heat fluxes at location H2 

(see Fig. 6.9) for both clean and oiled surface and at two engine 

speeds are shown in Fig. (6.4). The oil layer attenuates the 

flux and results in a phase lag. The phase lag is significant 

(:; 10° CA) in the compression stroke and almost non-existent in 

the expansion stroke. The explanation is that the oil film on 

the surface will get thinner by the rapidly increasing swirl as 

TDC is approached, until its effect becomes negligible during the 

early stages of expansion stroke. However, the peak heat flux 

cannot be attained because of the reduced heat transfer to the wall 

due to the thick layer earlier in the compression stroke. The 

cleaning of the surface thermocouple with alcohol, usually reproduced 

the original peak temperature signal under similar conditions. 

6.3.2 Reproducibility of motored data 

In order to establish the repeatability of the experimental 

data and the consistency of the surface thermocouples, three 

identical tests under motored conditions with an engine speed of 

1050 rpm were made. Each time a different thermocouple was fitted 
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to location Hl. The measured heat flux for the three runs are 

shown in Fig. (6.5). Note a maximum change of nearly 20% in 

peak value. The repeatability is good.when considering the many 

factors, such as oil layer formation and its thickness, small 

change in engine speed and possible difference in thermocouple 

response due to difficu!~ies involved in controlling thermocouple 

film thicknesses during manufacture. 

6.3.3 Carbon formation effect under fired operation 

At the end of the motored tests, several tests were conducted 

to study the behaviour of the thermocouples under fired operation. 

As indicated earlier, the thermocouples were coated with a 

protective coating (Mg F
2

) to avoid corrosion by the severe 

conditions and catalytic reaction at the film surfaces. During 

these testa carbon deposition proved a problem. However, this was 

confined to certain areas of the chamber, such as location H3, and 

to a lesser degree at H2. At location Hl the carbon formation was 

negligible for runs up to one hour duration. As deposits affect 

the temperature response of the thermocouples and hence the 

calculated heat flux, it is important to assess the results from 

this effect. The surface temperature at location H2 was recorded 

under motored operation at 1500 rpm, first with a clean surface 

and then with the surface coated with carbon accumulated during 

a period of half an hour engine running under fired half load 

condition. Fig. (6.6) shows the calculated heat fluxes for the 

clean and sooty thermocouple. An attenuation of 19% in peak heat 

flux is observed with a phase lag of about 12° CA in peak position. 
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It is interesting to note the effect of carbon deposit on the 

phase lag throughout the cycle compared to the effect of the 

oil layer which is significant during the compression stroke 

only. This observation supports the hypothesis of oil thinning 

by increased gas motion near TDC. 

6.3.4 Reproducibility of fired data 

The previous test indicated the importance of recording the 

fired results before the carbon deposit became excessive; This 

was achieved by a quick check of the peak surface temperature 

signal under the same motored operation, before and after a 

fired test (with engine mean temperature levels the same in each 

case). If a significant attenuation was observed, the cylinder 

head was removed and the thermocouples cleaned in position with 

Isopropyl alcohol. 

To test the reproducibility of the fired data, a single 

thermocouple was utilised for heat flux measurement at H2 under 

two test conditions (fired no load and fired 40% load, both cases 

at 1050 rpm). The observed data for these tests compared with 

results obtained three months later by the same thermocouple, for 

nominally the same operating conditions, show good agreement (Fig. 

6.7). Ignoring the small change of equivalence ratio (which occurred 

unintentionally), the trend of the results indicated that reliable 

data are possible with careful control of engine operation and 

carbon deposition on the thermocouples. 
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6.3.5 Cycle-hy-cycle variation of instantaneous surface 

temperature and heat flux 

The character of cyclic variation of the recorded surface 

temperature is represented in Fig. (6.8), where seven consecutive 

cycles are shown for a range of running conditions. Note that 

the cyclic variation in the motored engine is negligible compared 

to the fired engine records, and analysis of individual motored 

cycles yields the same heat flux as an averaged cycle. In the 

fired engine, although there is a random variation of the surface 

temperature records obtained on the cylinder head (Fig. 6.8(c) ), 

the steep gradient leading to the peak are in general so similar 

that the computed heat fluxes vary little from one another, and 

all are in good agreement. with the averaged cycle obtained from 

15-20 cycles. On the other hand, the surface temperature records 

of the piston bowl show a larger cyclic variation (Fig. 6.8(d) ), 

which reflects the varying environment in the region of fuel spray~ 

air mixing and the random ignition position in the diesel engine. 

Therefore averaging over 20 cycles was necessary to minimise the 

effects of cyclic variation. 

6.4 Motored Results 

The motored engine, where the variable of chemical reaction 

is eliminated, is ideal for the study of convection heat transfer 

in I.e. engines. Therefore, a series of tests were conducted to 

investigate the effect of location, engine speed and manifold 

pressure on instantaneous heat fluxes. 
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6.4.1 Effect of location on measured instantaneous heat flux 

The instantaneous heat fluxes at three locations Hl, H2 

and H3, on the cylinder head (indicated in Fig. (6.9) ) were 

measured. The results obtained for two engine speeds are shown 

in Fig. (6.10). It was anticipated that due to the presence of 

an approximately solid body type of rotational motion of gas, the 

heat fluxes would be the same at the same distance from the cylinder 

axis. The heat flux was also expected to increase away from the 

cylinder axis where the gas velocities are high, The results 

indicate the opposite, note the peak heat flux is greater at H2 

(nearest to the axis) than at Hl (farthest from the axis). The 

difference between the local heat fluxes is also seen to be greater 

at higher engine speeds. However, the results may have been 

affected to some extent by the fact that the piston bowl is not 

symmetrically positioned with the cylinder axis. Thus the. thermo

couples Hl, H2 and H3 being at 4.2 cm, 3.8 cm and 4.1 cm from the 

cylinder axis respectively, fall at 1.8 cm, 0.6 cm and 1 cm from the 

piston bowl edge. The offset of the piston bowl must therefore cause 

some irregular gas motion when. TDC is approached. Nevertheless, 

the low heat fluxes observed at the largest radius (where gas velocity 

is greater according to the observed solid swirl by Derham (44) ), is 

more likely to result from decreased temperature of the thin gas layer 

compared to the central part of the cylinder, because of ·the high 

surface/volume ratio and low thermal capacity of the gas in the 

annular space. 

Tbe small increase in peak heat flux at Hl (largest radius) 

with engine speed. compared to that observed at H2 and H3 is in line 

with the above argument, in that at higher gas motion, heat loss will 

be greater, and therefore cause larger temperature drop of gas in the 
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annular space, which in turn induces lower peak heat fluxes as 

observed. 

On the piston crown, the results were again not as 

anticipated, but still in line with the observations on the 

cylinder head. The measu.red heat fluxes at locations Bl and 

B2 in the piston bowl, and locations Pl and P2 on the flat 

surface of the piston crown are shown in Fig. (6.11). The 

locations in the piston bowl which were at the same radii (2 cm 

from the bowl centre) indicated the same heat fluxes at 600 rpm, 

but different peak values (lOlq and 873 kW/m
2

) at 1050 rpm. In 

the annular region, Pl and P2, both at 3.6 cm from the cylinder 

axis, the same heat fluxes were measured, but only slightly greater 

than in the bowl for the same conditions. Knowing that the gas 

velocity is greater at larger radius, which is contradictory to 

the observed heat fluxes, the effect of the other major factor 

(gas temperature) influencing heat flux was examined. It was 

interesting to find that the temperature drop of the gas in the 

annular region, because of heat loss, ranged between 100-150°C over 

the interval 10° CA BTDC to TDC. The estimate was made on the basis 

of a constant mass in the annular region and using an average 

recorded heat :flux over the period considered.. Such a drop in gas 

temperature would account for about 20% drop in peak heat flux in 

the annular region. 

Accepting the foregoing argument, then the similar peak fluxes 

observed in the bowl and annular region suggest greater gas 

velocities (20% or more) at Pl and P2 than at Bl and B2, which 

is roughly of the same magnitude as suggested by the measured 

velocities in the ~vo regions by Derham (44}. 
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The lower heat fluxes measured on the piston crown at Pl 

and P2, compared to those measured on the cylinder head cannot 

be explained, unless the local variations observed on the 

cylinder head are ignored for a moment. Then it may be said 

that the smaller distance of Pl and P2 from the cylinder 

axis, compared to Hl, H2 and H3 is responsible for the low 

heat fluxes obtained on the piston crown. Otherwise, only a large 

temperature gradient between the gas near the cylinder head and 

the layer adjacent to the piston crown would explain the results 

obtained. Table (6.2) gives the measured peak and mean heat 

fluxes for the different locations under motored conditions. 

TABLE 6.2 

Measured peak and mean heat fluxes at different locations in the 

engine cylinder under motored conditions. 

Engine Heat Location 
Speed Flux 

rpm kW/m2 Hl H2 H3 Bl B2 B3 B4 Pl P2 

Peak 717 858 803 622 660 621 688 718 769 
600 

Mean 103 100 104 98 96 94 98 75 78 

Peak 1103 1577 1296 1019 873 890 971 1016 1050 
1050 

Mean 141 155 143 125 118 121 121 81 75 

In an attempt to avoid the disturbances of gas motion caused 

by the toroidal piston crown, a false crown with concentric 

cylindrical cavity was used. The instantaneous heat fluxes measured 

at the centre of the cavity and at 2.2 cm from the centre are shown 

in Fig. (6.12). The results do not show the expected difference 
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caused by velocity distribution in a solid body swirl motion. 

Although these observations are in line with the findings 

of Kim Dao et al (40) (Section 1.2.1), in observing equal fluxes on 

cyli~der head near the centre of the cavity and deep in the 

annular region under swirl conditions of gas, it is suspected 

that errors caused by two-dimensional heat transfer (unaccounted 

for) contribute to the higher fluxes recorded in the centre of 

the bowl. There is also the possibility of radial velocity com

ponents in the central region close to the wall. 

6.4.2 Effect of engine speed on instantaneous heat flux 

Fig. (6.13) shows the local instantaneous heat fluxes for 

the engine speed range of 600 to 1750 rpm. At each location, the 

instantaneous and time-averaged surface heat flux increased with 

increasing engine speed. This trend is most evident near TDC 

during compression and expansion processes. 

Since the gas temperature and pressure histories on a CA basis 

are not significantly affected by a variation of engine speed, the 

increase in heat transfer with speed must be attributed to increased 

air motion. The measured gas velocities by Derham (44) in this 

engine, at different speeds (shown in Fig. (6.1) ) are certainly 

in agreement with the present findings. The same. trend was obtained 

on the piston crown as shown in Fig.(6.11). 1n .this case the 

results obtained were limited by the linkage induced electric noise 

interference on the signal at engine speeds exceeding 1200 rpm. 

The results obtained for the cylinder head, show a negative 

heat flux during the induction stroke at an engine speed of 1750 rpm. 
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This is expected when the gas temperature is less than the 

cylinder wall temperature, as the direction of heat transfer 

would be from the wall to the gas. At low engine speeds, negative 

heat transfer was not observed. Application of pipe flow heat 

transfer to the induction process of the engine, simulated on 

the computer, showed that the trapped mean gas temperature at. 

0 0 0 
IVC changed py no more than 6 C (31 C to 37 C) under motored 

conditions as engine speed increased from 600 rpm to 1750 rpm. 

Therefore, a negative heat transfer is more likely at high engine 

speeds when wall surface temperatures are higher (73°C at 600 rpm 

0 and 102 C at 1750 rpm measured on the cylinder head). Negative heat 

fluxes were observed by Le Feuvre (34) on the cylinder liner of a 

moderate swirl engine, but not on the cylinder head which led to 

the conclusion that the bulk-mean gas temperature is not representative 

for heat transfer calculations over at least part of the·cycle during 

fired operation. 

The effect of engine speed on instantaneous heat flux seemed 

less pronounced at location Hl than at H2 and H3. The peak heat 

flux measured at Hl was 717 kW/m
2 

at 600 rpm and 1605 kW/m
2 

at 

1750 rpm, while the corresponding measurements at H2 were 858 kWim
2 

2 
and 2700 kW/m , i.e. twice the rate of change with speed as at Hl. 

This behaviour was shown previously to be related to the larger 

radial distance of Hl in the annular space,where gas conditions 

are affected by a decrease in the driving temperature caused by heat 

loss to the cooler walls (large surface/volume ratio) and also by 

expansion of gas in annulus by blowby; 

For the piston crown, the tests were limited to engine speeds 

of 600-1050 rpm, the maximum observed increase in peak heat flux 

over this speed range was 397 kW/m
2 

at location Bl compared to 

2 
the maximum increase over the same speed range of 719 kW/m at H2 
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on the cylinder head. Therefore the rate of change of peak heat 

flux with speed on the piston crown was half that on the cylinder 

·head, which indicates different behaviour with speed of the 

parameters controlling heat transfer at the two surfaces. 

Although the cyclic variation of the measured parameters 

in the motored engine were negligible, an accurate estimate of 

the dependance of crank angle position and peak heat flux on 

engine speed was not possible. This was because of the uncontroll-

able oil layer formation on the surface and its continuously 

variable effect on the phase lag. In general, the peak heat flux 

occurred earlier as speed increased. The change in crank angle 

posi ti.on of peak flux (averaged for all the motored records 

0 
obtained) over the speed range 600 - 1750 rpm was about 4 CA 

earlier at higher speed. The increased gas velocity and higher 

rate of change at high speeds must be responsible for the advance. 

Another interesting point was that, peak heat fluxes on the cylinder 

head usually occurred after TDC except at high engine speeds. In 

contrast most of the peak heat fluxes on the piston crown occurred 

at or before TDC, generally about 3-5° CA before cylinder head peak 

position. 

Plots of peak heat flux versus engine speed for piston and 

cylinder head surfaces are shown in Fig. (6.3a), which are of 

similar trend to the plots given by Kim Dao (40) as shown in 

Chapter 1. 

6.4.3 Effect of manifold pressure on heat transfer 

The effect of manifold pressure conditions on instantaneous 

heat transfer in the motored engine was also investigated. Fig. (6.14) 

shows this for an engine speed of 1050 rpm and three manifold conditions. 
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(Inlet pressure =ambient, 0,345 bar and 0.69 bar gauge). It 

will be noted that the change in the peak heat flux caused by 

increase of inlet pressure from ambient to 0,345 bar (gauge) was 

more significant than the increase resulting from a further 

increase of 0,345 bar in inlet pressure, This effect of inlet 

pressure was noticed in Kim Dao's (40) results as shown in Chapter 

1. As the higher manifold pressure has little effect on the bulk 

mean gas temperature, it may be deduced that heat transfer· 

coefficients increase as a result of increased swirl velocity 

(Fig. (6.1) ) and of course by the higher gas density. At the 

high supercharge conditions, peak heat fluxes as high as 3378 WV!m2 

were recorded at location H2, and a negative heat transfer was 

observed during the induction stroke. The later observation checks 

the earlier hypothesis about negative heat flux. The average 

measured surface temperature on the cylinder head was 103°C under 

supercharged conditions and 81°C naturally aspirated, while the 

trapped gas temperature is expected to be more or less the same in 

both cases. Therefore heat transfer from the wall to the gas is 

more likely under supercharged conditions as observed. A plot of 

peak heat flux versus manifold pressure is shown in Fig. (6.3b), 

and Table (6.3) gives other observations under the supercharge 

condition. 
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TABLE 6.3 

Observations related to heat transfer at different manifold pressures 

Manifold 
Location 

Peak & (mean) Surf.Temp. Position of 
Pressure heat flux. Swing peak flux & 

kW/m2 oc Peak surf. 
Temp. 

