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Abstract

Metal foams can be well used as ideal materials for various efficient heat transfer devices
due to light weight, high specific, and high thermal conductivity. Nanofluids have
higher thermal conductivities than traditional fluid, so it can be used as an efficient heat
transfer characteristics medium. This paper focuses on heat transfer of nanofluid, metal
foam and the combination of the two. The physical properties of nanofluid and metal
foam are summarized. The characteristics of flow and heat transfer are introduced. This
work creates a close connection between scientific research and practical applications of
this dual heat transfer enhancement method.

Keywords: metal foam, nanofluid, heat transfer, forced convection, natural convection,
phase change

1. Introduction

Metal foam owns the advantages of light weight, high specific surface area, high thermal

conductivity and relatively high permeability. Owing to recent advances in manufacturing

technologies, metal foam becomes commercially available. The metal foam can be well used

as an ideal material for manufacturing efficient heat transfer devices: heat exchangers, heat

sinks, solar collectors and catalyst reformers. The practical structure of metal foam (copper) is

shown in Figure 1 and the schematic diagram of convective heat transfer through metal foam

is shown in Figure 2. From Figures 1 and 2, the high specific surface area of metal foam, and

lots of pores can be found in metal foams. When fluid flowing through metal foam, the high

specific surface area can provide a large surface area to the heat transfer. So the metal foam is a

very good extended surface of heat transfer. Nanofluid is a special kind of engineered colloids

made of a base fluid and nanoparticles (1–100 nm). Nanofluid owns the higher thermal

conductivity and single-phase heat transfer coefficient than the base fluid does, so it can be
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used as an efficient heat transfer medium. The micrograph of the nanofluid is shown in

Figures 3 and 4 shows the schematic diagram of nanoparticles. Nanoparticle is very small

and microscopic effects are very obvious. With the addition of nanoparticles, the physical

properties of the nanofluid are changed, which made the nanofluid beneficial to heat transfer

and attracts widespread attention of scholars. A tremendous number of investigations on the

nanofluid can be found in literatures. Furthermore, a lot of experimental researches were

conducted on the convective heat transfer of nanofluids, most of which showed that the

nanofluid is able to enhance the convective heat transfer. The advantage of the nanofluid and

that of the porous foam can be combined as one to further enhance the heat transfer of thermal

equipment. For nanofluids flowing through metal foams, some studies have been reported.

Figure 1. The structure of convective heat transfer through metal foams.

Figure 2. The schematic of convective heat transfer through metal foams.
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In this chapter, flow and thermal transport of nanofluids in metal foams are presented. The

recent advances for metal foams, nanofluids, and the combination of nanofluids and metal

foams are reviewed. The performance of forced convection, natural convection, and phase

change heat transfer of nanofluids in metal foams are analyzed. The contents and the brief

introduction for this chapter are shown in the following. Although there is great application

potential of nanofluids in thermal science, little attention has been paid to the effect of non-

uniform nanoparticle concentration on convective heat transfer of nanofluid in metal foam

based on local thermal non-equilibrium (LTNE) model. Hence, laminar convective heat transfer

of nanofluid in metal foam with fully developed hydraulic and thermal fields is discussed. The

flow and heat transfer characteristics of nanofluids to this case are discussed as well.

2. Thermal transport in metal foams

Over the last several decades, flow and heat transfer in metal foam have been studied experi-

mentally, theoretically or numerically by many scholars. In this section, the properties and

characteristics of metallic porous media are firstly presented and the recent research progress

on thermal transport in porous media is reviewed.

Figure 3. Nanofluid.

Figure 4. Nanoparticles.
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2.1. Pressure drop and permeability

The Darcy model is the first model to describe the percolation theory of porous media. In 1856,

Darcy proposed a linear relationship between seepage velocity and pressure drop. Although

the theory is simple and easy to understand, but it is very limited. Forchheimer modified the

Darcy model by adding the inertia terms associated with the velocity square the equation, but

still cannot be applied to the turbulent region. Brinkman considered the effective viscous

dissipation term and modified the Darcy model, and found that the results are closer to the

molecular diffusion at large porosity [1, 2]. In 1952, Ergun [3] proposed the empirical formula

for permeability of porous medium:

K ¼ d2f ε
3

150 1� εð Þ2
(1)

In 1998, Calmidi and Mahajan [4] proposed the empirical formula of the metal foam perme-

ability based on the experiment:

K

d2p
¼ 0:00073 1� εð Þ�0:224 1:18

1� e� 1�εð Þ=0:04

ffiffiffiffiffiffiffiffiffiffiffi

1� ε

3π

r

 !�1:11

: (2)

Bhattacharya and Mahajan [5] and Plessis et al. [6] proposed an empirical formula of the

permeability coefficient and the inertia coefficient by using a foam sample with a pore size of

45–100 PPI and a porosity of 0.973–0.978, and employed water and glycerol as the liquid

phase. Many scholars studied the pressure drop and the permeability of the flow in porous

media, and the formulas were given in Table 1.

