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The Journal of Immunology

Conventional Dendritic Cells Mount a Type I IFN Response

against Candida spp. Requiring Novel Phagosomal

TLR7-Mediated IFN-b Signaling

Christelle Bourgeois,* Olivia Majer,* Ingrid E. Frohner,* Iwona Lesiak-Markowicz,*

Kwang-Soo Hildering,* Walter Glaser,* Silvia Stockinger,†,1 Thomas Decker,†

Shizuo Akira,‡ Mathias Müller,x and Karl Kuchler*

Human fungal pathogens such as the dimorphic Candida albicans or the yeast-like Candida glabrata can cause systemic candidiasis

of high mortality in immunocompromised individuals. Innate immune cells such as dendritic cells and macrophages establish the

first line of defense against microbial pathogens and largely determine the outcome of infections. Among other cytokines, they

produce type I IFNs (IFNs-I), which are important modulators of the host immune response. Whereas an IFN-I response is

a hallmark immune response to bacteria and viruses, a function in fungal pathogenesis has remained unknown. In this study, we

demonstrate a novel mechanism mediating a strong IFN-b response in mouse conventional dendritic cells challenged by Candida

spp., subsequently orchestrating IFN-a/b receptor 1-dependent intracellular STAT1 activation and IFN regulatory factor (IRF) 7

expression. Interestingly, the initial IFN-b release bypasses the TLR 4 and TLR2, the TLR adaptor Toll/IL-1R domain-containing

adapter-inducing IFN-b and the b-glucan/phagocytic receptors dectin-1 and CD11b. Notably, Candida-induced IFN-b release is

strongly impaired by Src and Syk family kinase inhibitors and strictly requires completion of phagocytosis as well as phagosomal

maturation. Strikingly, TLR7, MyD88, and IRF1 are essential for IFN-b signaling. Furthermore, in a mouse model of dissem-

inated candidiasis we show that IFN-I signaling promotes persistence of C. glabrata in the host. Our data uncover for the first time

a pivotal role for endosomal TLR7 signaling in fungal pathogen recognition and highlight the importance of IFNs-I in modulating

the host immune response to C. glabrata. The Journal of Immunology, 2011, 186: 3104–3112.

I
nvasive Candida infections are life-threatening clinical con-

ditions, primarily affecting immunosuppressed patient co-

horts and patients with defects in cellular immunity (1).

Mortalities associated with disseminated candidemia can exceed

30–40%, despite appropriate antifungal treatment. The dimorphic

Candida albicans and the inherently drug-tolerant yeast-likeCandida

glabrata constitute the most frequent causes of fungal infections in

humans (1).C. albicans can switch between a yeast and a filamentous

(hyphae) form upon host or environmental stimuli.

Initial colonization and subsequent development of disseminated

diseases are determined by the nature of the interaction of Candida

spp. with host immune cells and tissues (2). The rate of clearance by

the host immune surveillance versus the fungal fitness and growth

in organs and tissues determines the outcome such as fungal clear-

ance or host death. Early recognition of pathogens by immune cells

is mediated by dedicated pattern recognition receptors (PRRs), in-

cluding TLRs and C-type lectins expressed at the surface of innate

cells, mainly monocytes, macrophages, neutrophils, and dendritic

cells (DCs) (2). PRRs recognize microbe-specific pathogen-asso-

ciated molecular patterns (PAMPs) and trigger several intracellu-

lar signaling pathways to orchestrate a pathogen-specific as well

as cell-type–specific host immune response (3, 4).

The sugar polymers (e.g., chitin, b-D-glucans, and mannan) and

proteins forming the fungal cell surface are considered the prime

source of fungal PAMPs. Notably, b-D-glucans seem to be pref-

erential ligands for the dectin-1 receptor, which mediates fungal

recognition and signaling alone, as well as with the phospholi-

pomannan receptor TLR2 as a coreceptor. By contrast, mannose-

sensing receptors include the mannan receptor, TLR4, dectin-2,

Mincle, the SIGNR receptor family, and galectin3, whereas TLR6

in association with TLR2 mediates zymosan-induced signaling

(reviewed in Ref. 2). Deficiency in certain PRRs, including TLR4,
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TLR2, Mincle, dectin-1, or their intracellular signaling adaptors

such as MyD88 and CARD9 strongly impairs survival of mice to

Candida infections, emphasizing the essential role of early path-

ogen recognition for mounting efficient host immune responses

(4). Nevertheless, conflicting reports on individual contributions

of certain PRRs (reviewed in Refs. 2, 4) point to the enormous

underlying complexity.

In addition to cell surface PAMPs, nucleic acids from Candida

may also stimulate or modulate the dynamic host response during

infection. Indeed, dsDNA from C. albicans elicits cytokine release

in mice (5, 6) in a TLR9-dependent fashion (6). Moreover, ssRNA

induces a Th1 response normally associated with a protective role

(7).