CA degree 

Ambient Hl 1103 (141) 4.94 369 (380) 

H2 1577 (155) 6.04 360 (380) 

H3 1296 (143) 5.4 369 (379) 

o. 345 bar Hl 2257 (238) 9.5 360 (380) 
(gauge) 

H2 3024 (264) ll.7 363 (383) 

H3 2326 (233) 9.4 366 (380) 

o. 69 bar Hl 2671 (242) 10.5 364 (380) 
(gauge) 

H2 3378 (273) 13.5 364 (376) 

H3 2761 (232) 12.5 356 (380) 
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6,5 Fired Engine Results 

6.5.1 Local heat flux variation 

The observation of varying local heat fluxes at similar 

radii under motored operation, suggests that even larger local 

variation in surface heat fluxes would occur during firing. 

The measured local heat fluxes at 1050 rpm under fired no-load 

and fired 80%-load conditions are shown in Fig, (6.15), The 

instantaneous heat flux is greater at location Hl than at H3. 

This situation is the reverse of the motored engine case. The 

suggested explanation is that H3 being downstream of two fuel 

jets, partial fuel spray impingement may occur, thus causing 

surface cooling by evaporation. At location H2, as in motored 

operation, the largest peak heat flux was registered, and also 

a greater negative heat flux was noticed during induction compared 

to other locations. The closer location of H2 to the combustion 

chamber (piston bowl) would result in this thermocouple feeling the 

earlier influence of the hot combustion products expanding from the 

combustion bowl, while a later influence on the other two locations 

when the gas is cooled by expansion of hot products on the account 

of compression of cooler air zone and by mixing with it, Considering 

the character of fuel distribution in the diesel engine, followed 

by a random and complex combustion process in the cylinder, the 

local variation of instantaneous heat fluxes on the cylinder head 

is not large. The peak heat fluxes occurred between 9-15 degrees 

after TDC, coinciding with, or a few degrees later, than position 

of peak driving temperature (peak bulk mean gas temperature) for 

heat transfer. 
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The local instantaneous heat fluxes at four positions in 

the piston bowl shown in Fig. (6.16), are for two engine speeds 

under fired 40%-1oad conditions. The similarity in magnitude 

and shape of the heat flux curves was not surprising, because 

the locations were at the same radius from the bowl centre, and 

were all in the proximity of fuel sprays. The odd result obtained 

at B2 for 1050 rpm cannot be explained, except that this location 

is between two jet impingement zones. The mean and instantaneous 

heat fluxes recorded in the·piston bowl were generally higher than 

on the cylinder head and other parts of the piston surface. The 

marked difference in the shape and magnitude of the heat flux 

diagrams obtained in the piston bowl and other surfaces, therefore 

clearly demonstrates the predominant influence of the burning fuel 

jets in the piston bowl. The rapid rise of heat flux in the bowl 

with peaks occurring long before those observed on the cylinder 

head reflects the direct influence of the rapid early heat release 

by combustion of the premixed charge. It was hoped that the crank 

angle position where the heat flux starts rising and the peak position 

would indicate when and where the premixed flame occurs. Unfortunately 

the small difference in the position of the thermocouples relative 

to fuel jets, did not allow this point to be investigated. 

However, the heat flux curves obtained at B2, B3 and B4 

indicate the influence of a second hot zone at about 380° CA which 

may result from presence of more than one flame region, i.e. one 

corresponding to each fuel jet. 

• 
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6.5.2 The effect of engine speed and load condition 

The similarity of induction-compression strokes in both 

motored and fired engines suggest that the gas motion would 

also be the same during this period. Ohigashi (50) confirmed 

this by swirl measurements during induction-compression strokes 

in a diesel engine under both motored and fired operation and 

found only marginally greater swirl for the fired engine. 

Therefore, the effect of engine speed on instantaneous heat 

fluxes for induction-compression is expected to be as found for 

motored engines. Figs. (6.17) and (6.18) show the measured 

instantaneous heat fluxes for locations Hl and H2 respectively. 

At each engine speed, three load conditions were investigated. 

Loading the engine produced greater local instantaneous heat 

fluxes which was obviously the result of higher bulk mean gas 

temperatures due to increased fuel injection. Unfortunately higher 

load (or air:fuel ratio <: 29) could not be tested because of 

excessive carbon deposition on the combustion chamber surfaces 

under such conditions. 

Accepting the findings of Ohigashi (50) of similar swirl in 

induction-compression strokes of motored and fired engines, the 

influence of engine speed on heat flux in the fired engine could 

be explained. Fig. (6.17) indicates results for heat flux at 

position Hl at various conditions. At similar loads the increase 

in peak heat fluxes when the engine speed varied from 1050 rpm to 

1500 rpm, is of the same order as for the motored engine. However, 

further increase in speed did not result in higher peak heat fluxes 

although mean heat fluxes were still rising. Similarly for location 

H2 as shown in Fig. (6.18) the influence of engine speed is less 
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significant in the fired engine than under motored conditions. 

No logical explanation could be given at the time and it was 

not until some radiation measurements were carried out, that a 

plausible explanation could be given for the above behaviour. 

The radiant flux measured at positions Rl and R2 (see Fig. 

(6.9) for location) are also shown in Figs. (6.17) and (6.18) 

for comparison. A glance at the radiant flux curves would 

reveal contrary effects of engine speed at the two locations. 

Increased flux from the bowl centre (Rl), but reduced flux from 

the annular region (R2) with increased speed. This appears to 

suggest increased concentration of combustion process in the 

piston bowl at high engine speeds, with less time available for 

expansion of still very hot products to the annular region. 

Hence, the convective flux would also be less in the annular 

region at high engine speed, as recorded at Hl, H2 and H3. 

Cine film study of combustion by Morris (65) showed that high swirl 

conditions, constrain the combustion products in the piston bowl 

longer. 

An interesting argument may also be reached from the rapid 

drop of heat flux in the expansion stroke at Hl for 1500 rpm and 

1750 rpm. The trapped air mass in this section of annular space of 

maximum width, seems to have a dominant effect in quenching the hot 

products flowing to the region early in the expansion stroke. 

Data obtained for piston crown locations Pl and P2 are 

shown in Fig. (6.19). It must be pointed out that the engine when 

running at 600 rpm under fired conditions, was unstable and 

difficult to control. It was only attempted to obtain extra results 

from the piston (because electrical noise interference through the 

linkage system prevented tests at engine speeds exceeding 1200 rpm). 
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At 600 rpm,loading the engine had a small effect on 

instantaneous heat fluxes. No reason can be advanced for 

registering higher fluxes at Pl than P2 with low engine 

speed, but at 1050 rpm, the measured heat fluxes at Pl and 

P2 followed the same trend as observed at nearby locations (Hl 

and H2) on the cylinder head. The heat f1uxes were as for the 

motored engine, lower than those observed on the cylinder head 

surface. Pl and P2 are at smaller radius, but this alone does 

not explain the discrepancy. The answer could only be in a 

greater influence on the piston surface of the trapped air in 

the annular region. 

In the piston bowl, negligible local variation was observed, 

therefore the load and speed effect for one location (Bl) is shown 

in Fig. (6.20). Note the significant effect of engine speed on 

the instantaneous heat fluxes, which again reflects the influence 

of gas motion on heat transfer. An additional effect on heat 

transfer would also result from a more efficient combustion under 

high swirl conditions. The effect of load on increasing'heat flux 

was approximately the same at both engine speeds and is explained 

by the higher average charge temperature of the products and air 

mixture. At 600 rpm, the results for 80% load was not obtained 

for Bl, but a drop of about 3% in the peak heat flux occurred at 

B2 and B3 under 80% load condition. This is supported by the 

longer combustion period due to more wall burning observed by 

Morris ( 65) . 

2 
At 1050 rpm, a peak heat flux of 4416 kW/m was recorded.at Bl 

which was I! times the maximum value recorded on the cylinder head. 

Mean heat fluxes recorded in the bowl, also increased with 

increasing engine speed and loading condition, and were much higher 



TABLE 6,4 

Fired Engine Total Heat Transfer Data 

Engine Condition Peak FluxjMean Flux. kW/m Position CA ,Peak(Flux/S.T) 
Speed (IMEP) 

Bar Hl H2 H3 Hl H2 H3 

1050 FNL 1759 2169 1417 374 376 374 
(3,5) 216 240 205 389 395 405 

F40%L 1942 2668 1436 373 372 380 
( 4. 3) 238 266 240 399 386 397 

F80'}',L 2391 2868 1976 369 376 376 
(5.5) 240 312. 293 396 392 395 

1500 FNL 2167 2540 1680 382 382 380 
'(3,6) 265 246 228 396 405 396 

F40'}',L 2424 2557 1753 378 392 387 
(4.6) 302 274 270 401 414 410 

F80'}',L 2996 1967 392 369 - -(6 .0) 301 294 405 405 

MOT 1334 1883 1487 380 366 378 
178 184 170 426 389 405 

1750 FNL 2042 2767 2555 365 370 378 
(3.7) 275 284 264 376 387 395 

F40%L 2247 3024 2671 368 378 383 
(4.5) 300 331 311 373 395 399 

F80%L - - - - - -(5,7) 

MOT 1617 2375 2268 365 360 362 
210 232 223 376 381 388 

. 

Surface Temp. 

Hl H2 

7,9 9.5 

9,24 11,5 

9,6 12.3 

9,3 10.4 

9,4 11.56 

12.2 -
5,8 7.5 

4.5 9.6 

4.4 9,8 

- -
4.1 7,5 

Swing °C 

H3 

6.2 

6.4 

7.6 

6.6 

6.9 

7.3 

5.8 

9 

8.7 

-
8 

I .... 
w 

"" I 



Table 6,4 (continued) 

PF =peak flux, MF =mean flux, PFP = PF position, PSTP = peak surface temperature position, DSTS = dynamic surface 

Engine Condition Measured 
Speed (IMEP) Parameter 

Bar Pl P2 

600 FNL Peak flux 1095 748 
(3 .o) Mean flux 283 192 

PF position 360 362 
PST " 396 382 
DST swing· 6,2 3.3 

F407oL PF 1247 872 
( 3 ,8) MF 200 207 

PFP 380 360 
PSTP 413 376 

I· DSTS 5.9 3.7 
F8MoL PF 1265 958 
(4,8) MF 220 219 

PFP 364 364 
PSTP 396 378 
DSTS 7.2 3.8 

1050 FNL PF 1300 1959 
MF 200 207 
PFP 378 375 
PSTP 384 384 
DSTS 47 7.1 

F4or.,r, PF 1604 2125 
MF 213 233 
PFP 380 381 
PSTP 382 390 
DSTS 5.4 8,1 

F80')'oL PF 1752 -
MF 244 -
PFP 367 -
PSTP 379 -
DSTS 5.9 -

LOCAT I 0 N 

Bl B2 

1955 1812 
270 249 
367 377 
379 383 
6.9 8.5 

2235 2257 
322 290 
367 367 
376 386 
6.9 9.4 
- 2224 
- 314 
- 372 
- 388 
- 9 

3148 1436 
320 295 
368 363 
377 375 
7,6 5.3 

3728 2267 
335 280 
368 365 
377 380 
9,1 7.4 

4416 2540 
340 305 
370 367 
380 380 

11.1 8.0 

B3 

2120 
265 
356 
371 
6.4 

2211 
311 
364 
375 
7.3 

2164 
413 
362 
382 
7.4 

2543 
354 
360 
369 
5.4 

3913 
412 
362 
370 
8.4 
--
-
-
-

B4 

1895 
271 
360 
390 
7,4 

1920 
334 
363 
371 
7.8 
-
-
--
-

1900 
351 
366 
375 
5.9 

4364 
408 
362 
370 
9,5 
-
-
-
-
-

temperature 
swing 

I ..... 
w 
w 
I 
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than the mean flux measured at other surfaces of the engine 

cylinder. Table 6.4 summarises the fired engine data obtained. 

6.6 Measured Radiant Flux in Diesel Engines 

In view of the complexity of the theory and the associated 

uncertainty in the calculated values of gas emissivities, total 

radiation measurements are still in many respects the most reliable 

source of information with which to design heat transfer equipment 

and to evaluate. the relative importance of radiation heat transfer 

in internal combustion engines. Therefore to further our knowledge 

of heat transfer in diesel engines, the instantaneous radiant 

flux was measured at two locations (Rl and R2) on tbe cylinder 

head as shown in Fig. (6.9). Position Rl was directed at the 

centre of the piston bowl and R2 directed at the flat surface of 

the piston just outside the bowl when the piston is at TDC position. 

6. 6.1 Reproducibility of measured data and cycle-to-cycle 

variation 

In order to establish the repeatability of the experimental 

data, the test run at 1500 rpm 40% load condition was repeated at 

the end of the collection of radiation data from position Rl. 

Results of the two tests are compared in Fig. (6.21a), in the form 

of the recorded voltage. The repeatability is very good considering 

the many factors that affect the radiation heat transfer. It must 

be pointed out that these traces are the average of 15 cycles and 

that comparison of single cycles.is meaningless. The large cyclic 

variation of radiation signal observed at Rl under different 

conditions is shown in Figs. (6.21b) 
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Although soot deposition on the viewing window was not a 

problem over short periods of running (e.g. 10 minutes under 

medium load conditions), the repea tabili ty of the data was 

ensured by first cleaning the viewing window at the beginning 

of each test and again before the heavy load test. Secondly, 

the engine operating condition was maintained at a stable state 

during the entire data collection process to allow for reliable 

averaging of a large number of cycles. The calibration of the 

detector was also checked several times throughout the engine 

tests. 

6.6.2 Effect of engine load (equivalence ratio) on radiant 

flux 

Plots of the measured radiant flux at positions Rl and 

R2 are shown in Fig. (6.22) and Fig. (6.23) respectively. Note 

at each engine speed tested, the highest peak emissions were recorded 

for the highest equivale?ce ratio run. This finding was in agree

ment with the average flux results obtained by Flynn (34 ), discussed 

in Section (1.2), but not with the peak emission trend. Flynn stated 

that the drop in peak emission after exceeding a certain equivalence 

ratio was unexpected and explained the behaviour by:-

1) Possible decrease in reaction zone temperatures caused by 

the higher overall F/A, or by significant formation of carbon 

particles which may have masked the view of the hotter particles 

in the reaction zone. 

2) Penetration of the fuel spray in the viewing passage, which 

was away from the influence of the air swirl and might have 

burned in a different manner than those in the main chamber. 

In the engine used here, the swirl is high (17 000 rpm mean 
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swirl or 34 000 rpm peak swirl at 1500 rpm engine speed) compared 

with that of Flynn's engine (4000 rpm mean swirl at an engine 

speed of 2000 rpm) and hence the problem of over-richness would not 

arise .. Therefore the results as expected, showed an increase of 

instantaneous radiant emission with greater equivalence ratio. 

The trend of the variation of radiant flux with increasing load 

could be explained by:-

a) Increased fuel injection would lead to larger flame size, 

hence increased radiation. The literature shows no change 

in flame temperature with increasing F/A ratio. 

b) Rich mixture zones are expected with increased fuel injection 

which tends to form more soot in the reaction zone followed 

by combustion with increased flame luminosity causing higher 

radiation. In general, the high swirl would result· in 

efficient combustion. 

The high F/A run produced exhaust smoke. Whether this smoke 

production is directly related to the higher radiant emission values 

is unknown. 

Radiant emission started rising more or less at the same 

crank angle, but peak emission position occurred later (3-5° CA) 

as engine load increased from no-load to 80% load. The shift was 

most likely caused by the accompanying increase in ignition delay 

with changed mode of combustion at rich mixtures. The peak radiant 

emission recorded in the present work occurred between 365-375° CA, 

compared to Flynn' s ( 34 ) recorded peak emissions between 360-370° CA. 