2.2. Effective thermal conductivity

The effective thermal conductivity is of great significance for the study of heat transfer mech-

anism in porous media. Maxwell [10] firstly studied the effective thermal conductivity of

Time Researcher Empirical formula Equation numbers

1994 Plessis et al. [6] K
dl

2 ¼ ε2

36χ χ�1ð Þ , F ¼ 2:05χ χ�1ð Þ
ε2 3�χð Þ �

ffiffiffi

K
p

dl
(3)

2000 Paek et al. [7] Δp
ffiffiffi

K
p

Lru2 ¼ f ¼ 1
ReK

þ 0:105 ¼ μ

ru
ffiffiffi

K
p þ 0:105 (4)

2006 Liu et al. [8]
f ¼ 22

1� ε

Redp
þ 0:22, 30 < Redp < 300

f ¼ 0:22, Redp

(5)

2002 Fourie and Plessis [9]
f Fourie ¼ 3� χð Þ χ� 1ð ÞCDχ

1:5

24ε3

CD ¼ 1þ 10=Re0:667
� �

¼ 1þ 10 rud χ� 1ð Þ=2με
� ��0:667

(6)

Table 1. Models for predicting pressure drop and permeability of flow in porous media.
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porous media immersion heat transfer. After that, many scholars studied the effective thermal

conductivity of porous media. Most studies of effective thermal conductivity are mainly focu-

sed on the volume fraction of each component:

ke ¼ εkf þ 1� εð Þks (7)

The above model is mainly concentrated on sand, cylindrical, spherical packing bed and

fiber insulation blanket, but the estimation of the effective thermal conductivity of metal

foam has a large deviation from the experimental result [11]. Calmidi and Mahajan [4]

respectively measured the effective thermal conductivity of ERG aluminum foam at the low

temperature (ignoring radiation heat transfer) by using air and water as the flow phase.

Boomsma and Poulikakos [12] proposed an efficient thermal conductivity model for

predicting the three-dimensional ideal cellular structure of metal foam, which is in good

agreement with the experimental data of Calmidi and Mahajan [4]. Bhattacharya and

Mahajan [5] used the circular cylinder model to modify the Calmidi’s correlation. Hadim

and North [13] generalized the correlation coefficient of the thermal conductivity model

proposed by Wakao et al. [14], and make it applicable to calculate the effective thermal

diffusivity and the stagnation thermal conductivity of sintered porous media. The formulas

were given in Table 2.

Time Researcher Empirical formula Equation numbers

1992 Calmidi and Mahajan [4]
kfe ¼ 2

ffiffi

3
p r b

Lð Þ
kfþ 1þb

Lð Þkf3
þ 1�rð ÞbL

kfþ b
Lð Þ23 �kfð Þ þ

ffiffi

3
p

2 �b
L

kfþ b
Lð Þ 4r

3
ffiffi

3
p �kfð Þ

� �� ��1 (8)

kse ¼ 2
ffiffi

3
p r b

Lð Þ
1þb

Lð Þks3 þ
1�rð ÞbL
2
3

b
Lð Þks þ

ffiffi

3
p

2 �b
L

4r
3
ffiffi

3
p b

Lð Þks

� �� ��1 (9)

b
L ¼

�rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2þ 2
ffiffi

3
p 1�εð Þ 2�r 1þ 4

ffiffi

3
p

	 
h i

r

2
3 2�r 1þ 4

ffiffi

3
p

	 
h i , r ¼ 0:09

(10)

kf ¼ αlkl þ αvkv (11)

2001 Boomsma and Poulikakos [12]
kec
ks
¼ 1

ffiffi

2
p 4λ

2e2þλπ 1�eð Þ þ 3e�2λ
e2 þ

ffiffi

2
p

�2eð Þ2
2πλ2 1�2e

ffiffi

2
pð Þ

� ��1

e ¼ 0:339,λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffi

2
p

2�5
ffiffi

2
p

8 e3�2ε
� �

π 3�4
ffiffi

2
p

e�eð Þ

s

(12)

2002 Bhattacharya and Mahajan [5]
kfe ¼ 2

ffiffi

3
p t=L

kfþ ks�kfð Þ=3ð Þ þ
ffiffi

3
p

2 �t=L

kf

� �� ��1 (13)

t
L ¼

�
ffiffi

3
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 1�εð Þ
ffiffi

3
p

�5ð Þ
p

1þ 1
ffiffi

3
p �8=3

(14)