Binding of fungal PAMPs to PRRs preludes phagocytosis and

stimulates the release of extracellular reactive oxygen species (8)

and specific cytokines, ultimately activating innate effector cells.

Among others, DCs are instrumental in relaying pathogen in-

formation from innate immunity to the adaptive response through

their ability to act as professional APCs. PAMP recognition

stimulates DCs to produce signal cytokines, including type I IFNs

(IFNs-I) through the so-called first-wave response (9). Extracel-

lular IFN-b subsequently activates its cognate receptor, IFN-a/b

receptor (IFNAR), in an autocrine/paracrine fashion, driving the

second-wave of IFN-a/b, which is considered a hallmark response

against many viral and bacterial pathogens (9). This massive re-

lease of IFN-I triggers the subsequent expression of IFN-I–stim-

ulated genes, many of which drive maturation of DCs both in vivo

and in vitro, thereby modulating the Th cell differentiation in

a pathogen-specific manner (9).

A lack of the functional IFNAR increases susceptibility of mice

to a number of viral and bacterial pathogens. However, in certain

cases, IFN-b can also cause deleterious effects for the host, cre-

ating a “yin-yang” situation for both the host and the pathogen

(10). Interestingly, Flt3-induced DCs release IFNs-I in response to

C. albicans (11), and unmethylated CpG motifs from Aspergillus

fumigatus induce IFN-a production through TLR9 activation in

human DCs (12). A recent report also suggests that IFNs-I con-

tribute to the response of mice to Cryptococcus neoformans and

Histoplasma capsulatum in vivo (13, 14). However, the mo-

lecular mechanisms by which Candida spp. induce the IFN-I

response remain ill-defined.

Here, we show that bone marrow-derived conventional dendritic

cells (BM-DCs) challenged with Candida spp. release high levels

of IFN-b, which subsequently drives an IFNAR1-dependent ac-

tivation of intracellular STAT1 and IRF7 expression. Further, IFN-

b release by BM-DCs requires dynamin-dependent phagocytosis

of fungal cells, maturation of phagolysosomes, the recognition of

fungal PAMPs by the endosomal TLR7, activation of the TLR-

specific cytoplasmic MyD88 adaptor, and intracellular Src/Syk

family kinase signaling pathways. To our knowledge, this is the

first demonstration that a TLR7-dependent pathway is involved in

the recognition of Candida spp. and mediates activation of IFN-I

signaling by a fungal pathogen. Furthermore, in a mouse model of

disseminated candidiasis we show that IFN-I signaling promotes

persistence of C. glabrata in the host. Our results highlight the

importance of IFNs-I in modulating the host immune response to

this opportunistic pathogen.

Materials and Methods
Ethics statement

All of the animal experiments were discussed and approved through the
University of Veterinary Medicine Vienna institutional ethics committee
and carried out in accordance with animal experimentation protocols ap-
proved by the Austrian law (GZ 680 205/67-BrGt/2003).

Fungal strains and growth conditions

C. albicans clinical isolate SC5314 (15), C. glabrata clinical isolate
ATCC2001 (CBS138) (16), and Candida dubliniensis clinical isolate
CD36 (17) were used in this study. Fungal cells were grown to the loga-
rithmic growth phase in single-use, pyrogen- and endotoxin-free sterile
flasks as described previously (8). UV-treated Candida cell suspensions
were prepared by treating an aliquot of the Candida infection suspension
with 999 mJ/cm2 in a Stratalinker (Stratagene, La Jolla, CA).

Mouse models and genetic backgrounds

All of the micewere derived from the C57BL/6 background and housed under
specific pathogen-free conditions according to Federation of Laboratory
Animal Science Associations guidelines (18). IFNAR12/2 (19), Toll/IL-1R
domain-containing adapter-inducing IFN-b (TRIF) (lps2)2/2 (20), TLR22/2

(21), TLR42/2 (22), TLR92/2 (23), MyD882/2 (24), and IRF12/2 (25) mice
were housed at the animal facility of the University of Veterinary Medicine
Vienna. TLR22/2, TLR42/2, TLR92/2, and MyD882/2 mice were kindly
provided by Dr. Shizuo Akira, Osaka University, Osaka, Japan. Bone marrow
from dectin-12/2 (26) and corresponding wild-type (WT) mice were gen-
erously supplied by Dr. G. Brown, University of Aberdeen, Aberdeen, U.K.
WT C57BL/6 mice used as controls and CD11b2/2 (27) and TLR72/2 (28)
mice were purchased from The Jackson Laboratory.