The early detection of maximum emission by Flynn may have been 

related to the viewing window which was looking into fuel spray plane 

where combustion is started. The viewing field at Rl was into the 
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centre of the piston bowl, away from the rich mixture zone near 

the combustion bowl wall where combustion starts according to 

the work of Morris (65). 

6.6.3 Effect of engine speed on radiation heat transfer 

The effect of engine speed on measured radiation was 

different for the two locations of measurement. Therefore, the 

results obtained are discussed separately for each position. 

i~ Measured radiant flux at position Rl 

Data in Fig. (6.22) shows the radiation flux observed at 

position Rl. When the engine speed was increased, holding other 

factors constant (note the slight change in equivalence ratio), 

both peak and total radiant emission increased. This effect of 

engine speed was not unexpected because in the test engine,measured 

gas swirl was shown to increase from10000 rpm to 34 000 rpm as 

engine speed varied from 600 rpm to 1500 rpm. Such increase of 

gas motion is expected to improve air-fuel mixing and results inmore 

efficient combustion. In addition to this, it is thought from 

Morris' photographic studies (65) that the higher air swirl conditions 

tend to constrain the combustion products in the piston bowl longer. 

Thus increased engine speed may lead to concentrated and more complete 

combustion at the centre of the combustion chamber because of more 

fuel vapour driven to the centre by radial (squish) velocity com

ponents which increased from about 9 m/s to 34 m/s as the engine 

speed increased from 500 rpm to 1500 rpm (Derham (44) ). In other 

words increased engine speed affected the geometry of the flame in 

the cylinder. 
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A change in position of peak radiant emission was observed 

0 
with increasing engine speed (about 5 cA/500 rpm). Also, the 

decay of the radiant heat flux on a crank angle basis was slower 

as speed increased. These effects would be expected if one 

associated a more or less fixed time interval for combustion 

and carbon particle formation and destruction process. 

ii) Measured radiant flux at position R2 

Fig. (6.23) shows the measured radiation heat flux at 

location R2. The instantaneous radiant flux increased first 

with engine speed up to 1050 rpm and then dropped as the engine 

speed increased further. This trend was not observed at location 

Rl. At low engine speeds (600 and 1050 rpm) the heat flux at R2 

indicates the expansion of the flame and combustion to the detector 

viewing field (annular region). At higher engine speeds with less 

time available near TDC, the expansion of the hot products to the 

measurement region, may not be significant. The foregoing would be 

in agreement with the observation at Rl, which indicated concentrated 

combustion in the bowl. The concentrated combustion in the bowl must 

be related to the high swirl-squisb velocities induced at high engine 

speed. 

Tbe shape of the radiant heat flux curves obtained are unique 

for each location of measurement. At Rl, a smooth radiant flux 

curve with a single peak, indicates a gradual increase in temperature 

and size of radiating body. In contrast a fluctuating curve with 

two peaks was obtained at R2. The first peak appeared to be 

associated with the first stage of rapid combustion resulting the 

expansion of the flame into the annular region. The second peak, 
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occurring later (380-400° CA) must be associated with uncovering 

by the piston of the hot gaseous products in the combustion bowl. 

The time averaged radiant heat flux rates could not be 

measured directly by the radiation detector. However, the 

integrated values obtained for locations Rl and R2 are given 

in Table 6.5 

TABLE 6.5 

Time-averaged radiation heat flux considered over the compression

expansion stroke only. 

!'{ 

kW/m
2 Mean Heat Fluxes in 

Location Load Condition Engine Speed rpm 

600 1050 ·' 1500 1750 

FNL - 4.88 12 21 

Rl F40/L - 6. 76 19.5 30 

F80/L - 13.2 32.6 53.6 

FNL 15 14.4 8.6 17.2 

R2 F40/L 22.5 23.4 16 18.8 

F80/L 26 45.4 39.1 -
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6.7 Relative Importance of Radiant Heat Transfer in High Swirl 

Diesel Engines 

A visual comparison between the measured ·instantaneous 

radiation fluxes at positions Rl and R2 and the total instant

aneous heat fluxes measured at Hl and H2 were presented in 

Figs. (6.17) and (6.18) respectively. Considering the position of 

measurements, radiant flux at Rl should be compared with the 

measured total flux in the piston bowl. It will be seen that the 

peak radiant flux for engine speed at 1050 rpm is less than 8% 

of the measured total peak flux in the bowl. It is expected that 

at higher engine speeds, the radiant/total percentage will not 

change significantly or may be reduced due to better air-fuel 

mixing and less carbon formation and by increased convective com

ponents, (No data of total heat flux was obtained in piston bowls 

at higher engine speeds). Peak radiant fluxes at Rl are between 

15% to 20%.of the total peak fluxes obtained at Hl. On the other 

hand, peak radiation flux at position R2 is 16% of the total peak 

flux at H2 for 1050 rpm, heavy load condition. Smaller percentages 

are observed at higher engine speeds, decreasing to about 5% at 

1750 rpm, medium and low load conditions. 

Comparison on the basis of measured (integrated) mean fluxes 

during the compression-expansion strokes, shows that radiant flux 

at Rl represents 5% of the tot~l flux measured in the bowl under 

heavy load conditions (1050 rpm) and does not exceed 16% of the 

mean flux measured on the cylinder head, both obtained for 1750 rpm 

heavy load condition. A comparison on the basis of mean fluxes 

obtained over one whole cycle, the radiant flux will represent no 

more than 7% of the total heat flux under the most·favourable conditions. 

Therefore, the percentage values of radiant flux/total flux obtained 
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in the present high swirl engine falls short of values of up to 

45% reported by Ebersole (32) for low swirl 2-stroke diesel 

engine, 15% - 33% by Oguri (33) for large low swirl engines, 

and about 20% by Flynn (34) for moderate swirl engine, 

· Bec<llU.Se: the measured radiant and total heat transfer are 

critically dependant on location of measurement, the above 

mentioned relative magnitudes of radiant and total heat fluxes 

will not be representative for the whole cylinder surfaces. In 

addition, the small interval (near TDC) during which the radiant 

heat transfer becomes significant. However, the difference between 

the gas motion in the present high swirl engine and the low swirl 

engines tested by Ebersole (32), Oguri (33) and Flynn (34) is 

likely to be the major cause for differing fractions of radiant/ 

total heat transfer. Firstly, the intense gas motion will improve 

air-fuel mixing which in turn will reduce carbon formation and 

radiant heat transfer. Secondly, the intense gas motion will lead 

to increased convective component of heat transfer. Hence the 

overall effect results in smaller radiant/total heat transfer. 

6.8 Prediction of Instantaneous Heat Flux Using Bulk Mean Gas 

Temperature 

6. 8 .1 Bulk mean gas tempera. tu re 

Most of the analyses carried out by past workers in convective 

heat transfer in I.e. engines have utilised the concept of bulk mean 

gas temperature calculated from the measured pressure. The bulk 

mean concept does not allow for spatial variation of temperature in 

the co~ustion space. It is quite certain, however, that temperature 

gradients exist in the gas space, particularly during the early stages 

of combustion, this is confirmed by cine film studies of the combustion 
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process, which indicates that combustion in a diesel engine is 

initiated at several independent zones of burning, which merge 

later in the combustion period. The system will be further 

complicated in the presence of air swirl where the tendency is 

for the hotter and less dense products to convect upwards and/or 

towards the central region of the swirl flow. These considerations 

show that the bulk mean concept cannot be expected to give any

thing more than an approximation to the resultant heat transfer 

calculated for any particular area, The error introduced into 

the instantaneous predicted heat fluxes will be greater of course 

because of strong spatial temperature distributions in the 

combustion chamber, However, in motored engines, it is expected 

that bulk mean gas temperature would represent the local gas 

temperature accurately. 

The measured pressure and the calculated bulk mean gas 

temperatures under motored and fired (different load) conditions 

at an engine speed of105o rpm, ·eoo rpm and 1500 rpm are shown in 

Figs. (6.24) to (6.26) respectively, 

6.8,2 Prediction of local convection heat flux in motored 

engines 

The foregoing experimental data showed considerable variation 

in the surface heat flux over the cylinder head and piston areas. 

variation was observed under motored operation and to a larger 

degree in the fired engine, which suggests a temperature gradient 

in the gas between the two surfaces, 

The modified flat plate forced convection equation described 

in Section (2,1) was used to predict the local heat transfer 
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coefficient for each of the conditions tested. Note that none of 

the previously proposed correlations predict local heat fluxes 

in the cylinder except that of Le Feuvre (20) which also shows 

wide discrepancy with experimental results. The bulk mean gas 

temperature and the local surface temperature were used to obtain 

a driving temperature for heat transfer. All gas properties were 

calculated on the basis of the measured pressure and the bulk mean 

gas temperature (calculated from the measured pressure, trapped 

mass and instantaneous volume) in the manner suggested by Annand 

(6). The measured local instantaneous gas velocity was used in 

the calculation of Reynolds number. Fig. (6.27) shows the 

calculated and measured local heat fluxes on the cylinder head; 

under motored conditions. Peak calculated heat fluxes coincide 

with TDC because peak swirl and maximum gas temperature occurred 

at TDC, unlike the measured peak flux which shows a phase shift. 

In general, the measured results are greater than the calculated 

local heat fluxes, and this was especially significant at the 

smaller radius location H2. The agreement for location Hl is 

quite good in the compression stroke, but not so during expansion. 

The swirl velocities used in the calculation, which are the mean 

value of measurements at many locations, are unlikely to be 

responsible for the discrepancy. Squish velocities near the bowl 

edge wh~ch were neglected, may have greater influence than expected 

and perhaps as much as indicated by the measured flux at H2. 

It can be seen that deduction of a steady component of heat 

flux from the measured heat flux curve would improve .the agreement 

with the calculated va1ues of heat flux. The steady component 

2 2 
difference is about 200 kW/m for H2 and lOO kW/m for H3. Such 
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discrepancy could not be compensated by local gas temperature 

variation, which is not expected to be large in a motored engine, 

but errors caused by two-dimensional heat transfer in the 

measured mean value may account to some extent for the discrepancy. 

The predicted heat flux curves for piston surface are shown 

in Fig. (6.28) compared with the maximum and minimum measured 

flux curves obtained for different locations at the same radius. 

In the piston bowl, again the predicted flux was less than 

measured, but good agreement was obtained for the piston surface 

in the annular region. 

Similar discrepancy was observed at other engine speeds, 

but in general the difference was less at the higher engine speed 

(e.g. 1500 rpm). An explanation for this behaviour can be found 

in the gas velocity measurements made by Derham (44) in the test 

engine. It was found that squish velocities were significant in 

the interval 350 to 360° CA with peak values reaching 60% of swirl 

component at low engine speeds (500 rpm), and 30% of swirl at high 

speeds (1500 rpm). These radial velocities would enhance the 

resultant gas velocity by about 18% at 500 rpm and by 6% at 1500 rpm 

0 
near TDC (350-360 CA). Therefore, as radial velocities were not 

considered in the prediction, it·seems that this could be the reason 

for higher measured fluxes than predicted values, particularly at 

low engine speeds. 

6.8.3 Prediction of local heat flux in fired engines 

The 3YWA Ruston engine is a type where it is now suspected 

that bulk mean gas temperature under fired conditions is not at all 

representative of the local variations in gas driving temperature 

for heat transfer. This suspicion is particularly strong in 



-145-

consideration of the experimental flux variations measured in 

the piston bowl and at other surfaces. However, it is interesting 

to ignore such considerations for the present and to inspect the 

result of a heat transfer prediction made on the basis of bulk 

mean gas temperature. This is done at this stage because it is 

thought that a comparison of the predicted results with those 

actually measured, will be more informative with regard to the 

suitability of the bulk mean gas temperature in the present heat 

transfer situation. In addition to the above, the radiation 

effects are expected to augment the predicted heat flux in the 

fired engine. Fortunately the measured radiant component of heat 

transfer was not large enough to have a significant effect on the 

predicted convective heat transfer. 

Therefore as for motored engines, the modified flat plate 

equation combined with the information on motored gas velocities, 

gas properties evaluated at bulk mean temperature and measured 

pressure and measuredlocal surface temperature, were used to predict 

the local heat transfer in the fired engine. The measured and 

predicted heat flux curves are presented in Figs. (6.29) and (6.30). 

In order to facilitate comparison, the measured heat fluxes for 

no-load and 80% load conditions for each location are presented 

with the corresponding predicted values. Good agreement during the 

compression stroke was followed by a large discrepancy during the 

combustion period and expansion process. This is thought to result 

from the inadequate representation of the local gas temperature. 

Inspection of data from the cylinder head and piston annular region 

locations, indicates that the driving gas temperature (bulk-mean) 

used for prediction of heat transfer in the annular region is high 
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for the early combustion period (up to 20° CA ATDC). The gas in 

the annular region is expected to be predominantly air, In the 

expansion stroke, however, the reverse occurred, The low predicted 

heat fluxes indicated that the gas temperature near the cylinder 

head becomes higher than the calculated bulk mean temperature. 

This suggested the expansion of combustion products into the 

annular region, and the convection of the hotter products upwards, 

which remained adjacent to the cylinder head surface throughout the 

expansion stroke. 

The measured and predicted heat fluxes in the piston bowl 

(Fig. (6.30) ), also supported the above explanation, As shown, 

the measured values were generally higher than predicted values, 

this time indicating that actua 1 gas temperature in the bowl is 

greater than the calculated bulk mean gas temperature, These 

results in general suggest two-zone temperature effects. 

6. 8.4 Prediction of local area-mean heat flux 

To avoid confusion, local area-mean heat.flux is the average 

value obtained for different sections of the cylinder, e.g. the 

cylinder head, piston bowl and piston annular region. The bulk

averagedflux is the overall average obtained for the whole chamber 

surface which will be discussed in section (6,9.4). 

i) Prediction of local area-mean heat flux in the mo.tored engine 

Having failed in the prediction of local heat fluxes on the 

basis of bulk mean gas temperature, an attempt was made to predict 

area-mean heat fluxes, where the assumption of bulk mean gas 

temperature is perhaps a more realistic proposal, The area-mean 
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heat flux curve for the cylinder head was obtained by calculating 

the instantaneous arithmetic-mean heat flux for the three locations 

Hl, H2 and H3. Note that although the thermocouples were far 

apart on the cylinder head, they fall on circles with small 

differences in radii. Thus the predicted heat flux was calculated 

for the mean radius of the three positions of measurement. 

It was noted previously that most proposed correlations 

predict a single heat flux-time curve for the cylinder head or 

the whole chamber area. Therefore a comparison with the most 

popular correlations was also possible. The extent to which 

Annand 's equation 1·4 , Woschni 's equation 1.12 and the present 

correlation predict the experimental area-mean data under motored 

engine are shown in Fig. (6.31) for the cylinder head. The values 

of the empirical constants in Annand's equation were selected in 

the range suggested by Annand (6 and 15) as suitable for high swirl 

diesel engines. (a= O.B, b = 0.7, a'= -0.2 and c = 1.5ci) 

(CT = Boltzman constant). Similarly, Woschni's equation was used 

with the suggested constants and expression for gas motion. None 

of the correlations provide a good fit of the experimental data. 

The modified flat plate equation (to account for radial changes of 

gas velocity and heat flux) is seen to provide the better prediction, 

particularly at high engine speed. Under all conditions the discrepancy 

is larger in the expansion stroke, suggesting a higher driving temper

ature for heat transfer especially on the cylinder head. Here again 

the relatively high influence of squish velocities (ignored) at low 

engine speed explains the discrepancy observed at 600 rpm. Better 

agreement at high engine speed is obtained because of negligible 

influence of squish velocities. 
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Fig. (6.32a) shows the predicted and measured mean

instantaneous fluxes for piston bowl and piston annular region 

at 600 rpm and 1050 rpm. Similar discrepancy as for the cylinder 

head is observed, with the best fit of the predicted and measured 

heat flux obtained for piston crown annular regions at 1050 rpm. 

