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The peptide nucleic acid backbone Fmoc-AEG-OBn has been synthesized via a scalable and cost-effective route. Ethylenediamine is
mono-Boc protected, then alkylated with benzyl bromoacetate. The Boc group is removed and replaced with an Fmoc group. The
synthesis was performed starting with 50 g of Boc anhydride to give 31 g of product in 32% overall yield. The Fmoc-protected PNA
backbone is a key intermediate in the synthesis of nucleobase-modified PNA monomers. Thus, improved access to this molecule
is anticipated to facilitate future investigations into the chemical properties and applications of nucleobase-modified PNA.

1. Introduction

Peptide nucleic acid (PNA) [1] has recently emerged as
a promising alternative to the native nucleic acids DNA
and RNA (Figure 1) for a wide variety of applications
including antisense therapy [2] and gene diagnostics [3].
The key advantages of PNA over DNA and RNA are its
resistance to degradation by cellular nucleases [4] and its
relatively higher binding affinity and mismatch selectivity in
duplex formation [5]. PNA can be generated by Fmoc- or
Boc-solid phase peptide synthesis [6], and Fmoc-protected
monomers bearing each of the four canonical nucleobases
are commercially available. Recently, the incorporation of
modified nucleobases into PNA has been shown to enable
synthesis of nucleic acids having unique physicochemical
properties [7]. However, PNA monomers bearing modified
nucleobases are not commercially available, and must instead
be synthesized in the laboratory. Suitable reactions have
been reported for preparation of modified nucleobases
and coupling of these nucleobase acetic acids to the PNA
backbone (Figure 2) [7–9]. However, to our knowledge, a
scalable and cost-effective synthesis for the protected N-[2-
(Fmoc)aminoethyl]glycine benzyl ester (Fmoc-AEG-OBn)
backbone 1 has yet to be reported. Synthesis of the Fmoc-
protected carboxylic acid backbone Fmoc-AEG-OH has been
reported [10], and coupling of nucleobase acetic acids with

Fmoc-AEG-OH has been described in the patent literature
[11]. However, this coupling reaction provides moderate-to-
low yields of PNA monomer [12, 13]. Here, we describe a
synthesis of 1 that proceeds in four steps with an overall yield
of 32%, utilizes inexpensive reagents, and can be scaled to
produce large quantities of final product in a single batch
with only minimal purification.

2. Materials and Methods

2.1. General Methods. Unless otherwise noted, all starting
materials were obtained from commercial suppliers and were
used without further purification. Flash column chromatog-
raphy was carried out using silica gel 60 (230–400 mesh).
1H and 13C NMR chemical shifts are expressed in parts
per million (δ) using residual solvent protons as internal
standard (δ 7.26 ppm (1H) and 77.16 ppm (13C) for CHCl3).
Coupling constants, J, are reported in Hertz (Hz), and
splitting patterns are designated as s (singlet), d (doublet),
t (triplet), q (quartet), m (multiplet), br (broad), and app
(apparent). Mass spectra were obtained through the Mass
Spectrometry Facility, University of Utah.

2.2. tert-Butyl(2-aminoethyl)carbamate (6). A 2 L round bot-
tom flask was charged with ethylenediamine (306.5 mL,
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Figure 1: Chemical structure of DNA, RNA, and PNA.

4.58 mol) and tetrahydrofuran (600 mL). Boc anhydride
(50.0 g, 229 mmol) was dissolved in 400 mL tetrahydrofuran
and added to the solution of ethylenediamine via addition
funnel over 45 min with vigorous stirring. After 18 h, the
reaction was quenched by addition of 500 mL H2O. The
aqueous phase was saturated with solid K2CO3, then the
phases were separated and the organic phase was dried over
Na2SO4, filtered, and concentrated to give a pale yellow oil.
The oil was dissolved in 700 mL toluene and concentrated
to azeotrope remaining ethylenediamine, yielding 29.24 g of
pale yellow oil (80%). 1H NMR (300 MHz, CDCl3) δ 4.90
(br s, 1H), 3.16 (q, J = 5.8 Hz, 2H), 2.78 (t, J = 5.9 Hz, 2H),
1.43 (s, 9H), 1.09 (br s, 2H). 13C NMR (75 MHz, CDCl3) δ
156.3, 79.1, 43.3, 41.8, 28.4. HRMS (ESI) m/z 161.1295 (calcd
[M + H]+

= 161.1290).