Cell culture of primary innate immune cells differentiated from

bone marrow

BM-DCs and bone marrow-derived macrophages (BMDMs) were differ-
entiated from mouse bone marrow cultured for 7–8 d in GM-CSF as de-
scribed previously (29), and cell surface markers of the BM-DC
preparations were assessed by flow cytometry for expression of CD4, CD8,
CD11b, Ly-6c, CD11c, MHC class II, CCR2, Mac3, and CX3CR1. (Sup-
plemental Table I for results). More than 95% of the cells were CD11b+ but
CD82, CD42, CX3CR12, Mac32, and CCR22. Our GM-CSF–driven bone
marrow culture contains ∼64% DCs or Ly-6C+ monocytes, precursors of
DCs (33% conventional DCs, 6% monocyte-derived inflammatory DCs,
and 25% inflammatory monocytes). The remaining 27% of the cells were
monocytes/macrophages (Ly-6C2/CD11c2/CD11b+/), which we show fail
to release IFN-b or to modulate expression of IFN-I–regulated genes such
as inducible NO synthase (iNOS) in response to Candida (Supplemental
Fig. 1B). In agreement with previous reports (30), we did not obtain any
contaminating plasmacytoid DCs under these differentiation conditions.

Coculture of innate immune cells with fungi or cell wall

extracts

Fungal–mammalian cell coculture was performed at a target-to-effector
ratio of 2:1, exactly as described previously (29). Pretreatment of BM-
DCs with inhibitor molecules (dynasore, cytochalasin D, PP2, PP3, R406,
bafilomycin A1, or chloroquine) or vehicle was carried out at 37˚C (5%
CO2) for 30 min prior to stimulation. Inhibitor final concentrations were 80
mM for dynasore and 8 mM for cytochalasin D (Sigma-Aldrich, St. Louis,
MO), 25 mM for PP2 and PP3 (Calbiochem, La Jolla, CA), 4 mM for R406
(a kind gift from Rigel Pharmaceuticals, San Francisco, CA), 25 or 50 nM
for bafilomycin A1 (Sigma-Aldrich), and 10 or 50 mM for chloroquine
(Sigma-Aldrich). Pretreatment of BM-DCs with the indicated concen-
trations of synthetic oligodeoxynucleotides (IRS661 and IRS954) or
a nonspecific oligonucleotide control (CTRL_IRS) were carried out at 37˚
C for 60 min prior to stimulation. IRS661, IRS954, and CTRL_IRS were
synthesized by TIB Molbiol (Berlin, Germany) as described previously
(31). Stimulation of BM-DCs with cell wall components were performed
with 100 mg/ml b-glucans from Saccharomyces cerevisiae (Calbiochem),
100 mg/ml Curdlan, a high-m.w. b-1,3-glucan from Alcaligenes faecalis

(WAKO Chemicals, Neuss, Germany), or 0.1 mg/ml “TLR-grade” LPS
from Salmonella minnesota (Sigma-Aldrich). All of the treatments with
Candida or fungal cell wall extracts were carried out in the presence of 30
mg/ml polymyxin B (Sigma-Aldrich) to neutralize endotoxins (32).

Reverse transcription and real-time PCR analysis

RNA sample preparation, reverse transcription, and real-time PCR were
performed as described previously (29) using the following primers: mouse
GAPDH, forward59-CATGGCCTTCCGTGTTCCTA-39 and reverse 59-GCG-
GCACGTCAGATCCA-39 (RTPrimerDB, http://medgen.ugent.be/rtprimerdb/
index.php); mouse IFN-b, forward 59-TCAGAATGAGTGGTGGTTGC-39
and reverse 59-GACCTTTCAAATGCAGTAGATTCA-39 (33);mouse iNOS,
forward 59-GTTCTCAGCCCAACAATACAAGA-39 and reverse 59-GTGGA-
CGGGTCGATGTCAC-39 (Harvard Primer database, http://pga.mgh.harvard.
edu/primerbank/);mouse IRF7, forward 59-CTGGAGCCATGGGTATGCA-39

The Journal of Immunology 3105
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and reverse 59-AAGCACAAGCCGAGACTGCT-39 as determined using the
sequence analysis software Vector NTI (Invitrogen, Carlsbad, CA).

For relative quantification purposes, efficiencies of the individual PCR
reactions were determined by the LinReg method (34). Results are ex-
pressed as the fold expression (R) of the gene of interest (IFN-b) versus the
expression of a housekeeping gene (GAPDH) in treated (t) versus un-
treated (ut) conditions. The equation used for normalization was: R = (EGOI

(ut)
CtGOI(ut)/EGAPDH(ut)

CtGAPDH(ut))/(EGOI(t)
CtGOI(t)/EGAPDH(t)

CtGAPDH(t)), where
E is the PCR efficiency and Ct is the number of cycles to the threshold
fluorescence.

Immunodetection

Sample preparation and immunoblotting were performed as described
previously (29). Blots were probed with anti-STAT1 Abs recognizing
phospho-Tyr701, anti–phospho-ERK Abs (Cell Signaling, Danvers, MA),
anti-IRF3 and anti-p38 Abs, (Santa Cruz, Santa Cruz, CA), or anti–C-
terminal STAT1 sera, a kind gift from Pavel Kovarik (35). Immune com-
plexes were detected with an infrared-labeled secondary Ab (LI-Cor,
Lincoln, NE). Analysis was performed using the infrared imaging system
Odyssey (LI-Cor) according to conditions recommended by the manufac-
turer.