1982 Wakao [14] keð Þx ¼ εkf þ 1� εð Þks þ 0:5PrRed
u
um

	 


kf
(15)

keð Þy ¼ εkf þ 1� εð Þks þ 0:1PrRed
u
um

	 


kf
(16)

Table 2. Models for predicting effective thermal conductivity of porous media.
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2.3. Convective heat transfer coefficient

Lu et al. [15, 16] studied the forced convection characteristics of shell-and-tube heat exchangers

filled with high porosity metal foams. Qu et al. [17] experimentally studied the natural con-

vection of air in a open-call copper foam, and found that there is a turning point in the Grashof

number for small porosity (ε = 0.9). Guo [18] numerically simulated the laminar forced-

convection heat transfer in a porous medium flat plate channel with constant heat flux and

analyzed the flow and heat transfer performance. Fand et al. [19] immersed the porous

medium in water or silicone oil with the porous medium randomly stacked by glass spheres.

Many researchers studied convective heat transfer of flow in porous media, the formulas for

predicting Nusselt number were given at Table 3.

Because of the difference between the thermal conductivity of the fluid and that of the metal

foam, the heat is diffused at a different rate between the two phases. So some researchers hold

that the solid and fluid phases have different temperatures, namely LTNE model. Convective

heat transfer performance in metal foams was numerically investigated based on the local

thermal equilibrium (LTE) model and the LTNE model and the velocity and temperature fields

was obtained.

The steady forced convective heat transfer in a tube fully filled with metal foam is numerically

considered under the boundary condition of a uniform temperature. Effects of porosity on

mean Nusselt number with LTE/LTNE models are shown in Figure 5. The LTE and LTNE

Nusselt numbers are both decreased with an increase in foam porosity. The relative deviation

is reduced by increasing porosity, due to the greatly decreased solid effective thermal resis-

tance. When porosity is greater than 95%, the relative deviation between LTE/LTNE Nusselt

numbers is lower than 20%. For ε >95%, the LTE model can be treated as a rapid estimation

tool for thermal performance of metal foams.

Difference between solid and fluid thermal conductivities is the most significant quantity for

metal foam LTNE effect. Figure 6 presents the effects of thermal conductivity ratio on mean

Nusselt numbers with LTE/LTNE models. The Nu difference for LTE/LTNE models is reduced

when thermal conductivity ratio is increased, which is attributed to that kfe/kse is increased

Time Researcher Empirical formula Equation

numbers

1982 Fand et al. [19] NuPr0:0877 ¼ 0:618Ra0:698 þ 8:54� 106Ge� sechRa, 0:001 < Remax ¼ 3ð Þ (17)

NuPr0:0877 ¼ 0:766Ra0:374 C1d
C2

	 
0:173
3 < Remax ¼ 100ð Þ

(18)

2003 Boomsma et al. [20]
Nu ¼

q

Acon Tpl�Tc, inletð Þ
Dhyd

kc
¼

mc Tc,outlet�Tc, inletð Þ
Acon Tpl�Tc, inletð Þ

Dhyd

kc

(19)

2007 Arisetty et al. [21] Nu ¼ 2Rh
kf

¼
2Rqw

kf Tw�Tf,bð Þ
(20)

2000 Calmidi and Mahajan [22] Nusf ¼
hsfdf
kf ¼ CTRe

0:5
df
Pr0:37 ¼ CT

Vdf

ευ

� �0:5
Pr0:37 (21)

2005 Brito and Rodríguez [23] Nu ¼ 1:1Re0:43Pr1=3, 10 < Re < 100 (22)

Nu ¼ 1:2Re0:43Pr1=3, 20 < Re < 240 (23)

Table 3. Models for predicting Nusselt number of heat transfer in porous media.
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with an increase in thermal conductivity ratio. When fluid thermal conductivity equals to solid

thermal conductivity (kr = 1), LTE Nusselt number coincides with LTNE Nusselt number, in

which condition with the LTNE effect is negligible and the LTE assumption holds. In addition,

the relative deviation gradually decreases to zero with an increase in thermal conductivity

ratio. The relative deviation is reduced to 20% when thermal conductivity ratio is increased to

0.148. The LTE model can be roughly used for prediction of heat transfer in porous foams

instead of LTNE model in the range kf/ks > 0.148.

3. Transport phenomena in nanofluids

The concept of nanofluid, by adding nanoparticles into a base fluid, is firstly proposed in 1995

[24]. Since then, lots of work has been done on the transport phenomena of nanofluid. In this

Figure 5. Effect of porosity on mean Nusselt number.

Figure 6. Effect of thermal conductivity ratio on mean Nusselt number with LTE/LTNE models.
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work, the basic features of nanofluid are comprehensively presented. Nanofluid is a new type

heat exchange medium which is made by mixing highly conductive nanoparticles and the

traditional heat transfer fluid. Due to the addition of nanoparticles, the density, the thermal

conductivity and the viscosity of nanofluid are obviously different from those of traditional

media, and can be used as a more efficient heat exchange medium.

