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Abstract

Gravity-induced buoyancy, inevitable in most solidification processes, substantially alters the dynamics of
crystal growth, such that incorporating fluid flow in solidification models is crucial to understand and predict key
aspects of microstructure selection. Here, we present a multi-scale Dendritic Needle Network (DNN) model for
directional solidification that includes buoyant flow in the liquid, and apply it to a range of alloys and growth
conditions. After a brief presentation of the model, we study the selection of stable primary dendrite arm
spacings in Al-4 at.%-Cu and in Ti-45 at.%-Al alloys under different gravity levels, comparing both applications
to published phase-field results and experimental measurements. Then, we simulate the oscillatory growth
behavior recently reported via X-ray in situ imaging of directional solidification of nickel-based superalloy
CMSX-4. In this last application, the DNN simulations manage to reproduce the oscillatory growth behavior,
and hence permit identifying the fundamental mechanisms behind the oscillatory growth regime. In particular,
we show that sustained oscillations occur when the average liquid flow velocity is close to the crystal growth
velocity, and that primary dendritic spacings also play a crucial role in the oscillatory behavior.
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1. Introduction

Solidified metals and alloys predominantly exhibit
dendritic microstructures with geometrical features
that have a direct effect on the thermo-mechanical
properties of materials [1]. The primary dendritic
arm spacing, for instance, may determine to a large
extent the ultimate tensile strength [2, 3]. Thus,
especially for materials exposed to high tempera-
tures and stresses, it is of tremendous importance to
predict and control such characteristic length scales
emerging during solidification.

Dendritic morphologies result from a complex
interplay between phenomena on different length
scales: from capillarity effects at the atomistic scale
of the solid-liquid interface to macroscopic heat and
solute transport in the liquid [1, 4]. Within the past
decades, many theoretical approaches have addressed
the selection of dendritic patterns at different length
scales, primarily focusing on the fundamental phe-
nomena of capillarity and diffusion [5–7]. However,
convective transport in the liquid phase was also re-
ported to have a great influence on dendritic mi-
crostructure selection [8, 9].

∗damien.tourret@imdea.org

Buoyant flow in the liquid phase is primarily due
to the gradients in temperature and solute concentra-
tion resulting from crystal growth, combined with the
effect of gravity. Experiments in microgravity have
been carried out in order to circumvent the effect
of gravity-induced buoyancy [10–12]. However, melt
flow is inevitable under realistic Earth-based exper-
imental and industrial conditions. Fluid flow adds
an extra level of complexity to the relatively well-
studied dendritic growth under purely diffusive con-
ditions, but its fundamental understanding remains
both paramount and challenging.

The consequences of fluid flow on the resulting den-
dritic microstructures are multiple. The stirring of
the liquid phase contributes to a reduction of the
solute boundary layer ahead of the growing front,
which may extend the range of stable velocities for
a planar solid-liquid interface [13]. Fluid flow also
substantially affects the selection of microstructural
length scales, such as primary dendritic spacings [14–
16]. In spite of these observations, the understanding
of fundamental relationships between processing and
microstructures during solidification in the presence
of convection remains incomplete. A reason for this
knowledge gap is the lack of modeling approaches for
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quantitative simulations at the relevant length/time
scales. This article uses a recently proposed mul-
tiscale model to address some of these outstanding
gaps.

Convective effects on directional solidification (DS)
are particularly important in the context of Nickel
(Ni) superalloys for aeronautical applications. In-
deed, single-crystal turbine blades are typically pro-
duced by DS [17], and undesirable defects, such as
freckles, are closely tied to convective transport of so-
lute species in the liquid [18–20]. In this context, the
emergence of in situ imaging techniques for metallic
alloys, e.g. the use of time-resolved X-ray radiogra-
phy, has allowed a substantial advance in the study
of gravity-induced flow and its consequences on mi-
crostructure selection [21–24]. Among such recent
observations, an oscillatory growth regime was ob-
served during DS of CMSX-4, a Ni-based superalloy
commonly used for single-crystal turbine blades [24].
This unstable growth of the solidification front has
been linked to the presence of buoyant flow in the liq-
uid, but the fundamental mechanisms behind these
oscillations remain to be explored and explained on a
quantitative basis, due to the lack of adequate mod-
eling method [24]. In this article, we reproduce the
oscillatory growth during DS of CMSX-4 and bring
quantitative clarifications on this nontrivial behavior.

In terms of modeling, the phase-field (PF) method,
implicitly tracking the solid-liquid interface, has for
decades been the computational method of choice to
simulate dendritic growth [25]. Integrating melt flow
within PF models has allowed the study of dendrite
morphologies under forced [26–28] and natural con-
vection [29], and the exploration of the effect of fluid
flow on primary spacing in columnar dendritic arrays
[29–31]. However, simulation domains have for the
most part remained limited in size to a handful of pri-
mary dendrites. Recent numerical methods have en-
abled substantial acceleration, e.g. using paralleliza-
tion on Graphics Processing Units (GPUs) and/or
using the Lattice Boltzmann method [32–34]. Still,
due to the scale separation between dendritic tips and
solute transport, simulations of dendritic growth with
fluid flow at experimentally relevant length and time
scales with the PF method remain challenging, unless
using advanced algorithms and tremendous compu-
tational resources [35].

In order to address these computational limi-
tations, the multiscale Dendritic Needle Network
(DNN) model [36, 37] was designed to bridge the
scale gap between PF and coarse-grained models.
The dendritic structure is described by a hierarchi-
cal network of thin parabolic-shaped needles. It was
shown to be well suited for modeling spacing selec-
tion in binary alloys [38]. For equiaxed growth, the
model was extended to include liquid melt flow in two

dimensions (2D) [39] and recently three dimensions
(3D) [40].

In this article, we present a 2D formulation of the
DNN model applied to directional solidification con-
ditions, including convective transport in the melt
(Sec. 2). We verify the predictions of the DNN model
in terms of primary dendrite arm spacings, by com-
paring them to results of independent PF simulations
and experimental data for aluminum-copper [29]
(Sec. 3.1) and titanium-aluminum [30, 31] (Sec. 3.2)
alloys. Finally (Sec. 4), we simulate the buoyancy-
induced oscillatory growth observed in CMSX-4 di-
rectional solidification [24], which enables a deeper
exploration of its key underlying mechanisms.

2. Model

The model used here, and its numerical implemen-
tation, are direct extensions of our previous works.
Therefore, we only provide a brief introduction to
the key concepts and equations of the method, while
all further technical details can be found in earlier
articles [37, 39].

2.1. Sharp-interface model

We consider a binary alloy of nominal solute con-
centration c∞ in the dilute limit where the interface
solute partition coefficient k = cs/cl between equi-
librium concentrations of solid (cs) and liquid (cl)
phases can be considered constant. The temperature
field is assumed to follow the frozen temperature ap-
proximation T = T0 + G(x − Vpt), with a reference
temperature T0, a constant temperature gradient G
and a pulling velocity Vp. Here, the reference tem-
perature T0 is chosen as the alloy solidus tempera-
ture Ts at its nominal concentration c∞. For moder-
ate growth velocities, kinetic undercooling can be ne-
glected, such that the equilibrium of the solid-liquid
interface can be written via the Gibbs-Thomson re-
lation [37]

cl
c0l

= 1− (1− k)d0f(θ)κ− (1− k)
x− Vpt
lT

, (1)

where c0l = (TM − TL)/|m| = c∞/k is the liquid
equilibrium concentration of a flat interface at T0,
d0 = Γ/

[
|m|(1− k)c0l

]
is the capillary length at T0

with Γ the interface Gibbs-Thomson coefficient, f(θ)
expresses the dependence of the interface stiffness
upon its orientation (θ), κ is the interface curvature,
and the thermal length lT = |m|(1 − k)c0l /G corre-
sponds to the freezing range of the alloy. The Gibbs-
Thomson equation (1) is combined with a statement
of solute conservation at the solid-liquid interface
that takes the form of the Stefan condition

(1− k)clvn = D∇c|i, (2)
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where vn is the interface velocity, D is the solute dif-
fusion coefficient in the liquid phase, assuming that
diffusion in the solid is negligible, and ∇c|i denotes
the solute concentration gradient in the liquid at
the interface. Finally, the sharp-interface problem is
completed by an equation for the transport of solute
in the bulk, which may, in the vicinity of the inter-
face, be considered to follow the diffusion equation

∂tc = D∇2c, (3)

but may also incorporate additional (e.g. advective)
terms in the bulk liquid further from the interface
(See Sec. 2.5).