2.3. Benzyl 2-((2-((tert-butoxycarbonyl)amino)ethyl)amino)
acetate (9). A 2 L round bottom flask was charged with
6 (29.24 g, 183 mmol), triethylamine (25.5 mL, 183 mmol),
and acetonitrile (450 mL). The reaction mixture was stirred
and ethyl bromoacetate (28.9 mL, 182 mmol) added via
syringe over 2 min. After 100 min, the reaction mixture
was diluted with 500 mL EtOAc and washed with 500 mL
2 M K2CO3 (aq.), then 500 mL brine. The organic phase
was dried over Na2SO4, filtered, and concentrated to a
pale yellow oil, which was purified by flash column chro-
matography, (70 mm diameter column, 285 g silica gel, 1 : 1
hexanes : EtOAc, 99 : 1 EtOAc : Et3N) to give 40.56 g of pale
yellow oil (72%). 1H NMR (300 MHz, CDCl3) δ 7.38–7.33
(m, 5H), 5.17 (s, 2H), 4.99 (br s, 1H), 3.45 (s, 2H), 3.20
(q, J = 5.7 Hz, 2H), 2.74 (t, J = 5.8 Hz, 2H), 1.59 (br s, 1H),
1.44 (s, 9H). 13C NMR (75 MHz, CDCl3) δ 172.3, 156.1,
135.5, 128.6, 128.4, 128.3, 79.0, 66.5, 50.4, 48.7, 40.1, 28.4.
HRMS (ESI) m/z 331.1640 (calcd [M + Na]+

= 331.1634).

2.4. Benzyl 2-((2-((((9H-fluoren-9-yl)methoxy)carbonyl)
amino)ethyl)amino)acetate (Fmoc-AEG-OBn 1). To a 2 L
round bottom flask was added 9 (40.46 g, 131 mmol) and
dichloromethane (200 mL). The reaction mixture was stirred
in an ice bath and 200 mL trifluoroacetic acid added. The

ice bath was removed and the reaction mixture stirred
for 20 min, then concentrated to a yellow oil. The oil was
dissolved in 400 mL toluene and concentrated to azeotrope
remaining trifluoroacetic acid. The resulting yellow oil was
dissolved in 700 mL dichloromethane and stirred under N2

in an ice bath. Fmoc-OSu (44.26 g, 131 mmol) was added all
at once, then triethylamine (54.8 mL, 393 mmol) was added
dropwise via addition funnel over 5 min. The ice bath was
removed and the reaction mixture was stirred for 2 h, then
washed with 500 mL 1 M K2CO3 (aq.), dried over Na2SO4,
filtered, and concentrated to a yellow oil. The oil was purified
by flash column chromatography, (70 mm diameter column,
250 g silica gel, 1 : 1 hexanes : EtOAc, 98 : 2 EtOAc : MeOH)
to give 31.04 g of pale yellow oil that crystallized into a white
solid upon standing (55%). 1H NMR (300 MHz, CDCl3) δ
7.76 (d, J = 7.4 Hz, 2H), 7.61 (d, J = 7.3 Hz, 2H), 7.42–7.28
(m, 9H), 5.29 (br s, 1H), 5.18 (s, 2H), 4.40 (d, J = 7.0 Hz,
2H), 4.22 (t, J = 6.8 Hz, 1H), 3.47 (s, 2H), 3.29 (q, J = 5.4 Hz,
2H), 2.78 (t, J = 5.6 Hz, 2H), 1.58 (br s, 1H). 13C NMR
(75 MHz, CDCl3) δ 172.3, 156.6, 144.0, 141.3, 135.5, 128.6,
128.5, 128.4, 127.6, 127.0, 125.1, 120.0, 66.6, 66.4, 50.4, 48.6,
47.3, 40.6. HRMS (ESI) m/z 431.1972 (calcd [M + H]+

=

431.1971).

3. Results

An extensive literature search reveals only one published
route to 1 as shown in Figure 3(a). This route, reported
by Hudson and coworkers, proceeds in three steps with an
overall yield of 81%, but requires the use of costly N-(2-
aminoethyl)glycine as the starting material [8]. Furthermore,
in our hands, this synthetic route has proven difficult to
reproduce. Alternatively, Porcheddu and coworkers have
described a synthesis of Fmoc-AEG-OMe 2 that proceeds
in three steps with an overall yield of 66% (Figure 3(b)),
but requires three equivalents of IBX to accomplish the
oxidation step [9]. Thomson and coworkers have described
a synthesis of Fmoc-AEG-Ot-Bu·HCl 3·HCl that proceeds
in two steps with 46% overall yield from inexpensive starting
materials (Figure 3(c)), but does not produce analytically
pure material [14]. Furthermore, the exocyclic amines of the
PNA nucleobases are typically protected with acid-labile Boc
or Bhoc protecting groups. Deprotection of the tert-butyl
ester requires strongly acidic conditions, making 3 unsuitable
for use with Boc- or Bhoc-protected nucleobases.