3.1. Thermal conductivity

Lee et al. [25] have measured the thermal conductivity of four nanofluids: copper oxide and

water, copper oxide and ethylene glycol, alumina and water, alumina and ethylene glycol. Li

and Xuan [26] analyzed the mechanisms of nanofluids to improve the thermal conductivity.

Xie et al. [27] measured the thermal conductivity of the alumina nanoparticle suspension. The

influence of pH value of suspension, specific surface area of the dispersed system, crystalliza-

tion of solid phase and thermal conductivity of the base fluid on the nanofluid thermal

conductivity was studied. Eastman et al. [28] measured the thermal conductivity of the copper

nanofluid and found that the thermal conductivity of nanoparticles is increased obviously.

Guo [29] used KD-2 thermal analyzer to measure the thermal conductivity of the nanofluid.

Using the temperature oscillation technique, Das et al. [30] prove that the thermal conductivity

of copper oxide/water and alumina/water increases with an increase in the temperature and a

decrease in the particle size. Patel et al. [31] have also obtained similar conclusions through

experiments. Ebrahimnia-Bajestan et al. [32] applied nanofluids to the solar system, and stud-

ied the laminar convection heat transfer of the TiO2/water nanofluid in a tube by experimental

and numerical methods. Many researchers proposed models of nanofluids thermal conductiv-

ity base on experimental study [33–47], and the formulas were given in Table 4.

3.2. Viscosity and friction factor

At present, there is no suitable theory to predict the viscosity of nanofluids accurately. Einstein

[48] proved that the relative viscosity of the suspension is a simple function of the volume

fraction of suspended particles. Scholars revised the formula in different aspects, and put

forward their correction models respectively [39, 49]. With a least-square curve fitting, Maïga

et al. [50] proposed a correlation based on some experimental data available in the open

literature. Shafahi et al. [51] indicated that the nanofluid viscosity is a function of the temper-

ature and proposed the correlations. Scholars proposed correlations of different nanoparticle

types. The formulas of nanofluids viscosity were given in Table 5.

Xuan et al. [34, 53] found that the friction factor of nanofluids is almost the same as that of

water at the same velocity, and is independent of the volume fraction of nanoparticles. There-

fore, the friction factor of nanofluids is calculated with a single-phase model:

λnf ¼
ΔPnfd

L

2g

u2m
(24)

3.3. Convective heat transfer

As a new type heat exchanging medium, the nanofluid has a very pronounced enhancement

effect on the convective heat transfer. Scholars have carried out a series of studies on the
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convective heat transfer of nanofluids. Xuan et al. [34, 53] established an experimental system

to measure the convective heat transfer coefficient of nanofluid and the laminar flow and

turbulent flow friction factors in the channel. In nanofluid, the nanoparticles undergo

thermophoretic motion with in the temperature gradient field. Researchers have taken more

and more attention to the thermophoretic motion of nanoparticles [54, 55]. For the heating of

the side wall in a rectangular channel, Berkovski-Polevikov’s coefficients have good agreement

with the experimental data with length-width ratio between 1 and 10, and MacGregor-Emery’s

Time Researcher Empirical formula Equation numbers

1873 Maxwell [33]
knf ¼

knpþ2kbfþ2 knp�kbfð Þf
knpþ2kbf� knp�kbfð Þf

kbf
(25)

1999 Lee et al. [25]
knf ¼

knpþ n�1ð Þkbf� n�1ð Þ kbf�knpð Þf
knpþ n�1ð Þkbfþ kbf�knpð Þf

kbf , n ¼ 3=ψ
(26)

2011 Lee et al. [35] knf
kbf

¼ 1þ 4:4 T
Tfr

	 
10 knp
kbf

	 
0:03
Pr0:66Re0:4

(27)

2003 Wang et al. [37]
knf ¼

1�fð Þþ3f
Ð

∞

0

kcl rð Þn rð Þ

kcl rð Þþ2kbf
dr

1�fð Þþ3f
Ð

∞

0

kcln rð Þ

kcl rð Þþ2kbf
dr
kbf

(28)

2004 Yu et al. [38]
knf ¼

knpþ2kbfþ2 knp�kbfð Þ 1þβð Þ
3
f

knpþ2kbf� knp�kbfð Þ 1þβð Þ
3
f
kbf

(29)

2013 Hadadian [39] knf
kbf

¼
knpþ2kbf�2f kbf�knpð Þ
knpþ2kbfþf kbf�knpð Þ

þ
rnpfcp,np

2kbf

ffiffiffiffiffiffiffiffiffiffiffiffi

kBT
3πrclμbf

q

(30)

