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ABSTRACT 

Convective motions are a multi-physics phenomenon, in which flow and 

transport processes interact in a two-way coupling. The density of the fluid 

depends on the value of transport variable and this back-coupling leads to 

non-linear behaviour. For the classical constellation of a closed fluid 

container heated from below convective motions appear, when a critical 

threshold for the Rayleigh number is exceeded. The heat transfer due to 

convection is much higher than in the case of pure conduction. Here 

systems of three layers are examined in detail. Using numerical CFD 

modelling it is shown that in layered systems different convective flow 

patterns appear than in the single layer case. The number and constellation 

of convection cells characterize steady flow patterns. Using a parametric 

sweep over the relevant parameter range of layer Rayleigh numbers and 

layer thicknesses we determine diagrams that show the excess heat or 

mass transfer of the dominant convection patterns, measured by the 

Nusselt- or Sherwood numbers. 

 

 

1. INTRODUCTION 

Heat and mass transfer through a system of porous layers are relevant topics in various 

constellations within our physical environment and in technical applications. Heat transfer in 

the sub-surface of the earth is very much determined by the involved geological layers. Aside 

from the understanding of natural geology, the heat flux is relevant in geotechnical systems 

as in heat storage beds [1]. The mass transfer of CO2 is of concern for carbon sequestration in 

geological formations that are usually layered. Technical devices as packed-bed catalytic 

reactors contain layers [2]. Materials may consist of layers. When they are designed for 

thermal insulation, heat transfer is to be minimized [3]. Porous layers can be useful for 

maximizing heat dissipation, for example in electronic devices. In all these systems convection 

plays an important role.  

Convective motions result from the coupling of flow and transport processes. They are 

thus a genuine multiphysics phenomenon. The nonlinearity of the coupling results in a 

remarkable behaviour of the studied systems. Here we deal with the classical constellation 

that a fluid of higher density overlies a fluid of lower density, which is discussed also as 

Horton-Rogers-Lapwood problem [4]. Above a critical threshold for the involved parameters, 

for example the density difference, a deviation from the trivial no-flow solution appears: 

steady flow patterns consisting of convection cells with circulating fluid can be observed. 

Following a classical analytical analysis, first rigorously presented by Lord Rayleigh for free 

fluids [5], the mutiphysics systems can be characterized by a dimensionless parameter 

combination, which nowadays is named the Rayleigh-number Ra or Ra-no. Below a critical 

value of Ra the system remains stagnant - above the critical value convective motions appear.  
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The mentioned coupling of flow and transport that leads to convection arises as effect of 

buoyancy caused by variable fluid density as the major coupling parameter. Fluid density 

mainly depends on temperature and salinity. Corresponding to this one speaks of thermal or 

haline convection. More complex behavior results in case of thermohaline convection when 

both temperature and salinity come into play. That additional complexity is not considered 

here.  

The heat and mass transfer in a fluid system is significantly determined by the convective 

regime. It is convenient to describe the increased heat and mass transfer through the fluid layer 

as function of Ra. One may also characterize the transfer by dimensionless numbers: for heat 

transfer it is the Nusselt number Nu, for salt mass transfer the Sherwood number Sh. Both Nu 

and Sh are normalized to be 1 for the non-convective state with purely conductive heat or 

diffusive mass transfer. 

In the classical description of convective motions, a single fluid layer is considered. Here 

the investigation is extended to systems of layers, through which heat or mass transfer appears 

due to diffusion and convection. The here-examined constellations consist of three 

horizontally aligned porous layers. However, they deliver clues for multi-layered systems in 

general. The general set-up, notation of geometrical entities and boundary conditions are 

depicted in Figure 1. 

In order to restrict the parameter space in the three-layer system only constellations are 

considered in which the outer layers identical concerning the physical and geometrical 

properties, but differing from the intermediate layer. A dimensionless description is utilized, 

in which the geometry and the Ra-no.s are the only relevant parameters. 