2.2. Reduced solute field

Introducing the reduced solute field U = (c0l −
c)/[(1 − k)c0l ], the Gibbs-Thomson relation (1), i.e.,
the interface equilibrium concentration can be writ-
ten as

Ui = d0f(θ)κ+
x− Vpt
lT

. (4)

with the far-field condition Ui(x → +∞) = 1. The
diffusion equation and Stefan condition for the non-
dimensional field U hence become

∂tU = D∇2U, (5)

[1− (1− k)Ui]vn = D∂nU |i. (6)

2.3. Solvability condition

Several studies [6, 7] have shown that at the small
scale of the dendritic tip radius R, the free boundary
problem defined by (4)-(6) only has a solution if the
microscopic solvability condition holds, which reads

R2V =
2Dd∗0
σ

=
1

1− (1− k)Ut

2Dd0

σ
, (7)

with d∗0 the capillary length expressed at the tip tem-
perature, σ the tip selection parameter, and Ut =
(xt − Vpt)/lT the equilibrium concentration at the
tip position xt, neglecting curvature and kinetic un-
dercooling.

2.4. Flux intensity factor

At a scale much larger than the tip radius R, where
the curvature of a needle is negligible, but much
smaller than the diffusion length lD, we can integrate
the Stefan condition (6) along a parabolic tip [37],
leading to

RV 2 =
2D2F2

[1− (1− k)Ut]
2
d0

. (8)

The flux intensity factor (FIF) F measures the nor-
mal solute flux towards the dendrite along the con-
tour Γ0 along the interface up to a distance a behind
the tip. It is defined as

F :=
1

4
√
a/d0

∫
Γ0

(∂nU) dS, (9)

where ∂nU is the flux normal to the interface. In
practice, one can choose a more convenient integra-
tion domain Γi (here circular), that encloses the area
Σi around the needle tip [39, 40]. Using the diver-
gence theorem and assuming a Laplacian solute field
in the domain moving with velocity V , the integral
of the FIF can be calculated by

4F
√
a/d0 =

∫
Γi

(∂n∗U) dS +
V

D

∫
Σi

(∂xU) dA, (10)

with ∂n∗U the flux across the Γi integration contour
using an outwards pointing normal vector n∗, for a
needle growing in the x-direction [39, 40].

2.5. Solute transport

On the large scale of the diffusion length lD = D/V
and above, the dendrites appear as thin needles, their
curvature can be neglected, and the Gibbs-Thomson
relation (4) can be approximated by

Ui =
x− Vpt
lT

. (11)

At all times, Eq. (11) is imposed as an internal
boundary condition over the entire needle network,
as it represents the fact that the solid-liquid inter-
face is at equilibrium.

In the bulk liquid we consider solute transport by
not only diffusion but also by (buoyancy-driven) con-
vection, by solving the incompressible Navier-Stokes
equation

ρ [∂tv + (v · ∇)v] = F −∇p+ η∇2v (12)

for the fluid velocity v, where ρ is the fluid density, p
is the pressure, η is the viscosity and F represents ex-
ternal forces. The incompressibility condition reads

∇ · v = 0. (13)

Here, we only account for external buoyancy forces
due to solute concentration gradients, considering
that they are typically dominant over those induced
by temperature gradients. Hence, we use the Boussi-
nesq approximation for the buoyancy force term,

F = ρl∞g [1− βc(c− c∞)] , (14)

with a solutal expansion coefficient

βc = − 1

ρl∞

∂ρ

∂c

∣∣∣
c=c∞

, (15)
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evaluated at the nominal concentration, where the
liquid density is ρl∞. The transport of solute in the
liquid with fluid velocity v is thus described by the
advection-diffusion equation

∂tU +∇ · (vU) = D∇2U. (16)

2.6. Implementation

The resulting model consists in solving the incom-
pressible Navier-Stokes problem (12)-(13) and the
advection-diffusion equation (16) in the liquid phase.
An equilibrium condition on the concentration field,
Eq. (11), and a null velocity are imposed over a net-
work of parabolic branches. At each time, the tip
radius and growth velocity of each individual branch
is calculated from Eqs (7)-(8), where the FIF is in-
tegrated according to Eq. (10). The numerical reso-
lution of the model and its implementation are pre-
sented in detail in [39]. Essentially, using a finite
difference spatial discretization on a staggered grid,
the Navier-Stokes equations are solved using a pro-
jection method [41] and an iterative successive over-
relaxation method [42, 43] is used for the incompress-
ibility condition. The time-stepping is carried out
with an explicit Euler method. The code is imple-
mented in the C-based CUDA programming language
for Nvidia GPUs, which allows a substantial acceler-
ation via parallelization.

3. Gravity effect on primary spacing selection

For a given alloy under given processing conditions,
the primary dendritic spacing, λ1, is known to be
selected within a broad range [38, 44–46]. Below
a minimum spacing λmin, dendrites get eliminated
through solute interaction with neighbors. Above a
maximum spacing λmax, dendritic side-branching oc-
curs and new primary branches emerge. Moreover,
the solute transport regime is well acknowledged to
greatly influence spacing selection [14–16].

In the first two applications of the DNN model,
we study the selection of primary dendritic spacing
under different gravity conditions. To do so, we con-
sider two independent studies for Al-Cu [29] and Ti-
Al [31] alloys. Both studies rely on 2D phase-field
simulations using a multi-phase field approach cou-
pled to a Navier-Stokes solver, hence providing a fair
quantitative comparison with our 2D DNN simula-
tions results. These quantitative comparisons consti-
tute a sound verification – against the reference PF
results – and validation – against the corresponding
experimental data – of the DNN method.

3.1. Spacing selection in Al-Cu alloy

Primary spacing selection via elimination (λmin)
in directional solidification in a buoyancy-driven flow

was addressed with the PF method for Al-4 at.%-Cu
[29]. There, the effect of gravity strength was inves-
tigated, and the following scaling law was proposed

a0g = λ−7 − λ−4 for g ≥ 0 (17)

a0g = −λ2 + λ−4 for g ≤ 0 (18)

which describes the ratio λ = λ1/λ0 between the pri-
mary dendritic spacing λ1 and its value in absence of
gravitational forces λ0, when gravity and growth are
in the same direction (g > 0) or in opposite directions
(g < 0). A prefactor value a0 = 5 was found to yield
a good agreement to PF results [29] and experimental
measurements [15].

3.1.1. DNN simulations

We carried out DNN simulations of directional so-
lidification using similar alloy and processing param-
eters as in Ref. [29]. Thermophysical alloy properties,
processing conditions, and numerical parameters (see
detailed definitions in Ref. [39]) are listed in Table 1.

Instead of reduced-size PF simulations [29], DNN
simulations are performed over entire dendritic ar-
rays of at least 13 (and up to 51) primary dendrites
growing together at steady state. The simulations
are initialized with several parallel and evenly spaced
needles with their tips located at the liquidus tem-
perature. The envelope joining all tips is meant
to approximate a planar front. The initial solute
distribution is given by U(x < lT , y) = x/lT and
U(x > lT , y) = 1. The simulations are carried out on
a moving domain, meaning that the most advanced
needle tip stays at a fixed position within the com-
putational domain.