The instantaneous mean heat fluxes obtained from Woschni's equation 

are very low in the motored engine, with little response to the 

change in engine speed. Annand's equation gives better prediction 

at low engine speed and for the central region of the cylinder 

(piston bowl), where gas motion is low. However, as Annand's 

equation and Woschni' s equation were derived for application to 

fired engines, the discrepancy is justified. The prediction of 

instantaneous mean heat fluxes by the flat plate equation is 

different by up to 50% of the measured mean flux at low engine speed. 

Improved agreement obtained at high engine speed suggests two 

possible causes: 

a) Smaller errors involved in the assumption of one-dimensional 

heat transfer in the analysis of transient heat flux from 

surface temperature record, because of shorter time available 

for heat transfer parallel to the surface. At the same time, 

any errors made in the measurement of steady component of 

heat flux. (also assumed one-dimensional) has a smaller 

percentage effect on the high transient fluxes recorded at 

higher speeds. 

b) Smaller errors involved by ignoring squish velocities near TDC 

(350 - 360° CA) in the prediction of heat flux. Ignoring 

squish velocities leads to a reduction in resultant gas 

velocity of 18% for 600 rpm and 8% for 1050 rpm. 
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The above argument concerning the smaller effect of errors 

involved in measurements when the measured parameters are large, 

is supported by the improved prediction of mean instantaneous 

heat flux on the cylinder head at 1050 rpm. 1.69 bar manifold 

pressure shown in Fig. (6.32b). The squish velocities under 

supercharge conditions were not measured by Derham (44), but are 

expected to be higher than naturally aspirated conditions which 

will be enough to account for discrepancy between measured and 

predicted, near TDC. 

ii) Prediction of local area-mean heat flux in the fired engine 

In the fired engine, poor agreement between the measured area

mean heat fluxes and the predicted values was observed under all 

conditions. Fig. (6.33) shows the results obtained for cylinder head 

surfacesat 1050 rpm and three load conditions. Inspection of the 

heat flux curves indicates the same trend in the discrepancy, with 

both Annand's equation and flat plate equation (ignoring Woschni's 

equation for a moment) giving greater heat fluxes than measured 

during early combustion period, but less for the remainder of the 

expansion stroke. The trend again indicates the inadequate use of 

bulk mean gas temperature as the driving temperature for heat 

transfer. 

Note that as the measurement positions on the cylinder head 

fall in the annular region, away from the early combustion in the 

bowl, the gas in this region is mainly pure air and will be at 

a temperature lower than the bulk mean. 

Calculations on the basis of two-zone temperature distribution 

will be presented in the following section to clarify the above 

argument. 
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A comparison of the measured and predicted heat fluxes 

for the cylinder head at 1500 rpm and different load conditions 

are shown in Fig. (6.34). In this case an even larger discrepancy 

than for 1050 rpm is observed, suggesting wider difference between 

calculated bulk-mean and actual gas temperatures in the annular 

region during combustion. This behaviour is in agreement with the 

decreasing radiation flux, measured in the annular region (R2) at 

high engine speed as shown in Fig. (6.23). The larger discrepancy 

at high load is caused by higher calculated bulk mean gas 

temperatures, due to more fuel injected. 

For .the piston crown.results for fired conditions were 

obtained at speeds of 600 rpm and 1050 rpm. Comparison of measured 

area-mean and predicted mean instantaneous heat fluxes were obtained 

for the piston bowl and the flat annular region of the piston surface 

separately. The comparisons are shown in Figs. (6.35) and (6.36). 

In the annular region at 600 rpm, all the predictions differed 

widely from the measured heat flux. Only the flat plate equation 

predicted peak heat flux values with an acceptable margin. It is 

obvious that in Annand's and Woschni's predictions, where piston 

mean speed is used to represent the gas motion, the effect of piston 

speed exceeds the actual magnitudes of gas motion at low engine speed. 

Note that in the present engine, the ratio swirl/engine speed changed 

from 1.3 at 600 rpm to 2.3 at 1500 rpm. Therefore, the use of piston 

mean speed for gas motion, overestimates and underestimates this 

effect at low and high engine speeds respectively. 

At an engine speed of 1050 rpm, the flat plate equation gives 

good agreement with the measured fluxes during compression and 

expansion strokes, but again predicts high values near TDC during 

the combustion period. This trend, as in the case with cylinder head 
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results, will be described by the inadequate representation of 

the driving gas temperature, particularly during combustion. 

The corresponding predictions by Annand' s equation and Woschni 's 

equation are the same as in Fig. (6.33). Annand's prediction is 

also affected by the temperature distribution, while the weakness 

of WoschnL's prediction is the late increase and early decrease 

of heat fluxes, caused perhaps by its sensitivity to gas temperature. 

The latter behaviour is obvious from Woschni 's prediction of 

relatively low heat fluxes for the supercharged condition, Fig. (6.32b) 

where pressures are high, but gas temperatures are similar to the 

naturally aspirated engine. 

The measured area-mean heat fluxes in the piston bowl are 

compared with predicted values in Figs. (6.37) and (6.38). The 

sharp high peaked characteristic of measured mean heat flux-time 

curves, were obviously linked with the sharp heat release character-

istic of the initial combustion taking place in the bowl. The 

possibility of the flame propagating and hitting the surface is not 

unexpected. The predictions by the flat plate equation, on the basis 

of bulk-mean gas temperature are low throughout the compression-

expansion strokes. Near TDC and during the combustion period, the 

gas temperature in the bowl is eXPected to be much higher than the 

calculated bulk mean temperature. Improved prediction of instantaneous 

heat flux in the bowl under heavy load conditions was observed when 

the driving temperature for heat transfer is represented by the 

adiabatic flame temperature as shown in Figs. (6.37) and (6.38). 

Concerning the steady component of the measured heat flux, 

2 this was large in the piston bowl (greater than 300 kW/m ) compared 

to other positions of measurement on the cylinder head and piston 

(see Table 6.4). It is now suspected that two-dimensional heat transfer 
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may have exaggerated these measurements. On the other hand, the 

predictions on the basis of heat transfer coefficient and 

application of Newton's cooling law, gives negligible values of 

0 0 
heat transfer up to 30 CA BTDC and after 50 CA ATDC. Therefore, 

some means of estimating a steady component of convection heat 

transfer must be found, perhaps on the basis of gas-mean temperature 

throughout the cycle, or during the trapped period, 

6,9 Prediction of Instantaneous Heat Flux on the Basis of Two

Zone Temperature Distribution 

6.9.1 Two-zone temperature model 

The large variation in magnitudes of measured heat fluxes at 

the different surfaces of the combustion chamber, and the prediction 

of these fluxes on the basis of bulk-mean gas temp~rature, all 

suggest the presence of different temperature zones in the cylinder, 

The total heat flux results and the radiation flux results, in 

general indicate the presence of a hot gas core in the piston bowl 

and a cooler gas in the annular region. The two zones seem to exist 

up to 400° CA (40° ATDC) and they are better defined at higher engine 

speeds, 

0 
Consider the combustion chamber about 15 CA BTDC when the 

fuel is injected, The piston-cylinder head clearance at this point 

is only 2 mm, which results in all the fuel being injected into 

the piston bowl, if at this stage the following assumptions are made: 

a) The fuel injected forms a chemically correct mixture with a 

portion of the air in the bowl to form a so called mixture-

zone, and 
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b) That the remainder of the air in the cylinder forms the 

air zone, assumed not to mix with the mixture-zone, 

therefore occupying the volume above the mixture, and 

includes the annular region. 

If this system is to be equivalent to the actual cylinder 

conditions, then the following may be deduced from application of 

gas laws to the different zones. 

Apply gas laws to the actual cylinder conditions (as usual 

assuming a homogeneous mixture), therefore: 

PV = m RT (6.1) 

For the air zone: 

(6.2) 

and for the chemically correct mixture zone: 

P V =m RT 
m m m m m 

(6.3) 

It may be assumed that pressure is the same everywhere in the 

cylinder, i.e. P = P = P (measured) and: a m 

V +V =V (6.4) 
m a 

Therefore, combining the above equations, it can be shown that 

the chemically correct mixture temperature is given by: 

T = T + 
m m R 

m m 
(6.5) 
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which reduces to: T ~ Ta during compression. 

In equation (6.5), it was further assumed that the gas 

constant for the chemically correct mixture ( air ""15 ) of 
fuel 

fuel vapour and air is the same as that for pure air. Such 

an assumption was found to cause no more than 3% error in the 

calculated mixture temperature. Therefore, the combustion zone 

(c.c.m. zone) temperature was calculated by the simplified 

equation: 

where 

T ~ 
m 

m.T - m T 
a a 

m 
m 

m ~ total mass of charge in the cylinder 

m ~ mass of fuel and air forming a chemically correct 
m 

mixture 

m = mass of excess air in the cylinder. 
a 

T, Tm & Ta are bulk-mean, mixture (combustion) zone and air 

zone temperatures respectively. 

The bulk mean gas temperature T is calculated as usual, 

from the measured pressure and initial trapped conditions using 

gas laws. The air temperature Ta' may be assumed to follow a 

polytropic process, hence: 

n-1 
n 

(6.6) 

~ Ti ( PP 
i 

) (6.7) 

where Ti and Pi could be the temperature and pressure of air 

at IVC. 

Knowing the mass of the trapped air at !VC (m.) and the amount 
~ 

of fuel injected per cycle mf' the mass of the mixture in the 
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combustion bowl, mass of remaining air and total charge mass can 

be calculated. Hence the mixture zone temperature T 
m 

follows 

at each instant after combustion has started. The burning-zone 

temperature and the pure air-zone temperatures calculated for 

different test conditions are shown in Figs. (6.24) to (6.26). 

The rate of expansion of the mixture zone calculated by 

applying gas laws, shows that at 1050 rpm no-load condition, the 

mixture which initially occupies one third of the bowl volume, 

starts leaving the bowl at 380° CA due to expansion. Under 80% 

load, with the mixture initially occupying half the bowl, it 

starts leaving the bowl at about 370° CA. Outsquish velocities 

caused by the expansion are of the order of 3.0 m/s under no-load 

and 9.4 m/sat 80% load condition for an engine speed of 1050 rpm, and 

a corresponding outsquish velocity of 6.7 m/s to 15.3 m/sat an 

engine speed of 1500 rpm. Table 6.6 summarises some relevant results 

obtained from the two-zone temperature model. 

If the outsquish is slightly directed towards the cylinder head 

as is expected, the displaced cooler air would move downwards over 

the flat part of the piston which would explain the low measured 

fluxes obtained from the later surface. The cool air would move 

into the piston bowl· due to its larger density as shown by the 

sketch (6.A). Alternatively the cool air may be forced to a rotary 

motion by further expansion from the bowl which with the swirl 

component would form a helical motion in the annular region. 

6.9.2 Combustion induced swirl increase 

In internal combustion engines, random gas motion is expected 

to result by the combustion process. ThiS combustion generated gas 
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TABLE 6.6 

Rate of radial spread in the annular region and outsquish velocities 
of hot products from piston bowl obtained from two-zone model. 

Radial spread cm from bowl centrejoutsquish velocity m/s 

'1050 rpm ' cAO 1500 rpm 
FNL F40%L F80%L FNL F40%L F80%L 

360 

370 2.25/9.4 2.25/5.4 2.3/15.3 

380 -/3.1 2.67/4.8 3.75/2.3 2.25/6.75 2.85/6.75 4.0/2.5 

390 2.8/3.2 3.44/1.8 4.1/0.9 3.0/4.3 3.6/3.2 4.28/1.1 

400 3.3/1.0 3.7/0.9 4.26/0.25 3.48/1.8 3.96/0.7 4.4/ -

410 3.47/0.9 3.84/0.9 4.3/0.25 3.66/1.3 4.0/0.5 4.4/ -

420 3.6/- 3.99/ - 4.34/ - 3,75/- 4.1/ - 4.45/ -

600 rpm 

FNL F407.L F80%L 
360 

370 

380 1. 37/5.9 2.75/3.1 

390 2.8/1.66 3,0/1.2 3.6/1.1 

400 3.24/0.9 3.3/1.0 3.9/0. 7 

410 3.5/0,1 3.6/ - 4.1/ -

420 3.52/ - 3.6/ - 4.1/ -
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motion would have an additional effect on heat transfer and was 

considered by Woschni ( 2 ) . It was assumed to be proportional 

to (T - T ) Therefore, in high swirl engines, an fired motored • 

increase in swirl component as well as random motion is expected 

to result from combustion. The following approach is made in 

order to approximately estimate combustion influence on swirl. 

Consider first the unburned charge moving at swirl (...)rpm. 

Then at any instant during combustion, imagine two adjacent 

portions of gas, one burned and the other unburned, separated 

by an imaginary boundary. 

The mass flow/unit area-unit 

time in direction of swirl of 

the fresh charge - P. U - u u 

and of the burned charge 

= 

Sketch (6.A) 

where u = velocity, P = density, subscripts u and b stand 

for burned and unburned gas. 

The momentum flux transported by the fresh charge in the 

direction of flow = p u . u 
u u u (6.8) 

Hence application of conservation of momentum in the direction of flow 

along with assumption of a uniform pressure field and negligible 

frictional effect results in: 

= p u 2 
b b (6.9) 
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i.e. velocity of burned gas 

OR in terms of swirl wb = wu {f . 

Calculations on the basis of two-zone temperature in the 

cylinder, at different operating conditions, produced values of 

ff of 1.2- 1.4 during the expansion stroke, and therefore an 
b 

increase in the motored swirl of 1.2 - 1.4. 

6.9.3 Predicted heat fluxes by two-zone model 

The prediction of heat transfer on the basis of the two-zone 

temperature distribution concept was complicated by finding when 

(6.10) 

(6.11) 

and where each zone became effective. In the present case, this was 

decided by the estimated expansion rate of the burning products as 

shown in sketch (6.8). Therefore, the mixture zone temperature would 

be the driving temperature in the bowl during the important period of 

heat transfer (10° CA BTDC to 30° CA ATDC). On the other hand, in 

the annular region where cylinder head and piston thermocouples were 

located, the pure air zone temperature is the effective temperature 

until the hot products reached the measurement position. Over the 

rest of the expansion stroke, a hot zone is assumed to remain adjacent 

to the cylinder head by nature of its low density, while a bulk mean 

temperature is assumed to be effective on the flat part of the piston 

surface caused by the outsquish mixing with cooler air in the annular 

region before passing over the piston surface. The increase in swirl 

was assumed to be complete when combustion was near completion (at 

0 about 390 CA) estimated from measured pressure diagrams. Therefore the 



-159-

predictions of the heat fluxes were corrected for both two-zone 

.temperature effects and the increase in gas motion. 

Figs. (6.39) and (6.40) show a comparison of the predicted 

mean instantaneous heat fluxes for cylinder head surface by the 

two-zone approach, with the measured and the previous prediction 

based on bulk mean gas temperature. Inspection of the heat flux 

curves for 1050 rpm engine speed, Fig. (6.39), suggests that in 

the measurement region, the air-zone temperature is the effective 

0 
driving temperature for heat transfer up to 370 CA. The effective 

temperature between 370° CA and 390° CA (during which the hot zone 

expands to the annular region) varies continuously from the air 

temperature towards the hot zone temperature, but in a manner which 

is unpredictable. Note that predicted heat fluxes during this 

period using either hot-zone temperature or air-zone temperature, 

are too high or too low respectively, compared to the measured flux. 