 

 
Figure 1: Schematic view of model region with boundary conditions indicated  

 

As the porous medium Ra-no. is mainly determined by the permeability of the porous 

medium (see below), we may discuss the constellation in terms of aquifers and aquitards. In 

most cases the upper- and lowermost layers can be considered as aquifers, with a lower 

permeable layer sandwiched in between. If the intermediate layer is completely impermeable, 

convection rolls develop in the permeable layers above and below. If the sandwiched layer is 
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only slightly less permeable (leaky aquifer) than the adjacent layers, convection rolls may 

develop that extend across the entire vertical extension of the system.  

By numerical modelling Bjørlykke et al. [6] examined the onset of convection in the very 

same set-up. The set-up, in which a permeable layer is sandwiched in between less permeable 

layers has attracted scientific interest, see Lipsey et al. [7] and references therein. Convective 

motions may appear in the sandwiched layer with an effect on the geothermal gradient within 

the layer. Here the study is extended with focus on a detailed examination of the flow patterns 

and the heat or mass transfer through such systems, covering the entire relevant parameter 

space.  

The studied constellation differs from the partitioned porous layers, studied by Genç & 

Rees [8] and Rees [9], as here fluid flow in the aquitard is taken into account. It is a typical 

feature of geological layers that they are differently conductive to fluid flow as well as heat 

transport. The hydraulic conductivity of an aquitard can be several orders of magnitude lower 

than that of an aquifer. However, for moderate contrasts between the layers and long time 

scales the fluid flow within the leaky layer may not be ignored.  

McKibbin & Tyvand [10] as well as Hewitt et al. [11] are dealing with systems in which 

thin very low permeable layers cut through permeable formations. In the limit case for very 

low permeabilities high Ra-no.s are required to induce convective motions. The systems that 

are in question here have comparably moderate dimensions and are thus far away from the 

limit case examined in the former studies.  

The constellation with a porous layer overlain by a free fluid layer has attracted a lot of 

research studies [12, 13, 14, 15, 16, 17], as there are several practical applications of interest. 

The topic here is a situation with several porous layers, governed by Darcy’s Law. In the free 

fluid layer this approach is not valid. Instead such a layer is described by the Navier-Stokes 

equations. Although there convection patterns can be observed as well, the details concerning 

the onset of convection, cell shape and transfer are very different from the porous medium 

case that is in the focus here.    

 

2. DIFFERENTIAL EQUATIONS & BOUNDARY CONDITIONS 

Models of convective flow patterns are based on a system of partial differential equations, 

which result from mass and energy conservation formulations. Dependent variables are 

pressure, velocity and temperature or salinity, the latter depending on the type of convection, 

either thermal or saline. Relevant parameters are: the maximum density difference Δρ due to 
the different temperatures or salinities, the dynamic viscosity of the fluid μ, thermal or solute 
diffusivity D of the fluid-solid system and the permeability of the porous medium k.    

Depending on conditions the resulting formulation can be simplified. The Boussinesq-

Oberbeck assumption states that density variation is negligible except from its influence on 

buoyancy [18]. Another common assumption is that density is a linear function of either 

temperature (in the thermal case) or salinity (in the haline case).  

The equations for the primitive variables pressure, temperature or salinity, can be 

transformed to a non-dimensional formulation with coefficients given by dimensionless 

numbers, which are combinations of the original parameters. For convection in porous media 

the porous medium Rayleigh number Ra is the only crucial characterizing dimensionless 

number:  

 

  



56 

 

Convective Transport through Porous Layers 
 

 

 

 𝑅𝑅𝑎𝑎 =
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝜇𝜇𝜇𝜇                                                           (1) 

 

The porous medium Rayleigh number is defined in analogy to the Rayleigh number for 

free fluids. Details of the transformation to the non-dimensional formulation, briefly presented 

below, were given by Holzbecher [18] and more recently discussed by Dillon et al. [19] and 

Chandran et al. [20].  