The boundary conditions are periodic in the y-
direction (laterally). On the top and bottom bound-
aries (normal to the growth direction x), we set free-
slip conditions with vx = 0 for the fluid flow, meaning
that flow through the boundary is not allowed. The
diffusion field on the top boundary is set to a con-
stant value of U = 1, which corresponds to the nomi-
nal concentration c∞ = 4 at.%Cu. On the bottom
boundary, we set no-flux (mirror) conditions with
∂U/∂x = 0.

The finite difference grid spacing, h, is set between
4.6 µm (for g = 3g0 = 29.43 m/s2) and 7.1 µm (for
all other g), which corresponds to 0.8 ≤ h/Rs ≤
1.25, with Rs = 5.7 µm the theoretical steady state
tip radius for g = 0 [37, 39]. The contour used to
integrate the flux intensity factor is a circle centered
on the tip with a radius ri = 4h and the parabolic tips
are bound to a maximum radius rmax = ri [37, 39].

The most advanced dendrite tip is fixed at a height
of 0.9 mm, and the domain is initialized with between
14 and 118 evenly spaced parallel primary dendrites.
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Property Symbol Value Unit
Nominal composition c∞ 4 at.%
Liquidus slope m −1.6 K/at.%
Partition coefficient k 0.14
Liquid diffusivity Dl 3× 10−9 m2/s
Kinematic viscosity ν 5.7× 10−7 m2/s
Solutal expansion coefficient βc −10−2 1/at.%
Interfacial energy anisotropy (PF) ε 2× 10−2

Tip selection parameter (DNN) σ 0.153
Temperature gradient G 104 K/m
Pulling velocity Vp 4× 10−5 m/s
Finite difference grid spacing h 0.8− 1.25 Rs
FIF integration radius ri 4 h
Parabola truncation radius rmax 1 ri
Upwind parameter ωup 0.9
Successive Over Relaxation parameter ωSOR 1.1
SOR residual required for convergence rSOR 10−3

Time step safety factor K∆t 0.3− 0.6

Table 1: Material and processing parameters for directional solidification of Al-4 at.%-Cu from [29] and numerical parameters (see
ref. [39] for details).

Due to the competition for solute among the den-
drites, individual dendrites progressively get elimi-
nated, i.e., they leave the moving domain. Eventu-
ally, a growth state with stable primary dendrite arm
spacing is reached when no more elimination events
occur. We determined the stability range of primary
dendritic spacings from several simulations, varying
domain sizes, initial needle distributions (and hence
initial λ1), and gravity acceleration (direction and
strength). From the initial and final distributions of
primary dendrites, we extract the maximum unsta-
ble spacing and the minimum stable spacing. They
provide an estimate of the range in which the min-
imum spacing with respect to elimination, λmin, is
expected.

Simulations were performed with different domain
sizes (250 000 to 600 000 grid points) and simulated
times (300 to 1 500 s). Using a single Nvidia RTX
2080Ti GPU, computation times for g 6= 0 ranged
from 3 to 16 days, while simulations at g = 0 lasted
just a few hours.

3.1.2. Results and discussion

Fig. 1a shows the final state at t = 300 s of a simu-
lation with g = 9.81 m/s2 pointing in the growth di-
rection of the dendrites. The domain has Nx×Ny =
1150× 510 grid points, which makes it Ly = 8.2 mm
wide and Lx = 3.6 mm high. Of the initially placed
115 dendrites only 37 remain after growth competi-
tion and elimination. In this simulation, as in several
others, the solute flow contributes to the stabilization
of some dendrites slightly trailing behind the leading
ones, but eventually growing at a velocity Vp without

being eliminated. The presence of these metastable
spacings are consistent with PF results [29].

Fig. 1b shows the stable and unstable spacing dis-
tribution for each investigated gravity level, in com-
parison with PF results from Ref. [29]. The minimum
spacings λmin predicted by the DNN exhibits a good
agreement with the PF predictions. At g ≥ 0, the
DNN-predicted spacings are slightly smaller, but the
discrepancy on average λmin values remains within
about 26% between DNN and PF results. This dis-
crepancy may stem from the fact that PF simula-
tions used a limited domain size (e.g. domain height
of 600 µm corresponding to 10 % − 25 % of the cur-
rent simulations), commensurate with computational
capabilities at the time.

The scaling laws derived in Ref. [29] for upwards
downwards gravity directions, i.e. Eqs (17)-(18), are
compared to PF, DNN, and experimental [15] results
in Fig. 1c. The spacings for g ≤ 0, in good agree-
ment with PF results, are also in good agreement
with the scaling law with the prefactor a0 = 5 iden-
tified in Ref. [29]. For g ≥ 0, our results still follow
the expected trend, but the prefactor seems closer to
a0 ≈ 30, but since this value severely overestimates
spacings at g ≤ 0, a0 ≈ 5 remains a nearly optimal
value.

Experimental measurements [15], only available for
g ≥ g0, are close to the higher values of λmin assessed
by both PF [29] and current DNN results. This
small discrepancy between experiments and simu-
lations may be attributed to uncertainties in alloy
parameters, but also importantly to dimensionality
– comparing 2D simulations with 3D experiments.
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Property Symbol Value Unit
Nominal composition c∞ 45 at.%
Liquidus slope m −11.26 K/at.%
Partition coefficient k 0.9
Liquid Diffusivity Dl 3× 10−9 m2/s
Gibbs-Thomson coefficient Γ 1.61× 10−7 K m
Kinematic viscosity ν 1.89× 10−6 m2/s
Solutal expansion coefficient βc 4.784× 10−3 1/at.%
Interfacial energy anisotropy (PF) ε 1.1× 10−2

Tip selection parameter (DNN) σ 0.145
Temperature gradient G 1.2× 104 K/m
Pulling velocity Vp 2.5× 10−5 m/s
Finite difference grid spacing h 1.75 Rs
FIF integration radius ri 7 Rs
Parabola truncation radius rmax 7 Rs
Upwind parameter ωup 0.9
Successive Over Relaxation parameter ωSOR 1.1
SOR residual required for convergence rSOR 10−3

Time step safety factor K∆t 0.2− 0.6

Table 2: Material and processing parameters for directional solidification of Ti-45 at.%-Al from [31] and numerical parameters (see
ref. [39] for details).

This effect is not trivial. Indeed, on the one hand,
two-dimensional simulations are known to enhance
diffusive interaction among dendrites, consequently
overestimating 3D spacings even in diffusive condi-
tions [47]. Yet, on the other hand, convection is ex-
pected to reduce the length of diffusive interaction,
and hence reduce the spacing. This latter effect is en-
hanced even further by the fact that fluid velocities,
and their consequences on crystal growth, may also
be severely overestimated in 2D simulations [27, 40].
The current results, from both DNN and PF meth-
ods, suggest that the second effect, reducing spacings
in 2D simulations, may be dominant.

3.2. Spacing selection in Ti-Al alloy

While the previous section was focused on insta-
bilities in columnar growth due to the elimination of
dendrites (when λ < λmin), the branching instabil-
ity that locally reduces the primary spacing (when
λ > λmax) may also be strongly altered by the pres-
ence of fluid flow. Experimental observations of solid-
ifying a Ti-47.5 at.%Al-2 at.%Cr-2 at.%Nb alloy [30]
alongside with PF simulations of directional den-
dritic growth in Ti-45 at.%-Al [30, 31] indicate that
fluid flow in the melt, specifically under hypergravity
conditions, strongly affects spacing selection. Here,
we compare DNN prediction with these results and
show that the reduction of dendritic spacing is also
captured by the side-branching mechanism with the
DNN method.

