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SUMMARY
Cold mantle lithosphere is gravitationally unstable with respect to the hotter buoyant
asthenosphere beneath it, leading to the possibility that the lower part of the mantle
lithosphere could sink into the mantle in convective downwelling. Such instabilities are
driven by the negative thermal buoyancy of the cold lithosphere and retarded largely by
viscous stress in the lithosphere. Because of the temperature dependence of viscosity, the
coldest, and therefore densest, parts of the lithosphere are unavailable for driving
the instability because of their strength. By comparing theory and the results of a ¢nite
element representation of a cooling lithosphere, we show that for a Newtonian £uid, the
rate of exponential growth of an instability should be approximately proportional to the
integral over the depth of the lithosphere of the ratio of thermal buoyancy to viscosity,
both of which are functions of temperature, and thus depth. We term this quantity
`available buoyancy' because it quanti¢es the buoyancy of material su¤ciently weak to
£ow, and therefore available for driving convective downwelling. For non-Newtonian
viscosity with power law exponent n and temperature-dependent pre-exponential factor
B, the instabilities grow superexponentially, as described by Houseman & Molnar
(1997), and the appropriate timescale is given by the integral of the nth power of the
ratio of the thermal buoyancy to B. The scaling by the `available buoyancy' thus o¡ers a
method of determining the timescale for the growth of perturbations to an arbitrary
temperature pro¢le, and a given dependence of viscosity on both temperature and
strain rate. This timescale can be compared to the one relevant for the smoothing of
temperature perturbations by the di¡usion of heat, allowing us to de¢ne a parameter,
similar to a Rayleigh number, that describes a given temperature pro¢le's tendency
toward convective instability. Like the Rayleigh number, this parameter depends on the
cube of the thickness of a potentially unstable layer; therefore, mechanical thickening of
a layer should substantially increase its degree of convective instability, and could cause
stable lithosphere to become convectively unstable on short timescales. We estimate
that convective erosion will, in 10 Myr, reduce a layer thickened by a factor of two to
a thickness only 20 to 50 per cent greater than its pre-thickened value. Thickening
followed by convective instability may lead to a net thinning of a layer if thickening also
enhances the amplitude of perturbations to the layer's lateral temperature structure. For
the mantle lithosphere, the resulting in£ux of hot asthenosphere could result in rapid
surface uplift and volcanism.
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INTRODUCTION

The Earth's lithosphere is both denser and stronger than the
underlying asthenosphere, and thus provides the negative
buoyancy needed to drive convection in the mantle whilst at
the same time signi¢cantly resisting these convective motions
(e.g. Solomatov 1995). As a result, the lithosphere in£uences

the patterns and scales of convection that occur in the
mantle. For example, Jaupart & Parsons (1985) found that the
length scale of convection depends critically on the viscosity
contrast between the boundary layer and the underlying
£uid. For intermediate viscosity contrasts, the strength of
the upper boundary layer causes convection to occur at wave-
lengths larger than those expected for an isoviscous £uid,
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which could explain the existence of long-wavelength plates
on the Earth (e.g. Davies 1988). If the viscosity contrast is
large, deformation of the boundary layer becomes su¤ciently
di¤cult that it cannot participate in convection. In this case,
short-wavelength instabilities, of the type described by Howard
(1964) and observed in the laboratory by Davaille & Jaupart
(1993), develop beneath a `rigid lid'. These convective down-
wellings could manifest themselves in the Earth as the down-
welling of the lower, weaker part of the mantle lithosphere into
the underlying asthenosphere.
Convective removal of cold mantle lithosphere and its

replacement by hot asthenosphere could manifest itself at the
surface as rapid surface uplift followed by eventual extension
(e.g. Bird 1979; England & Houseman 1989; Houseman &
Molnar 1997; Molnar et al. 1993; Neil & Houseman 1999). This
sequence of events has been inferred for several mountain
belts (Houseman & Molnar 1997). For example, the Tibetan
plateau is thought to have undergone rapid uplift about 8 Myr
ago in response to convective removal of mantle lithosphere,
triggered by mechanical thickening (e.g. Harrison et al. 1992;
Molnar et al. 1993).
Thickening of the mantle lithosphere by horizontal shorten-

ing can enhance the gravitational instability in several ways.
First, thickening forces cold lithosphere downwards into the
hot asthenosphere, increasing the mass excess of the thickened
region. (e.g. Fleitout & Froidevaux 1982; Houseman et al. 1981).
Second, horizontal shortening could generate large-amplitude
perturbations to the background temperature structure of the
lithosphere through non-uniform thickening or folding of
the lithosphere (e.g. Bassi & Bonnin 1988; Fletcher & Hallet
1983; Ricard & Froidevaux 1986; Zuber et al. 1986). Finally,
if the lithosphere weakens with increasing strain rate, as is
expected for mantle rocks with non-Newtonian viscosity,
horizontal shortening can decrease the strength of the litho-
sphere and thus enhance its potential for convective instability
(Molnar et al. 1998). Thus, horizontal shortening could play an
important role in generating convective instabilities in the
lithosphere.
The degree to which the mantle lithosphere can become

convectively unstable depends primarily on its density and
viscosity structure. Because of the temperature dependence of
mantle viscosity, the coldest, and therefore densest, part of the
mantle lithosphere is also the most viscous (Fig. 1). As a result,
the gravitationally most unstable material in the lithosphere
may be unavailable for driving a convective instability because
of its strength. The bottom part of the mantle lithosphere is
warmer, and therefore weaker, than the material that overlies
it, but its warmth also makes it less dense, and therefore less
prone to instability. Thus, low temperature makes lithospheric
rock both dense and strong, with the former driving and
the latter retarding an instability. As a result, the generation of
a convective instability is determined by the lithosphere's
temperature structure and the details of how viscosity and
density depend on temperature. Because neither the temper-
ature pro¢le of the lithosphere nor its e¡ect on viscosity are
well known, it is di¤cult to predict whether convective
instabilities can, in fact, grow in the lithosphere.
If di¡usion of heat is ignored, the convective instability can

be approximated as a Rayleigh^Taylor instability in which
a dense layer overlies a less dense layer in a gravitational
¢eld (e.g. Chandrasekhar 1961). Gravity acting on pertur-
bations to this unstable strati¢ed density structure will cause

these perturbations to grow, but against resisting forces due
to the viscous strength of the layers. As the perturbation
grows, the buoyancy forces increase, causing the instability
to grow at a faster rate. For Newtonian viscosity, the ampli-
tude of the instability initially grows exponentially with time
(e.g. Chandrasekhar 1961). For non-Newtonian, strain-rate-
dependent viscosity, the instability grows superexponentially
because the e¡ective viscosity of the £uid decreases as ampli-
tudes, and thus strain rates, increase (Canright & Morris 1993;
Houseman & Molnar 1997). A few studies (e.g. Conrad &
Molnar 1997; Molnar et al. 1998) have shown that exponential
or superexponential growth rates depend critically on how
viscosity varies across a layer. By combining the analysis of
these previous studies with a heuristic analysis of the growth
of an instability, we develop a general scaling law that enables
us to estimate the growth rate of an instability from its initial
temperature and viscosity structures.
The Rayleigh^Taylor analysis ignores the e¡ects of the

di¡usion of heat. In a full convective instability, density
perturbations are created by horizontal temperature gradients.
If viscous forces are su¤ciently strong, the rate at which
perturbations to the temperature structure grow could be
slowed to the point at which they are eliminated by thermal
di¡usion. If this occurs, growth of the instability stops, and
the thermal structure is convectively stable. Lateral di¡usion
of heat diminishes short-wavelength instabilities faster than

Figure 1. A cartoon showing the approximate variation of density
(left) and viscosity (right) with depth in a boundary layer analogous to
the lithosphere. Both are the result of the variation of temperature with
depth, and are given for an error function temperature pro¢le (top)
and a linear temperature pro¢le (bottom), which are the two initial
temperature pro¢les studied in the numerical calculations performed
here.Viscosity, which varies with temperature according to (43), where
g~B/2, is shown relative to that of the deep £uid (asthenosphere).
Plots for di¡erent g(z) are shown by r, which is the ratio of surface
viscosity to mantle viscosity. Thus, r~1 represents the isoviscous case.
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longer ones, so its e¡ects should decrease with increasing wave-
length. By comparing growth rates obtained by analogy to the
Rayleigh^Taylor instability to the rates at which temperature
perturbations decay, we show that we can determine whether a
given temperature pro¢le will be convectively unstable for a
given wavelength and temperature dependence of viscosity.We
verify this using numerical solutions to the basic equations for
convection, for both Newtonian and non-Newtonian rheology,
and allowing for ¢nite-amplitude instabilities. Although we do
not directly include horizontal shortening in our calculations,
we will show that mechanical thickening of the lithosphere can
cause it to become more convectively unstable, by increasing
the amount of negatively buoyant material that can contribute
to an instability and by diminishing the retarding e¡ects of
thermal di¡usion. Thus, we present another mechanism by
which convective instability is enhanced by horizontal short-
ening, supporting the prediction that convective instabilities
are most likely to occur where the mantle lithosphere has been
signi¢cantly thickened.