In the non-dimensional formulation, it is convenient to replace the pressure variable by the 

stream function 𝛹𝛹. Using 2D Cartesian coordinates 𝛹𝛹 is implicitly defined by, 

 𝑣𝑣 = (
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 ,− 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕)                                                         (2) 

 

where 𝑣𝑣 is the velocity field. 𝑥𝑥 denotes the horizontal and 𝑧𝑧 the vertical space direction. The 

formulation (2) ensures that the flow field is divergence free, i.e.  , a condition that results 

from the mass conservation equation and the Boussinesq-Oberbeck assumption. The 

differential equation for 𝛹𝛹 is obtained using the vorticity vector 𝜔𝜔, which in 3D is defined by 

the cross-product: 

 𝜔𝜔 = 𝛻𝛻 × 𝑣𝑣                                                                 (3) 

 

Combining equations (2) and (3) for 2D flow in a plane yields only one nonzero vorticity 

component ω, which fulfills the equation: 

 𝛻𝛻2𝛹𝛹 = −𝜔𝜔                                                                (4) 

 

The dimensionless formulation is obtained, using a variable transformation with space unit 

H and time unit H2/D. H denotes the total height of the layered system. The velocity unit is 

thus D/H. By this non-dimensionalization the transport equation for heat or mass is given by, 

see [18]: 

 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 + 𝑣𝑣𝛻𝛻𝜃𝜃 = 𝛻𝛻2𝜃𝜃                                                        (5) 

 𝜃𝜃 is the normalized transport variable, i.e. temperature for thermal convection and salinity 

for haline convection. The terms in equation (5) represent the processes of storage, advection 

and diffusion. An explicit expression is obtained for vorticity:  

 𝜔𝜔 = ±𝑅𝑅𝑎𝑎  𝜕𝜕𝜃𝜃/𝜕𝜕𝑥𝑥                                                        (6) 

 

The sign in the vorticity equation of equation (6) is negative for the thermal case and 

positive for the for the haline case. The viscosity is assumed to be a constant, as we consider 

the same fluid with moderate changes of the transport variable only. In the numerical 

experiments reported here Ra mainly reflects the change of the permeability.  

In order to complete the model formulation, boundary conditions have to be formulated. 

For a closed system the stream function has a constant value on all boundaries; without loss 

of generality we chose 𝛹𝛹 = 0. The conditions for 𝜃𝜃 at the outer boundaries are as follows:  
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 𝜃𝜃 =  1 Dirichlet at bottom, 𝜃𝜃 =  0 Dirichlet at top, no-flow else (thermal case) 𝜃𝜃 =  0 Dirichlet at bottom, 𝜃𝜃 =  1 Dirichlet at top, no-flow else (haline case) 

 

At the interfaces between the layers continuity conditions are required. The temperature 

and the heat transfer, in the thermal case, and salinity and mass flux, in the haline case, across 

the interfaces have to be identical in both layers that are separated by the interface. For both 

Ψ and θ this is achieved by setting a Dirichlet condition in one layer, and a Neumann condition 
in the other. If the variables in the adjacent layers are denoted by subscripts 1 and 2, the 

requirements for the streamfunction are:   

 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑙𝑙𝑙𝑙𝑙𝑙 𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝑙𝑙𝐷𝐷𝑐𝑐𝑐𝑐 𝑓𝑓𝑐𝑐𝐷𝐷 Ψ1:                   Ψ1 =  Ψ2 𝑁𝑁𝑙𝑙𝑁𝑁𝑁𝑁𝑎𝑎𝑐𝑐𝑐𝑐 𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝑙𝑙𝐷𝐷𝑐𝑐𝑐𝑐 𝑓𝑓𝑐𝑐𝐷𝐷 Ψ2 :                 
𝜕𝜕Ψ2𝜕𝜕𝜕𝜕 =

𝜕𝜕Ψ1𝜕𝜕𝜕𝜕                               (7) 

 

In the presented model for the upper- and lowermost layers we require the Dirichlet 

condition at the interfaces with the intermediate layer. For the intermediate layer the Neumann 

condition is demanded at both interfaces. 

A similar construction for θ guarantees that diffusive heat and mass fluxes on both sides 
of the interfaces are identical. For the upper- and lowermost layers we require Neumann 

conditions at the concerned interfaces, and for the intermediate layer the demand is the 

Dirichlet condition.      