3.2.1. DNN simulations

The considered thermophysical, processing, and
numerical parameters are listed in Table 2. In con-
trast to the previous section, the simulations are ini-
tialized with only one primary dendrite in the center
of a domain with h = 1.75Rs, with Rs = 2.3 µm,
and size Lx × Ly = (1.14× 0.5) mm2, growing in the
x-direction. Using a moving frame following the tip
position, the most advanced needle tip is fixed at a
position of 0.55 mm from the bottom of the domain.
The domain is periodic in the y-direction (horizon-
tally), and at the top and bottom boundary we apply
free-slip conditions with vx = 0. The diffusive field
is set to U = 1 at the top boundary, correspond-
ing to the nominal concentration c∞ = 45 at.% of
the alloy. At the bottom boundary, no-flux condi-
tions with ∂U/∂x = 0 apply. Consistently with the
corresponding PF study [31], several such simulation
were performed using different levels of gravity from
g = −20 g0 to g = +15 g0, again with positive g cor-
responding to gravitational forces in the same direc-
tion as the primary dendrite growth and temperature
gradient.

Another important difference with previous simu-
lations is the presence of side-branching. Using a sim-
ilar approach as in previous implementations [36, 37],
new branches perpendicular to the parent dendrite
are periodically generated at a distance lsb behind
the dendrite tip, every time the tip has grown by a
distance lsb. The side-branching distance lsb of every
branch is randomized by adding a random distance
δlsb with range [−∆lsb/2,+∆lsb/2] for each branch

6
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Figure 1: (a) Final state at t = 300 s of a DNN simulation
with gravity g = g0 = 9.81 m/s2 pointing upwards, i.e. in the
growth direction. Streamlines show the fluid flow above the
solid region, with Vmax = 55Vp = 2.2× 10−3 m/s. (b) Stable
and unstable spacing distribution in Al-4 at.%-Cu, extracted
from PF [29] and DNN (this work) simulations for different
levels of gravity with g > 0 pointing in growth direction and
g < 0 pointing against growth direction. (c) Scaling laws (17)-
(18) compared to experimental data [15] and simulations for
different values of the prefactor a0.

independently. Both average side-branching distance
and random fluctuation are user-input parameters.
As long as the distance between side-branches is short
enough to induce growth competition among them,
this approach was found to be relatively insensitive to
selected branching parameters [36] and to reproduce
scaling laws for experimentally measured dendrite en-
velopes [37]. Here, the side-branching frequency was

set at lsb/Rs = 7.0± 1.5.
These simulations were performed on a single

Nvidia RTX 2080Ti GPU. With about 36 000 grid
points for each run, simulations with moderate grav-
ity strength (|g| < 10g0) were performed in 2 to
3.5 days, in contrast to PF simulations lasting ap-
proximately a month. At higher gravity strength
(|g| > 10g0), numerical stability required a decrease
of the time step, which resulted in those simulations
lasting up to two weeks.

3.2.2. Results and discussion

Fig. 2 illustrates the final states of the DNN sim-
ulations at t = 200 s (bottom) in comparison with
the PF results from Ref. [31] (top). Tip-splitting
events and drifting of the dendrites are not captured
by the DNN model, in which the needles have a fixed
growth direction and lateral position. The reduc-
tion of primary dendritic spacing for gravity con-
ditions g < −3g0 was nonetheless predicted. At
g = −5g0,−15g0,−20g0 tertiary branches emerge
and effectively reduce the spacing.

The overall flow patterns in PF and DNN match
qualitatively. At g = 5g0 and g = 15g0, the
DNN simulations develop a lateral flow near the top
boundary that differs noticeably with results from
PF simulations. This behavior could be rooted in
the slightly larger domain size of the DNN simula-
tions with Lx × Ly = (0.5 × 1.14) mm2 opposed to
Lx×Ly = (0.45× 1.05) mm2. The reason might also
be that lateral flow (DNN) or vortices (PF), once
established, are not easily disrupted. In any case,
the flow velocities near the top boundary are very
low compared to the flow close to the dendrite re-
gion, such that we can assume this difference to be
insignificant.

4. Oscillatory growth of nickel-based superal-
loy

In a recent experimental study, solutal buoyant
flow was directly observed via in-situ X-ray radio-
graphy during directional solidification of a CMSX-
4 superalloy [24]. The effect of the melt flow was
evidenced by tracking the dendritic tip growth ve-
locities. Depending on the applied cooling rate,
tip velocities were observed to exhibit oscillations.
This oscillatory behavior remains to be simulated
and explained in details. The current DNN model,
which considers a model binary alloy in two dimen-
sions, is not expected to entirely reproduce the com-
plex multicomponent solute interactions in a three-
dimensional sample. Nevertheless, here we show that
using a careful pseudo-binary alloy approximation,
DNN simulations reproduce this oscillatory growth
behavior.
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Figure 2: Final states of PF [31] and DNN simulations at t = 200 s of directional dendritic solidification of Ti-45 at.%-Al in a
horizontally periodic domain. The color map represents the concentration of Al solute, while the melt flow is shown with streamlines
colored in shades of green representing the velocity amplitude at each gravity level, respectively. The maximum velocities Vmax

from left to right are: {28.0; 28.9; 7.1; 10.6; 1.0; —; 2.3; 7.0} × 10−5 m/s.

4.1. Pseudo-binary alloy surrogate

We consider the nominal composition of CMSX-4
as listed in Table 3. In order to reproduce the os-
cillatory growth behavior, the first task is to design
a pseudo-binary surrogate for the CMSX-4 superal-
loy in the considered growth conditions, namely a
temperature gradient of G = 4400 K/m and a veloc-
ity range between 7.58 µm/s and 31.4 µm/s in exper-
iments, or up to 60.6 µm/s in the DNN simulations.
In particular, we aim for a reasonable description of
(i) the crystal growth kinetics and (ii) the buoyant
flow patterns and velocities. Regarding the growth
kinetics, we consider that the description is accept-
able if, for the considered velocity range, the den-
drite tip radius of the surrogate alloy matches that
of the full CMSX-4 alloy, and the velocity for the
onset of constitutional undercooling is also reason-
ably approximated. In terms of fluid flow, we want
to consider the alloying elements that play the most
prominent role in the buoyant flow and approximate
their average solutal expansion coefficient.

Starting with the buoyancy consideration, we esti-
mate that the species responsible for the formation
of buoyant plumes are the lightest alloying elements,
namely aluminum and titanium. Indeed, chromium,
cobalt, and molybdenum are close enough from nickel

in weight for their influence on buoyancy to be minor.
Heavier elements, on the other hand, like tantalum,
tungsten, and rhenium, may lead to non-negligible
buoyant forces, but with a stabilizing effect as the
heavier liquid would sink between the primary den-
drites [29].

Using the CalPhaD method (software: Thermo-
Calc, database: TCNI8), we calculated the thermo-
dynamic equilibrium of the full CMSX-4 alloy (ex-
cluding minor alloying element hafnium absent from
the database) at its liquidus temperature, TL ≈
1660 K. At this temperature, we verified that alu-
minum and titanium indeed have the highest solutal
expansion coefficients (Eq. (15)) with βAl ≈ 1.35 ×
10−2/wt% and βTi ≈ 0.75× 10−2/wt%, compared to
βCr ≈ 0.21 × 10−2/wt%, βCo ≈ 0.09 × 10−2/wt%,
and βc < 0 for heavier elements Mo, Re, Ta, and
W. These values are consistent and close with those
mentioned in the literature [48, 49]

From these considerations, we opted for a surro-
gate {A+B} alloy, where the solute B={Al+Ti} com-
bines Al and Ti contributions, while solvent A repre-
sents the other elements. Its solutal expansion coeffi-
cient is approximated as βc ≈ 10−2/wt%. The alloy
nominal concentration is taken as c∞ = cAl

∞ + cTi
∞ =

6.6 wt%.
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Element Cr Co W Al Mo Re Ti Hf Ta Ni
Composition c/wt% 6.5 9.6 6.4 5.6 0.6 3.0 1.0 0.1 6.5 Balance

Table 3: Considered nominal composition of the CMSX-4 superalloy [24].