Cytokine measurements by ELISA and phagocytosis assays

The amount of IFN-b released in cell culture supernatants was assayed
using the VeriKine mouse IFN-b ELISA kit (R&D Systems, Minneapolis,
MN) according to the manufacturer’s instructions. Phagocytosis assays
were performed as described previously (36) using the following mod-
ifications. Briefly, C. glabrata cells were labeled with 10 mM Alexa Fluor
488 C5 maleimide (Invitrogen) in 100 mM HEPES buffer (pH 7.5) for 15
min at room temperature. Labeled C. glabrata were washed in HEPES
buffer and kept until use. BM-DCs were treated with inhibitors or vehicle
at 37˚C (5% CO2) for 30 min prior to the assay and then precooled on ice.
After 20 min, Alexa Fluor 488-labeled C. glabrata in ice-cold DMEM was
added at a target-to-effector ratio of 2:1, and samples were incubated at 37˚
C (5% CO2) for 45 min to allow for phagocytosis to occur. Phagocytosis
was terminated by chilling plates on ice, where they remained during
detaching and fixation in 1% formaldehyde. Fluorescence of extracellular
C. glabrata was quenched by addition of 0.4% trypan blue. Negative
controls for phagocytosis were left on ice during the whole process. Du-
plicate samples were subjected to flow cytometry analysis, gating on Alexa
Fluor 488/BM-DC populations with internalized C. glabrata. The per-
centage of phagocytosis was determined as follows: (inhibitor-treated BM-
DCs with C. glabrata at 37˚C 2 inhibitor-treated BM-DCs with C.

glabrata at 4˚C)/(vehicle-treated BM-DCs with C. glabrata at 37˚C 2

vehicle-treated BM-DCs with C. glabrata at 4˚C) 3 100. Results are
expressed as the mean6 SD of the percentage of ingestion (the percentage of
BM-DCs containing one or more yeast cells).

Animal model of disseminated candidiasis

WT (C57BL/6) mice and IFNAR12/2 mice were injected i.v. with 53 107

CFU C. glabrata per 25 g of mouse weight. Infected mice were euthanized
at days 7, 14, and 21 postinfection (n = 5 mice per time point) to determine
the fungal burden in spleen, liver, kidney, and brain. Organs were asepti-
cally collected and homogenized in sterile PBS. Homogenate dilutions
were plated in triplicate on yeast peptone dextrose agar plates containing
antibiotics. After a 2-d incubation at 30˚C, C. glabrata colonies were
counted. Results are expressed as CFU per gram of tissues.

Statistical analysis

Statistical analysis of data was performed using the Prism graphing and
analysis software. Comparison of two groups was done with the Student
t test (in vitro experiments) or with the nonparametric t test (Mann–Whitney
U test) for animal experiments. A p value, 0.05 was considered significant.

Results
Candida spp. trigger IFN-b release in BM-DCs and induce

IFN-I–specific genes

Phagocytes of the innate immune system such as macrophages and

DCs can release IFNs-I in response to various microbial pathogens

(9, 10). To investigate the molecular mechanisms of IFN-I re-

sponse elicited by Candida spp., we used in vitro cell culture

models of primary mouse BM-DCs or BMDMs challenged with

Candida spp. We used C. albicans and C. dubliniensis, two di-

morphic Candida spp., or C. glabrata, existing exclusively in the

yeast form. mRNA levels as well as IFN-b protein release were

measured by quantitative real-time PCR or ELISA, respectively.

All three Candida spp. strongly stimulated IFN-b mRNA ex-

pression in BM-DCs after 3 h, when compared with that in

unstimulated BM-DCs (Fig. 1A). ELISA assays confirmed that

the increase in IFN-b expression correlated with the release of

IFN-b by Candida-infected BM-DCs (Fig. 1B). Notably, both UV-

inactivated C. albicans cells and the yeast S. cerevisiae (Supple-

mental Fig. 1A) triggered IFN-b production. Interestingly, how-

ever, the response was cell-type–specific and restricted to certain

innate immune cells, because we failed to detect IFN-b mRNA

induction in BMDMs cocultured with C. glabrata, although they

still induced IFN-b and iNOS mRNA, an IFN-I–regulated gene, in

response to LPS (Supplemental Fig. 1Ba, 1Bb). Peritoneal mac-

rophages, neutrophils, or splenic DCs also did not release IFN-b

in response to C. glabrata challenge (Supplemental Fig. 1C).

Remarkably, C. glabrata consistently showed the highest potency

in stimulating IFN-b mRNA expression and subsequent cytokine

release (Fig. 1A, 1B). Hence, we chose C. glabrata cells as the

main pathogen stimulus in further experiments to investigate the

mechanisms of IFN-I response to Candida spp. by BM-DCs.