2005 Xue and Xu [40]
1� f

α

� �

knf�kbf
2knfþkbf

þ
f knf�kIrð Þ 2kIrþknpð Þ�α knp�kIrð Þ 2kIrþknfð Þ

α 2knfþkbfð Þ 2kIrþknpð Þ�2α knp�kIrð Þ kIrþknfð Þ
¼ 0,α ¼

dnp
dnpþt

	 
3 (31)

2002 Keblinski et al. [42] Rednp ¼
CRMdnp

υ
(32)

2005 Xue [44]
knf ¼ kbf

1�fþ2f
knp

knp�kbf
ln

kbfþknp
2kbf

1�fþ2f
kbf

knp�kbf
ln

kbfþknp
2kbf

(33)

2016 Esfe et al. [45] knf
kbf

¼ 0:991þ 0:276Tfþ 77:6f2 þ 3641:2Tf2 þ
0:00217

sin T � fð Þ

� 6:01� 10�6T2 � 3647:1Tf sinf

(34)

2005 Chon et al. [46] knf
kbf

¼ 1þ 64:7f0:746 dbf
dnp

	 
0:369 knp
kbf

	 
0:7476
Pr0:9955Re1:2321

(35)

2011 Khanafer and Vafai [47] knf
kbf

¼ 1þ 1:011fþ 2:438f 47
dnp

	 


� 0:025f
knp
0:613

	 


(36)

Table 4. Models for predicting nanofluid thermal conductivity.

Time Researcher Empirical formula Equation numbers

1906 Einstein [48] μnf ¼ 1þ 2:5fð Þμbf (37)

2005 Maïga et al. [50] μnf ¼ 1þ 1:73fþ 123f2
� �

μbf
(38)

2010 Shafahi et al. [51] μnf ¼ 2:9� 10�7T2 � 2:0� 10�4T þ 3:4� 10�2 for f ¼ 1%

μnf ¼ 3:4� 10�7T2 � 2:3� 10�4T þ 3:9� 10�2 for f ¼ 4%

(39)

2013 Yang et al. [52] μnf ¼ μbf 1þ 39:11fþ 533:9f2
� �

for alumina

μnf ¼ μbf 1þ 5:45fþ 108:2f2
� �

for titania

(40)

Table 5. Models for predicting nanofluid viscocity.
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coefficient has good agreement with the experimental data with length-width ratio greater

than 10 [56]. Maïga et al. [50] considered the influence of the nanoparticle volume fraction and

the Reynolds number on the average convective heat transfer coefficient of water-based

nanofluid. Sakai et al. [57] improved the Buongiorno model for the convective heat transfer of

nanofluids, so that it can be applied to continuity equations, momentum equations and energy

equations without the effect of nanoparticle volume fraction distribution. Jia and Wang [58]

improved the Eubank-Proctor model and fitted out a coefficient of mixture flow considering

natural convection. Yang et al. [59] made two kinds nanofluids using graphite nanoparticles,

and measured the laminar-flow convective heat transfer coefficient in a horizontal tube heat

exchanger. Formulas for Nusselt number of nanofluids convection were given in Table 6.

Buongiorno [60] proposed a mathematical model on the non-uniform volume traction of

nanoparticles. He assumed incompressible flow, no chemical reactions, negligible external

forces, dilute mixture, negligible viscous dissipation, negligible radiative heat transfer, and

LTE between nanoparticles and the base fluid [52, 60].

The forced convective heat transfer of the nanofluid in a plain tube at the full development

section was studied by the numerical method. Figure 7 is the effect of nanoparticle volume

fraction on the Nusselt number and kw/kB (kw is the thermal conductivity of the wall and kB is

the average thermal conductivity). It can be seen that the Nusselt number increases at first and

then decreases with an increase in the nanoparticle volume fraction, and there is a maximum

value of the Nusselt number with a suitable nanoparticle volume fraction. The increase in

the nanoparticle volume traction leads to a more uniform velocity, which is beneficial to the

convective heat transfer. In addition, the high nanoparticle volume fraction can increases

the thermal conductivity, so an increase in the nanoparticle volume traction is beneficial to the

convective heat transfer. The ratio of the wall thermal conductivity to the average thermal

conductivity decreases with an increase in the nanoparticle volume fraction. When the ration

of kw/kB decreases, the Nusselt number is reduced. The effect of nanoparticle volume traction is

Time Researcher Empirical formula Equation

numbers

2000 Xuan and Roetzel [53] Nunf ¼ 0:4328 1:0þ 11:285f0:754Pe0:218np

	 


Re0:333nf Pr0:4nf for laminar flow

Nunf ¼ 0:0059 1:0þ 7:6286f0:6886Pe0:001np

	 


Re0:9238nf Pr0:4nf for turbulent flow

(41)