THEORY

We begin our analysis of the convective instability of the
lithosphere by exploiting a simple analysis of the Rayleigh^
Taylor instability, building upon the linear analysis presented
by Chandrasekhar (1961), and considered further by Conrad &
Molnar (1997) and Houseman & Molnar (1997). This analysis
recognizes that lithospheric temperatures increase much more
rapidly with depth than the adiabatic pro¢le and thus generate
a density structure that can become unstable if perturbations to
it are allowed to grow.
The deformation of a £uid is described by a strain rate, _�ij,

which is de¢ned in terms of the components of velocity, ui:

_�ij~
1
2

Lui
Lxj

z
Luj
Lxi

� �
. (1)

The £ow ¢eld is incompressible:

_�ii~
Lui
Lxi

~0 : (2)

In a viscous £uid, £ow occurs to balance viscous stresses and
gravitational body forces:

Lpij

Lxj
{ogdiz~0 , (3)

where g is the gravitational acceleration, o is density, dij is the
Kronecker delta and we ignore inertial terms. The stress com-
ponent, pij, can be separated into pressure, p, and deviatoric
stress, qij :

pij~{pdijzqij . (4)

We assume a non-linear relationship between deviatoric stress,
qij , and strain rate, _�ij :

qij~B _E
1
n{1� � _�ij , (5)

where B is a rheological parameter, n is a power law exponent
and _E2~(1/2) &i, j _�ij . _�ij is the second invariant of the strain-
rate tensor. Mantle rocks are thought to deform by dislocation
£ow of olivine in the lithosphere, which can be described using
(5) where n is about 3 to 3.5 (e.g. Kohlstedt et al. 1995). It is

useful to relate stress directly to strain rate as follows:

qij~2g _�ij , (6)

where e¡ective viscosity, g, depends on strain rate according to

g~
B
2

_E
1
n{1� � . (7)

If n~1 for Newtonian viscosity, the material exhibits a linear
relationship between stress and strain rate, and g~B/2 is a
constant.

Review of previous studies

If viscosity is Newtonian (n~1), perturbations to an
unstable density structure grow exponentially with time
(e.g. Chandrasekhar 1961; Conrad & Molnar 1997). Thus, if
Z is the magnitude of a sinusoidal perturbation in vertical
displacement, and w~LZ/Lt is the downward velocity, both
grow with the exponential growth rate q, as given by

dw
dt

~qw and
dZ
dt

~qZ , (8)

where q can be expressed as a function of the material
properties of the £uid,

q~
*ogh
2g

q00 . (9)

Here *o is the density di¡erence across the unstable portion
of the layer, h is a typical length scale associated with the
thickness of this layer, and g is the Newtonian viscosity at
the bottom of the layer. The dimensionless growth rate, q00, is a
function of the variation of both density and viscosity with
depth, and of the wavelength of the perturbation.
A density instability in a £uid with non-Newtonian viscosity

(n > 1) grows superexponentially, as described by Canright
& Morris (1993) and Houseman & Molnar (1997). As the
amplitude of a growing instability increases, strain rates also
increase, so the e¡ective viscosity g, as given by (7), decreases.
Houseman&Molnar (1997) suggested approximating _Ezz*w/h
in (7) to de¢ne a time-varying e¡ective viscosity to be used to
de¢ne g in (9). Then, with such a de¢nition for q in (9) inserted
into (8), they obtained an expression for superexponential
growth,

w~ C00
n{1
n

� �
*og
B

(h)(1=n)(tb{t)
� � n

1{n� �
, (10)

where tb is the time at which velocity becomes in¢nite, at which
point the instability must be detached from the dense layer, and
C00 is a dimensionless measure of the rate of growth, equivalent
to q00 and dependent on the variation of density and B with
depth, and on the wavelength of the perturbation. Houseman
&Molnar (1997) suggest the following non-dimensionalization
of time and length:

t00~t
*ogh
B

� �n

and z00~
z
h
, (11)

which reduces (10) to

w00~ C00
n{1
n

� �
(t00b{t00)

� � n
1{n� �

: (12)
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If n~1 for Newtonian viscosity, using (11) to make (8) dimen-
sionless yields dw00/dt00~q00w00. Because the dimensionless
timescale of (11) contains no information about the variation
of density or viscosity with depth, this information must be
incorporated into q00 or C00.

Available buoyancy

Because both q00 and C00 depend on the details of how density
and viscosity vary with depth, their values must be rede¢ned
and recalculated for every given density and viscosity pro¢le.
In the following, we use a heuristic analysis of a Rayleigh^
Taylor instability to develop a more general scaling law to
account for the variation of density and viscosity with depth
in a layer. In doing so, we de¢ne new dimensionless growth
rates, q0 and C0, which are distinguished from q00 and C00 by
depending only on the wavelength of the perturbation.
Consider a layer positioned between z~{h and z~0

of density o1 overlying a half-space of density o2 < o1. A
sinusoidal perturbation of the boundary between them creates
a deviatoric stress ¢eld. Continuity of normal stress across the
perturbed boundary can be expressed as a di¡erence in stresses
across a line representing the unperturbed boundary, by taking
the additional overburden pressure due to the deformation into
account (e.g. Ricard & Froidevaux 1986):

p1,zz{p2,zz~(o1{o2)gZ cos (kx) , (13)

where k~2n/j is the wavenumber of the perturbation in
vertical displacement and Z is its amplitude. Thus, the stresses
that drive the instability are generated by the anomalous mass
of material that has crossed the original boundary between the
layers. These driving stresses can be separated into deviatoric
stress and pressure, as shown by (4). The deviatoric stress, qzz,
can be directly related to £uid deformation using (6). The £uid
£ow itself also creates a dynamic pressure, p, which varies
laterally. The amplitudes of both qzz and p should both depend
linearly on the right-hand side of (13) because both com-
ponents are associated with the perturbation to the density
¢eld, but their relative values should vary with wavenumber
and depth. In the numerical studies we perform later, we ¢nd
that the depth dependences of qzz and p are similar through-
out a deforming layer, except where the deviatoric stress
is necessarily zero, such as near a rigid boundary. As a result,
we can relate the deviatoric stress directly to the total stress
and treat pzz as proportional to qzz in the following analysis,
remembering that this approximation overestimates the
deviatoric stress near rigid boundaries. Because the fraction
of the total stress that is deviatoric depends on the wave-
number k, we proceed using only proportionalities when
dealing with stress. The uncertainty in proportionality will
later be accommodated in a factor that depends only on the
wavenumber.
To develop a simple scaling law that takes into account the

variation of material properties with depth, we must apply the
driving stresses given by (13) to a continuously varying density
¢eld. Let us simplify the problem by assuming that shear
stresses, qxz, are zero. Although this is clearly not valid for the
entire £ow ¢eld, symmetry allows us to make this approxi-
mation where the de£ection of the boundary is at a maximum
(near x~0 in 13). We approximate the driving stress, qzz, as a
function of depth by representing the density ¢eld as a series of
in¢nitesimally thin layers with density contrast do between

them. The maximum driving stress, located at x~0, can then
be written in analogy to (13) as

dqzz(z)
dz

*
do(z)
dz

gZ . (14)

Suppose that density varies with temperature, T, according to

o(T )~omzoma(Tm{T ) , (15)

where om is the background mantle density, a is the coe¤cient
of thermal expansion, and Tm is the uniform temperature of
£uid below the cold upper layer (e.g. Turcotte & Schubert
1982, p. 179). Integrating (14) from {zm, a point at the bottom
of the dense layer where T~Tm and the driving stress is zero,
to a shallower depth of {z yields

qzz(z)*omga(Tm{T (z))Z , (16)

where we treat the perturbation amplitude, Z, as constant at
all depths in the layer. Because the perturbation Z must go to
zero at a rigid surface, we recognize that (16) overestimates the
stress as z approaches zero.
To relate the driving stresses to the growth of the instability,

we use the fact that the vertical strain rate ( _�zz) integrated
from {zm to the surface along the vertical centerline of the
sinusoidal perturbation (here _�xz~0) is equal to the downward
velocity of the perturbation at z~{zm:

w({zm)~
dZ
dt

~

�0
{zm

_�zz(z) dz . (17)

This relation should yield the downward velocity at any depth
z, not just {zm, but we make this choice because we later relate
strain rate to stress, and we wish to include the contribution
to the downward velocity from stresses throughout the entire
layer.
We proceed assuming a general constitutive relation because

we will later consider the case in which n > 1. Assuming
incompressibility as in (2) and that shear strain rates are small
near the perturbation's maximum, _E* _�zz. Then, applying (5)
to (17) yields

w~
dZ
dt

*
�0

{zm

qzz(z)
B(T (z))

� �n

dz , (18)

where we allow the rheological parameter, B, to vary with
temperature. De¢ning the driving stress using (16), and again
assuming that the perturbation amplitude, Z, does not vary
with depth, we ¢nd

w~
dZ
dt

*
�0

{?

omga(Tm{T (z))Z
B(T (z))

� �n

dz , (19)

where we use the fact that the driving stress below the layer
is zero to expand the lower integration limit. We can simplify
this integral by non-dimensionalizing temperature, T 0, and the
rheological parameter, B0(T 0):

T 0~
T{Ts

T0
and B0(T 0)~

B(T )
Bm

, (20)

where T0~Tm{Ts is the di¡erence between the temperature at
depth, Tm, and the surface temperature, Ts, and Bm~B(Tm).
Thus, T 0 varies between 1 at depth and 0 at the surface. We
non-dimensionalize length according to

z0~z/h , (21)
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where h is a length scale associated with the thickness of the
unstable layer. Using these non-dimensionalizations, we de¢ne
functions Fn and fab, according to

Fn~

�0
{?