For the diffusion coefficient D, partition coefficient
k, and liquidus slope m, we want to use realistic
orders of magnitude, relevant to Al and Ti species,
such that the operating state of a steady-state grow-
ing dendrite, namely its tip radius R and velocity V ,
matches that expected for the full CMSX-4 alloy at
the considered G. In particular, we aim for a good
agreement between pseudo-binary surrogate and full
CMSX-4 alloy in terms of predictions of the classical
Kurz-Giovanola-Trivedi (KGT) model [50] extended
to multicomponent alloys. We also aim at a good
match in terms of onset velocity for constitutional
undercooling, such that the considered growth veloc-
ity appropriately falls within the dendritic regime.

Diffusivities of aluminum and titanium
species in liquid nickel were assessed as
DAl = 1.86× 10−7 m2/s × exp{−0.66 eV/(kBT )}
(for a Ni87.5Al12.5 alloy) [51] and DTi =
1.70× 10−7 m2/s × exp{−57.43 kJ/mol/(RgT )}
[52], yielding DAl ≈ 2.05× 10−9 m2/s and
DTi ≈ 2.92× 10−9 m2/s at T = 1700 K. Alu-
minum being the major alloying element, we chose
D = 2.0× 10−9 m2/s as a good approximation.

Solute partition coefficients for Al and Ti calcu-
lated with CalPhaD for the CMSX-4 alloy at its liq-
uidus temperature are respectively kAl = 0.9 and
kTi = 0.46. In binary Ni-5.6wt%Al and Ni-1.0wt%Ti
alloys, partition coefficients at their respective liq-
uidus temperatures are kAl = 0.90 and kTi = 0.64.
For the binary surrogate approximation, we used an
intermediate value, closer to that of aluminum, with
k = 0.8.

CalPhaD-calculated liquidus slopes respective to
Al and Ti in the CMSX-4 alloy are mAl ≈
−13.1 K/wt% and mTi ≈ −20.3 K/wt%. In binary
Ni-5.6wt%Al and Ni-1.0wt%Ti alloys, liquidus slopes
are mAl ≈ −4.92 K/wt% and mTi ≈ −9.77 K/wt%.
However, we found that using such values leads to a
notable discrepancy between pseudo-binary and full
CMSX-4 alloy in terms of KGT-predicted tip radius
R(V ) and constitutional undercooling velocity Vc.
Hence, we treated m as an adjustable parameter to
better match R(V ) and Vc. We used a simple exten-
sion of the KGT model [50] to multicomponent alloys
[53, 54] by adding up solutal contributions of the dif-
ferent alloying elements (see Supplementary Mate-
rial). This formulation neglects cross-species interac-
tions [55], which is typically acceptable for relatively
dilute solute species, and yields predictions of planar
interface stability limits consistent with this assump-
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Figure 3: KGT model prediction of dendrite tip radius versus
velocity for multicomponent CMSX-4 (Supplementary Mate-
rial, Table A.1) and binary surrogate alloy (Table 4).

tion [56]. As depicted in Fig. 3, resulting KGT cal-
culations lead to a CMSX-4 onset of constitutional
undercooling at a velocity Vc ≈ 1.75× 10−7 m/s (see
details and parameters in Section A of the Supple-
mentary Material). In order to match this veloc-
ity for the parameters considered here, using the
classical binary criterion Vc = DGk/ [m(1− k)c∞]
[57, 58] for the temperature gradient G = 4400 K/m
of the experiments [24], we obtain a liquidus slope
m ≈ −25 K/wt%. Although this value is higher
than CalPhaD-calculated values, it remains within
the same order of magnitude, and we decided to use
it for the surrogate alloy, since it leads to a good
approximation of the full CMSX-4 alloy in the KGT-
predicted R(V ) curve in the considered velocity range
(Fig. 3).

Remaining parameters, namely kinematic viscos-
ity, Gibbs-Thomson coefficient, and interface energy
anisotropy were estimated for pure Ni. We consid-
ered a kinematic viscosity ν = 5.8× 10−7 m2/s using
dynamic viscosity and density values determined ex-
perimentally for pure Ni in Refs [59] and [60], respec-
tively. For the Gibbs-Thomson coefficient, we used
Γ = γ0TM/Lf = 2.49× 10−7 K m, considering pure
Ni melting temperature TM = 1728 K and latent heat
of fusion Lf = 2.08× 109 J/m3 calculated with Cal-
PhaD (TCNI8), and an interface excess free energy
γ0 ≈ 0.3 J/m2, consistent with several independent
calculations using molecular dynamics (capillary fluc-
tuation method) between 0.271 and 0.364 J/m2[61–
63]. The fourfold interface free energy anisotropy was
considered ε = 0.012, which corresponds, for a one-
sided model in 2D [6], to a tip selection parameter
σ ≈ 0.08.
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Property Symbol Value Unit
Nominal composition c∞ 6.6 wt%
Liquid Diffusivity Dl 2× 10−9 m2/s
Partition coefficient k 0.8
Liquidus slope m −25 K/wt%
Solutal expansion coefficient βc 10−2 1/wt%
Gibbs-Thomson coefficient Γ 2.49× 10−7 K m
Kinematic viscosity ν 5.8× 10−7 m2/s
Interfacial energy anisotropy ε 1.2× 10−2

Tip selection parameter σ 0.08
Temperature gradient G 4.4× 103 K/m

Cooling rate Ṫ {−2;−4;−8.3;−11;−13;−16} K/min
FIF integration radius ri 5.4− 8.5 Rs
Parabola truncation radius rmax 5.4− 8.5 Rs
Upwind parameter ωup 0.9
Successive Over Relaxation parameter ωSOR 1.1
SOR residual required for convergence rSOR 10−3

Time step safety factor K∆t 0.15

Table 4: Material and processing parameters used int he DNN simulation of the directional solidification of the CMSX-4 surrogate
alloy (see Sec. 4.1 for sources) and numerical parameters (see ref. [39] for computational details)

Cooling Rate Ṫ Grid Spacing h Domain Size Nx ×Ny Domain Size Lx × Ly Initial PDAS
−2 K/min 1.5 Rs = 10.4 µm 766× 414 8 mm× 4.3 mm 239 µm
−4 K/min 2.125 Rs = 10.4 µm 766× 414 8 mm× 4.3 mm 239 µm
−8.3 K/min 1.85 Rs = 6.3 µm 766× 510 4.8 mm× 3.2 mm 213 µm
−11 K/min 1.6 Rs = 4.7 µm 1022× 638 4.8 mm× 3 mm (272− 375) µm
−13 K/min 1.5 Rs = 4 µm 1022× 638 4.1 mm× 2.6 mm 235 µm
−16 K/min 1.35 Rs = 3.3 µm 1022× 1022 3.4 mm× 3.4 mm 239 µm

Table 5: Grid spacings and domain sizes of the DNN simulations at different cooling rates Ṫ .

Assumptions made here in the construction of a
pseudo-binary CSMX-44 surrogate are arguably ap-
proximate, specific to the problem that we aim to
simulate, and not intended as a general procedure
for pseudo-binary approximations of complex multi-
component alloys. Nonetheless, we will see in the
following subsections that this simple description
is sufficient to reproduce and hence investigate the
experimentally-observed oscillatory growth regime.