2011 Corcione [56]
Nu ¼ 0:18 PrRa

0:2þPr

	 
0:29
H
W

� �0:13
, 1 ≤ H

W ≤ 2, 10�3
≤Pr ≤ 105, 103 ≤ PrRa

0:2þPr
H
W

� �

�3

Nu ¼ 0:22 PrRa
0:2þPr

	 
0:28
H
W

� �

�0:09
, 2 ≤ H

W ≤ 10, Pr ≤ 105, Ra ≤ 1013

(42)

2005 Maïga et al. [50] Nu ¼ 0:086Re0:55Pr0:5 for constant heat flux

Nu ¼ 0:28Re0:35Pr0:36 for constant wall temperature

(43)

2015 Jia and Wang [58]
Nunf

μwnf

μnf

	 
0:14
¼ 2:11 Gznf þ 0:574 GrnfPrnf

d
L

� �0:75
h i1=3

, Gznf ¼
d
LRenfPrnf

(44)

2005 Yang et al. [59] 1
U ¼

1

hnf
Ai
Ao

� �þ
Do

2k ln
Do

Di
þ

1
ho
¼

AoΔTlm

Q

Ω ¼ NunfPr
�1=3
nf

L
D

� �1=3 μnf

μw

	 


�0:14

(45)

Table 6. Models for predicting Nusselt number of nanofluid convective heat transfer.
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more obvious with a larger kw/kB, and the effect of kw/kB is more obvious with larger nanopar-

ticle volume traction.

Figure 8 is the relationship between the Nusselt number and NBT. NBT is a dimensionless

parameter related to the Brown motion and the thermophoretic motion. It can be found that

the nanofluid is unbenefited for heat transfer with low NBT (<0.2). There is a maximumNusselt

number when NBT is from about 0.4 to 0.5. Then the Nusselt number decreases with an

increase in NBT. When the NBT is close to 10 or greater, the Nusselt number tends to be

constant. The enhancement via the Brown diffusion motion causes nanoparticle to disturb the

Figure 7. Effect of nanoparticle volume fraction on mean Nusselt number.

Figure 8. Effect of NBT on mean Nusselt number.
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flow more effectively, causing local turbulence to enhance the heat transfer between

nanoparticles and the base liquid. Nanoparticles will move to the cold region (wall) by

thermophoresis diffusion. For large nanoparticle aggregating, nanoparticle of other areas is

too small, so it has little heat transfer enhancement with too large NBT.

4. Convection of nanofluids in metal foams

Even though metal foams own excellent thermal performance, poor heat conduction ability of

most heat transfer fluids restricts further heat transfer improvement in metal foams, for which

the combination of the metal foam and the nanofluid with highly conductive nanoparticles is a

promising solution. In this chapter, the transport characteristics of nanofluids flowing through

metal foams. In this chapter, the recent advances on the forced convection and natural convec-

tion of nanofluids in porous foams will be firstly reviewed and the latest research concerns

from the perspective of fundamental research will be put forward.

4.1. Experimental data

Cheng [61] tested the heat transfer performance of the heat pipe with different nanofluid

volume fractions and liquid filling rates, and also tested the heat transfer performance of the

screen suction core heat pipe. Hajipour et al. [62] studied the mixed convection of alumina/

water nanofluid in a vertical square channel partially filled with open metal foams under the

constant wall heat flux using the experimental and numerical method. Goodarzi et al. [63]

studied the laminar and turbulent mixing flow and heat transfer of Cu/water nanofluids in a

shallow rectangular cavity using a two-phase mixture model. Mao [64] studied the generation,

fusion and detachment of boiling bubbles on the smooth plate and foam metal surface. Nazari

et al. [65] studied the influence of the interaction between nanofluid and porous medium of

extended surface on the heat exchanger thermal performance, and the forced convection of

alumina/water nanofluids in a circular tube filled with metal foams was studied experimen-

tally with isothermal boundary conditions.

4.2. Modeling the forced convective heat transfer

Matin and Pop [66] studied the force convection heat transfer of nanofluids in a horizontal

porous medium channel at fully developed section with constant heat flux. Xu et al. [67]

investigated the dual heat transfer enhancement of nanofluids flowing in a metal foam channel

by numerical method based on the local non thermal equilibrium model. Mahdi et al. [68]

summarized the influence of the porosity, permeability, inertial coefficient and effective heat

exchange coefficient of porous media, and also studied the effect of thermodynamic parame-

ters of nanofluids. Sivasankaran and Narrein [69] proposed a numerical simulation of laminar

pulsating heat transfer and hydraulic characteristics of alumina/water nanofluid in a three-

dimensional spiral microchannel radiator, using the modified viscosity equation and the two-

phase mixing model.
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In Xu et al. [70], velocity and temperature fields are numerically obtained. The effects of some

key parameters on flow and heat transfer of nanofluid in porous media are analyzed. For the

nanofluid flowing through metal foams, the nanoparticle volume fraction is a most important

parameter, the effect of which on pressure drop is shown in Figure 9. As can be seen, with the

increase in volume fraction, the pressure drop per unit length gradually increases and the

increasing amplitude for pressure drop also increases. This is attributed to that the dynamic

viscosity and the density of nanofluid are increased sharply with the increase in volume

fraction. Figure 10 shows the effect of nanoparticle volume fraction on heat transfer for two

different nanoparticles (Al2O3 and TiO3). As the nanoparticle volume fraction increases,