A hallmark of the IFN-I response is its ability to induce ex-

pression of a large number of effector genes (i.e., IFN-I–stimulated

genes). Indeed, IFN-b released in the first wave binds to its own

receptor IFNAR, activating the STAT1 and STAT2 transcription

factors and thereby triggering expression of typical IFN-I target

genes such as IRF7.

Because mouse BM-DCs express IFNAR, we asked whether the

initial IFN-b release observed upon Candida spp. challenge can

induce IFN-I signaling in an autocrine/paracrine fashion. Thus,

WT BM-DCs or BM-DCs lacking the IFNAR1 subunit of IFNAR

(IFNAR12/2) were cocultured with Candida spp. or left unsti-

mulated for 2 h, after which protein extracts were prepared and

FIGURE 1. Candida species induce a IFN-I response in mouse BM-

DCs. A and D, WT BM-DCs or BM-DCs lacking the IFNAR1 subunit of

the IFN-I receptor (IFNAR12/2) were infected with the indicated Candida

spp. or left untreated for the indicated time, after which cell lysates were

harvested and RNA or protein extracts were prepared. A and B, IFN-b

expression was measured by real-time PCR after 3 h of coculture (A) or by

ELISA after 24 h of coculture (B). C, Phosphorylated STAT1 was detected

by immunoblotting of protein extracts prepared after 2 h of Candida spp.–

BM-DC coculture (upper panel), and blots were reprobed with polyclonal

anti-STAT1 Abs to assess equal loading between lanes (lower panel). D,

IRF7 gene expression was measured by real-time PCR after 24 h of co-

culture. Real-time PCR results are expressed as fold increase of mRNA

expression over untreated BM-DCs. ELISA results are expressed as

picograms of IFN-b per milliliter of cell culture supernatant. Data pre-

sented are from one experiment representative of at least three independent

experiments.

3106 CANDIDA spp. DRIVE PHAGOSOMAL TYPE I IFN HOST RESPONSE
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STAT1 activation was verified by immunodetection using

phospho-specific Abs. In WT BM-DCs cocultured with Candida,

IFN-b release strictly correlated with STAT1 phosphorylation

(Fig. 1C) as well as with the activation of IRF7 transcription, a

typical IFN-I–regulated gene (Fig. 1D). By contrast, in IFNAR12/2

BM-DCs stimulated with C. glabrata, no STAT1 phosphorylation

was seen (Fig. 1C), and IRF7 transcription was not induced (Fig.

1D). Consistent with the absence of IFN-b release in BMDMs

challenged with C. glabrata, no STAT1 activation was observed

(Supplemental Fig. 1Bc). As expected, STAT1 activation was still

detected in BM-DCs lacking the IFN-g gene (IFN-g2/2), which

can signal through STAT1 phosphorylation (Supplemental Fig.

1D). All together, these data demonstrate that Candida spp. trigger

a first wave of IFN-b in BM-DCs, thereby activating an IFN-I

response in an IFNAR1-dependent fashion.

Candida-induced IFN-b release is partially dependent on

Src/Syk kinase signaling

The main PRRs involved in Candida spp. recognition belong to

the C-type lectin and TLR families (3). C-type lectins, like other

ITAM-bearing receptors, signal through intracellular Syk and Src

family kinases. We thus reasoned that PP2, an inhibitor of Src

family kinases, and R406, a highly specific inhibitor of the Syk

kinase, may impair the IFN-b response to Candida spp. Indeed,

pretreatment of BM-DCs with R406 prior to C. glabrata stimu-

lation significantly decreased the IFN-b release by ∼80% (Fig. 2A,

left panel). Likewise, PP2 strongly inhibited the C. glabrata-

triggered IFN-b release to ∼12% of the level observed when

BM-DCs were pretreated with DMSO vehicle alone; as a control,

PP3, the inactive analogue of PP2, had no significant effect (Fig.

2A, right panel). Thus, these results unequivocally show that both

intracellular Src and Syk signaling pathways are required to elicit

the IFN-b release in response to fungal cells. Moreover, the

data imply the involvement of ITAM-bearing receptors in this

signaling process.

The C-type lectin dectin-1, a b-1,3-glucan receptor, has been

known as one of the major receptors mediating Candida spp.

recognition (37). Surprisingly, however, BM-DCs lacking the

dectin-1 receptor still released IFN-b upon C. glabrata challenge

(Fig. 2B, left panel). Thus, these results show that dectin-1 is not

involved in mediating the Candida-induced IFN-b release. In

addition to dectin-1, CD11b (integrin aM) can also bind C. albi-

cans b-glucans, is present in the phagosome upon Candida

phagocytosis, and also activates the Src family and Syk kinases

(38). Thus, we investigated the potential role of CD11b in the

IFN-b response by challenging CD11b-deficient BM-DCs with C.

glabrata. Even in the absence of CD11b, IFN-b release was ob-

served, albeit slightly reduced, suggesting that this b-glucan re-

ceptor is not the main receptor involved in triggering the initial

IFN-b release in BM-DCs infected with C. glabrata. Furthermore,

no significant IFN-b release was observed when BM-DCs were

pretreated with b-glucan extract from S. cerevisiae or Curdlan

(Fig. 2C). However, these cells readily responded to LPS, which

was used as a positive control for active PRR signaling via TLR4.