1{T 0(z0)
B0(T 0(z0))

� �n

dz0~
�0

{?
( fab(z0))n dz0 . (22)

Thus, Fn is the integral through the layer of fab to the nth power.
Using this de¢nition of Fn and the non-dimensionalizations
above, we can simplify (19) to

w~
dZ
dt

~
C0

n

� �n omgaT0

Bm

� �n

hFnZn , (23)

where C0 is analogous to the superexponential growth rate
C de¢ned by Houseman & Molnar (1997), derived with a
di¡erent approach for a range of constant properties. This
expression yields exponential growth of the perturbation
amplitude Z if n~1 and superexponential growth if n > 1.

The function fab in (22) weights the negative buoyancy
at each point in the thermal structure by the inverse of its
viscosity coe¤cient. For highly temperature-dependent viscosity,
the coldest regions, although quite dense, do not yield large
values of fab. Instead, the largest values of fab occur in
relatively warm, less dense regions near the bottom of the
thermal structure where viscosity is small. Thus, the weighting
o¡ered by fab accounts for the negative buoyancy of strong
material being less important than that of weak material in
driving a convective instability. As a result, fab should scale the
contributions of £uid at di¡erent depths to the total driving
buoyancy. We term Fn, the integral of negative buoyancy
divided by viscosity, the `available buoyancy', because it
measures the total negative buoyancy `available' for driving
a convective instability. Insofar as Fn properly takes into
account the variation of density, viscosity and temperature
with depth in an unstable layer, the dimensionless growth
rate in (23), C0, should depend only on the wavelength of
the initial perturbation. We will test this statement, and thus
test the validity of this scaling of the growth rate using
the `available buoyancy', by performing a series of numerical
experiments on convectively unstable £uids.

Newtonian £uids

If n~1 for Newtonian viscosity, (23) becomes

dZ
dt

~q0
omgaT0hF1

2gm
Z , (24)

where C0 is replaced by q0. The perturbation, Z, grows
exponentially with growth rate:

q~q0
omgaT0h

2gm
F1 . (25)

If *o~omaT0, this de¢nition of q0 is the same as that given in
(9), except that now our growth rate scales with the parameter
F1, so q0 should vary only with wavelength.

Non-Newtonian £uids

To analyse non-Newtonian £uids (n > 1), we take the time
derivative of (23):

dw
dt

~
C0

n

� �n omgaT0

Bm

� �n

hFnnZ(n{1)w . (26)

We eliminate the perturbation size, Z, in favour of the velocity,
w, using (23):

dw
dt

~C0
omgaT0

Bm

� �
(hFn)(1=n)w(2n{1)=n . (27)

Houseman & Molnar (1997) showed that integration of (27)
yields

w~ C0
n{1
n

� �
omgaT0

Bm
(hFn)(1=n)(tb{t)

� � n
1{n� �

, (28)

which is similar to (10) and yields superexponential growth,
but includes the `available buoyancy' parameter, Fn. This
suggests a non-dimensionalization of distance and time of

t0~t
*ogh
B

� �n

Fn and z0~
z
h
, (29)

which is similar to (11), but now includes information about
how B and o vary with depth. Thus, C0 should depend only on
the perturbation wavelength. (28) then becomes

w0~ C0
n{1
n

� �
(t0b{t0)

� � n
1{n� �

, (30)

which is the same as (12), but uses the new non-
dimensionalization of time. The time t0b is, of course, a function
of the size of the initial perturbation, Z00. By integrating (30),
Houseman & Molnar (1997) showed that

Z0(1{n)~(n{1)
C0

n

� �n

(t0b{t0) , (31)

from which we can relate t0b to Z00 by setting t0~0:

t0b~
n
C0
� �n Z00(1{n)

(n{1)
: (32)

The role of di¡usion of heat

Di¡usion of heat smooths, and thus diminishes, perturbations
to an unstable density structure. To quantify thermal di¡usion,
we compare the rates at which temperature anomalies are
advected to those at which they are di¡used, in a manner
similar to that used by Conrad & Molnar (1997). For
conductive transfer of heat in one dimension,

LT
Lt

~i
L2T
Lx2

 !
, (33)

where i is the thermal di¡usivity (e.g. Turcotte & Schubert
1982, p. 154). We consider thermal di¡usion in the hori-
zontal direction because horizontal variations in density grow
unstably. Consider perturbations to the background temper-
ature ¢eld of the form T* cos (kx). (33) then shows that such
perturbations decay exponentially with time as

LT
Lt

~{i
4n2

j2
T~{qdT , (34)

which de¢nes the exponential decay rate, qd.
We wish to compare the rate at which temperature pertur-

bations are di¡used to the rate at which they are advected. For
the general case of non-Newtonian rheology, we can obtain an
instantaneously valid exponential growth rate by comparing
(23) to the exponential growth equation for Z(t) in (8). This
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gives an exponential growth rate, qn, of

qn~
C
n

� �n omgaT0

Bm

� �n

hFnZ(n{1) . (35)

This expression varies with perturbation amplitude, Z(t), so
that qn increases as Z does, yielding the superexponential
growth predicted by (28). For a given value of Z, however, it
gives an exponential growth rate for advection of temperature
perturbations, which we compare to the rate of exponential
decay by taking the ratio qn/qd. We simplify by ignoring all
constants and assume that the fastest growing wavelength
scales with the layer thickness, so j*h. In doing so, we obtain
a dimensionless quantity that compares the rate of advection to
the rate of thermal di¡usion, and thus resembles a Rayleigh
number:

Ran~
omgaT0

nBm

� �n h3Zn{1

i
Fn . (36)

For Newtonian viscosity, n~1, yielding

Ra1~
omgaT0h3

2igm
F1 , (37)

which is independent of Z. This `Rayleigh' number, Ran, is a
measure of the convective instability of a thermal boundary
layer, as ¢rst described by Howard (1964).

NUMERICAL EXPERIMENTS

To carry out experiments on both Newtonian and non-
Newtonian £uids with di¡erent `available buoyancy', we use
the ¢nite element code ConMan, which can solve the coupled
Stokes equations appropriate for thermal di¡usion, incom-
pressibility and in¢nite Prandtl number (King et al. 1990). This
code has been found capable of accurately determining the
exponential growth rate of an isothermal Rayleigh^Taylor
instability (van Keken et al. 1997). We initiated convective
instability by imposing a temperature ¢eld in which cold
material overlies warmer material. Because we assign a
thermal expansivity a, the colder £uid is denser and £ows
downwards into the underlying warm £uid as the instability
grows.
Two initial temperature ¢elds are used (Fig. 1). Conductive

cooling of a half-space, appropriate for the cooling of oceanic
lithosphere, yields a temperature pro¢le given by an error
function,

T (z)~TszT0 erf({z/hc) , (38)

where hc~2
������
itc
p

and tc is the time during which the half-
space has cooled (e.g. Turcotte & Schubert 1982, pp. 163^167).
A linear temperature pro¢le results from conduction of heat
across a ¢xed thickness, hl:

T (z)~TszT0({z/hl) for 0 > z > {hl ,

T (z)~Tm for z < {hl .
(39)

To allow instabilities to develop, we perturb the temperature
¢eld sinusoidally in the horizontal dimension with a wave-
length j. In particular, we allow the length scales of the thermal

pro¢le to vary as

hc(x)~2
������
itc
p ����������������������������������

1zp cos (2nx/j)
p

,

hl(x)~hl
����������������������������������
1zp cos (2nx/j)

p
,

(40)

where p is a constant that speci¢es the amplitude of the
perturbation. Thus, the thickness of the unstable temper-
ature structure varies between h

����������
1zp
p

and h
����������
1{p
p

. This
corresponds to a sinusoidal variation in the cooling time, tc,
which has no physical relevance to us, but imposes a smooth
perturbation.
So that the unstable layer occupies a constant proportion

of the ¢nite element grid, we varied the size of the grid so that
its depth is 8.27 times hc or 7.33 times hl. The horizontal
dimension of the box is determined by the wavelength at which
the instability is perturbed, which also scales with hc or hl. We
use 90 elements in the vertical direction, with 60 elements in the
upper half of the box, giving double resolution in the region
where most of the deformation occurs. The number of elements
in the horizontal direction is varied so that each element in the
upper half of the box is square.
Boundary conditions on the box are rigid on the top surface,

free slip along the two sides, and zero stress along the bottom
boundary. Although the Earth's surface is free slip, we choose
a rigid top because we wish to study convection beneath the
cold upper lithosphere, which is strong and therefore acts as
a rigid upper boundary to the £uid beneath it. Furthermore,
the free-slip boundary condition generally results in £ow at
wavelengths comparable to the depth of the entire £uid, unless
viscosity is highly temperature-dependent (e.g. Solomatov
1995; Jaupart & Parsons 1985). In our case, this leads to
£ow at in¢nite wavelength because we use a no-stress bottom
boundary condition. For the Earth, the free-slip boundary
condition results in plate-scale £ow, which is not under study
here. Nevertheless, we do perform a few calculations with a
free-slip upper boundary for comparison.
The no-stress bottom boundary condition permits £uid to