Inspired by the ease and cost-effectiveness of the Thom-
son route, we first envisioned synthesis of 1 by alkylation
of ethylenediamine with benzyl bromoacetate, followed by
reaction with Fmoc N-hydroxysuccinimide ester (Fmoc-
OSu). Unfortunately, after alkylation and aqueous workup,
only benzyl alcohol was recovered. We hypothesize that
alkylation product 4 rapidly cyclizes to give benzyl alcohol
and water soluble cyclic piperazinone 5 (Figure 4(a)), and
that this undesired cyclization can only be suppressed by
the use of a bulky ester such as a tert-butyl ester. In fact,
this cyclization has been demonstrated previously using the
analogous methyl ester [15]. We next considered reversing
the order of the two reactions such that ethylenediamine
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Figure 2: Synthesis of Fmoc-protected PNA monomers.
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Figure 3: Reported synthetic routes to the Fmoc-AEG-OR backbone.

would first be monoprotected with Fmoc-OSu, then alky-
lated with benzyl bromoacetate to give 1. However, Fmoc-
ethylenediamine cannot be directly prepared by the reaction
of ethylenediamine with Fmoc-Cl or Fmoc-OSu. Rather,
a three-step process is required in which ethylenediamine
is mono-Boc protected (6), then Fmoc protected (7), and
finally the Boc group is removed under acidic conditions to
give 8 as the TFA salt [16]. Unfortunately, our attempts to
alkylate 8·TFA with benzyl bromoacetate failed to yield the
desired product 1, likely due to the instability of the free base
of 8 (Figure 4(b)).

Fortunately, we were able to obtain Boc-ethylenediamine
6 in 80% yield from ethylenediamine and Boc anhydride
using a modified version of a reported procedure [17], and
this was successfully alkylated with benzyl bromoacetate to
give 9 in 72% yield. We then deprotected the Boc group
using trifluoroacetic acid (TFA) to give a quantitative yield
of free amine, which was importantly found to be stable to
cyclization when isolated as the TFA salt. In the final step,
we combined the amine TFA salt with Fmoc-OSu prior to
adding base, so that protection of the primary amine could
compete with cyclization to give the desired product 1 in 55%

yield. Starting with 50 g of Boc anhydride, we were able to
generate 31 g of analytically pure 1 in a single batch using
inexpensive reagents (Figure 4(c)) [18].

A key to the scalability of our synthetic route is the
relatively facile purification of the synthetic intermediates
and final product. The Boc protection step to give 6 requires
only aqueous workup, and the deprotection step requires
simple concentration and removal of TFA via formation
of an azeotrope with toluene. The alkylation to produce 9

and the Fmoc protection to give 1 require flash column
chromatography, but a large difference in R f between the
products and impurities makes purification possible using
only a silica plug.

4. Discussion

Fmoc-protected PNA backbone 1 is a key intermediate in
the synthesis of Fmoc-protected PNA monomers having
modified nucleobases. However, to date, a scalable and cost-
effective synthetic route to this molecule has yet to be
reported in the literature. An efficient synthesis of the Boc-
protected backbone has been reported, but our attempts to
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Figure 4: Synthetic route to Fmoc-AEG-OBn 1.

utilize this synthetic route with Fmoc in place of Boc failed
to give product, likely due to the instability of synthetic
intermediate 8. Rather, synthesis of 1 can be initiated using
a Boc protecting group, followed by a protecting group swap
to provide the Fmoc-protected product. The first two steps
of our synthetic route mirror those of the published synthesis
for the Boc-protected monomer [19]. However, replacement
of the Boc group with Fmoc poses a significant challenge,
as this step proceeds through unstable intermediate 4. We
were able to perform this transformation by generating the
free base of 4 at reduced temperature and in the presence of
Fmoc-OSu, enabling Fmoc protection to effectively compete
with cyclization, providing 1 in moderate yield.

In summary, we describe here a novel route to the
PNA backbone Fmoc-AEG-OBn 1. Using this route, we
have rapidly synthesized 31 g of 1 using inexpensive starting
materials and only minimal purification. The overall yield
for our synthetic route is modest at 32%; however, the low
cost of starting materials and ease of purification enable this
synthesis to be tractable on a large scale. Having a convenient
route to access 1 is anticipated to ease the synthesis of new
Fmoc-protected PNA monomers, presumably furthering the
exploration of PNA having unique modified nucleobases.
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