Additional potential PAMPs such as chitin or mannan failed to

induce detectable IFN-b levels in BM-DCs (data not shown).

Thus, our data show that neither dectin-1 nor CD11b or other

PRRs for known cell wall PAMPs mediate the initial IFN-b

release upon Candida spp. challenge. Nevertheless, it still required

activation of intracellular Src family and Syk kinase signaling

pathways.

Beside their role as intracellular adaptors for certain PRRs, Src

family and Syk kinases are also involved in mediating phagocytic

processes. Therefore, we assayed their involvement in phagocy-

tosis using a flow cytometry-based analysis of the percentage of

BM-DCs having phagocytosed at least one Alexa Fluor 480-

labeled C. glabrata with or without inhibitor pretreatment. Pre-

treatment with the Src kinase inhibitor PP2 had no significant

effect on the phagocytic properties of BM-DCs (data not shown).

By contrast, only 60% of the BM-DCs pretreated with the Syk

inhibitor R406 contained at least one C. glabrata cell when

compared with 100% of BM-DCs having engulfed at least one C.

glabrata in vehicle (DMSO)-treated BM-DCs (Fig. 2D). There-

fore, these data suggest that Syk kinase activation promotes IFN-b

release by contributing to the invasion process in BM-DCs

phagocytosing fungal pathogens.

Candida-induced IFN-b release is TLR2- and

TLR4-independent

The second main class of PRRs involved in sensing and recogniz-

ing Candida spp. is the TLR family. In particular, TLR2 and TLR4

are thought to be involved in Candida recognition and reported to

be essential for survival toCandida infections in mice (2). Thus, we

FIGURE 2. Role of Syk/Src kinases and b-glucan receptors. A, WT BM-

DCs were preincubated with a Syk kinase inhibitor (R406), an inhibitor of

Src family kinases (PP2), and an inactive homologue (PP3) or vehicle

(DMSO) at 37˚C for 30 min prior to coculture with C. glabrata or media

alone for 6 h. IFN-b release into the cell culture medium was measured by

ELISA. B, WT BM-DCs or BM-DCs lacking dectin-1 (dectin-12/2) or

CD11b (CD11b2/2) were cocultured for 6 h with C. glabrata or left unsti-

mulated. IFN-b release was measured by ELISA. C, BM-DCs were stimu-

lated with either b-glucan preparations (S. cerevisiae b-glucans) or Curdlan

in media containing polymyxin B, or with LPS for 4 h, or left untreated as

a control. IFN-b release into the cell culture medium was measured by

ELISA. ELISA results are expressed as picograms of IFN-b per milliliter of

supernatant. Data presented are from one experiment representative of three

independent experiments. D, WT BM-DCs were preincubated with a Syk

kinase inhibitor (R406) or vehicle (DMSO) prior to coculture with Alexa

Fluor 480-labeledC. glabrata at 37˚C or 4˚C (adherence control) for 45min.

Cells were collected, and the number of BM-DCs containing at least one

C. glabrata was analyzed by flow cytometry. Results are expressed as per-

centage of ingestion (the percentage of BM-DCs containing one or more

yeast cells). B andC, Data presented are from one experiment representative

of at least three independent experimental repeats. A and D, Data presented

are the mean6 SD of data from three independent experiments. *p, 0.05,

***p # 0.0005, unpaired, two-tailed t test.
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investigated whether these receptors were involved in the IFN-b

response to Candida using BM-DCs lacking either TLR2 (TLR22/2)

or TLR4 (TLR42/2). Surprisingly, when WT and mutant BM-

DCs were infected with C. glabrata, IFN-b release was stimu-

lated to similar or even higher levels (Fig. 3A, 3B, left panels).

Accordingly, a strong STAT1 activation was observed in both WT

and mutant BM-DCs (Fig. 3B, right panel), demonstrating that the

IFN-I response to Candida spp. is bypassing the known TLR2 or

TLR4 signaling pathways.

IFN-b release of BM-DCs requires phagocytosis and MyD88

activation

TLRs use either MyD88 (e.g., TLR1, TLR2, TLR6, TLR7, TLR8,

and TLR9), TRIF (in the case of TLR3), or both, as in the case of

TLR4 (39), as intracellular signaling adaptors. To further in-

vestigate the possible involvement of TLR signaling in the IFN-b

release, we used BM-DCs lacking either one of these signaling

adaptors. Remarkably, BM-DCs lacking MyD88 (MyD882/2)

failed to release any IFN-b after C. glabrata (Fig. 4A, left panel)

or C. albicans (Supplemental Fig. 2E) challenge. Accordingly,

MyD882/2 BM-DCs cocultured with C. glabrata also failed to

mount the subsequent IFN-I response, as evident from a much

weaker STAT1 phosphorylation when compared with that of the

WT BM-DCs (Fig. 4A, right panel). By sharp contrast, a lack of

TRIF did not impair the IFN-b release after Candida challenge

(Fig. 4B). These data exclude a role for TLR3 but unequivocally

demonstrate a strict requirement for a TLR/MyD88 signaling

mechanism in sparking the first wave of IFN-b release in BM-DCs

facing fun-

gal invasion.