£ow in and out of the bottom boundary so that material is not
constrained to circulate within the box, which could impede
£ow. The box is su¤ciently deep, however, that the base of a
growing instability, de¢ned by the location of the T 0~0:9 iso-
therm, only penetrates the top 30 per cent of the box before the
instability begins to detach from the overlying layer. To see how
this bottom boundary may e¡ect our results, we tried imposing
zero horizontal velocity on the bottom boundary whilst main-
taining free £ow of material in the vertical direction. This
boundary condition produces unstable growth that is less
than 10{5 per cent slower than it is for the no-stress boundary
condition, indicating that our choice of the latter does not
signi¢cantly speed unstable growth.
Because we are studying the time dependence transient

phenomena, the accuracy of our time-stepping routine is
important. We use an explicit predictor^corrector algorithm,
which should be accurate to second order (Hughes 1987,
pp. 562^566). After several tests, we chose a time step that is
one tenth that of the dynamically chosen Courant time step.
Increasing the temporal resolution further produced measured
growth rates that were larger by only a few per cent. Because
we do not hope to be able to measure growth rates to better
than one, and possibly two, signi¢cant ¢gures, this degree of
error was deemed acceptable.
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We allow density, o, to vary with temperature according
to (15). As a result, density, and thus the buoyancy that drives
the instability, varies with depth (Fig. 1). The temperature
dependence of the rheological strength parameter, B, is
generally given as

B(T )~B0 exp
Ea

nRT

� �
, (41)

where B0 is an initial value of B, Ea is an activation energy,
R is the universal gas constant and T is temperature in Kelvins
(e.g. Kohlstedt et al. 1995). We can de¢ne B0 such that
B(Tm)~Bm, from which we approximate (41) as

B(T )~Bm exp
Ea(Tm{T )

nRT2
m

� �
. (42)

If we de¢ne a variable r~ exp (EaT0/nRT2
m), we can rewrite

(42) as

B(T )~Bm exp ln (r)
Tm{T
T0

� �
. (43)

Thus, the parameter r describes how strongly B varies with
temperature. In addition, because g(Ts)~rgm, r represents the
total variation in B across the £uid.
By increasing r, we increase the strength of the cold, dense

portions of the unstable density structure and thus decrease
their ability to participate in a convective downwelling. The
variation of the function fab, as given by (22), with depth
(Fig. 2) provides a measure of the relative contributions of each
level in the unstable density pro¢le to the convective instability
as a whole. For constant B (r~1), the greatest contribution
to the instability occurs in the coldest, densest regions at the
surface of the layer. As this cold material is strengthened,
however, by an increase in r, the greatest contribution occurs
deeper in the layer, where material is su¤ciently warm to be
weak enough to participate in the downwelling. For the most
strongly temperature-dependent viscosity (r~1000), only the

bottom portion of the dense layer can contribute. This region is
thinner for the linear pro¢le than the error function pro¢le
because the latter contains more warm material.
We argue above that the integral of the nth power of the

contribution function, f nab, should scale with the growth rate of
the instability. We calculated Fn(r) by numerically integrating
the curves given in Fig. 2 for both error function and linear
temperature pro¢les, and for n~1 and n~3 (Fig. 3). Because
fab¦1, F3 < F1 for all r, and F3 decreases signi¢cantly faster
than F1 with increasing r (Fig. 3). The linear temperature pro-
¢le exhibits smaller values of Fn than does the error function
pro¢le, especially for large r, because less warm material is
available to participate in the instability (Fig. 2).

RESULTS FOR NEWTONIAN VISCOSITY

We ¢rst examine the role of temperature-dependent Newtonian
viscosity on the exponential growth of a convective instability
for an error function temperature pro¢le (Fig. 4). Increasing
the temperature dependence of viscosity decreases the amount
of material that participates in the instability. For example, only
the bottom isotherm (T 0~0:9) shows signi¢cant de£ection at
large amplitudes for r~1000 (Fig. 4d), whilst nearly the entire
unstable layer participates in the downwelling for r~1
(Fig. 4a). For each value of r, the shallowest signi¢cantly
de£ected isotherm lies near the maximum in the corresponding
pro¢le of fab in Fig. 2(a). Thus, the curves in Fig. 2 appear, at
least qualitatively, to represent the regions of the dense layer
participating in the convective instability. The exception is for
r~1. The rigid boundary condition permits no de£ection at the
surface, but fab(r~1) has a maximum there (Fig. 2).

Figure 2. Plot of the log of the `available buoyancy' function, fab,
given by (22) as a function of dimensionless depth for (a) the error
function and (b) the linear temperature pro¢les. For each pro¢le, fab(z0)
is given for four temperature dependences of viscosity, using values of
r of 1, 10, 100 and 1000 in (43). The decrease of fab with increasing
viscosity contrast is shown by the decrease of fab as z0 approaches zero
as r increases. The integral of f nab with depth gives the total `available
buoyancy', Fn (Fig. 3). For n > 1, f nab can be represented by multiplying
the horizontal axis by n.

Figure 3. The total available buoyancy, Fn, as a function of log r for
both the error function and linear temperature pro¢les, and for n~1
and n~3. Fn is calculated by integrating fab (Fig. 2) according to (22).
As the temperature dependence of viscosity increases with increasing r,
more of the negative buoyancy becomes unavailable for driving a
convective instability because of its increased strength. This is shown
by the decrease of Fn with r.
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When made dimensionless without scaling by `available
buoyancy', the time for an instability to reach a given ampli-
tude increases as the temperature dependence of viscosity
increases (Fig. 4). We can quantify this e¡ect by calculating a
dimensionless growth rate, as for a Rayleigh^Taylor instability,
for each viscosity pro¢le. To do this, we measure the downward
speed, w, of the T 0~0:9 isotherm as a function of time. Because
this isotherm is near the bottom of the unstable layer, its speed
gives us a measure of the growth of the entire instability. We
non-dimensionalize (8) using (11), which gives

lnw00~ lnw000zq00t00 , (44)

where w000 is the initial dimensionless velocity. If growth is
exponential, a plot of lnw00 versus t00 should then yield a linear
relationship with slope equal to q00. The initially linear slopes
shown in Fig. 5(a) for the four cases shown in Fig. 4 indicate
that the instability begins its growth exponentially. Following

the initial exponential growth stage, the instabilities accelerate
slightly as non-linear e¡ects become more important at large
amplitudes. This behaviour was also observed by Houseman &
Molnar (1997), who attributed the acceleration in part to the
selection of the fastest growing wavelength at large amplitudes.
Because we allow instabilities to grow to very large amplitudes,
this non-linear phase is followed by a period in which growth of
the instability begins to taper o¡ and the downwelling plume
approaches a constant velocity. When the instability detaches
from the unstable layer, it should reach a `terminal' velocity, a
condition described approximately by Stokes £ow, the descent
of a heavy sphere in a viscous £uid (e.g. Turcotte & Schubert
1982, pp. 263^268).
Growth rates, q00, show a strong dependence on the temper-

ature dependence of viscosity, with larger r yielding slower
growth. When time is non-dimensionalized using (29) to
include the `available buoyancy' (Fig. 5b), however, the four
curves nearly collapse onto a single curve, with approximately
equal dimensionless exponential growth rates, q0. This indicates
that the `available buoyancy' scales the a¡ect of the temper-
ature dependence of viscosity. We attribute the relatively

Figure 4. Temperature pro¢les showing the growth of a convective
instability from an initially error function temperature pro¢le per-
turbed using (40) with p~0:04 and j0~j/hc~4:14. Shown are iso-
therms for T 0 of 0.1, 0.3, 0.5, 0.7 and 0.9, with the lower temperatures
closer to the surface. Sets of pro¢les for four values of r of 1, 10, 100 and
1000 are shown in parts (a) to (d). In each part, two sets of isotherms
show di¡erent stages of growth. We chose pro¢les for which the maxi-
mum depth to the T 0~0:9 isotherm was between 1:5 and 2:0hc (dashed
lines) and between 2:5 and 3:0hc (solid lines). The times for each are
given and are non-dimensionalized using (11) without the `available
buoyancy'. It is clear that the pro¢les with more strongly temperature-
dependent viscosity require more time to reach a given amplitude and
remove a smaller amount of material.