At 400° CA and beyond, the effective driving temperature seems to 

be the hot-zone temperature. At engine speeds of 1500 rpm, the 

same trend is observed, except that the unpredictable driving 

temperature interval stretched beyond 380° eA to 400° CA. At 410° 

crank and beyond, the hot-zone temperature was the driving temperature 

for heat transfer. 

According to the two-zone model considered, the rate of spread 

of the hot mixture-zone into the annular region depends upon the 

running conditions (see Table 6.5). Of course, in the actual case, 

the hot products will probably enter the annular region earlier than 

the model suggests, because of fuel mixing with excess air in the bowl 

but the temperatures would not be as high as calculated by the model. 
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Therefore in the crank angle interval, when the measurement 

region falls between the two temperature zones, (370 - 390° CA 

for 1050 rpm and 380 - 400° CA at 1500 rpm) the driving temperature 

for heat transfer is difficult to predict. It was found that the 

driving temperature in the annular region, changed gradually from 

air-zone temperature to hot mixture zone temperature with inter-

mediate values represented by the bulk mean temperature and then by 

arithmetic mean of hot zone and air zone temperature as follows: 

Driving tempera tu re for heat transfer 
Engine Air Bulk Ari th- Hot 
Speed Zone Mean me tic Zone 

Mean 

1050 rpm Up to 370° CA At 380° CA At 390° CA 390-EVO 

1500 rpm Up to 380° CA At 390° CA At 400° CA 400-EVO 

Note the gradual change of driving temperature from air-zone to hot 

product zone temperature, as the arithmetic mean temperature is 

greater than the bulk mean temperature. 

Similar predictions for piston annular region are shown in 

Figs. (6.41) and (6.42). For an engine speed of 1050 rpm, the air 

temperature is used up to 370° crank, beyond which the bulk mean 

temperature, plus the correction for combustion induced swirl, give 

good agreement with the measured flux. At 600 rpm the calculated 

heat flux based on air temperatures were low, again because of 

ignoring the relatively significant squish velocities. During 

expansion, a correction for increased swirl with use of bulk mean 

gas temperature produced acceptable agreement with the measured 

values. It is interesting to note the driving temperature (bulk-

mean) on the piston surface is lower than the temperature applicable 

for cylinder head surface (hot zone), which suggests the hot zone 
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being cooled by mixing with air and passing over cool walls before 

flowing over the piston surface as shown in sketch 6.B. 

The predicted and measured mean instantaneous heat fluxes 

in the piston bowl are shown in Figs. (6 .43) and (6 .44). The 

new prediction for 1050 rpm, on the basis of the hot-zone occupying 

the bowl is seen to be higher than the measured value at the low 

load condition, but low at heavy load condition. The discrepancy 

in the low load condition results could be explained by the fact 

that the actual gas temperature in the bowl will be less than 

calculated from the two-zone model because of dilution by excess 

air. On the other hand, the heavy load behaviour may be explained 

by presence of gas regions reaching adiabatic flame temperature in 

the actual engine, i.e. higher than the hot-zone temperature 

0 calculated from the model (adiabatic flame temperature=<=2500 K 

compared to maximum calculated two-zone temperature of 2300°K at 

1050 rpm). 

The latter argument would also explain the discrepancy observed 

at 600 rpm between the measured instantaneous heat flux and that 

predicted on the basis of the two-zone model. Another likely cause 

of low heat fluxes predicted at low engine speed, is the ignoring 

of gas motion components other than that due to swirl. 

6.9.4 Prediction of convection heat flux on bulk-averaged basis 

A final attempt was made to examine the area-averaged flux 

variation, taken over all measuring surfaces (accounting for the 

relative area each region represents) in relation to the bulk mean 

gas temperature variation in the charge. The predicted instantaneous 

surface mean heat flux variation obtained from equation (2.5), gives 
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reasonable agreement with the measured area-averaged flux, 

particularly near peak values as shown in Fig. (6.45). Prediction 

of heat flux was improved in the expansion stroke by accounting 

for combustion-induced swirl increase, but still the large mean 

components of heat transfer measured on the cylinder head and 

piston are partly responsible for discrepancy late in the expansion 

stroke. Note that the above prediction considers the cylinder head 

and piston surfaces only. Inclusion of the cylinder liner, usually 

with lower steady and transient components of heat transfer 

(average heat flux recorded at one inch below cylinder top was 

! heat flux measured on the cylinder head under fired conditions), 

will reduce the surface mean heat flux, Therefore, calculation of 

surface mean heat flux on the basis of bulk mean gas temperature 

will be possible if cylinder liner surface is included, 

6.10 Verification of Power Law for Convection Heat Transfer 

It was mentioned earlier that no attempt would be made to 

obtain yet another correlation which will be applicable to a 

particular engine and a limited number of test conditions. Nonetheless 

it was thought worthwhile to verify 'the use of the flat plate equation 

and the power law usually assumed in heat transfer problems, which is 

of the form: 

Nu = a R b 
e 

Reynolds number was formed using 27T'r 

(6.12) 

as local characteristic 

length, measured local gas velocity with the gas properties evaluated 

at the bulk mean gas temperature calculated from measured pressure. 

Heat transfer coefficient h, calculated from the measured local mean 

flux, the bulk mean gas temperature and local surface temperature is 

used to form Nusselt number. Fig. (6,46) shows some of the experimental 
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data (at 10° intervals) during the period 40° CA before TDC to 

40° CA after TDC. A comparison with the flat plate equation 

used, shows a considerable scatter. The evaluation of all 

properties in Re and Nu at gas bulk mean temperature may be 

partly responsible for the scatter. An account of the effect 

of gas properties evaluated at the surface temperature (or inter-

mediate temperature) was possible in a lumped form, according 

to Kays (97) by the following simple correlation: 

where 

Nu surface 
Nu (bulk mean) 

T n 
(_!f) 

Tw 

n ='=.15 for gases when T g) Tw. 

Therefore the corrected Nu with the corrected Re 

(accounting for combustion induced swirl where applicable) improved 

the relationship as shown in Fig. (6.47). 

Note that the radiation heat flux was not deducted from the 

(6.13) 

total measured heat flux in calculating heat transfer coefficient (h), 

because the radiant component was negligible. Also the above 

mentioned correction was not considered in the prediction of heat 

fluxes presented in this work. However the experimental data in 

general shows that the convection heat transfer in the diesel engine 

could be represented by the modified flat plate equation presented 

in section (2.1.3) which is: 

k 
q = 0.037 211 r ( 

(211 rW) 211' r 
0 

•
8 

--'-'::..:'--.::....:..::.<....:=-::. ) 
}l 

0.33 
(Pr) . [ Tg - Tw J (6.14) 
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6.11 Prediction of Radiant Heat Transfer in Diesel Engines 

As stated earlier, the complexity of the combustion process 

in the high speed diesel engine, and the many unknown phenomena 

involved, make an accurate theoretical calculation of radiant 

heat transfer in an engine impossible with our present knowledge. 

Also the use of simple radiation terms, similar to that suggested 

by Annand (6), to calculate instantaneous radiation flux on the 

basis of bulk mean gas temperature is unlikely to represent the 

temporal trend of radiant flux in the engine. This is because 

of the large difference between the radiating luminous flame 

temperature and the bulk-mean temperature in addition to the 

differing transient variation of these temperatures during the 

combustion-expansion phase of the engine cycle. Since no basic 

method is available for obtaining values of apparent radiant temp

eratures and optical thickness as a function of time during the 

cycle, the measured radiant flux and measured flame temperature in 

several diesel engines is first compared. The absorption coefficient 

of diesel flame and its variation is evaluated, then its use in 

prediction of radiant flux in other engines is investigated. 

6.11.1 Comparison of measured instantaneous radiant fluxes 

in diesel engines 

Measured radiant heat fluxes in three direct injection diesel 

engines (Oguri, Flynn and present study) are shown in Fig. (6.48). 

In order to facilitate comparison, the engines configuration and 

test conditions in each case were as follows: 



Engine type 
and test 
condition 

Bore x stroke 
(mm) 

CR 

Test speed 
(rpm) 

Swirl (rpm) 

Equivalence 
Ratio 

IMEP (bar) 

Injection time 
OCA BTDC 

Fuelling rate 
(gm/cycle) 

Nozzle config
uration 

Detector 
position & view 
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Flynn et al 

(34) 

D.l. 4 stroke 

114 X 114 

16.7 

2000 

4000 
(mean) 

0.44 

6.5 

20 

0.037 

5 x 0.25 (mm) -
1500 cone 

Cylinder top, 
across cham
ber 

Oguri and 
Inaba 
(33) 

D.l. 4 stroke 

150 X 220 

22 
(estimated) 

900 

No swirl 

Not available 

8.7 

15-20 (est) 

Not available 

Not available 

Cylinder head, 
bowl edge 

Present 
Study 

D.I. 4 stroke 

102 x 104 .a 

15.3 

1750 

17000 (mean), 
34000 (peak) 

0.487 

5.7 

18 

0.026 

4 x 0.27 mm -
150° cone 

Cylinder head, 
bowl centre 

. 
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Flynn measured the radiant flux by a lead-selenide photo

conductor; Oguri used a surface thermocouple, whilst a .pyro

electric detector was used in the present investigation. 

Assuming these detectors were adequate in response to detection 

of instantaneous radiation, the large difference observed in the 

radiant fluxes in the three engines reflects the influence of 

some important factors (operating condition or geometry) listed 

above. The late peak radiant flux measured by Oguri, must have 

resulted by prolonged combustion in the low swirl engine and 

perhaps by a slow rate of injection (not reported but expected at 

low engine speed) which would increase soot formation with delayed 

peak value (Khan et al (64) ). 

The high radiant flux measured by Flynn, compared to the 

flux measured in the present test engine was thought to result 

from the different path lengths (L = 3 ·:v) of the two engines. 

Therefore assuming other factors (radiant temperature, absorption 

coefficient) being the same, a new value of (TKL) is calculated 

for the test engine shape, by allowing for the mean beam length. 

Hence a new apparent emissivity followed from the relationship 

between apparent emissivity and TKL given by Flynn (34). The 

estimated radiant flux for the test engine was still greater than 

the measured values as shown in Fig. (6.48). Thus, the discrepancy 

between the radiant flux observed by Flynn and in present tests 

is due to differences in basic factors, such as absorption coeff

icients, injection condition and flame shape. These may in turn 

be attributed to one or more of the following reasons: 

i) Compression ratio - Macfarlane and Holderness (45), showed 

that for a given equivalence ratio, carbon formation increases 

steeply with pressure (typically something approaching p3 
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for test conditions up to 21 atmospheres) and emphasised 

the same applicable to higher pressures. Therefore, 

higher absorption coefficients are expected under the 

higher compression ratio as for Flynn's engine. 

ii) Air-fuel mixing - Khan et al (64) showed that instantaneous 

soot formation reduced to about one third of its initial 

level as swirlratio increased from 1.5 to 3.4. These authors 

also showed that higher exhaust soot (which reflects the 

soot formation process) with increased fuelling rate. 

Therefore higher soot formation is expected in the moderate 

swirl engine used by Flynn, with greater fuelling rate than 

in present engine tests. The combined effect of low swirl 

and high fuelling rate results in fuel-rich zones which 

enhance soot formation. 

iii) Injection time and nozzle configuration - the small difference 

in injection time (20° BTDC (Flynn) and 18° BTDC (present) 

is unlikely to cause a significant change in soot formation. 

According to Khan et al (84) the nozzle used in Flynn's engine 

(5 hole x .25 mm diameter) will result in more exhaust soot 

than test engine nozzle (4 hole x .27 mm diameter) with other 

parameters being the same, this effect being attributed to 

better air entrainment of the four hole nozzle. 

iv) Detector view- another factor in Flynn's engine was the 

direct view by detector, of the reaction zone, which 

envelops the core where fuel and air are transported and 

where heat release and soot formation takes place. In the 

present tests, combustion products resulting from expansion 
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of reaction zones (at impingement with bowl wall) was 

viewed by the detector located near the centre of the 

bowl. 

6.11.2 Effective radiating temperature in diesel engines 

A survey of the relevant literature shows that flame 

temperatures do not vary much with load. It also appears that 

flame temperature for different types of engines are of approximately 

the same magnitude, Fig. (6.49) presents the measured flame temp

eratures in I.D.I. or D.I. combustion chambers of several diesel 

engines. Flame temperatures obtained in all cases by the two

wavelength principle, developed by Hottel and Broughton (43) are 

in reasonable agreement with each other, except that due to 

Belinskiy (23) which are rather high. It is interesting to note 

the calculated hot zone temperature band for different conditions 

obtained from the two-zone model (also shown in Fig. (6.49) ), is 

in close agreement with the measured flame temperatures, particularly 

when combustion is nearly complete, i.e. beyond 370° CA. 

It is well known that the calculated bulk-mean gas temperature 

is much lower than the observed flame temperature, (see Figs. (6.24 

6.26) ), therefore radiation calculations based on bulk mean gas 

temperature would lead to large errors due to the fourth power law 

dependance of radiative heat flux. The prediction of radiant heat 

flux from hot zone temperatures would be convenient, as it makes 

use of readily available engine data (measured pressure, trapped 

charge and fuel flow and engine geometry). 
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6.11.3 Flame absorption coefficients in diesel engines 

In section (2.2.5) it was shown that a knowledge of 

absorption coefficient of radiating flames is necessary in 

order to calculate the radiant flux at the enclosure. The cyclic 

nature of diesel combustion leads to a continuous change of the 

absorption coefficient,,therefore a comparison of the temporal 

variation and magnitude of absorption coefficient in different 

diesel engines was first required. 

The available instantaneous data on radiant heat transfer 

in diesel engines, are those of Flynn (34) and Sitkei (23). 

Absorption coefficients 
-1 

K (m ) were calculated from Flynn's 

measured radiant flux and flame temperature, accounting for corn-

bustion chamber geometry by the procedure outlined in section (2.3.5). 

The absorption coefficients were obtained by first dividing the gas 

into a number of cylindrical elements ·and calculating net (integrated) 

gas-surface exchange areas as a function of absorption coefficient, 

using tables of exchange areas for a cylindrical body given by 

Hottel and Sarafim (52). Secondly, finding the absorption coefficient 

which satisfies the equation: 

where 

= er T 
4 

F 

gs (KL) 

A 

q. = measured radiant flux 
R 

gs (KL) = net exchange area 

(6.15) 

A = surface element area corresponding to net exchange 

factor which contains position of measurement. 
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Similarly, absorption coefficients in the present test engine 

were calculated assuming the flame temperature as measured by 

Flynn to exist in the engine. 

Sitkei (23) obtained instantaneous absorption coefficients 

-1 -1 
kp = KIP (m atm ) for various load conditions in the pre-

combustion chamber of a diesel engine, assuming flame temperatures 

as measured by Belinskiy (24). Therefore, to facilitate comparison, 

the absorption coefficient obtained by Sitkei for two equivalence 

ratios (0.45 and 0.56) were recalculated on the basis of Flynn's 

measured flame temperatures. A correction for the cylinder pressure 

in Si tkei 's engine was also included. The calculated absorption 

coefficients in Flynn's engine, Sitkei's precombustion chamber 

engine and of the present test engine are shown in Fig. (6.50). 

The magnitude of absorption coefficients in the three engines may 

again be explained by the effect of gas motion on air-fuel mixing, 

Khan et al (64) explained the reduction in smoke levels with increasing 

swirl by its effect on the rate of air entrainment leading to lower 

equivalence ratios in the richer zones of the jets and by increased 

rate of intimate mixing (fuel vapour transport) in the fuel jets. 