4.2. DNN simulations

Table 4 summarizes the material, processing and
numerical parameters used in the DNN simulations.
We simulated the directional solidification of the sur-
rogate alloy for six different cooling rates from −2 to
−16 K/min. The three lowest cooling rates of −2,
−4, and −8.3 K/min correspond to the experimental
conditions. The grid spacing h was set between 1.35
and 2.125 times the steady tip radius Rs, while ensur-
ing that h ≤ D/(10Vs) in order to provide an appro-
priate spatial description of solute gradients. Table
5 summarizes the corresponding numerical parame-
ters. The domain was initialized with an array of
between 6 and 22 evenly-spaced primary dendrites,

with their tips initially located at the liquidus tem-
perature. The growth of the dendritic arrays was
simulated for a physical time of between 2.5 min (for
Ṫ = −16 K/min) and 28 min (for Ṫ = −2 K/min).
In order to assess the effect of primary spacing on
the oscillatory growth behavior, we also performed
simulations at Ṫ = −11 K/min, using different initial
spacings of 272, 300, and 375 µm. In all simulations,
boundary conditions were similar as those used in
Sec. 3.1 and side-branching was not enabled.

All simulations were carried out on a single Nvidia
RTX3090 GPU. Simulation times ranged between
6.5 days (for 28 min at −8.3 K/min) and 24 days (for
12 min at −11 K/min). As a representative example,
the simulation discussed later in Fig. 5, correspond-
ing to 5 min of cooling at −13 K/min, was performed
in 14 days.

4.3. Results and discussion

Fig. 4 shows a side-by-side comparison of the ex-
perimentally measured [24] solidification velocities
and the velocities predicted by the DNN model. For
each cooling rate, V (t) from experiments and sim-
ulations are represented using the same time and
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velocity scales, with the equivalent pulling velocity
(Vp = |Ṫ |/G) marked with a red horizontal line. Ex-
perimental velocities correspond to the tip of one cen-
tral dendrite (see Fig. 7 and corresponding discussion
in Ref. [24]). Simulation results correspond to the ve-
locity of a single arbitrarily-chosen dendrite tip that
did not get eliminated throughout the simulation.
Similar plots showing V (t) for every single dendrite
in each simulation are provided in the Supplemen-
tary Material (Fig. B.1), showing that the behaviors
illustrated in Fig. 4 are representative of those across
the entire dendritic array.
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Ṫ

=
−

4
K
/m

in
Ṫ
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Figure 4: Experimentally measured [24] solidification veloci-
ties (left) and corresponding DNN predicted velocities (right)
at different cooling rates. Gray and black lines respectively
correspond to the raw and time-averaged data (using a mov-
ing average over 1 s). Horizontal red lines represent the
steady-state tip velocity, i.e. the equivalent pulling velocity
Vp = |Ṫ |/G.

As discussed in Ref. [24], during directional solidifi-
cation experiments, velocity oscillations were identi-
fied that were sustained over tens of minutes, with an
oscillation period of about 80 seconds when cooling at
−2 K/min. In other experiments with faster cooling
rates, oscillations of comparable period were progres-
sively damped as the cooling rate was increased.

In the results from DNN simulations, low cooling
rates (|Ṫ | ≤ 4 K/min) lead to growth fluctuations,
but they appear quite random, with single sharp
spikes. The growth regime progressively transitions
to a more periodic behavior at faster cooling rates.
The sustained oscillatory growth and its attenuation
when increasing the cooling rate is also observed in
DNN simulations (Fig. 4), however for a higher cool-
ing rate than in the experiments. Sustained oscil-
lations, experimentally identified at Ṫ = −2 K/min,
appear in the simulations around −13 K/min, with a
period of about 20 second.

Fig. 5 illustrates the behavior of the flow pattern
when oscillations occur for Ṫ = −13 K/min. The
dendrite marked by the green rectangle in the full
domain on the right side, is shown at four time steps
during one oscillation period. Although the alternat-
ing flow patterns are complex when approached at
the scale of the entire domain, clear trends emerge
when looking at the overall flow direction (white ar-
rows) surrounding a given dendrite tip. The dendrite
grows at its lowest velocity (t1, t4) when the fluid ex-
hibits a strong upward current, thus locally depleting
the region surrounding the tip in solute. The tip ve-
locity is maximal (t2) when the flow has a strong
downward component, feeding the tip in solute. At
intermediate velocities (t3) the liquid predominantly
flows laterally, which is known to lead to a tip growth
velocity comparable to that in the absence of convec-
tion [27, 64–66]. Overall, the dendrite tip velocity
oscillates around the equivalent pulling velocity Vp.
Meanwhile, dendrites within the array are still inter-
acting with each other via the solute field, such that
the tip undercooling oscillates above the theoretical
undercooling ∆s for a free (i.e. isolated) dendrite.

In order to assess the range of cooling rates at
which oscillations occur, we estimated the average
flow velocity V in the final stage of each simula-
tion. To do so, we extracted the spatial average
of the amplitude of the velocity field in the liquid
for five different time steps, within one oscillation
period (or over 16 s in the late stages of the simu-
lations when oscillations are absent), and used the
average of those five values as an approximate veloc-
ity over space and time. For completeness, the five
snapshots used for each simulations are illustrated in
the Supplementary Material (Fig. B.3). Results of
this analysis, summarized in Table 6, clearly identify
that oscillations occur when the average flow velocity
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V is close to the equivalent pulling velocity Vp. In-
deed, when V /Vp < 1 oscillations are damped, when
1 < V /Vp < 2 oscillations are sustained, and for
higher V /Vp the growth behavior becomes increas-
ingly more erratic. While the current estimation of
V is arguably approximate, this analysis unambigu-
ously demonstrates that oscillations occur when the
flow velocity and the growth velocity are of the same
order of magnitude.

The discrepancy in cooling rate leading to oscil-
lations between experiments and simulations may be
attributed to assumptions made in the pseudo-binary
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Figure 5: Concentration fields of the full simulation domain
(top) at t = 70 s and t = 291 s for the cooling rate Ṫ =
−13 K/min, with enhanced snapshots of the area marked by
the green rectangle and its corresponding tip velocity and un-
dercooling during a single oscillation period (below). The four
panels are aligned with the corresponding times t1, t2, t3, and
t4 in the bottom plots of the tip velocity and undercooling.
Arrows indicate the flow direction and the color map and iso-
contours represent the solute concentration U .

approximation of the CMSX-4 alloy (see Sec. 4.1),
as well as dimensionality, as pointed out already in
Sec. 3.1.2. Indeed, since the flow velocity is overes-
timated in the 2D simulations [27, 40], the range of
cooling rates with V ≈ Vp occurs at higher Vp, i.e. at

higher |Ṫ |. The difference in oscillation period likely
stems from the fact that the oscillations appear at
a higher cooling rate, and therefore is also due to
dimensionality and surrogate alloy approximations.
Preliminary observations suggest an increase of os-
cillation frequency with cooling rate. However, since
the range of cooling rate resulting in sustained oscil-
lations is relatively narrow, this difference is limited
(≈ 15 % increase from −11 K/min to −13 K/min),
and one may expect a greater influence of alloy pa-
rameters (in particular ν, D, and βc). Further ongo-
ing parametric studies on a broader range of alloys
will clarify the influence of these parameters in the
oscillation frequency.