Figure 5. Plots of ln (w00) or ln (w0), the natural log of the dimension-
less downward speed of the T 0~0:9 isotherm at x0~0, versus dimen-
sionless time, t0 or t00, for the four convective instabilities pro¢led in
Fig. 4. Time is non-dimensionalized using (11) in (a), indicated by
double primes, and by (29) in (b), indicated by single primes. Thus, (b)
scales rates with `available buoyancy', but (a) does not. For each value
of r, the symbols represent output from ¢nite element calculations,
and lines represent linear ¢ts to the initial slope, the value of which is
the dimensionless growth rate, q0 or q00. The growth rates scaled by
`available buoyancy' are nearly independent of r, showing that this
scaling accounts for the temperature dependence of viscosity. The large
symbols indicate the times for which temperature pro¢les of the
instability are given in Fig. 4.
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low dimensionless growth rate for r~1 to the in£uence of the
rigid top boundary of the £uid. As discussed above, this con-
dition does not permit this instability to utilize the signi¢cant
`available buoyancy' near the surface of the layer for r~1
(Fig. 2), so the scaling with F1 overestimates the amount of
dense material that participates in the instability. For r > 1,
there is little contribution to the `available buoyancy' from
the surface because the material is strong there, and F1 more
accurately represents the amount of material available for
driving a convective instability.
Growth rates non-dimensionalized without `available

buoyancy' depend on both the temperature dependence
of viscosity and the wavelength of the initial perturbation
(Fig. 6a). When scaled by `available buoyancy', however, the
three curves for r > 1 approximately collapse onto a single
curve that depends only on wavenumber (Fig. 6b). There
remains a di¡erence at short wavelengths (k0 > 2), some of
which is due to the presence of the rigid lid, as discussed above.
Similar calculations using a free-slip upper boundary con-
dition (Fig. 7) show that for short wavelengths the `available
buoyancy' scaling works slightly better with a free top
(compare Figs 6b and 7). Growth rates at long wavelengths
(small k0) are not properly scaled if the top boundary slips
freely because in this case the preferred wavelength scales with
the depth of the box and not the depth of the unstable layer.
For the nearly isoviscous cases of r~1 and r~10, this allows
the longest wavelengths to grow most rapidly (Fig. 7), but if
viscosity is highly temperature-dependent, growth rates decrease
with wavelength, as they do for a rigid lid (compare r~1000

curves in Figs 6b and 7). Thus, the `available buoyancy' does
a better job of scaling the temperature dependence of viscosity
if the upper boundary is free slip, but only for short- and
intermediate-wavelength perturbations.
For the rigid top, we also attribute some of the unscaled

di¡erences in q0 at large wavelength (Fig. 6b) to the decrease of
the wavelength of maximum growth rate with increasing r. As
the viscosity becomes more temperature-dependent, the thick-
ness of the unstable layer that participates in the instability
decreases. This thickness should scale with the dominant
wavelength (Conrad & Molnar 1997; Molnar et al. 1998), so
that the maximum value of q00 or q0 should occur at shorter
wavelengths for larger r, as can be seen in Fig. 6(b). As a result,
q0 at short wavelengths is smaller for smaller values of r.
Similar calculations using a rigid top and an initially linear

temperature pro¢le (Fig. 8) yield wavelengths of maximum
growth rate that depend on r more than they do for an error
function temperature pro¢le (Fig. 6). We attribute this to the
presence of more warm material, and thus more `available
buoyancy', near the bottom of the error function pro¢le
than the linear pro¢le (Fig. 2). Because this material always
participates in an instability, the e¡ective thickness of the
unstable part of the layer is less variable for the error function
pro¢le than it is for the linear pro¢le. Thus, the e¡ective
thicknesses of the `available buoyancy' curves, fab, in Fig. 2
depend more on r for the linear pro¢le. Because the wavelength
of maximum growth rate should scale approximately with this
thickness, its values show a greater variation for the linear
temperature pro¢le.
The `available buoyancy' scaling of the growth rate appears

to account for the temperature dependence of viscosity in the
results for the linear temperature pro¢le (Fig. 8). Because
the wavelength of maximum growth rate varies with r, the
curves for di¡erent r do not fall together when scaled with
the `available buoyancy' (Fig. 8b). The value of the maximum
growth rate, however, is the same for all r > 1. (For r~1, the
presence of the rigid surface causes this scaling to overestimate
the actual growth rate, as discussed above.) Furthermore, the
maximum value of q00 for the linear temperature pro¢les is

Figure 6. Plots of dimensionless growth rate, q00 or q0, versus dimen-
sionless wavenumber, k0~2n/j0, with time and length scaled using
(11) in (a) and (29) in (b). Thus, (b) scales rates with the `available
buoyancy'. We used an error function initial temperature pro¢le
perturbed using (40) with p~0:04.

Figure 7. Similar to Fig. 6(b), but for free-slip boundary conditions
on the top surface, again using the `available buoyancy' to scale time. A
comparison to Fig. 6(b) shows that for short wavelengths (k0 > 2), the
`available buoyancy' scaling accounts for the temperature dependence
of viscosity slightly better if the upper boundary condition is free slip.
At long wavelengths (k0 < 2), however, the `available buoyancy' scaling
shown here breaks down because, for free slip, the longest wavelengths
grow most rapidly, except for large r.
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about 0.18 (Fig. 8b), which is only about 20 per cent larger
than the maximum value of about 0.14 found for the error
function temperature pro¢le (Fig. 6b). This agreement is more
impressive when we recall that for r~100 and r~1000, the
`available buoyancy' scaling di¡ers by a factor of approxi-
mately two between the linear and error function temperature
pro¢les (Fig. 3). The agreement of growth rates for di¡erent
temperature pro¢les suggests that the `available buoyancy'
scaling provides a dimensionless growth rate that is independent
of the functional form of the initial temperature pro¢le.
If viscosity is Newtonian (n~1), growth rates for a Rayleigh^

Taylor instability can be predicted from linear theory. We use
the analysis of Conrad &Molnar (1997) to predict growth rates
for an unstable layer with a linear temperature pro¢le and
exponentially varying viscosity. Such calculations yield growth
rates that agree to within 10 per cent of those measured
here (Fig. 8). The greatest deviation occurs at short wave-
lengths, but tests show that increasing the spatial resolution of
the ¢nite element grid reduces this disagreement. The agree-
ment between Rayleigh^Taylor theory and our calculations,
which include thermal di¡usion, indicates that the convective
instability approximates a Rayleigh^Taylor instability, at least
for the high values of Ra1 used here. The agreement also
indicates that ConMan accurately simulates the convective
instability.
We investigate the conditions for the stability of a cold,

dense layer by measuring q0 for di¡erent values of the stability
parameter, Ran (Fig. 9).We calculated growth rates for a linear
temperature pro¢le and k0~3:1, chosen because it is near the

maximum of the q0 versus k0 curves for r~10, 100 and 1000
(Fig. 8b). The three values of q0(Ra1) for these values of r di¡er
from one another by less than 10 per cent when dimensionless
growth rates are calculated using the `available buoyancy'.
For large values of Ra1, q0 is approximately equal to 0.18, as
we observed in Fig. 8(b). When Ra1 is less than about 500,
growth is slowed, and for Ra1 less than about 50, growth is
stopped altogether. This decrease in q0 is due to the suppression
of temperature perturbations by thermal di¡usion as Ra1
decreases.
The ability of thermal di¡usion to suppress unstable

growth should vary with wavelength because small-wavelength
perturbations are most susceptible to smoothing by thermal
di¡usion in the horizontal direction. This is evident in Fig. 10,
where, for large k0, growth is stopped or signi¢cantly slowed

Figure 8. Similar to Fig. 6 for an initially linear temperature pro¢le,
perturbed using (40) with p~0:04. In this case, however, symbols show
growth rates estimated from the ¢nite element calculations and lines
show growth rates predicted by Rayleigh^Taylor linear theory, as given
by Conrad & Molnar (1997).

Figure 9. Plot showing how the dimensionless growth rate, q0, varies
with the stability parameter, Ra1, for a layer with Newtonian viscosity
(n~1) and for r of 10, 100 and 1000. Scaling is with the `available
buoyancy', as given by (29). A linear temperature pro¢le, perturbed
using (40), j0~j/hl~4:07, and p~0:04 giving Z00~1:98 per cent, was
used in each case, and we varied Ra1 by varying gm.

Figure 10. Plots of dimensionless growth rate, q0, versus dimension-
less wavenumber, k0~2n/j0, for an initially linear temperature pro¢le,
perturbed using (40) and p~0:04. All curves use r~100, and Ra1 is
varied by varying gm. Time is scaled using (29) to include the `available
buoyancy'.
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for the smallest values of Ra1. At longer wavelengths, however,
growth rates for this same value of Ra1 become greater than
those of the larger Ra1 calculations. Long-wavelength pertur-
bations are less prone to smoothing by horizontal thermal
di¡usion, and for su¤ciently small Ra1, they appear to grow
more rapidly than those with largerRa1.We attribute relatively
high dimensionless growth rates at long wavelengths also to
thermal di¡usion, but in the vertical direction. If the layer
cools su¤ciently during advective growth, its thickness and the
amount of unstable material will increase so that the instability
proceeds with more `available buoyancy' than the initial con-
ditions suggest. This causes growth rates that are scaled by the
original amount of `available buoyancy' to increase.

RESULTS FOR NON-NEWTONIAN
VISCOSITY

We performed several runs using a non-Newtonian viscosity
with power law exponent n~3 and a variable initial per-
turbation size. We use an initial perturbation to an error
function temperature pro¢le given by (40) in which tc varies by
20 per cent, giving a maximum downward perturbation of
Z0~0:0954hc. The results (Fig. 11) are qualitatively similar to

those presented for Newtonian rheology in Fig. 4, in that a
smaller fraction of the dense layer is removed in a longer period
of time for layers with more highly temperature-dependent
rheology. The retarding by a highly temperature-dependent
rheology, however, is more pronounced for non-Newtonian
viscosity than it is for Newtonian viscosity. For example,
the Newtonian runs with r~1000 (Fig. 4d) take about 8
times as long to reach the same amplitude as the r~1 runs
(Fig. 4a), when time is non-dimensionalized without the
`available buoyancy'. This ratio is closer to 83, or 500, for
the non-Newtonian cases (Figs 11a and d). Thus, for n~3,
non-Newtonian viscosity approximately cubes the e¡ects of
temperature dependence of B. This is an indication that our
de¢nition of the `available buoyancy' in (22), where Fn* f nab,
may be applicable for n > 1.
Some of the temperature contours show a de£ection towards