Nusselt number gradually increases but the increasing amplitude is reduced. This is attributed

to that the thermal conductivity increasing amplitude is decreased with an increase in

Figure 9. Effects of nanoparticle volume fraction on the overall pressure drop.

Figure 10. Effects of nanoparticle volume fraction on heat transfer.
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nanoparticle volume fraction. Due to thermal conductivity of Al2O3 is higher than that of TiO3,

Nusselt number of Al2O3 is higher than that of TiO3 as shown in Figure 10. From Figure 10, the

maximum heat transfer augmentation of nanofluid is about 3.8% for Al2O3 and 3.0% for TiO3,

which is very useful for further improving thermal performance of metal foam heat exchan-

gers and heat sinks, especially for high heat-flux applications.

4.3. Modeling the natural convective heat transfer

Sun and Pop [71] studied the steady natural convection of the water-based nanofluid in a right

triangle shell filled a porous medium using the numerical method. It is found that the average

Nusselt number can be increased by increasing the nanoparticle volume fraction under a low

Rayleigh number, but the average Nusselt number decreases with an increase in the nanopar-

ticle volume fraction under a high Rayleigh number. Sherement [72] established a Buongiorno

mathematical model for the three-dimensional natural convection of nanofluids in porous

media, and considered that the heterogeneous models of nanoparticles are more suitable.

Bhadauria and Agarwal [73] proposed a detailed model of the nanofluid saturated porous

layer.

A lattice Boltzmann (LB) model for the nanofluid natural convection in a porous medium was

established by using the volume-averaging method. Figures 11 and 12 show the velocity and

temperature distributions for Ra = 104 and 106, respectively. The other parameters are set to

Da = 0.0001, ε = 0.6, and f = 0.5%. For Ra = 104, the temperature is very uniform in the y

direction, and the heat is transferred mainly by heat conduction. Streamlines are nearly in

parallel with the gravitational direction. In Figure 12, the high temperature region at the upper

left side and the low temperature region the bottom right side respectively diffuse heat with a

Figure 11. The distributions of the flow and the temperature for Ra = 104.
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quicker speed than other region. The change of the heat transfer regime from the heat conduc-

tion to the natural convection is clearly shown in Figures 11 and 12.

Figure 13 shows the effect of the Rayleigh number on the average Nusselt number with

Da = 10�3 and Da = 10�4. With an increase in the Rayleigh number, the increasing amplitude

of Nuave is mild for the small Rayleigh number, and Nuave increases sharply for large Rayleigh

numbers. The effect of Ra on the flow and Nuave is more obvious for the high Darcy number.

Figure 12. The distributions of the flow and the temperature for Ra = 106.

Figure 13. Effect of the Rayleigh number on the heat transfer.
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Figure 14 shows the detailed relationship between the Darcy number and the average Nusselt

number. The average Nusselt number almost does not change whenDa is less than 10�5. AsDa

increases from 10�7 to 10�6, Nuave only increases by 0.03% for Ra = 106 and by 0.14% for

Ra = 107. Natural convection almost can be ignored and there is only heat conduction when

the Darcy number is less than 10�5.

Figure 15 shows the effect of the nanoparticle volume traction on Nuave with different thermal

conductivities of nanoparticles (kp). Physical characteristics of nanofluids differ for different

nanoparticle volume tractions. The thermal conductivity of the nanofluid increases with an

Figure 14. Effect of the Darcy number on the heat transfer.

Figure 15. Effect of the nanoparticle concentration on the heat transfer.
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increase in the nanoparticle volume traction, and it is beneficial for promoting the heat trans-

fer, which leads to the increased average Nusselt number.

5. Phase change heat transfer

Phase change heat transfer of nanofluid in porous foams is a relatively new theme.

In this chapter, the basic scientific problems for this topic will be firstly presented and

then the recent research advances will be reviewed. The future research points will also be

discussed.

5.1. Liquid-gas phase change heat transfer

Boiling heat transfer is used in a variety of industrial processes and applications, such as

refrigeration, power generation, heat exchangers, cooling of high-power electronics compo-

nents and cooling of nuclear reactors [74]. The use of nanofluids for boiling heat transfer

enhancement is a promising solution that is currently being explored by many researchers for

pool boiling applications.