In addition to its dependence upon cooling rate, we
also found that the oscillatory behavior was strongly
dependent upon primary dendritic spacing. In Fig. 5,
for instance, the oscillatory growth occurs after two
initially set primary dendrites (present in the top-left
snapshot at t = 70 s) were eliminated. In order to
assess the influence of spacing, we performed simula-
tions at a cooling rate Ṫ = −11 K/min using different
primary spacings within a range where no elimina-
tion event occurs, i.e. namely for λ1 = 272, 300, and
375 µm. Fig. 6 illustrates the resulting concentration
fields at t = 4.5 min, as well as the velocity evolution
of one needle (marked with a green arrow) in each
simulation. The velocities of all needles (provided
in Fig. B.2 of the Supplementary Material) exhibit a
similar behavior as the ones highlighted here. For (a)
λ = 272 µm, dendrites are close to one another. Ini-
tial transient oscillations are quickly damped and the
dendrites finally grow together at the steady-state ve-
locity Vp = 41.7 µm/s. As the spacing gets larger (b),

Ṫ Vp V V /Vp Oscillations
K/min µm/s µm/s
−2 7.6 167.2 22.0 Spikes
−4 15.2 202.2 13.3 Spikes
−8.3 31.4 119.3 3.79 Intermediate

(a) −11 41.7 25.4 0.61 Damped
(b) −11 41.7 14.6 0.35 Damped
(c) −11 41.7 75.5 1.81 Sustained

−13 49.2 76.8 1.56 Sustained
−16 60.6 0.61 0.01 Damped

Table 6: Average flow velocities V (see text and Fig. B.3 of the
Supplementary Material) and equivalent pulling velocity Vp for
the different DNN simulations. The three cases labeled (a),
(b), and (c) at Ṫ = −11 K/min correspond to the simulations
illustrated in Fig. 6.
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Figure 6: DNN-predicted flow patterns (top) and tip velocities V (bottom) at Ṫ = −11 K/min at t = 4.5 min with different primary
dendrite arm spacing λ1. The streamlines represent the fluid flow with maximum velocity Vmax = 102 Vp = 4.3× 10−3 m/s. The
illustrated tip velocities correspond to the dendrites indicated by green arrows. The gray and black curves correspond to raw and
smoothed data, respectively. The red horizontal lines represent the theoretical steady state tip growth velocity, i.e. the equivalent
pulling velocity Vp. Plots of the velocities of all needles can be found in Fig. B.2 of the Supplementary Material.

damping of the oscillations occurs over a longer time
during which several oscillation periods are notice-
able. Ultimately (c), higher spacings allow stronger
convective currents, leading to a sustained oscilla-
tory growth of the dendritic array. Values of the
average fluid velocity estimated in these three sim-
ulations (see Table 6), are consistent with our obser-
vation that oscillations occur when V is higher yet
close to Vp, with V < Vp in both damped cases (a)
and (b), and V /Vp ≈ 1.86 in the sustained case (c).

Our interpretation of the effect of spacing on the
occurrence of oscillations is the following. First, for
the oscillations to take place, sufficient fluid flow
must be allowed between the primary dendrites. Sec-
ond, since the oscillations of adjacent primary den-
drites are out-of-phase with each other, a lateral
symmetry-breaking must arise, leading to a two-
dimensional composition profile. When the primary
spacing is low, fluid flow is strongly limited between
the dendrites. This is illustrated in Fig. B.4 of the
Supplementary Material, which represents the ver-
tical (x) component of the velocity averaged over
the entire liquid region at a given height (|Vx|) at
five different times (t = 246, 259, 273, 286, and

300 s), and clearly shows that the resulting velocity is
much higher for the highest spacing case of Fig. 6c.
When the primary spacing is low, the composition
field between the dendrites and ahead of the solidi-
fication front also remains relatively close to a one-
dimensional profile ahead of a planar front. At higher
spacings, lateral composition gradients (∂c/∂y) can
develop, which lead to the symmetry breaking, to
the development of a two-dimensional composition
field, and to the emergence of oscillations. This is
illustrated in Figs B.5 and B.6 of the Supplementary
Material, respectively showing the composition pro-
file along vertical lines located at the center between
two primary dendrites at different times (Fig. B.5),
and the composition profile along horizontal lines in
the liquid region at x − xtip = 141 µm and 423 µm
at five different times (Fig. B.6). These plots show
that for λ1 = 272 µm (Fig. 6a) and λ1 = 300 µm
(Fig. 6b) the composition profile is essentially one-
dimensional, with (c−c∞)/c∞ remaining below 0.1 %
in the liquid ahead of the dendrite tips, while the
composition profile for λ1 = 375 µm (Fig. 6c) ex-
hibits significantly higher composition gradients in
the y direction. The transition from damped to sus-
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tained oscillations seems to occur when the primary
spacing λ1 is between 6 and 8 times D/Vp, since at
this cooling rate the steady-state diffusion length is
D/Vp ≈ 48 µm. Additional simulations should clarify
how this threshold changes within a broader range of
alloys and processing parameters — and whether the
diffusion length is the appropriate length scale with
which to compare in presence of appreciable convec-
tion.

It is worth mentioning that Fig. 6 illustrates special
cases in which the dendritic array is perfectly regular
and no elimination occurs. In general cases, as those
depicted in Figures 4 and 5, a symmetry breaking
due to the occurrence of elimination events leads to
more complex overall array dynamics. Hence, for low
spacings, expected to lead to complete damping of
the oscillations, elimination events may lead to an in-
crease of average primary spacing, and consequently
to an oscillatory growth behavior. This is illustrated,
for instance, in additional simulations, using different
initial primary spacings at Ṫ = −13 K/min presented
in the Supplementary Material (Fig. B.2).

In summary, the current results confirmed that a
buoyancy-induced oscillatory growth behavior, ob-
served in experiments [24], may occur across a narrow
range of cooling rates when the average flow veloc-
ity is close to the average growth velocity, and sug-
gested that primary dendritic spacings play a promi-
nent role in the resulting oscillations being sustained
or damped. Ongoing investigations should provide a
deeper understanding of the mechanism, e.g. estab-
lishing relevant scaling laws for the resulting oscilla-
tion period and amplitude. Further applications of
the model to polycrystalline growth with nucleation
[67, 68] should also allow the simulation of segregated
channels and freckle formation. However, an exten-
sion of the current model would remain required to
treat potential remelting and fragmentation events
in the segregated channels, as well as the buoyant
motion of stray crystals.

5. Summary and conclusions

We presented a two-dimensional implementation
of the dendritic needle network (DNN) model for di-
rectional solidification of binary alloys with buoyant
melt flow. Results of the model regarding the se-
lection of primary dendritic spacings in Al-4 at.%-Cu
and Ti-45 at.%-Al alloys under various gravity condi-
tions are consistent with previously reported phase-
field and experimental data. Scaling laws for the
lower spacing limit λmin for upward and downward
flows were reproduced [29]. Spacing reduction via
side-branching in DNN simulations reasonably mimic
tip-splitting events expected in presence of strong
gravity in direction opposite to the growth [31].

We simulated the experimentally observed oscil-
latory growth behavior in nickel-based single-crystal
CMSX-4 alloy [24]. To do so, we considered a sur-
rogate binary alloy, derived from simple assumptions
using CalPhaD calculations and classical solidifica-
tion theories, namely matching predictions of consti-
tutional undercooling criterion and KGT model. Os-
cillatory growth velocities were reproduced, however
at cooling rates slightly higher than identified in ex-
periments. The discrepancy is mainly attributed to
dimensionality, since flow velocities are usually over-
estimated in two-dimensional simulations [27, 40].
Our results confirmed that the oscillatory growth be-
havior is closely linked to the buoyant flow in the
liquid phase, that it occurs over a narrow range of
cooling rates (i.e. growth velocity) for a given tem-
perature gradient, and that the oscillatory behavior
strongly depends on the primary dendritic spacing.

In summary, we used a new model to (i) gain new
fundamental insights into an important yet still in-
completely understood aspect linking materials pro-
cessing and microstructure, namely during solidifica-
tion in the presence of fluid flow, and (ii) validate
those insights by a direct comparison of modeling
predictions and state-of-the-art in situ imaging ex-
periments in a technologically important application
– namely directional solidification of a single-crystal
Ni-based superalloy.

Ongoing and future investigations following on this
study include applications of the model to a broader
range of experiments (e.g. Ref. [69]) as well as
three-dimensional applications [40]. Among other
things, the computationally efficient DNN simula-
tions should allow further study of the dependence of
dendrite growth kinetics upon the surrounding flow
strength and direction [65, 66]. A deeper investiga-
tion into oscillatory growth behaviors during direc-
tional solidification, scanning a wider range of alloy
and processing parameters, should also shed further
light into its underlying mechanisms.