Flynn described the engine as one with moderate swirl, which is 

expected to affect more soot formation. On the other hand, in a 

precombustion chamber where swirl is very high, improved mixing 

will result in lower absorption coefficient. The high overall fuel-

air ratio, however, expected in the precombustion chamber will have 

an opposite effect by increasing absorption coefficient (45). Note 

that the later factor may be responsible for the difference between 

Sitkei's data and the present test results for the same overall. 

equivalence ratio. The combustion pressure, according to Macfarlane 

3 
and Holderness (45) would affect soot formation (by a factor of P ) 
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which would be significant in the three engines where compression 

ratios varied from 18.5:1 (Sitkei), 16.7:1 (Flynn) and to 15.3 

(present engine). 

To determine the effect of load (equivalence ratio) and 

engine speed, the absorption coefficients in the test engine 

were calculated for two engine speeds and several load conditions. 

The radiant temperature was first assumed to be the calculated 

hot-zone temperature from the two-zone model, and secondly to be 

measured flame temperature by Kamimoto (49) obtained in a similar 

engine. The calculated absorption coefficients are shown in 

Fig. (6.51). The instantaneous absorption coefficient increased 

with load as expected, due to increased fuelling per cycle which 

lead to fuel-rich zones. Peak values of absorption coefficients 

occurred later at higher speeds as a result of a nearly constant 

time required for combustion-soot formation and destruction process. 

The apparent effect of engine speed on the absorption coefficient is 

thought to be mainly related to the effect of engine speed (swirl 

and squish) on the shape of the flame by driving it to the centre 

as explained in section (6.5c) and on combustion process. The latter 

could be the only explanation possible, because increased speed 

results in high swirl and increase rate of injection, both of which 

reduce soot formation according to Khan et al (64). Therefore less 

radiation (reverse of observed) is expected with increasing speed, 

unless the reduced soot recorded by Khan et al (64) was on account 

of more soot burned to form luminous (high radiation) flames. 

The calculated hot zone temperature early in the combustion 

0 0 
process (near TDC, 360 -370 CA) are too low to account for the 

radiant fluxes measured. This is not surprising, because the 

calculated hot zone temperature is a mean value for the whole c.c. 
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mixture zone, which will be low before combustion is complete~ 

For this reason, the calculated emissivities are not realistic 

during the early period. 

The accuracy of the calculated absorption coefficient in 

the present engine, is dependant on the flame temperature assumed 

to exist in the engine. Therefore, if the flame temperature 

measured by Flynn (34) or by Kamimoto (46) (which are in close 

agreement) are assumed to occur in other diesel engines of the 

same type, then the calculated absorption coefficients together 

with account for area-exchange factors as described in section 

(2.2.5). could be used to predict radiant heat flux in other 

diesel engines. Instead of calculating area-exchange factors in 

order to estimate the radiant flux in a particular engine, a 

convenient method which will be more adaptable for computer cal-

culations may be adopted if the diesel flame is assumed equivalent 

to a grey body. In such a case, the integrated equation in the 

form: 

(6.15) 

can be used, where K indicates the absorption coefficient 

and Lm represents the mean path length of radiant flame. 

The mean beam length for any gas shape can be obtained from the 

relationship between the standard gas emissivity and the direct-

exchange area gs as shown in section (2.2.5). However, when 

interest is in the flux to the entire bounding area of a gas mass 

of arbitrary shape, Lm = 3.6V 
A 

A is the enclosure surface area. 

where V is the gas volume and 
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Therefore emissivities for other similar engine types operating 

under similar conditions can be calculated from the knowledge 

of absorption coefficients obtained so far, Figs, (6.50) to (6.51). 

The gas volume emissivity can then be used to calculate 

the radiant flux at the surface by: 

where CT 

E: 

Tf 

T w 

= E: er (T 4 - T 4) 
f w 

= Stefan-Bolt ·man constant. 

= calculated flame emissivity. 

= flame temperature • 

= surface temperature of enclosure~ 

Following the above procedure, as expected, the measured 

instantaneous radiant fluxes were reproduced within 3% in the 

worst case. 

6.11.4 Observed emissivities in diesel engines and in other 

flames 

The flame emissivities in the test engine were calculated 

for two engine speeds and three load conditions. In Fig. (6.52a), 

the emissivities were evaluated on the basis of calculated hot-

zone temperature (two-zone model), while in Fig. (6.52b), they 

were evaluated assuming Kamimoto's (49) measured flame temperature 

occurring in the test engine. Again the erroneous behaviour of the 

,calculated emissivities as the case with absorption coefficients 

obtained on the basis of hot-zone temperatures were observed near 

TDC. The reason was due to the low temperatures calculated early 

in the combustion process. The assumption of flame temperatures 

(6.16) 

I 
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measured by Kamimoto, gives a complete picture of the flame 

emissivity variation. Instantaneous flame emissivities increase 

with load. At low load combustion ends comparatively early 

(30-40° CA ATDC) and at high loads, it continues up to 50-60° ATDC. 

In general, the high emissivity observed at high engine speed is 

thought to be related to the effect of high swirl-squish on the 

shape of the radiating flame in the viewing field and more 

efficient combustion, i.e. concentration of a hot core in the 

centre of the combustion chamber. Improved combustion and a 

more confined and homogeneous flame at high swirl, is suggested 

by cine film studies of diesel combustion by Morris (65). 

Kunitomo et al (46) studied luminous flame radiation (spray 

combustion of liquid fuels) at high pressures (up to 21 atmospheres) 

and presented correlations for predicting flame absorption coeff-

icients and emissivi ties. Using his correlation, the following 

results were obtained for the test engine geometry and pressure 
• I 

conditions. 

Equivalence Flame Absorption 
Ratio Emissivity Coefficient m-1 

0.86 0.062 1 

1.0 0.622 15.4 

. 

1.11 0.966 50 

1.25 1 328 

Note the steep change in emissivity and absorption coefficient as 

fuel:air mixture changes from. just below stoichiometric to slightly 

rich. It is possible that such conditions occur in the vicinity 

of fuel spray in diesel engines, but is likely to.disperse quickly 

by the intense gas motion. 
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Macfarlane and Holderness ( 45) measured radiation heat 

flux from liquid fuel (kerosene) flames as a function of 

equivalence ratio and pressure. Radiant heat transfer increased 

with pressure,with peak fluxes appearing for equivalence ratio 

)1.0. 
2 

At 21 atmosphere, peak flux of 500 kW/m was observed at 

2 
1.3 equivalence ratio, but reduced to about 200 kW/m at 0.8 

equivalence ratio. This suggests a significant effect of 

equivalence ratio which are usually low in diesel engines, although 

local values would be high during the early combustion period, 

Maesawa et al (47) working with open flames at ambient 

pressure, showed that the radiant flux decreased with increasing 

momentum of the liquid fuel jets which is in line with less soot 

formation at increased fuelling rate claimed by Khan et al (64). 

2 
Radiant fluxes of less than 200 kW/m were observed and emissivities 

of 0.2 - 0.6 were measured at about 0.8 metres from the burner, 

varying with momentum and little with. fuel flow rate. The injection 

rate is expected to affect flame emissivity at different speeds, 

but this could not be investigated because of the dominant influence 

on combustion of the speed dependant gas swirl. 

Referring back to the emissivi ties observed in the test 

engine, the peak values varied from 0.2 to 0.55 depending on 

load and engine speed conditions. These were similar to the 

emissiv:i.ties observed by Sitkei, but less than observed on Flynn's 

engine. Note that a direct comparison is not strictly correct, 

because of its dependance on shape of flame, temperature and 

pressure. However, the foregoing discussion suggests that the 

quality of mixture formation and combustion affects the concentration 

of carbon particles and, as a result, the radiation capacity of the 
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flame. The quality of combustion affects the radiation period 

(length) as well. The more ideal the combustion, the shorter the 

flame radiation period, and the smaller the quantity of heat 

transferred by radiation. Accordingly it may be assumed that for 

the present engine (high swirl) the heat transferred by flame 

radiation is less than in the quiescent chamber diesel engine. 

Engine speed affects flame radiation as much as it modifies 

the quality of combustion. 

6.12 Analysis of Radiant Flux at Position .R2 

The measured radiant flux at position R2 (discussed in 

section 6.6) were not analysed for two reasons: 

i) Low levels of emission recorded at all engine speeds except 

at 1050 rpm. 

ii) The recorded radiant flux at R2 was characterised by high 

frequency fluctuations and two peaks. The first peak was 

associated with expansion of hot products which soon cooled 

by mixing with cooler air in the annulus. The second peak 

associated with uncovering by the piston of combustion products 

in the bowl. It was the additional effect of engine geometry 

on radiant flux at this point that made the calculation of 

area-exchange factor or mean beam length (required for the 

analysis) more difficult. 

d~ 
It is interesting to note that radiant fluxiunder heavy 

load condition, lasted over a period of 40° CA at 1050 rpm, but 

0 
remained effective for about 80 CA at 1750 rpm. This behaviour 

supports the statement of more fuel driven to the centre by higher 
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squish velocities at higher speeds. On the other hand, the 

radiant flux at R2 remained effective over about 70 - 80° CA, 

irrespective of engine speed, suggesting longer time combustion 

in the fuel-rich (upstream of jets) zone at the piston bowl 

periphery. 
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6.13 Prediction of Radiant Flux Using Bulk Mean Gas Temperature 

Fig. (6.53) shows the radiant flux predicted by the radiation 

term (1.5 er (T 4 - T 4) ) in Annand's equation (15) and the measured 
g w 

radiant flux in the test engine at two speeds. The calculated values 

correspond to the bulk mean gas temperatures .at 1050 rpm. The 

factor (1.5) multiplied by the black body radiation at bulk-mean 

temperature was obtained for a low swirl engine (Annand and Ma 15) 

where radiation heat transfer is expected to be higher than for 

high swirl engines. 

In a recent publication, Annand (69) suggested a new route 

for prediction of radiative transfer in internal combustion engines, 

which was in line with the approach made by Sitkei and Ramanaiah 

(23), but suggested evaluation of flame absorption coefficients 

by utilising soot concentration. It was pointed out that more 

information on level of soot concentration in engine flames is 

needed, and that for effective radiation temperature, reliance must 

be put on empirical estimates. The analysis of the radiant heat 

transfer in the foregoing sections, indicates how the flame 

absorption coefficients varies during the cycle if the radiant 

temperature is taken as the measured flame temperature in similar 

diesel engines. Attempts should be made to relate this behaviour 

with direct measurements of soot concentration, in order to obtain 

a method for the prediction of flame absorption coefficients in 

terms of operating parameters. Such information would be valuable 

for the prediction of radiant heat transfer in diesel engines. 
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CHAPTER 7 

CONCLUSIONS TO THE PRESENT INVESTIGATION 

AND SUGGESTIONS FOR FURTHER WORK 
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7.1 Conclusions for the Present Investigation 

In this investigation, the instantaneous total and radiant 

heat fluxes in a high swirl diesel engine were studied 

experimentally and attempts made to find methods of predicting 

these components. In the course of the work, a surface thermo-

couple, suitable for measurement of instantaneous surface heat 

flux in the engine cylinder was developed. It wa·s capable of 

responding to surface temperature changes within a period of two 

crank degrees at engine speeds up to 1750 rpm. The instantaneous 

radiant flux was measured by a ceramic pyroelectric transducer 

incorporated into a special circuit in order to respond to changes 

in radiant fluxes within a period of 1 crank degree at 1750 rpm. 

The experimental observations of total heat flux demonstrate 

a large variation from point to point in the .engine cylinder under 

both motored and fired conditions. Variations in local heat flux 

by up to 30% in the motored tests, and by up to 70% in the fired 

engine, reflect the magnitude of temperature gradient and local 

velocity variation in the cylinder, particularly under fired 

conditions ~ 

Engine speed and manifold pressure influenced the measured 

instantaneous heat flux in approximately a linear fashion. The 

effect of engine speed was shown to be described by its influence 

on gas motion as measured by Derham (44) shown in Fig. (6.1). The 

significant influence of manifold pressure on total heat transfer 

was obvious from its effect on measured peak flux in the motored 

2 
engine, which increased from 1600 kW/m when naturally aspirated to 

2 3300 kW/m when at 0.69 bar supercharge. The latter peak flux was 
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found to be higher than most peak fluxes measured under fired 

conditions outside the piston bowl. High instantaneous heat 

2 
fluxes (up to 4300 kW/m ) were measured in the piston bowl 

(combustion chamber), compared to generally lower values observed 

in the annular region (2800 kW/m
2 

maximum) on the cylinder head 

or piston surface. It was also noted that heat fluxes measured 

on the cylinder head remained high for longer periods in the 

expansion stroke than on other surfaces. These variations of 

flux with time and location have been shown to be qualitatively 

explicable in terms of probable local events during combustion. 

The measured radiant heat flux also varied with location. 

It was found that radiant flux from .the centre of the combustion 

chamber increased with increasing engine speed, but the opposite 

was observed in the annular region just outside the piston bowl. 

The results indicated a more efficient and concentration combustion 

in the central region at high speed (high swirl), with less time 

available for hot products to expand to the. annular space. The 

high squish velocities measured by Derham (44) at high engine speed 

would drive more fuel vapour and droplets into the centre of the 

·combustion chamber which is in agreement with the above behaviour. 

. . 2 
Measured peak radiant fluxes reached 560 kW/m at heavy load 

and high engine speed (1750 rpm) which amounted to 15-20% of peak 

total heat fluxes. Comparison based on the mean fluxes over the 

whole cycle showed that radiant flux represents no more than 7% of 

the total flux under. the most favourable conditions. The contribution 

of heat transfer by radiation decreased as the engine speed increased, 

due to larger increase in convection heat transfer. The results 

suggest that relative importance of radiant heat transfer in high 
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swirl engines is much less than in lower swirl diesel engines, 

which according to previous researchers, obtained valUes of 

40% (Oguri 33), 20% (Flynn 34) of the total heat transfer. 

A comparison between the experimental data and correlations 

of Annand and Woschni showed that these could predict the surface 

mean heat fluxes accurately, but with adjustment of the constants 

in the correlations. It was obvious from the comparison that use 

of average piston speed, cylinder bore and bulk mean gas temperature 

for instantaneous surface heat fluxes, preclude the prediction 

of the spatial variation shown by experimental data. 

Analysis of the motored data showed that the use of solid 

swirl motion observed in the test engine (Derham 44) in conjunction 

with existing heat transfer data for flat plates produced a 

correlation (section 2.1.3) for prediction of spatial and temporal 

variation of heat flux. The form of the relationship for flux 

at radius (r) was: 

k 
q = 0.037 (21Tr) ( 

V (21( r) 
r 

) 
0.8 

The prediction of local and area-mean heat fluxes under 

motored conditions was in good agreement with measured results 

for both cylinder head and piston surfaces, except at low engine 

speeds and in the central region of the piston bowl. The later 

discrepancy was explained by ignoring of radial (squish) velocity 

components which accounted for up to 60% of swirl components at 

and engine speed of 500 rpm (Derham 44) and caused a change in 

resultant velocities by up to 18% at the edge of the bowl. 

(2.6) 
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In the fired engine, the bulk-mean gas temperature was 

found inadequate for prediction of local heat fluxes. The use 

of a simple two-zone temperature model based on local events 

(total and radiant heat fluxes) observed during combustion, 

produced fairly good estimates (within 15% of peak values) of 

measured local heat fluxes. The large discrepancy between the 

prediction and measurements during the expansion stroke was 

considered to be due to combustion influenced gas motion, which 

was not accounted for. 

A rough estimate of combustion influenced gas motion was 

made on the basis of conservation of momentum between burned and 

unburned charge, ignoring both frictional and pressure forces. 