In the following description we will concentrate on the thermal system, and not mention 

the haline case in particular. However, with the mentioned modifications concerning the sign 

in equation (6) and the outer boundary conditions all results are equally valid for the haline 

convection case as well.   

 

3. SIMULATION 

Numerical modeling is performed based on the system of equations (4)-(6). The coupled 

differential equations (4) and (5) are solved simultaneously. 𝑣𝑣 is computed using equation (2). 

ω is calculated using the explicit formula given in equation (6). The transient behaviour of the 

system is simulated. However, here we only discuss the steady states that are obtained after a 

sufficiently long simulation time.  

The discretization is performed by Finite Elements using the software COMSOL 

Multiphysics [21]. COMSOL Multiphysics has been used for simulating convection patterns 

in several studies on porous media. Holzbecher [22] examined porous systems with open top 

boundary. Holzbecher [23, 24] and recently Eckel & Pini [25] simulated flow patterns for very 

high Rayleigh-numbers in the context of CO2 storage. Systems with one horizontal interface 

have been investigated [26]. That investigation is extended here for the case of two interfaces.  

Using COMSOL Multiphysics the differential equations (4) and (5) are treated using 

coefficient pde-modes. For the system with three layers altogether a system of 6 coupled 

differential equations has to be solved. For the discretization we choose finite elements on 

triangular or quadrilateral meshes with quadratic shape functions for all variables. The 

triangular meshes for the four geometries consist of 3516 and 3610 elements, which 

corresponds to approximately 15000 degrees of freedom (dof). In the parametric sweep we 

used quadrilateral meshes between between 6000 and 8000 elements (depending on d), which 
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corresponds with up to 65526 dofs. In order to check mesh dependencies control runs are 

performed on even finer quadrilateral meshes with more than 22000 elements, corresponding 

to more than 180000 dofs. 

For the solution of the transient simulation a time-stepping approach is used, with 

automatic timestep adjustment. The nonlinear equations are gathered in one system matrix. 

The resulting linear systems are solved by a direct solver.   

As post-processing the Nusselt number Nu, for thermal convection (or Sherwood number 

Sh, in case of haline convection), are calculated. They represent the total heat (or mass) 

transfer through the system. in the non-dimensional formulation these numbers are defined by  

 𝑁𝑁𝑁𝑁, 𝑆𝑆ℎ = ∫ 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕  𝑐𝑐𝑥𝑥                                                    (8) 

 

where the integral extends over an entire horizontal boundary. Nu (or Sh) respectively is 

computed using 4th order integration along the top or bottom boundary. In the steady state 

evaluations of equation (8) at the lower and upper horizontal boundary deliver the same value.  

This study focuses on steady state solutions. As the straight approach using the steady state 

versions of the equation (5) usually does not converge, we use long-term simulations of the 

unsteady equations to obtain the steady states! Only few of the simulations described below 

did not lead to a steady state. In that cases an oscillating convection pattern was reached 

instead.      

The resulting flow patterns are generally not unique. They crucially depend on the initial 

condition. In the transient simulations for this study the initial values differ at a few spots from 

the linear pure diffusion profile. Without any such disturbance the computational simulation 

may not start, because the regime with no flow and linear  profile is an analytical solution. At 

least one small disturbance is necessary to give a kick-start for the simulation, if it is physically 

unstable. The type of disturbance may have an influence on the final steady state. For example 

a single disturbance favours a system with two convection cells, a double disturbance favours 

a three cell pattern. However, despite of this the final state is not uniquely determined by the 

initial condition. A single initial disturbance may lead to steady states of 1, 4, 6 or 8 cells, as 

will be shown.    

In some cases we observe an influence of numerical settings. As small local disturbances 

play a role in some of the investigated scenarios, it can be expected that changes of the 

numerical approach may have an effect on the simulation. We use triangular and quadrilateral 

meshes, which sometimes make a difference. In some cases different results are obtained, if 

the solution algorithm worked with scaled or non scaled variables.        