the surface near the left edge of the calculations shown in
Fig. 11, indicating that temperatures do not always increase
away from the centre of the instability. This observation
is somewhat surprising because it is not what we found
for Newtonian rheology (Fig. 4). One explanation could be
numerical error. Travis et al. (1990) show that errors in the
temperature ¢eld tend to be maximized near the stagnating
regions of a ¢nite element grid. If numerical error is a problem,
however, it is not diminished by increasing the spatial
resolution of the ¢nite element grid or by allowing the surface
node nearest the corner to move freely in the horizontal
direction to prevent `grid locking'. Furthermore, other numerical
codes produce similar results (U. Christensen, personal com-
munication, 1998). Another explanation could be related to
the stress-dependent viscosity, which would tend to increase
the e¡ective viscosity of the stagnant corner region due to the
low strain rates there. The e¡ective viscosity of the material just
to the side of the stagnant corner, however, should decrease
due to the presence of signi¢cant strain rates that advect
temperature contours around the corner from the side. For
increasingly temperature-dependent viscosity, the stagnant
corner becomes less pronounced because it is not associated
with the rigid lid, and deeper because the zone of active
deformation is shifted downwards (Fig. 11). In any case, the net
e¡ect of this phenomenon, which represents less than a 10 per
cent di¡erence in temperature across a small portion of the
entire downwelling region, should be small.
The runs with non-Newtonian viscosity show a greater

acceleration of the instability with increasing time than do
the Newtonian results. For Newtonian viscosity, about 15 per
cent of the total time is spent between the two temperature
pro¢les shown in Fig. 4, compared to between 1.5 and 3 per
cent for runs with non-Newtonian viscosity (Fig. 11). Clearly,
growth for non-Newtonian viscosity accelerates faster than
the exponential growth we observe for Newtonian viscosity, as
Houseman & Molnar (1997) demonstrated for the Rayleigh^
Taylor instability. To test Houseman &Molnar's (1997) scaling
law, we again determine the velocity of the T 0~0:9 isotherm
as a function of time for the four calculations contoured in
Fig. 11. According to (12), a plot of w00({2=3) as a function of
dimensionless time, t00, should be linear, with slope equal to
{2C00/3 and a time intercept of t00b. Because t

00
b varies by orders

of magnitude with changes in r (Fig. 11), we rescale both axes
by dividing by t00b (Fig. 12a). Thus, all curves have the same time
intercept at t00/t00b~1, and their relative slopes can be compared
easily.

Figure 11. Similar to Fig. 4, but for temperature pro¢les showing the
growth of a convective instability in a non-Newtonian £uid (n~3) from
an initially error function temperature pro¢le that is perturbed using
(40) with p~0:2 and j0~j/hc~4:14. The times for both stages of the
instability are given, and are scaled using (11), without the `available
buoyancy'.
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The relationships between w00({2=3) and t00 are clearly linear
for all r (Fig. 12a), and their slopes yield values of C00 that
decrease by a factor of about 7 as r increases from 1 to 1000
(Fig. 12a). When time is non-dimensionalized using (29) to
include the `available buoyancy', and w0({2=3) is plotted
versus t0 (Fig. 12b), the discrepancy between the slopes for
di¡erent r is improved, but C0(r~1) and C0(r~1000) still di¡er
by about a factor of two. This scatter is considerably improved
to within about 15 per cent of its mean value if the upper
boundary condition is free slip (Fig. 13), but for the rigid top,
large scatter is observed at all wavelengths (Fig. 14). As we
found for Newtonian viscosity, a rigid surface boundary con-
dition causes the `available buoyancy' scaling to overestimate
the rate of growth for the isoviscous case (r~1), presumably
because it includes a contribution from dense material near the
rigid surface that cannot participate in the instability. For
r > 1, estimates of C0 fall within about 20 per cent of their
median value of C0(r~100)~0:47 (Figs 12b and 14b). For an
initially linear temperature pro¢le, maximum values of C0 are
between 0.4 and 0.5 for all r > 1 (Fig. 15b). The isoviscous case,

r~1, again yields values of C0 that are smaller than those for
r > 1. For non-Newtonian viscosity and a rigid top, the scaling
of the temperature dependence of viscosity using the `available
buoyancy' is less impressive than it was for Newtonian viscosity,
but it still provides a useful method of approximating super-
exponential growth rates, and appears to be somewhat
independent of the functional form of the initial temperature
pro¢le.Figure 12. Plots of (a) w00({2=3)/t00b versus t00/t00b, where double primes

indicate a scaling of time without the `available buoyancy' using (11),
and (b) w0({2=3)/t0b versus t0/t0b, where single primes indicate a scaling
of time with the `available buoyancy' using (29). We de¢ne w00 or w0 as
the downward speed of the T 0~0:9 isotherm at x0~0 for the four
convective instabilities pro¢led in Fig. 11, and large symbols in (a)
represent times that are pro¢led there. We scale each curve with the
time t00b or t0b so that the four curves can be compared more easily.
The linear relationships shows that the instabilities grow super-
exponentially, as predicted by Houseman & Molnar (1997). The lines
show linear ¢ts to the initial portion of the numerical results (symbols),
and we estimate values of C00 and C 0 from the slope of this line.

Figure 13. Similar to Fig. 12(b), but for free slip boundary conditions
on the top surface, again using the `available buoyancy' to scale time. A
comparison to Fig. 12(b) shows that the `available buoyancy' scaling
better accounts for the temperature dependence of viscosity if the
upper boundary condition is free, rather than rigid.

Figure 14. Plots of the dimensionless superexponential growth rate,
C00 or C0, versus dimensionless wavenumber, k0~2n/j0, with time
scaled using (11) in (a) and (29) in (b). Thus, (b) scales rates with
`available buoyancy'. We used an initially error function temperature
pro¢le perturbed using (40) with p~0:2.
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Linear theory cannot provide predictions of super-
exponential growth rates, but we can compare our calculations
for the linear temperature pro¢le to those of previous numerical
studies of the Rayleigh^Taylor instability. For r~1, Houseman
& Molnar (1997) give a maximum value of C00~0:37 for n~3
and a linear density pro¢le over an inviscid half-space, where
we have divided by two to make their non-dimensionalization
agree with ours, and by 2(1=3) to account for the di¡erence in
their de¢nition of _E. This is nearly a factor of two larger than
the maximum value we measure of C~0:21 (Fig. 15a). Some
(maybe half) of this discrepancy is expected because we do not
use an inviscid lower half-space.We have adjusted estimates of
C00 by Molnar et al. (1998) for the Rayleigh^Taylor instability
of a layer with B decreasing exponentially and density
decreasing linearly over a half-space of constant B by dividing
by a factor of (ln r)(nz1)=n to make them agree with our
non-dimensionalization. These adjustments yield C00~0:096
for r~10 and C00~0:040 for r~100. Our measurements of
C00~0:064 and C00~0:026 (Fig. 15a) are about 70 per cent
those of Molnar et al. (1998). This discrepancy may be
numerical, but could also be due to the di¡erent density
structures at the bottom of the layers; for Molnar et al. (1998),
there is no di¡usion of heat, but with such di¡usion, density,
and hence mass, is redistributed before signi¢cant growth
occurs.Moreover, such a redistribution occurs where viscosity is
lowest, and thus at a level that a¡ects the `available buoyancy'
most. Thus, perhaps we should not expect our estimates of C00

to agree with those for a Rayleigh^Taylor instability.
The variation of C0 with the stability parameter Ra3 (Fig. 16)

is similar to the variation of q0 with Ra1 that we observe for
Newtonian viscosity (Fig. 9). For non-Newtonian viscosity,

three temperature dependences of viscosity are given for two
di¡erent amplitudes of initial perturbations, Z0, and the value
of Ra3, calculated according to (36), takes into account the
magnitude of the perturbations. For all and for Ra3 > 1000, we
observe fairly constant values of C0 equal to about 0.45. For
values of Ra3 less than about 100, the layer is convectively
stable. The convective stability of a layer depends on the wave-
lengths at which it is perturbed. As we found for Newtonian
viscosity, short-wavelength perturbations are stable at smaller
values of Ra3 than are long-wavelength perturbations (Fig. 17)
because they can be diminished by di¡usion of heat in the
horizontal direction. Long-wavelength perturbations again
promote increased instability because thermal di¡usion in the
vertical direction increases the driving buoyancy of the layer as
the instability grows (Fig. 17).

Figure 15. Similar to Fig. 14, but for an initially linear temperature
pro¢le, perturbed using (40) with p~0:2. Again, (b) scales time with the
`available buoyancy', whilst (a) does not.

Figure 16. Plot showing how the superexponential growth parameter,
C0, scaled with the `available buoyancy' using (29), varies with the
stability parameter, Ra3, for a layer with non-Newtonian viscosity
(n~3) and for r~10, 100 and 1000. We show calculations for two
choices of the initial amplitude, Z00, of the perturbation to an initially
linear temperature pro¢le; using (40) and p~0:10 or p~0:20, we
generate perturbations of Z00~4:88 per cent or Z00~9:54 per cent.
We varied Ra3 by varying Bm.