The impact of these results goes beyond fundamen-
tal considerations of nonlinear physics and oscillatory
instabilities. Directional solidification of CMSX4 su-
peralloy is of direct relevance to the production of sin-
gle crystal turbine blades used in jet turbines. There-
fore, the prediction of buoyancy-related defects and
the stability of a CMSX4 solidification front is of
immediate technological relevance to the casting of
high-performance single-crystal components.
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Supplemental Materials: Convective effects on columnar dendritic solidification –
A multiscale dendritic needle network study

A. Kurz-Giovanola-Trivedi (KGT) model

The analytical KGT model for dendritic growth is based on the Ivantsov paraboloid solution and the marginal
stability criterion and was introduced in Ref. [50] for binary alloys. It allows to predict the tip radius R of
a columnar dendrite, depending on the solidification conditions, namely temperature gradient G and growth
velocity V . The model was extended to ternary alloys [53, 54, 70], ignoring cross-species diffusion. This latter
assumption essentially leads to simply adding up individual species contributions — which is also consistent
with the theroetical limits of planar instability for ternary alloys under a similar assumption [56]. We use
a generalization of this approach, briefly described below, to estimate the tip radius versus velocity of the
multicomponent CMSX-4 alloy.

The solute supersaturation of each species i is given by the Ivantsov solution [5]

Ωi = Iv(Pei) = Pei exp(Pei)E1(Pei) (A.1)

with the solute supersaturation

Ωi = (ci − c∞,i)/((1− ki)ci) (A.2)

and the Péclet number

Pei = RV/(2Di) , (A.3)

where ci, c∞,i, Di, and ki are, respectively, the concentration, the nominal concentration, the diffusion coeffi-
cient, and the partition coefficient of species i.

In a (N + 1)−component alloy, considering a linearized phase diagram and neglecting kinetic undercooling,
the tip temperature T of a growing dendrite is given by

T = TL +

N∑
i=1

{
mi(ci − c∞,i)

}
− 2Γ

R
= TL −

N∑
i=1

{
mic∞,i

}
︸ ︷︷ ︸

T ′M

+

N∑
i=1

{
mici

}
− 2Γ

R
(A.4)

with the liquidus temperature TL and the Gibbs-Thomson coefficient Γ, and an artificial melting temperature
T ′M of the pure solvent, extrapolated for the local slopes at TL.

Marginal stability theory, similarly generalized to a multicomponent alloy, gives

R = 2π

√
Γ∑N

i=1

{
miGc,iξ(Pei, ki)

}
−G

(A.5)

with

ξc(Pei, ki) = 1− 2ki√
1 +

(
2π
Pei

)2

− 1 + 2ki

, (A.6)

where Gc,i is the solute gradient of species i in the liquid ahead of the tip, given by

Gc,i = − V

Di
ci(1− ki) = − V

Di

c∞,i(1− ki)
1− (1− ki)Iv(Pei)

. (A.7)

Combining the previous equations, one obtains the second order polynomial

4π2Γ

R2
+

2

R

N∑
i=1

{
Peimic∞,i(1− ki)ξc(Pei, ki)

1− (1− ki)Iv(Pei)

}
+G = 0 . (A.8)

S1



The dendrite tip temperature (Eq. (A.4)) and radius (Eq. (A.8)) can thus be calculated iteratively. Here, using
a bespoke Python script, we set a velocity V , and then solve for R and T using Eqs (A.8) and (A.1)-(A.4) and
iterating until convergence of the tip temperature between two iterations.

Table A.1 contains all parameter used in our KGT calculations for both multicomponent and the binary
surrogate alloy. The liquidus temperature TL, liquidus slopes mi and partition coefficients ki are obtained via
CalPhaD (ThermoCalc with TCNI8 database). For the solute diffusion coefficients Di of the respective species
we use average values of the ones given in the Supplementary Material of Refs [71] and [72]. The parameters
for the binary alloy are obtained as discussed in the main article.

Multicomponent CMSX-4
Cr Co W Al Mo Re Ti Ta

c∞,i /wt% 6.5 9.6 6.4 5.6 0.6 3.0 1.0 6.5
m · wt%/K −595.3 −1.47 −302.9 −1308.6 −616.1 −28.4 −2025.5 −657.1
k 0.96 1.17 1.07 0.90 0.75 1.55 0.46 0.54
D · 109 s/m2 1.1 1.0 1.1 3.0 2.0 1.0 1.4 1.7

Binary surrogate alloy Universal parameters
c∞ = 6.6 wt% TM = 1728 K
m = −25 K/wt% TL = 1660 K
k = 0.8 Γ = 2.46× 10−7 K m
D = 2× 10−9 m2/s G = 4400 K/m

Table A.1: Input parameters for the KGT model calculations for the CMSX-4 multicomponent alloy (ignoring hafnium), and the
binary surrogate alloy.

B. Oscillatory growth in nickel-based CMSX-4 superalloy

Here we provide more details and extended results from the two-dimensional DNN simulations of the surrogate
alloy discussed in Sec. 4 of the article.

Fig. B.1 contains velocity plots of all non-eliminated needles of the DNN simulations at different cooling rates
Ṫ , corresponding to the ones shown in Fig. 4 of the article.

Fig. B.2 contains velocity plots of all needles of simulations with different initial number of needles N , at two
different cooling rates. At Ṫ = −11 K/min, the oscillatory behavior is promoted by decreasing the number of
initial needles, as discussed in the article. At Ṫ = −13 K/min with N = 11, the needle distribution becomes
non-uniform after two needles (fourth from top and second from bottom) are eliminated. The corresponding
simulation is illustrated in Fig. 5 of the article. The large spacing favors plume formation, higher fluid velocities,
and hence oscillations. The same simulation with N = 10 results in damped fluctuations, since no large spacings
are generated and the needle distribution stays uniform. For N = 9, most needle velocities are damped, but
oscillations start to emerge for some dendrites.

Fig. B.3 shows the map of the velocity magnitude for five different time steps for each simulation of Sec. 4,
as well as the velocities V n averaged over the entire liquid domain at these five time steps (1 ≤ n ≤ 5), which
are the five values used to estimate the spatiotemporal averaged velocity V marked on the colorbar on the
right-hand-side of the figure and listed in Table 6 of the article.

Fig. B.4 shows the vertical component of the velocity (Vx), averaged over the entire liquid region (|Vx|) as a
function of the height y at five different times t = 246, 259, 536 273, 286, and 300 s, which also correspond to
times illustrated in figures B.5 and B.6.

Fig. B.5 shows longitudinal composition profiles for the three cases of Fig, 6 of the main article, sampled along
lines parallel to the growth direction and located in the center between adjacent needles at different times.

Fig. B.6 shows transversal composition profiles for the three cases of Fig, 6 of the main article, sampled along
lines normal to the growth direction at x = xtip + 141 µm and 423 µm ahead of the most advanced tip position
(xtip) at different times.
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Figure B.1: Tip velocities predicted by DNN simulations at different cooling rates. Velocities of eliminated needles are not shown.
The red lines represent the corresponding theoretical steady state growth velocity.
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Figure B.2: Tip velocities predicted by DNN simulations with different initial number of needles N , at Ṫ = −11 K/min and
Ṫ = −13 K/min. The red lines represent the corresponding theoretical steady state growth velocity.
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Figure B.3: Velocity magnitudes V for five time snapshots ti at the late stage of the simulations, for each simulated cooling rate
Ṫ . The average velocities V are marked in the corresponding colorbars.
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Figure B.4: Average magnitude of the x-component |Vx| of the melt velocity along the vertical x-direction of the simulation domain
for the cases (a)-(c) of Fig. 6 in the main article at times t = 246, 259, 273, 286, and 300 s.
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Figure B.5: Longitudinal concentration profiles for the cases (a)-(c) of Fig. 6 in the main article, sampled along vertical lines
parallel to the growth direction and located at the center between two adjacent needles, at different times (different columns).
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article.
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