 

4. RESULTS 

4.1. Flow Patterns 

The described model is run with a wide range of parameter variations. In order to limit the 

task, some constraints are set. It is assumed that the outer layers at the top and bottom of the 

model domain are of same type concerning their geophysical and geometrical properties. They 

have the same Ra-no. and the same thickness. Their Ra-no. in the sequel is referred to as Ra1, 

while the Ra-no. of the intermediate sandwiched layer is referred to as Ra2. In parametric 

sweeps Ra1 varies between 100 and 500, Ra2 varies between 10 and 300. The thickness of the 

intermediate layer d takes the dimensionless values of 0.1, 0.3, 0.5 and 0.7 from the total 
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height H=1. Altogether these variations cover cases, where a low permeable aquitard is 

sandwiched in between thicker aquifers and cases, where a highly permeable layer lies in 

between less conductive layers.   

For the different parameter combinations, some topologically distinct flow patterns can be 

observed. These are gathered and visualized in the following figures. Black horizontal lines 

depict layer interfaces. Moreover, the visualizations depict:  

 

1. A surface plot of transport variable (red for hot, blue for cold) 

2. A contour plot of isotherms for levels of θ between 0.1 and 0.9 (grey)  
3. Streamlines (thick white)  

4. A velocity arrow field (white) 

5. The minimum and maximum of the stream function (black)  

 

Fig. 2a shows a pattern with two steady state convection cells, obtained for Ra1=125, 

Ra2=50 and d=0.5. In the low permeable sandwiched layer the streamlines are nearly vertical. 

The figure depicts upward flow in the center of the domain, while at the vertical boundaries it 

is downward. One of the cells rotates clockwise, the other counter clockwise. The rotation 

sense depends on the initial condition. A flow pattern with downward flow in the domain 

center and upward flow at the vertical boundaries constitutes the same convection mode (see 

below). Two cell flow patterns are the most observed patterns in the parameter study. 

 

 
(a)                                                            (b) 

Figures 2 a, b: Two cells convection patterns; for (a) Ra1=125, Ra2=50, (b) Ra1=125, 

Ra2=90. Both for an intermediate layer thickness of d=0.5. 

 

Decreasing the contrast of the layer characteristics, represented by the Ra-no.s, leads to 

cells with a higher curvature and the horizontal temperature gradients in the intermediate layer 

become more pronounced. Fig. 2b shows two convection cells, obtained for Ra1=125 in the 

aquifers and Ra2=90 in the sandwiched lower permeable formation. The latter type of pattern 

emerges quite frequently, especially in cases, in which the Ra-no.s take relatively nearby 

values.  
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(c)                                                          (d) 

Figures 2 c, d: Four cells convection pattern; for (c) Ra1=300, Ra2=50 and 

sandwiched layer thickness d=0.5, (d) Ra1=450, Ra2=10 and d=0.3. 

 

Another frequent flow pattern consists of four flow cells as shown in Fig.s 2c and 2d. 

Obviously the convection rolls, seen in the previous figures, are partially split. The detailed 

view reveals that the flow patterns are combinations of a 2-cell pattern and a 4-cell pattern. 

Two cells extend across the entire vertical extension, circulating through the low permeable 

intermediate layer. Superposed is a pattern with four cells centered in the outer layers, but 

partially penetrating the intermediate aquitard. Fluid particles within these cells do not 

percolate through the intermediate layer. Note that upper and lower cells do not touch each 

other at a common streamline (as the elongated vertical cells do), but only meet at stagnation 

points within the low permeable layer. Related upper and lower eddies have the same rotation 

sense. The pattern becomes more pronounced, when the contrast between the layer 

characteristics increases, as can be seen in Fig. 2d.  

Also patterns with a single cell were observed, as shown in Fig. 2e. Emerging from the 

single cell we find flow patterns with 2, 3 or 4 cells. Two cells, one above the other, emerge, 

when the intermediate layer is less permeable (2f). Both cells have the same circulation sense; 

they meet at a stagnation point in the center of the model region. The four cell pattern in Fig. 