The following simple relationship was obtained for velocity of 

burned products in terms of known unburned gas velocity and the 

unburned and burned gas densities: 

(6.10) 

The value of was found to be nearly constant and 

approximately equal to 1.4, from the time when more or less complete 

0 
combustion has taken place (about 390 CA) to the exhaust valve 

opening. An account of gas velocity increase improved prediction 

of instantaneous heat flux in the expansion stroke, but was still 

less than measured, perhaps because of two-dimens.ional heat 

transfer influence on increasing the measured value. 

It has been shown that the prediction of instantaneous surface 

mean heat flux (for the whole cylinder area) on the basis of bulk 

mean temperature and measured velocity of charge is possible if one 
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included the effect of low heat fluxes expected on the cylinder 

liner. This is the reason for low heat fluxes predicted by 

previous correlations when compared with measured fluxes obtained 

on cylinder head or piston. 

Analysis of the measured radiant flux in the present test 

engine and comparison with the findings of other investigators 

(Flynn and Sitkei) reported results, indicate that absorption 

coefficients of the flame are lower in the high swirl engine 

(present study) than observed in moderate swirl engines (Flynn 34) 

or prechamber engines (Sitkei 23). This observation was associated 

with less soot formation in high swirl engines where fuel-rich 

zones are less likely. The latter argument is supported by the 

findings of Macfarlane and Holderness (45) and Khan et al (64). 

The results suggested that the quality of mixture formation and 

combustion affects the concentration of carbon particles and, as 

a result, the radiation capacity of the flame. The quality of 

combustion affects the radiation period as well. The better the 

combustion, the shorter the flame radiation period. Therefore it 

is concluded that engine speed affects flame radiation as much as it 

modifies the quality of combustion and fuel distribution. 

A survey of relevant literature showed that flame temperature 

measured in different types of diesel engines is approximately the 

same (Fig.6.4!}and vary little with engine load. Accepting this fact 

and using the knowledge gained from measurements of instantaneous 

radiant flux in ordinary and prechamber diesel engines (Flynn, Oguri 

and Si tke.i) and from present investigation in a high swirl diesel 

engine which covers a reasonable range. The estimated flame absorption 

coefficients K and its variation in these engines could be used in 

conjunction with estimated flame temperatures to predict fairly 
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accurately the radiant flux in similar engines. The flame 

emissivity (assuming an equivalent grey body) can be calculated 

accounting for combustion chamber shape, by the relationship: 

-KL € ~ 1- e 

in which L = 3.6 V/A in the equivalent beam length of the 

radiating gas mass, and the radiant flux by: 

= 

(2.30) 

(2.29) 
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7.2 Suggestions for Further Work 

The present investigation of instantaneous heat transfer 

and the use of instantaneous gas velocity has thrown some light 

on the possibility of predicting local heat fluxes inside the 

engine cylinder. Therefore in order to enable heat transfer 

calculations, methods of relating gas motion to engine geometry 

and running conditions must be developed for different types of 

engines, such as demonstrated by Dent and Derham (62) for the 

present high swirl diesel engine. 

A further improvement as regards heat flux calculations 

could be reached by the study of flame development in the 

cylinder and direct measurements of instantaneous local soot 

concentration. The flame development could be investigated either 

by high speed photography, or by using ionization probes. The 

application of the latter method is in progress at Loughborough 

University (Mechanical Engineering Department). The measurement 

of soot concentration can be achieved by using ultra-violet light 

absorption method together with high speed photography to record 

a film calibration image as applied by Greeves and Meehan (95). 

Once this information is available, a direct correlation between 

radiant flux (measured simultaneously) and soot concentration can 

be obtained. The flame development would also allow for more 

accurate prediction of local convective heat flux. 

Some aspects of the work reported here could be investigated 

further: 

1) The low fluxes observed in the thin annular space under 

motored and fired conditions were related to low gas 

temperature in this space compared to the central zone. 
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This can be verified readily for motored operation by 

using resistance thermometers located at different regions. 

2) The ionization probes (ion generator pick up) used by 

Ohigashi et al (50) for swirl measurement in motored engines, 

may be developed for application to fired engines. The 

success of detection of the probe under fired condition 

would provide valuable results on the magnitude of combustion 

induced gas motion. The development of this device is also 

in progress in the Mechanical Engineering Department, 

Loughborough University of Technology. 

3) The effect of swirl (other parameters being the same) on 

flame radiation in diesel engines is necessary to distinguish 

its effect from any possible effect of engine speed observed 

in the present investigation. The results could then be 

related to fuel-air entrainment. 

Now that a sensitive thermocouple can be manufactured, a 

better understanding of the convective heat transfer under controlled 

dynamic conditions may be obtained. The simultaneous measurements 

of the instantaneous surface heat flux together with instantaneous 

gas velocity (using hot wire anemometer) and gas temperature (using 

a resistance thermometer) in close proximity of the thermocouple 

junction, would provide a more accurate correlation between heat 

flux and gas conditions near the surface. Such a combined 'probe 

could be fixed in a reciprocating engine where, induction induced 

gas swirl could be varied or avoided. The effect of individual 

parameters, such as rate of compression, gas motion and their 

effect upon the phase lag between heat flux and driving parameters 

can be studied. 
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APPENDIX (A) 

EVALUATION OF INSTANTANEOUS HEAT FLUX FROM 

WALL TEMPERATURE MEASUREMENTS 

The temperature variation in the working fluid causes 

cyclic variation of the heat flux into the exposed wall surface, 

and this is reflected in cyclic variation of the surface 

temperature which is recorded. It is supposed that heat flow 

through the cylinder wall is effectively one-dimensional (normal 

to the surface) at the location chosen. Thus the heat flow within 

the wall is represented by the Fourier equation: 

()T k' {} T 
=CC 

fl T 
Ot = p•c• Ox2 Ox2 

where k' = thermal conductivity of wall material 

p· = density of wall material 

C' = specific heat of wall material 

X = distance perpendicular to exposed surface· .. 

If the temperature of the surface of the wall exposed to 

the working fluid is T
1 

and that of the surface exposed to the 

coolant is T
2

, we may write: 

a> 

L (kn cos nWt + Gn sin n(.)t) 
n=l 

where the Fourier series represents the time-variation of the 

surface temperature, B
1

, kn and Gn are numerical coefficients 

(A .1) 

(A .2) 

determinate by analysis of the recorded temperature variation, and 

(.) is the basic angular frequency of the cycle, equal .to' 21f times 
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the cycle repetition rate. We may suppose that the wall is 

thick enough for T
2 

to be constant, T2 = B2 . 

is: 

where 

The solution of equation A.l with these boundary conditions 

- B ). X 
2 

X· + cos(nWt - F.x) 

+ Gn sin (nWt - F.x)J 

X· = wall thickness, F = J (~/2a). 

Differentiation of this equation gives the temperature 

gradient, which multiplied by(- k') gives the heat flux, the 

value at x = 0 must equal the heat flux from the gas (q/A): 

()) 

(A. 3) 

L> (G - k ) cos n~t + (G + k ) sin n~t 
n n n n n=l 

(A .4) 

Thus q/A can be calculated from the Fourier coefficients obtained· 

by analysis of the wall surface temperature variation with time, 

using the computer program listed below. The computer program also 

calculated the bulk mean gas temperature from measured pressure and 

produced other useful data. 



. 

II=II +1 

NC 

J=J+1 

Input: Number of ordinates per cycle (KORD) 
Wall material properties, calibration constants 
Condition at !VC, engine geometry. 

Input: Surface temperature trace 
Cylinder pressure trace 

= 1 = average eye e supp J.e 

NC ) 1 

I 
I compute average cycle 1 

T(I) 
P( I) 

=-

Calc: actual surface temperatures and gas pressures T(I) 
bulk mean gas temperature from pressure P(I) 

I 
Calc: angular frequency of the cycle 

Fourier coefficient for temperature trace 
Check: reconstituted surface temperature if required 

I 
. 

I J = I I 

Differentiate : surface temperature function with respect 
to normal distance into wall 

Calc: fluctuating component of heat flux, HT(J) 
total instantaneous heat flux H (J) 
heat transfer coefficient SH(J) 

j_ 
J : (KORD-1 

T 
Output: instantaneous heat flux H(J), gas pressure P(J) 

gas temperature T(J), heat transfer coefficient SH(J) 
surface temperature TT(J) 

Output: listed and/or on punched cards or plotted 

1 
II = NRUN 

T 
I END I 

Fig. A.l Schematic flow chart for the computation of instantaneous 
heat flux from surface temperature record 
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APPENDIX (B) 

EVALUATION OF CYLINDER CHARGE PROPERTIES AND 

PREDICTION OF HEAT FLUX 

The programme originally developed by Annand (6) for 

performance calculations of four-stroke diesel engines, was 

modified for the present investigation. Essentially, the programme 

performs a stepwise integration of the differential form of the 

first law of thermodynamics as it applies to events between inlet 

valve closure and exhaust valve opening. Annand's equation (6) 

for heat transfer is used to describe heat transfer through the 

walls. The rate of fuel injection and of fuel evaporation are 

described by simple linear functions. The rate of heat release 

is described by triangular distribution over a period of 35~40° CA 

(depending on fuel quantity and engine speed), with peak at midway 

Lyn (61). The start and duration of fuel injection is determined 

by needle lift and fuel line pressure measurements, and the 

0 
evaporation is assumed to take place 3-4 CA after the beginning 

of injection and for the same period of injection. Instantaneous 

constituents during combustion are evaluated assuming complete 

combustion of the reacted fuel. The charge is assumed to be homo-

geneous at all times and the charge properties at each instant.are 

calculated by the methods of section (5.6). 

In the present investigation, the induction and exhaust 

processes are not included in the calculation, and complete scavenge 

is assumed because of valve overlap. To start the calculation, the 

temperature of the entering fresh charge ·iS estimated from its 

dependence on volumetric efficiency and on operating conditions as 

described in section·(5.5). However, accepting the computed gas 

composition, the gas properties are evaluated at the bulk mean gas 

I 

I 

I 

.I 
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temperature which is evaluated from the measured pressure and 

cylinder volume. The calculated gas temperature on the basis 

of the assumed heat release was low near TDC and high la·ter, 

compared to the gas temperature evaluated from measuredpressure. 

This suggested higher initial heat release in actual cases than 

the assumed triangular trend. 

Once the charge properties are evaluated, the program 

calculates the heat flux using the different correlations 

considered (e.g. Annand's, Woschni's and flat plate equation). 



I START I 
Input: thermochemical data, engine geometry, 

ambient conditions, convective and 
radiative parameters in Annand's eqn_ 

' 

calc; cylinder volume, sur .face area, piston 
! 

area, moles of reactants per mole fuel 

I 

I NRUN = lj 

I 
I 

Input: equivalence ratio, time and period of 
(injection, evaporation and combustion), 
condition at IVC. Operating conditions, 
computed surface flux and bulk mean 
tempera tu re , measured pressure. 

I 
Calc: moles products per mole fuel. IJ = IJ + 1 

products properties coefficients. 

Calc: instantaneous cylinder volume (call PIT). 
charge mass, fresh air, fuel mass, residue 

I 
Function (PIT) 

Assign: zero to required info- Calc: instantaneous piston 
mation displacement 

Assign: values to gas velocity 
and gas temperature 

r J = 1 I 
J call: subroutine (VCD) I 

J:lO 

I 
output: heat fluxes from different 

correlations. Calculated 
gas temperature. 

. 

Listed every 10°CA 

0 NO 



I YES I 
I Output: Result,plots if required I 

IJ = NRUN >--------------------------

I END I 
t 

Subroutine VCD 

Calc: In steps of 1° CA or !0 
CA during combustion 

cylinder volume, gas tempera tu re •. 

If injection started call function (MFJ) 
If evaporation started call function (MFV) 
If combustion started call function (MFB) 

ea le: heat release, new gas temperature, gas 
properties, heat transfer coefficients from 
Annand 's eqn., Woschni 's eqn., flat plate eqn. 
Heat fluxes 

Function (MFJ) Function (MFV) 

Calc: fuel evaporated at 
crank angle X 
(assumed linear) 

Calc: mass of fuel injected 
at crank angle X 
(assumed linear) 

Fig. A.2 

Function (MFB) 

calc: fuel burned at crank angle X 
(assumed triangular rate with 
peak mid-point over combustion 
period of 35-400 CA) 

Schematic flow chart for the computation of cylinder change 
properties and prediction of instantaneous heat fluxes 
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p (, ( l ~· ) = ll .. 0 . (.· f\ 'i' 
VNF ( 1 Ill "VNll 
~Pf < 11l)tolo:Hf' 
wTXI!Nl=VHU•'*Pl•AJ/h 
rrXCiti);:XRF•vG•PI•2•RJ/(P5•nl 

13 TF o<'"t '!". 1'0) nOTCi HI 
PlHFP=I~R.~•Wl/CPI*I.*P*nl 
!>EAKP=14. 6f>,..pX 
~r.OI.T:::O .5*t'*~ 
wPlST=D:5*0P•H/c15*n•*2•PI) 
!.IH!Tr.l(, ~7) PTIIEP·, PF!AKP, HC0LT, HP! ST 

S7 rC>HI"ATC11l 1:·11H ltiFP.PSI= ,~t;.1/,11lH Pf'H PRFSSlJRF PSI,F6,1/,?3H H 
1 ~Ai'rn f,POUoT CHIJPriHl=•F.14•7/,28H FLIJX Tr PISTON CHUPSilFT.SEC•F.14·7 

?il 
C***.,...,.***** 
C CALl ~HAPH PLOTTER ANn ADJUST AXIS SCALES 

TF(IJ~O.I!f'.1)r;0Til 157 
rALL IJTP4A(flllltl.ni1AX•HI1IN•fli!AX•IllNS;,HII1~,19H CRANK ANGLE DeGRFE•3• 

~1/lH Hf"AT Flllll K!J/1!2 ,3) 
c r> r: M' r; P ![) n N r; PAP fl . 

r A L L r, R l 0 ( D I iT IJ dl 1·1 A X , H 11 I tl • H 11 A X dl I N S , H I IJ 5 l 
r A L 1. 11 T I'/.[: ( r A X , H 1' X, 'I: P X, ? ) 
rALL IITPI.BCrAD,o~,IJP,2) 
r.ALI IJTPt.Ainfl!f.l.nfiAX,t!llJI!,HtiAX•D!NS;fdl~~o19H CRANK ANGLE OEGREE•3• 

1111H HFAT FLIIX Kl:/112 ,3) 
rALI. IITI'i.li(I'AD,O\J,IJp,2) 
r A I. L IITP t.r: ( r A [l, 0 A, N P, 2) 
rlll.L IITPI,AinHJIJ,oi·'AX•T11tN•TIIAX•O!IJS:HtN~.19H CRANK ANGLE DEGRfoE,J, 



110fi<;AS Hf!p'_'~,i') 
rALL UTP4fl(~aX.TGX,NPX,?l 
rAI.l. l1TP4f'Cu,D,'!'r.,IJp,2) 

157 rON'!'!NllE 
lJPl'1'1'(2.11~j 

11 2 ~0Pf:AT< 1 H !.'~HCAn•BH 0 /K 112•CIKU, 1 ~H rp 1Ro.PS.o/Zl,15H2II.RJIK ~~ 
1,,C/U1,11lHRf' (R(i.VG.";ii,RJIZl/) 

1'\0 11. p.:1 dip 
1.1 Fll1· 1: 1 2 , 58 ) r. A D < I ) , V 'J F ( I ) , X P F ( l ) , H T l< c l ) , r. T X ( I l 

14 rotl'i'!tlUr 
SI\ ~(IHIAi(1H •~'I.·O•I•F14.7) 

P [ A I> r '. , ~;Cl) r: 7 
5(:. ~ORI,U(lO) 