In mice, both surface TLRs (TLR1, TLR2, TLR4, TLR5, and

TLR6) and phagosomal TLRs (TLR7–9) signal through theMyD88

adaptor. To further narrow down the list of candidate TLRs rec-

ognizing Candida spp. for triggering IFN-b, we used dynasore,

a specific and potent small-molecule inhibitor of the GTP-binding

protein dynamin required for proper constriction of clathrin-coated

vesicles during endocytosis and phagocytosis (40). Strikingly,

dynasore pretreatment of BM-DCs prior to Candida addition

completely abolished IFN-b release to the level of unstimulated

BM-DCs. No inhibition was observed in BM-DCs pretreated with

vehicle (DMSO) only (Fig. 4C). The effect of dynasore treatment

was not caused by loss of cell viability, as verified by life-stain-

ing (data not shown). It was also specific as confirmed by the re-

maining ERK activation upon fungal challenge in treated BM-

DCs (Supplemental Fig. 2A), the latter being a hallmark of cell

surface PRR activation on immune cells uponCandida recognition.

Cytochalasin D, a well-known inhibitor of actin polymerization

blocking endocytosis, also prevented release of IFN-b in C. glabrata-

challenged BM-DCs (Fig. 4D). Thus, IFN-b induction by Candida

spp. in BM-DCs requires dynamin-dependent phagocytosis, strongly

suggesting that the activation of MyD88 demands PAMP recognition

by phagosomal TLRs.

Candida-induced IFN-b release requires phagosome

acidification and TLR7

Endosomal maturation through acidification is required for acti-

vation of intracellular TLRs by their specific ligands and sub-

sequent stimulation of their adaptor MyD88 in the presence of

PAMPs (41). Thus, we asked whether bafilomycin A1 or the an-

timalarial drug chloroquine, both compounds specifically inhibit-

ing endosome acidification, would also block Candida-induced

IFN-b release. Strikingly, pretreatment of BM-DCs with 10 mM

chloroquine or 25 nM bafilomycin A1 strongly inhibited IFN-b re-

FIGURE 3. IFN-b release triggered by C. glabrata is TLR2- and TLR4-

independent. A and B, WT BM-DCs or BM-DCs lacking TLR2 (TLR22/2)

or TLR4 (TLR42/2) were cocultured for 4 h with C. glabrata or left unsti-

mulated, and IFN-b release was measured by ELISA (left panel) or phos-

phorylated STAT1 was detected by immunoblotting of extracts prepared

after 2 h of C. glabrata–BM-DC coculture; blots were reprobed with poly-

clonal anti-STAT1 Abs to verify equal loading (right panel). ELISA results

are expressed as picograms of IFN-b per milliliter of cell culture medium.

Data presented are from one experiment representative of three independent

experiments.
FIGURE 4. IFN-b release requires phagocytosis and MyD88 activation.

A, WT BM-DCs or BM-DCs lacking the MyD88 signaling adaptor

(MyD882/2) were cocultured for 4 h with C. glabrata or left unstimulated,

IFN-b release was measured by ELISA (left panel) or phosphorylated

STAT1 was detected by immunoblotting of protein extracts prepared after

3.5 h of C. glabrata–BM-DC coculture, and blots were reprobed with

polyclonal anti-STAT1 Abs to assess equal loading between lanes (right

panel). B, WT BM-DCs or BM-DCs lacking the TRIF signaling adaptor

(TRIF2/2) were cocultured with C. glabrata or left unstimulated. IFN-b

release was measured by ELISA after 4 h. C and D, WT BM-DCs pretreated

with either dynasore (C), cytochalasin D (D), or vehicle (DMSO) for 30 min

were cocultured with C. glabrata or left untreated; IFN-b production was

measured by ELISA after 4 h. ELISA results are expressed as picograms of

IFN-b per milliliter of cell culture medium. Western blot data presented are

from one experiment representative of at least three independent experi-

ments. ELISA data presented are the mean 6 SD of data from three in-

dependent experiments. ***p # 0.0005, unpaired, two-tailed t test.
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lease upon stimulation with C. glabrata (***p # 0.0001) (Fig.

5A), demonstrating a pivotal role for endosomal TLRs in IFN-b

release in BM-DCs. The effect of bafilomycin A1 or chloroquine

treatment was not caused by loss of cell viability, as verified by

life-staining (data not shown). Moreover, BM-DCs still activated

intracellular ERK upon C. glabrata challenge (Supplemental Fig.