2g is characterized by two additional cells appearing in the permeable layers, one on the 

bottom left and one on the top right.  The circulation of these cells is the same, while the 

intermediate large cell rotates the opposite way. A flow field with four cells emerges, when 

two cells within the single cell appear in both aquifers (2h). The four cell pattern is different 

from the ones shown in Fig.s 2c and 2d: here the intermediate layer sees upward flow in one 

half and downward flow in the other, while in the former cases the intermediate layer is split 

in three strips concerning the vertical flow direction.  
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(e)                                                                    (f) 

 
(g)                                                                    (h) 

Figure 2 e, f, g, h: One cell convection pattern for (e) Ra1=100, Ra2=40 and 

intermediate layer thickness d=0.3, (f) two cells pattern for Ra1=450, Ra2=50 and 

d=0.5, (g) four cells pattern for Ra1=500, Ra2=90 and d=0.1, (h) four cells pattern 

emerging from a single cell for Ra1=500, Ra2=20 and d=0.5.  

 

When the contrast between the layers is high, i.e. if the aquitard is much lower permeable 

than the aquifers, flow cells appear which only marginally penetrate the intermediate layer. 

Two examples are shown in Fig.s 2i and 2j. One shows a six cells pattern with three cells in 

both aquifers. For a thinner intermediate layer the simulation leads to a flow pattern with eight 

cells, with four eddies in each aquifer. 
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(i)                                                                 (j) 

Figure 2 i, j: Six cells pattern for (i) Ra1=500, Ra2=10 and d=0.3 and (j) eight cells 

pattern for Ra1=500, Ra2=10 and d=0.1. 

 

4.2. Convection Modes 

A parametric study is performed with the described model. The model is run for all 

combinations of parameters, listed in Table 1. The range of the parameters represents the 

relevant cases with steady convection flow patterns. For higher Ra-no.s one partially enters in 

the region, where oscillatory flow pattern become more likely. A transition to oscillatory 

patterns was observed in some model runs here. For single homogeneous layers Holzbecher 

[27] investigated this transition, but this is not in the focus here. 

 

Table 1: Parameter values selected for parametric sweep 𝐑𝐑𝐑𝐑𝟏𝟏  𝐑𝐑𝐑𝐑𝟐𝟐  d 

100 10 0.1 

125 20 0.3 

150 30 0.5 

175 40 0.7 

200 50   

250 60   

300 90   

350 120   

400 150   

450 200   

500 250   

  300   

 

For each of the four variations of the geometry we make a parametric sweep with variations 

of Ra1 and Ra2, i.e. 132 simulations. In all cases a steady state flow is found, that falls into 

one of the pattern types described above. For few parameter combinations the cell pattern is 

not unique: depending on the initial conditions and options for the numerical solution different 
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modes are obtained. In those cases several convection solutions exist. For few combinations 

also oscillating patterns are observed. For all runs in this study, for each parameter set at least 

one steady solution emerges.  

Figure 3 shows the dominant cell pattern observed for the four geometry constellations 

with different layer thicknesses. The dominant patterns are those with a single cell, as shown 

in Fig. 2e, with two cells, as shown in Fig.s 2a and 2b, and with four cells, as shown in Fig.s 

2c and 2d. The 0-cell cases represent no convective, i.e. pure diffusive flow.  

In case of the thin intermediate layer (d=0.1) the 4-cell mode is observed in almost all 

cases, where an aquitard is sandwiched in between two aquifers. If the intermediate layer has 

a lower Ra-no. the 2-cell mode prevails. For Ra1=100 the single cell mode can be preferred. 

 

 

 

 

Figure 3: Dominant convection cell pattern as function of layer Rayleigh-no.s and 

layer thickness; ‘4#’ refers to the 4-cell pattern, depicted in Fig. 2g; (top left: d = 

0.1; top right: d = 0.3; bottom left: d = 0.5; bottom right: d = 0.7)  
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With increasing thickness of the intermediate layers we observe the appearance of the no-

flow pure conductive solution, with no flow cells. While there are few cases for d=0.3, the 0-

cell solution becomes more frequent if the intermediate layer is thicker. Also, with increasing 

thickness the 2-cell mode becomes more and more dominant in the studied parameter range. 

For d=0.7 the appearance of the 4-cell mode is limited due to the frequent appearance of the 

no-flow and the 2-cell modes. 