Lee and Mudawar [75] have undertaken an experimental study to explore the benefits of

using alumina/water nanofluid for microchannel cooling applications. They revealed the

enhancement of the heat transfer coefficient for single-phase laminar flow. However, in the

two-phase regime, the nanofluids caused the surface deposition in micro-channels, and large

agglomerates of nanoparticles were formed. Kim et al. [76] investigated the subcooled flow

boiling using dilute alumina, zinc oxide and diamond water-based nanofluids. Kim et al. [77]

studied the pool boiling by experiment with water-based nanofluids containing Al2O3, ZrO2

and SiO2 nanoparticles. An irregular porous structure was formed at the surface. You et al.

[78] measured the CHF in pool boiling using a flat, square copper heater submerged into

nanofluids at a sub-atmospheric pressure of 2.89 psia. Nanoparticle deposition was observed

by Bang and Chang [79], who also measured a CHF enhancement of 50% with alumina-

water nanofluids on a stainless steel plate. Zhu et al. [80] developed a boiling heat transfer

coefficient correlation of the refrigerant/lubricating oil mixture on the surface of the metal

foam surface.

Several researchers have noticed the nano-deposition at the heater surface, which can alter the

surface area, the surface wettability and the bubble nucleation. The nucleation site density, the

bubble departure diameter and the bubble frequency are all affected by the nanofluid boiling.

It was found by several researchers [77, 78] that bubble diameters increase during boiling with

nanofluids, but the nucleation site density decreases with the addition of nanoparticles into the

base fluid.

5.2. Liquid-solid phase change heat transfer

Liquid-solid phase change in porous media is frequently encountered in lots of natural and

engineering systems. Over the past several decades, this problem has been extensively inves-

tigated analytically, experimentally and numerically [81]. Thermal management systems based
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on latent heat storage of phase change materials (PCMs) can be widely used. Many researches

are focused on demonstrating the performance improvement over pure PCM-based thermal

management systems and the free and forced-convection heat transfer phenomena inside the

porous media [82, 83].

Hong and Herling [84] experimentally studied the effect of surface area density on the perfor-

mance of paraffin-infiltrated aluminum foams with pore sizes from 500 to 2 mm. Lafdi et al.

[85] also conducted an experimental study with paraffin-infiltrated aluminum foams

and found that both pore size and porosity affected the performance of the system. Tian and

Zhao [86] performed similar experiments with copper foams. With the advancement of fabri-

cation techniques for microcellular metal foams [87], the effect of pore size and porosity

becomes more interesting due to the extremely large surface area enabled by metal foams with

small pore size. Numerical models were also developed to predict the temperature profile of

PCM metal foam systems. These models had an origin in Boomsma and Poulikakos [12],

where the effective thermal conductivity (ke) of an infiltrated porous metal foam was

estimated based on a tetrakaidecahedron pore model. Tao et al. [88] investigated the latent

heat storage (LHS) performance of metal foams/paraffin composite phase change material

(CPCM) using lattice Boltzmann method. Gao et al. [89] also used the lattice Boltzmann

method to simulate solid-liquid phase change with natural convection in porous media under

LTNE conditions.

A new sort of nanofluid phase change material (PCM) is developed by suspending a small

amount of nanoparticles in melting paraffin by Wu et al. [90]. Zheng et al. [91] found that

Ag/1-Tetradecanol showed remarkably high thermal conductivity and reasonably high

phase change enthalpy. Khodadadi et al. [92] numerically simulated the solidification of

Cu/H2O nanofluids in a vertical square enclosure. Guo [93] numerically obtained that

room with alumina/paraffin as PCM ceiling is a good way of saving the required cool

energy in summer. Wu et al. [94] investigated the effects of Cu nanoparticles on the

thermal conductivity and the phase change heat transfer of Cu/paraffin PCM by the Hot

Disk thermal constants analyzer and infrared monitoring methods respectively. The results

show that adding nanoparticles is an efficient way to enhance the phase change heat

transfer of PCM.

6. Summary

Metal foams and nanofluids are greatly potential for the application of practical thermal

applications since they are beneficial for heat transfer enhancement. A review of previous

study for different convective flow and heat transfer regimes about the metal foam and the

nanofluid is presented in this article. The effects of several parameters in metal foam and

nanofluid properties, thermal boundary conditions, and flow and heat transfer characteristics

were analyzed. Previous studies have shown that nanofluid and metal foam can enhance heat

transfer. Some suggestions for future works should be paid attention to, as turbulent flow of

nanofluids flow in metal foams, new models for the heat transfer of nanofluids in metal foams,

the micro effect of nanofluid, the non-Newtonian effect of nanofluids, and the slip effect of

nanofluid in metal foams.
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