TF(o.Fo.O) r.O'I'n (,Q 

ro ti!lf' r 1. r ;> 
1>0 r,(lTn 4 

100 rCHJ'I'Ttll!F 
TF(t.r,fJ,[Il.1) CAI.I UTPCL 
r::T(H> 
rfJD 

r.***'*****"""* 
C Sllr,ROIITJNE CAI cllt. 11 TF. STEP-J<V~~TEP CHAPr.E PROPERTIES AND HEAT FLUXFS 

<: ll fd> n 11 T l N F. V r. ~ ( X T • T 1 , U 1 , V 1 , ll 0 • D CJ P • D ll , 0 X , F T • R J 1 V r, ' Q AN • 0 W 0 • Q F P • V N lJ ', X 
1~F•~Pl 

Ill f 1\.1 t1 Fl• , 11 f ,I , 11 F \1 
PE A L K , t' n 1 r<1 • '' c • N • L r. • L o. HA • IH' • fl F ~ dl r> s , 11 P. ~~ R. 1 Jr. , .1 f .• L, M. M T 
r. o 111 n 11 1 n v c fl.t • v o • ~ s 1 1 c • 1:1 • 1. o • H c o • 1 4 > • 11 P c 6 ' • ~ u c 11 > , RP. • M A • H F • 11 F s 1 MP s , ~~ P 

1 • n • r: x • A • R • P s • FF • ~ n • 7 f • A 1 • c L • 7 P , PP • A P • ~J L • c R , T 1. 1 P • M P , coN v F , l1 M c 6 > • 11 T 1 

~LIH,IJT,P!VC,rtVC.NTT 
1'\ U i Ft.t S I 11 IJ T r. I 3) , T X ( ~) 
r M 11 · n li I t; r. NI ,IJ< • J F , V fl , V E , C. R • C r • CC , C f1 1 ~ , L , P l 
~2=X1+f'lX 
rl T = ll ll I ( ,, * fi) 
\! 2 = '' p. S ~ * f' I T I l. C ; X 7.l 

C AL~llf "r:XI'IIHT.> t JNFR APFA ~OR. rT 
A L S 11 ~ ::d' I * D * I 1 fl • f> I T ( I. r • ( )( ! +X? l I '2) l 



T2=T1*(V1/V?l**0.35 
P t 1 () 1' "!> l \1 r, ,. ( 0 . (J 3 0 :0: 53/ V 2 ) *"' 1 , '15 
oTF>:\::(T;>.T1)!0T 

C CAt Clil ~TF: rHAP(;E r.P 
C CP~SPrr!Flr, H~AT rHU/C 

r~=o.o 
no 1~ J:;?~t\ 

ff(tiTT.fA.2i T1:TP 
r=l\~.1 
r P" r P ·>T 1 + ( HI 1 , 1 3) *I: A+ H C t , 1 /.) * 11 ~ S +HP C I) *~~PS) * I 

15 rON;ItJiJF " 
IF(X~.LT.C! .nR.X~.GT.CE> GOro 65 
TF(F~.LT.O.no001HOTO 65 
IJfit:l/it((•) 

nO 1 f. J=1 •S 
T = t},.. .l 
11 f, =I J I< * T 2 + P lJ ( T ) 

16 r.ONTTt!lll' 
T(',i;>+ ci!Hl (>~;>)•l'~f~ (XI) )*Uil/ 1r,P•RR*f1) 

65 TC(n::T2 
~SUI,.,;> 

C f1C=f10LFr.l!LAR tq:IGIIT Or CHAF~GE M!XTU~E 
C CA 1 CULATf VtSfOS!TVICnNDUrTtVrTY OF CHARGr 
C z~~AS 11IScOS!rv LI</Fr.SPC 
r, Kcr.AS rotlflllCT1VlTY CfHJ/ FT. SEr. C 

t•C= (;>fl,I'7*1<A+t11'*MFS,..I•IPSHtP) /'1 
7" ( 1 ." 71 "I'' A+ 7 ~ * 11 F ~ * S 0 R T ( 11 ~ ) + 7 I>* 11 PS* S n R TC 11 P) ) I ( 5 • 3 8 5 *M A+ M F S * S !l R T ( I• F ) 

1 + f\ f> s * S ll HT ( 11 P l ) 
7=0.nnnnn1•7•T1••0.~45 
v = c P. z 1 c n . '7. f' c •" 1 
oDQA*K*CIM*D~*D•HCICV1*7)1••RI*nT/D 

(';*""***'***** 
H AIJ" r KID) * ( t M* P s * ll "'11 t.l ( 111 * Z l ) ** 0 • 7) 
\1 V:: 1 I;> • ;> 1\ * P ~ t'3 • ;> 1\ ) +0 . 0 0 3 2 4 *1 . 0 5 '? * T ! V r • ( 11- NlO T) I P! VC ) 
rw0::1./ ( <T1 i •• o:s3> 
n 1,1 o" 1 . I < c 0 . ;; o? I "'* o • ? l 
wii0::110•nun.c<P•1,0~331••0.R>•Tvn•<cvwl••o.81 
nlf;L=?•PI•R.I 
H FP" r < 0 . 0 3 'i' ~ K) I ( n 1 ~'I ) ) * 1 ( 11 * 1/G * D H1 L *I: r. I ( 111 * Z) ) * * 0 , R) * ( ( 0 • ? ) * * 0 , 3 3 3) 
vt-:llt:hl < lc•I'O t.t.> 



IREmM*flr•PS•n/(V1*Zl 
70 ,.sub: re UJSu)!~1 l 

lF(X;>.Li.Jll.OR.l<;>.f<'l'. (Cr+DXll GOTO 7~ 

tF<rr.LT.0.no001lC0TO 75 
C Jlf.ct'ASS OF PIJ~~JEO FUEL• 11Jr: 11ASS INJEr.TF:D NJ·lOLFS 
C Jlps=t:nr FS OF PR01lilrTS OUF. TO r.ot·IBJL 0~ 1·1R MOLES Filfl 
C IIA:I•As~ OF FR!:S(1 AIR r.oRRFSPOtH>lNG ;0 VET uNBLJRNED FUEL 
C I·~TlliAL JIAS~n.IOLF~) JN CVL• 

1·<£• "': rr: c x:? l 
t1J=I FJ(X~) 
!A PS= 1: R+ I' X* r:r\ 
I·' l =I' ,I~ 11 F V (X;:> l 
1·1 F S" 1·1 ,l•I'R • !1'1 
r:A=r•,r~ sn•I!LI c o. 21 • F Fl 
t~.;:=fiA+I~F !~+f·:ps 

C CA I C 11 L ~ T F ! N T F R IJ A L UJ I' R G V 0 F r. HA R G E 
r.017J=11(, 
I =7 •. 1 
1111 ( I ) = H ( ! 1 1 I. ) * fl F ~ + tJ ( I 1 1 :>; ) * 11 A + H p ( I ) *Pp 5 

1? rDtl'r!tJllE 
Ill\ c;• 1::UII c2 )•M•I·lt*CLIRR 
111111 l ::llf:l1 l+Ml*AI 

75 rs"o.s•<r1+ntlr;l 
C r. C A l C Ill A i I' Hr A T T RA ti S H R 1: V C 0 N V N; & RA t>T A T I M< 

nOP=OD*(TS•iiP)*AP 
na:::nor•nn•c~TS•UH)*ss•cr~·WI l*ALSUB 1 
!F()q.LT.Cn\ c;OTO 8n 
Tfl=7~**t. 

nR=t:P*(TA•WD**41•DT•AP 
nnpe:noPHlR 
no .. nn.aR.cR.~>r•<<;R-wH**''*~~ ... ,,R.wt•*''*ALSu~l 

gO nl:::o"o 
!fC~r.LT.O.nn011 GOTO 81 
I F ( H· . LT . )(;)_"A li n ·:X 2 • LT , ( J F + ll )( l ) (l! = ( n ,1"'1~ ~ J (X 1 ) l * (A L + C l * TL) 

fl1 T S t: T 1 *A L 0 r, ( n Ill; IT 1 ) 
C CALCiil ATE !lOp~ TliAiiSFFR 

T>\lt: ~ R *I'* T1 * r. I 0 G (V 2/ V 1 ) 
IF(T~.~JF.O.O\ OI!:DW•cTSUP,•T1)1TS 
rs=T~IlF••liiiCt,l 

no 1R Jt:315 



f :::[h•.l 
TS~:<rs+ll!i( l) >*B\11' 

1fl r: 0 N'rr N tJ E 
T X ( 1i ~ IJf,)::: ( ( 111 + ~ l • tl ll· n W •ll ~~ ( 1 l I I R fl"' T S 1111 * T s l I U 11 < 2 l 
TF<t:Slif>.Ffi.~l GnTO ,q~ 

TC(7l=TXC2) 
l.tSl!L::3 
r.OTf' 70 

R5 TC(~l:::iXC3).rTXt3),..'!'X(2ll*(TX(3).TCc'l)/CiX(3),..TX(2),..TC(2)+TC(1)l 
!F(AR~(TC(3\.TCI~II:LT,FT) ROTO 90 
Tf; (1l=Tr.t?) 
TX(;'):::TX(3) 
TC(~I=TCI3) 
rWTII 70 

9 () 1!1 =li1 ~Q I• DO· ~\I 
111 =\1;> 
T1::Tr<3) 
YlcY;I 
p:::fi•P.P*CotiV~! .. T1/V1 

C*•*'******* 
n A t1"' ;> 0 • <,(, * !i pl .. ( n . !l 0" <T 1 • W HI • 1\ * D T D X I t PI • t: I ) 
ol' 0~:; 1 h \J ll* 4. ;;. 13 M1 0 • ) * ( T 1 • W H) 
nFP:::HFP•~D.44*C'!'1•WHI 

~~ rT 11 p tl 
~N[l 

c •::~·:%:~::••: 
C F I if1 Ci I otJ r. A l C I If A Tr P I S T 0 N D I S P LAC ~ME N T r R Ml T Dr. P 0 S I T I 0 N 

~UtiCTIOI: P!rtLC,X) 
P FA L K d I fi • rl :i . I: C , ~ • L C: • l 0 , 14 A • 11 ~ d1 F ~ • fl P s di P • ~: H • J ll , Jf , L 
r 0 I: Ul NI r, ~ tH .I k , J F • V(~, , V E • r ll • C P • C C • C M t F , l ' P I 
~A~:PT•X/180·.· 
P!T::n.5•L*I1•lC•r.OSCRAI+SQRTCLC**2~1~lNfRAl)**2)) 

!:1E T 11~ J.; 
1' J I () 



C Ft:~:CTlon CALCti 111Ti' FUFt lt<JECTFI> AT (Jil CA LINEAR OVER INJTN pERioD 
REAl. FlltiCT!rHI 11F.I CX) 
RE A L K , I'll • 11.1 ; l: C , N • L r, , L 0 ; M A • I! r • N F S r 11 P ~ • rl P • 1·1 R r J !1 • J E • L 
r 0 I' I · 0 N I (; F 11/ .I n • J F , VB , V E , c I< r C F , C C , C 11 r F , l , P T 
! F ( X'_' I T • ,I r: . 11 ~ , X . F fl. ,I R) ll ~ J = 0 • 0 
! F ()(.'C. T • J r . n R • X . F Q • ,I F) r; 0 T 0 ~ 0 0 
I! F J " I X • ,I R ) * F I ( J F ~ J fl ) 
r.OTII ?01 

200 flFJ::F 
~ () 1 R !' T ll 11 ~I 

FhD 

C F 11 IJ C T l n !I C: A L C !I 1 A T F F U F I E V A P 0 P A T E n ( LT N EA ~ l 
REAL FliliCT!ON I!FV(X) 
11 FA L ~, t:l< rl' ,I .11 r., JJ, L r., l 0; HA d·l F, H F S, IH> ~, 11 P, 11 R, J B, J E, l 
r nr 1 • o t: 11; F NI .1 n , J I' • v n , v f • r. r , c F' • c c • c n 1 F • L 1 r> r 
TF(X:Lr:v&.nP.X.FQ.VR) ~OTO ~03 
I f 0: ·: r; T. V [ • o ~ , X. r 0. 11 F) li 0 T 0 ~ (! 2 
I!FV=IX•"Rl•F/(VF·IIBl 
r;OTII ?04 

;10;! !IFV;:F 
r.OTII ;>0/, 

::>o~ nrV::Il.O 
?04 PfiliPt.l 

I'ND 

C F\t~1 frl ntl CALr 11 t 1\7F nAss oF FurL I11JRNEh Ar CX) CA OEGREE CAssu 11 ffl 
C TiqANt;llLAH HFA,. ~rl FASF IJrTH PFAK l'i!(l~PO!I!T oliRING cO~isUST!ON PFR!OO 
r. \1 fl H H 1 S r: S T !I' A iE n T 0 R F 3 5'" I. n l' Er, R FE r. A 0 FP E f< 0 l N G 0 N L 0 A 11 

PFAI FliJir.TION IIFil (X) 
PE A L K • I' P • 11:1 , I! C , N • L r. • L 0; telA • t1 ~ • f1 F S • MP~ • ~~ n, 11 R • J R • J E • L 
r. CJI:I 'Mi I G ~ fi I .I R • J F, VB , V E • C ~ • C r, CC • C 11 • ~, L • PI 
rFCX.iT.r.r<.tiP.X.PO.r.r,J noTO ::>OR 
IF()(_' r,T. r.E. t:P. X. FCL r.Fl c;OTrJ ~07 
r=cc-Alt:T<rrl 
~=1-0.1* (CC .. r) 
r"CI .. en 
A=D*F 
TF<x ·IT.'<C! .. r*E).O~.x.F.n.<c~ .. C*J:)) r;nH! ;~fl(, 
I>"A*I1•((Ctl .. l/)ll'l"*?I(1 .. C)) 



c 

A:: Cl: 
IF(r:r (;T 1) A=:r.J~~(1 .. C)*C1•tl\*E*•?/((rE,.01)*0) 
TF<x'_iT.A.OI<_X.rO.Al t;OTO ?.nS 

t.< F '"" r * ( 1 • ( 1 .. n) * ( r.E • X l ** 'N ( ( r.F,. C r;) * ( r. F • A l l ) 
~OTn ;>()r 

:105 ti~h:J\ 

r.OTI' ;>OL 
~ 0 (, tl F fi:: A* ( ( c X • r n ) I r l ..- ;> l I C 

r.orn 2nc· 
;10( tiFh:~ 

r;OT!l ;>Oc• 

:~ o 11 '' F F" n . o 
;109 P['TIJ~tJ 

~ t:D 

~IJh!loiJTI !:iF 1;RI ~ ntll I< • XHAX ,YJq N •VMAX~lll N~ • Y! JJS) 
OpAl<~ A r.RIIl ON A SFT OF AX~~ PROVIh~D r>V U;P4A IN TH~ !~ASTER • 
r>ll'rt.~sinll x t:>) ,v c2) 
JJ X= T F1 X t X I f.J d 
uv= tnxcvn~l 
y(1l:: XI•!IJ 

v{1 )::: VL!N 
v(2h: YI•AX 
r>X= CXIIAX'"Xf'Tfil/XINS 
no 1 1 = 1 • IJ x 
y(1 )= )((1l+nx 
\1(2): )<(1) 

1 r.ALL liTfl/,f>Cl<.Y,;.-,3) 
\1(1l= )(fl!N 
nYr:IYiiAX.,YI'Ttl) /Y!I•S 
n o ;> 11= 1 • li y 
v<1l= Y(1l+nv 
v<2l= YC1l 

~ t:All I!TI't.Hl<.Y.~.3) 
RI' Tli RI! 
Fflfl 
~llil~ll 

**** 
f)() r Ill' HJT f\ AT A 

c 