The flow modes that do not appear in Figure 3, i.e. the ones depicted in Fig.s 2e-2j, are 

observed for relatively few cases of the parametric sweep. Depending on the chosen initial 

conditions and numerical options, as outlined above, for the same parameter combination also 

one of the dominant modes, considered in Fig. 3, appears. For d=0.3 we find Ra-No. 

combinations leading to the pattern, shown in Fig. 2g and to the 6-cell mode.   

 

4.3. Heat- or Mass Transfer 

The Nusselt-no. Nu, defined by equation (8), represents the heat transfer through the layered 

system. For the pure diffusive situation with no flow in the entire domain Nu is 1. Nusselt-

no.s above 1 measure the increased transfer due to convection.  

Nu depends on the layer Ra-no.s and on the geometry. For the here considered model set-

up the geometry is uniquely represented by the thickness d of the intermediate layer. Moreover 

the transfer is also dependent on the convection mode.  For the dominant modes of the 

parametric sweep the Nu-numbers are depicted in Figure 4. For all geometries the range of 

the Nu-no.s is between 1 and 7.  

For the thin intermediate layer (d=0.1) Nu-no. results show a strong dependence on Ra1, 

which characterizes the higher permeable regions. Between 150<Ra1<300 the contour lines 

are almost vertical, indicating no dependence on Ra2. The transition to higher transfer rates 

for Ra1=100 and high values of Ra2 can be explained by a change of the convection pattern. 

As the corresponding sub-plot in Figure 3 shows, the 1-cell mode is dominant for that 

parameter combination. 

For d=0.3 a small irregularity of the prevailing pattern can be observed in the lower left 

corner and a strong deviation on the lower right corner of the figure. Both emerge from a 

change of the dominant flow pattern, as can be seen in the corresponding sub-plot in Fig. 3.     

For d=0.5 there is a stronger dependency on Ra2 in the lower part of the plot, but a stronger 

dependency on Ra1 in the upper part. A comparison with Figure 3 shows that that roughly 

coincides with the modes. In the part with dominant 4-cell mode Ra2 is more important, while 

for the 2-cell pattern Ra1 plays a bigger role.  

For a thick intermediate layer, d=0.7, the just described behavior is still recognizable, but 

on a weaker scale. Comparison with Figure 3 shows that the 2-cell pattern is the dominant 

mode for this geometry.   
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Figure 4: Nu-no.s as function of layer Ra-no.s and layer thickness (top left: d = 0.1; 

top right: d = 0.3; bottom left: d = 0.5; bottom right: d = 0.7)   

 

5. DISCUSSION & CONCLUSION 

In a layered system convection patterns appear that cannot be observed in homogeneous 

systems. Convection cells emerge that are connected to layers: there are solutions with 2x2, 

2x3 and even 2x4 cells in the square unit domain. Moreover superposition of cells occurs, 

when within a larger cell two smaller cells appear. Various complex circulation patterns 

emerge that are described above.   

Heat and mass transfer depends on the geometrical constellation, i.e. here the height of the 

different layers and the Ra-numbers, as given parameters. It also depends on the flow pattern, 

which is not unique for the non-linear system. This can be of interest in technical systems, in 

which minimal or maximal transfer is to be achieved. The current study gives an aid on which 

parameters can be chosen do reach a state of optimum heat or mass transfer.  

Attention is to be paid on the decrease of heat transfer with Ra2 in the high Ra-numbers 

regions. It can be observed in the upper left corners of sub-plots in Fig. 4 for d=0.1, 0.3 and 

0.5. Nu can generally be expected to increase with increasing Ra, what the mentioned figures 

seem to contradict. However, a comparison with the corresponding sub-plots in Fig. 3 reveals, 

that there is a transition of the flow-pattern in the concerned regions of the plots. Raising Ra2 

there can lead to a change from the dominant 2-cell pattern to the 4-cell pattern. This is 

accompanied with a change of the Nu-no., which is lower for the 4-cell mode. However, 

detailed investigation of the obtained results shows that the mentioned decrease of Nu-no.s 

appears also without mode change - a phenomenon that is not completely understood. 
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