Figure 17. Plot of C0 versus dimensionless wavenumber, k0~2n/j0,
for an initially linear temperature pro¢le, perturbed using (40) and
p~0:2. All curves use r~100, and Ra3 is varied by varying Bm. Time is
scaled using (29) to include the `available buoyancy'.
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APPLICATION TO THE LITHOSPHERE

We have shown that the stability parameter, Ran, scales the
vertical variations of density and viscosity with depth.We now
estimate this parameter for the lithosphere to determine the
conditions under which it might become unstable and how
long a convective instability might take to remove the bottom
portion of the lithosphere. To do this, we estimate the para-
meters relevant to the lithosphere. We use om~3300 kg m{3,
g~9:8 m s{2, a~3|10{5 K{1 and i~10{6 m2 s{1. If the
mantle lithosphere varies in temperature between Ts~800 K
at the Moho and Tm~1600 K at its base, the temperature
variation across the potentially unstable mantle lithosphere is
T0~Tm{Ts~800 K.
To estimate the `available buoyancy', Fn, we assume a

temperature pro¢le for the lithosphere and apply laboratory
measurements of the temperature dependence of viscosity. The
parameter B varies with temperature as

B(T )~3
{(nz1)

2n
A
2

� �{1
n

exp
H

nRT

� �
, (45)

where R~8:3 J K{1 mol{1 is the universal gas constant, H is
the activation enthalpy and A is the experimental constant
inferred from laboratory measurements that relate strain rates
to a power of stress (Molnar et al. 1998). This relation can be
made dimensionless using (20):

B0(T 0)~ exp
HT0(1{T 0)

nRTm(TszT0T 0)

� �
. (46)

For both linear and error function geotherms, we use (22), (45)
and (46) to calculate Bm and Fn for values of H, A and n given
by Karato et al. (1986) and relevant to di¡usion (n~1) and
dislocation (n > 1) creep mechanisms for `wet' and `dry'
conditions (Table 1). The dislocation creep mechanism is
applicable if stresses are greater than about 0.1^1 MPa, which
is likely to be the case for convective instability. Hirth &
Kohlstedt (1996) proposed that the `wet' rheology is applicable
below 60^70 km depth. For dislocation creep, the estimates
of H in Table 1 di¡er from those of Hirth & Kohlstedt (1996)
by less than 20 per cent, but estimates of A for dry olivine
are smaller by a factor of 5, and those for wet olivine cannot
be easily compared because Hirth & Kohlstedt (1996) gave
a stress exponent of 3.5. For di¡usion creep, estimates of A
depend signi¢cantly on grain size, which is not well known for
the mantle. Because of uncertainties in A and n, we expect our
calculations of Bm also to include signi¢cant uncertainty,
making our ignorance of the presence of wet or dry conditions
at the base of the lithosphere somewhat unimportant for this
study. Our estimates of Fn, however, do not depend on A, and
thus should be more reliable. The most uncertain parameters

are then the thickness, h, of the mantle lithosphere, and the
material strength at its base, Bm; we leave these parameters to
be determined in the following analysis.
To estimate stability and growth rates for di¡usion creep, we

¢rst calculate Ra1 using (37) as a function of gm using the
parameter values listed above and for values of h equal to
25, 50, 100 and 200 km. We do this for F1~3:1|10{2 and
F1~6:6|10{3 to span the full range of `available buoyancy'
given for di¡usion creep in Table 1. Using the values of q0(Ra1)
given in Fig. 9 for r~100, we use (25) to calculate the
exponential growth rate, q, as a function of gm. Exponential
growth exhibits a doubling of the amplitude of an instability in
a time given by ln (2)/q, which we plot as a function of gm in
Fig. 18. Because the growth rate scales inversely with viscosity,
the doubling time scales with gm, if gm is small enough to yield
a large value of Ra1 (Fig. 18). If gm is su¤ciently large that
Ra1=50 (Fig. 9), however, exponential growth stops, and the
doubling time becomes in¢nite. This critical viscosity varies
with the lithosphere thickness, h (eq. 37). As a result, a thin
unstable layer requires lower viscosity at its base to become
convectively unstable than does a thicker layer (Fig. 18).
Depending on the initial amplitude of a perturbation, several

doubling times will be required for that perturbation to grow

Table 1. Estimates of Bm and Fn for various creep regimes and temperature pro¢les.

Creep regime n{ H{ A{ Bm Fn Fn

(kJ mol{1) (s{1 Pa{n) (Pa s1=n) (Error Function) (Linear)

Wet diffusion 1 250 1:5|10{12{ 6:7|1019 3:1|10{2 8:5|10{3

Dry diffusion 1 290 7:7|10{10{ 2:6|1018 2:6|10{2 6:6|10{3

Wet dislocation 3 420 1:9|10{15 1:9|109 1:3|10{4 5:5|10{5

Dry dislocation 3:5 540 2:4|10{16 1:9|109 2:3|10{5 8:8|10{6

{From Karato et al. (1986). {Assumes a 10 mm grain size.

Figure 18. Plot of the time for an instability to double in amplitude,
given by ln (2)/q, as a function of the viscosity at the bottom of the layer,
gm, for exponential growth with Newtonian viscosity. The doubling
time, given in millions of years, is calculated as described in the text for
four layer thicknesses and the two most extreme values of F1 given in
Table 1 for di¡usion creep, and other parameter values given in the
text. The dot represents a solution showing that if gm~3|1019 Pa s
and h~100 km, an instability will double in size approximately every
2 Myr. Such an instability will be removed in 10 Myr if ¢ve doubling
times are required for this to occur.
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large enough to remove the bottom portion of the litho-
sphere. Thus, if convective instability requires ¢ve doubling
times within, say, 10 Myr, the (Newtonian) viscosity at the
base of the lithosphere must be less than about 3|1019 Pa s
for a 100 km thick mantle lithosphere and F1~3:1|10{2

(dot in Fig. 18). Thinner lithosphere or decreased `available
buoyancy' requires smaller viscosities. Viscosity as low as
gm~Bm/2~1:3|1018 Pa s is suggested by laboratory studies
(Table 1) for di¡usion creep, which would allow mantle litho-
sphere thicker than about 50 km to become unstable rapidly.
Hager (1991) used several geophysical observables to estimate
that asthenospheric viscosities could be as low as 1019 Pa s, but
other authors suggest values closer to 1020 Pa s (e.g.Mitrovica&
Forte 1997). This latter value permits only very thick (200 km)
lithosphere to become unstable in 10 Myr for the lower bound
of `available buoyancy' (Fig. 18, dashed lines) but still allows
instability in 50 km thick lithosphere for the upper bound of F1

(Fig. 18, solid lines). Thus, if viscosity is Newtonian, convective
removal of the lithosphere's base in a few million years is
perhaps not unrealistic, but probably only where mantle
lithosphere is more than 100 km thick.
To consider non-Newtonian viscosity applicable for dis-

location creep, we calculated Ran as a function of Bm for
dislocation creep under both wet (n~3) and dry (n~3:5)
conditions. We again use the lithospheric parameters given
above and new estimates of Fn (Table 1), and we consider
perturbations with amplitudes only 10 per cent of the thickness
of the entire layer, Z0~0:1h. We use the r~100, Z00~9:54 per
cent curve in Fig. 16 to obtain C0 as a function of Bm, from
which we calculate the dimensionless time to removal, t0b, using
(32).We make this quantity dimensional using (29), and give its
functional dependence on Bm in Fig. 19 for both wet and dry
olivine, four thicknesses and the range of Fn given in Table 1. In
applying the curve forC0(Ra3), which we calculated using n~3,
to dry conditions for which n~3:5, we have assumed that the
curve of C0(Ran) is approximately the same for both n~3 and
n~3:5. This assumption is perhaps not inappropriate because
Houseman & Molnar (1997) found only a weak dependence of
C00 on n for n~2, 3 and 5.
Extrapolations of laboratory measurements to conditions at

the base of the lithosphere yield Bm on the order of 109 Pa s1=n

for both n~3 and n~3:5 (Table 1). This value of Bm implies
convective removal of the lower lithosphere in less than 1 Myr
for lithospheric thicknesses greater than about 25 km for wet
conditions (Fig. 19a), but 100 km for dry conditions (Fig. 19b).
These thicknesses, of course, depend on the actual value of Bm.
Similarly, the `available buoyancy', Fn, (Table 1) a¡ects the
`critical' thickness for convective instability. Decreasing Fn by a
factor of two corresponds to increasing Bm by a factor of only
21=n, as shown by (29), making variations in Fn less important
for n~3 or 3.5 than for n~1. For n > 1, the time to removal
also depends on the initial perturbation amplitude, Z0, to the
(1{n) power, as in (32). As supposed by Houseman & Molnar
(1997) and Molnar et al. (1998), perturbations with amplitudes
half the lithospheric thickness may be possible for recently
thickened lithosphere, which are ¢ve times the amplitude of
those considered here. Multiplying Z0 by a factor of 5 has the
same e¡ect as decreasing Bm by a factor of 51{1=n, as shown by
(32) if it is redimensionalized by (29). This shifts the curves
in Fig. 19 to the right by a factor of about 3, which expands
the range of Bm that produces rapid instability for a given
lithosphere thickness.

Some portions of the continental lithosphere have remained
stable for long periods of the Earth's history. Many cratonic
shields have undergone little or no deformation for more
than a billion years (e.g. Ho¡man 1990). Thus, continental
lithosphere is generally stable; some additional mechanism is
required for it to become unstable. One such mechanism
could be mechanical thickening. If the mantle lithosphere
is thickened along with the crust during an episode of hori-
zontal shortening, the vertical length scales associated with
a convective instability increase. Because the sublithospheric
viscosity is not a¡ected by such thickening, an increase in h
has the e¡ect of decreasing the time for an instability to occur
(Figs 18 and 19). For certain values of h and gm or Bm,
increasing h by a factor of two can cause an otherwise stable
lithosphere to become convectively unstable on short time-
scales. For example, if Bm~1010 Pa s1=3 for dislocation creep
of wet olivine, 50 km thick mantle lithosphere is convectively
stable, but its lower part will be removed in 2 Myr if it thickens
by a factor of two (Fig. 19a).
If viscosity is non-Newtonian, increasing the amplitude

of a perturbation has the same a¡ect as increasing the layer
thickness, h, as discussed above. Thus, convective instability
can be generated from a stable mantle lithosphere if large
perturbations can be generated at its base. Horizontal short-
ening could help generate large-amplitude perturbations

Figure 19. Plot of tb, the time for an instability to become completely
detached from an unstable layer, as a function of the rheological
parameter at the bottom of the layer, Bm, for a non-Newtonian
viscosity characterized by dislocation creep. The removal time, given in
millions of years, is calculated as described in the text for both (a) wet
conditions, for which n~3, and (b) dry conditions, for which n~3:5.
Calculations are given for four layer thicknesses, the two values of Fn

given in Table 1 and the other parameter values given in the text.
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through folding instability or localized thickening. Because
horizontal shortening has already been associated with the
initiation of convective instability through an increase in litho-
sphere thickness, as described above, or through a decrease in
strength due to strain-rate weakening (Molnar et al. 1998),
it seems likely that horizontal shortening could initiate a
convective instability at the bottom of the lithosphere.
Convective instability should continue to erode thickened

mantle lithosphere until it is thin enough to be stable on long
timescales. The bottom, weakest part will be removed quickly,
but removal of the colder interior of the mantle lithosphere
requires increasingly greater time (Molnar et al. 1998). To
determine the thickness of a layer that will remain stable for a
given amount of time, we plot the removal time, tb, as a function
of the layer thickness, h (Fig. 20). We calculated tb using (32)
and the dependence of C0 on Ra3 (Fig. 16), and assume wet
conditions (n~3), Bm~1010 Pa s1=3, F3~1:3|10{4, and the
parameter values given above. If perturbation amplitudes
are 10 per cent of the mantle lithosphere thickness, a layer
65 km thick will be stable for a billion years. If this layer is
mechanically thickened to 130 km, the ¢rst instability to grow
should do so in about 1 Myr (Fig. 20), and should remove
the basal part, about 16 km using the estimates of Molnar
et al. (1998). With negligible di¡usion of heat in this interval,
perturbations at the base of the remaining 114 km thick layer
should be unstable and grow, but more slowly. This process
should continue, with removal of basal layers at successively
lower rates until a stable layer is achieved. If perturbation
amplitudes remained only 10 per cent of the layer thickness, the
layer would eventually return to its original thickness, 65 km,
but this will take a billion years (Fig. 20). A thickness of 80 km,
however, will be reached in only 10 Myr. It is possible to make
similar estimates for a variety of values of Bm by estimating
the thickness of a layer that is stable on timescales of 10 Myr
from Figs 18 and 19 for a given value of Bm. This thickness is
generally a factor of 1.2 to 1.5 times that of a layer that remains
stable for a billion years (Figs 18 and 19). Thus, lithosphere that
is at its stability limit and then thickened by a factor of two

should, in 10 Myr, erode back to a thickness 20 to 50 per cent
larger than its original thickness. The lower end of this range
applies to thinner layers (25 to 50 km) and the higher end to
thicker layers (100 to 200 km).
This estimate is complicated by the dependence of both Ran

and tb on the perturbation amplitude, which we expect to
increase as a layer thickens. If, for instance, as h increased from
65 to 130 km, perturbations grew from 10 to 50 per cent of h,
the thickness of the layer after 10 Myr of convective removal
would be about 40 km (Fig. 20), only 60 per cent of the original
65 km thickness. Thus, it is possible that mechanical thicken-
ing could lead to a net thinning of the mantle lithosphere
because convective instability can remove more lithosphere than
is accumulated by a thickening event. For this to occur, viscosity
must be non-Newtonian and the mechanical thickening must
generate a signi¢cant increase in perturbation amplitude.
We might also expect the temperature pro¢le of a thickened

layer to change as its bottom part is convectively removed.
The base of the lithosphere should be removed soon after,
or during, a thickening event, and should carry with it a
signi¢cant fraction of the layer's `available buoyancy', leaving
that layer overly cold, and therefore strong. Thus, we expect a
decrease in Fn with each successive removal, slowing further
unstable growth. This decrease in Fn is opposed by the di¡usion
of heat. Thermal di¡usion associated with the juxtaposition
of cold lithosphere and hot asthenosphere after a convective
removal event should help replenish the `available buoyancy'
by increasing the amount of warm material. If thermal di¡usion
and the increase in perturbation size caused by thickening
approximately balance the decrease in `available buoyancy' as
successive instabilities occur, then the above estimates of the
degree of convective thinning following mechanical thicken-
ing should apply. If a decrease in `available buoyancy' over-
whelms the perturbation size increase, it will be di¤cult for
the instability to grow su¤ciently to remove a signi¢cant
fraction of the lithosphere. On the other hand, if the increase
in perturbation size is more important than the decrease in
`available buoyancy', thickened lithosphere could erode mantle
lithosphere and eventually make it thinner than its original
thickness.

CONCLUSIONS

The `available buoyancy' provides a simple scaling that
approximates the rate at which a density instability may grow
from a cold, dense £uid layer. Although the growth rates for
several thermal structures have already been determined (e.g.
Conrad & Molnar 1997; Houseman & Molnar 1997; Molnar
et al. 1998), they are necessarily complicated by the details of
the temperature dependence of viscosity and non-Newtonian
viscosity and the functional dependence of temperature on depth
within the layer. The advantage of the `available buoyancy'
scaling is that it enables all of these `complications' to be
included in a single scaling, so that an approximate deter-
mination of the growth rate can easily be calculated for a given
temperature and viscosity structure. By comparing this growth
rate to the slowing e¡ects of thermal di¡usion, we can assess
whether a given thermal structure is convectively unstable.
Thus far, we have examined only unstable density structures

that are generated by the thermal contraction of £uids at cold
temperatures. For the deep mantle lithosphere beneath con-
tinents, an unstable density structure created by temperature

Figure 20. Plot of tb, the time for an instability to become completely
detached from an unstable layer, as a function of the thickness of the
layer, h. The removal time, given in millions of years, is calculated as
described in the text assuming wet conditions (n~3), Bm~1010 Pa s1=3,
F3~1:3|10{4, and an initial perturbation amplitude, Z0, of either
10 per cent or 50 per cent of h. Other parameter values are given in
the text.
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may be stabilized by the addition of basalt-depleted, low-
density peridotites (Jordan 1978, 1981, 1988). This structure,
proposed to account for the observed stability of deep con-
tinental roots over billions of years, has been termed by Jordan
(1978) the `continental tectosphere'. Although our de¢nition
of the `available buoyancy' does not take chemical density
di¡erences into account, this should be relatively easy to do.
Qualitatively, the addition of low-density material to a thermal
structure should decrease the total `available buoyancy' and
thus slow growth. Care must be exercised, however, when
determining the convective stability of density structures
that are partially generated by chemical di¡erences, because
only temperature-induced density variations are subject to
smoothing by thermal di¡usion. In the tectosphere, however,
the compositional variations in density are not themselves
unstable, so the stability analysis derived here should apply, if
the appropriate `available buoyancy' can be estimated.
Because continental lithosphere is thought be stable, at least

on timescales of billions of years, some disrupting event
must occur for it to begin to become unstable. We have shown
that the lithosphere can move from a condition of convective
stability to one of instability through the mechanical thicken-
ing of its mantle component. Because the degree of instability
is proportional to the cube of the mantle lithosphere's thick-
ness, signi¢cant thickening can lead to instability, both by
increasing the amount of negatively buoyant material in a
given vertical column, and by decreasing the e¡ects of thermal
di¡usion. In addition, if lithospheric material behaves as a
non-Newtonian £uid, large-amplitude perturbations generated
in conjunction with a thickening process, and weakening due to
horizontal straining can generate even more rapid convective
removal after a thickening event. We estimate that 10 Myr
after mechanical thickening, it is possible that convective
erosion could result in a mantle lithosphere that is only 60
per cent as thick as it was before the thickening event. A
smaller fraction of lithosphere is removed if the amplitude
of perturbations does not increase signi¢cantly as the layer
thickens.
Such convective removal should result in surface uplift of a

few kilometres (e.g. Bird 1979; England & Houseman 1989;
Molnar et al. 1993), followed by eventual extension, as is
observed in several mountain ranges (Houseman & Molnar
1997). The replacement of cold mantle lithosphere by hot
asthenosphere should also cause melting of portions of the
remaining mantle lithosphere, causing volcanism and possibly
regional metamorphism. Trace element isotopic analysis of
volcanism in previously thickened areas suggests that this
volcanism is produced by the melting of continental litho-
sphere, not asthenosphere (e.g. Fitton et al. 1991; Turner et al.
1996). This evidence is not consistent with some models that
produce rapid surface uplift such as complete delamination
of mantle lithosphere or mechanical thickening that does not
yield instability. It is, however, consistent with signi¢cant, but
not complete, removal of the mantle lithosphere by convective
erosion, a process that we have shown to be associated with
previous mechanical thickening of the mantle lithosphere.
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