2B) (a typical response of innate immune cells to Candida chal-

lenge originating from activated cell surface PRRs) or released

TNF-a upon Candida challenge (Supplemental Fig. 2C).

In mice, the endosomal TLRs requiring MyD88 to recognize

PAMPs comprise TLR7, TLR8, and TLR9, but TLR7 and TLR9

seem to account for most of the signaling. To investigate the con-

tribution of these PRRs, we used BM-DCs lacking either TLR7

(TLR72/2) or TLR9 (TLR92/2). Surprisingly, the IFN-b release

was fully abrogated in BM-DCs lacking TLR7 (Fig. 5B, left panel)

but was stimulated to levels similar to those of WT cells in BM-

DCs lacking TLR9 (Fig. 5B, right panel). The absence of response

to C. glabrata in TLR7-deficient BM-DCs was not due to a gen-

eral defect in IFN-b production, because these cells still released

IFN-b to WT comparable levels upon LPS stimulation (Supple-

mental Fig. 2D). Furthermore, specifically blocking TLR7 ac-

tivation using synthetic oligodeoxynucleotides (e.g., IRS661, an

antagonist of TLR7, or IRS954, which inhibits both TLR7 and

TLR9) strongly decreased IFN-b production upon fungal chal-

lenge in a dose-dependent fashion (Fig. 5C). The unspecific

control oligodeoxynucleotide CTRL_IRS had no detectable or

significant effect on IFN-b production (Fig. 5C). To further

identify the transcription factors involved in the Candida-induced

IFN-b release, we used BM-DCs lacking either IRF1, IRF3, or

IRF7. The IFN-b release was only significantly reduced in the

absence of IRF1 (Fig. 5D) but was unaffected in BM-DCs lacking

IRF3 or IRF7 (data not shown).

Integrated model of IFN-I response to fungal pathogens in

BM-DCs

On the basis of our collective data, we propose the following model

for the Candida-induced IFN-b signaling pathway operating in

BM-DCs (Fig. 6). Adhesion and recognition of Candida spp. at

the surface of innate immune cells initiates dynamin-dependent

phagocytosis. Maturation and acidification of the phagolysosome

allow for processing of TLR7, which is subsequently activated by

its cognate PAMP ligands, most likely fungal-specific RNAs, to

recruit and activate cytoplasmic MyD88 and subsequently the

IRF1 transcription factor, ultimately triggering the IFN-b release.

Other as yet unknown pathways acting through Syk/Src family

kinase signaling may also contribute to the induction of IFN-I

response in BM-DCs. Taken together, the results provide the first

demonstration of an IFN-b release by BM-DCs in response

to phagosomal Candida recognition, hence revealing a novel role

for endosomal TLRs in fungal recognition.

FIGURE 5. IFN-b release requires activation of phagosomal TLR7. A,

BM-DCs pretreated for 30 min with either bafilomycin A1 (bafiloA1),

chloroquine (ChQ), or vehicle alonewere coculturedwithC. glabrata for 6 h

or left untreated. IFN-b release was measured by ELISA, and results are

expressed as picograms of IFN-b permilliliter of cell culturemedium.B,WT

BM-DCs or BM-DCs lacking either TLR7 (TLR72/2) or TLR9 (TLR92/2)

were cocultured for 6 h with C. glabrata or left unstimulated, and IFN-b

release was measured by ELISA. C, BM-DCs were pretreated for 60 min

with the indicated concentrations of synthetic inhibitory oligodeoxynu-

cleotides (IRS661 or IRS954) or with an unspecific oligodeoxynucleotide

(CTRL_IRS) as a control. Subsequently, BM-DCs were cocultured for 6 h

with C. glabrata or left unstimulated. IFN-b release was measured by

ELISA, and results are expressed as picograms of IFN-b per milliliter of cell

culture medium. D, WT BM-DCs or BM-DCs lacking the IRF1 transcrip-

tion factor (IRF12/2) were cocultured for 6 h with C. glabrata or left

unstimulated, and IFN-b release was measured by ELISA. A–D, Values

represent the mean 6 SD of three independent experiments performed in

triplicate. **p # 0.005, ***p # 0.0001, unpaired, two-tailed t test.

FIGURE 6. Model of IFN-b response to Candida spp. in mouse BM-

DCs. In BM-DCs, a dynamin-dependent phagocytosis step, Syk/Src-de-

pendent-signaling, followed by endosome acidification, leads to the activa-

tion of TLR7, probably by Candida RNAs, thereby stimulating a MyD88–

IRF1-dependent signaling pathway required for the initial release of IFN-b

and the subsequent induction of an IFN-I response to fungal infection.

Actions of inhibitors (dynasore, R406, PP2, bafilomycin A1, and chloro-

quine) used in this study are indicated on their specific targets.
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IFN-I response promotes C. glabrata persistence in host tissues

To investigate the role of this IFN-I in the host response to Can-

dida, we used a model of disseminated candidiasis and compared

the outcome of C. glabrata infections in WT mice versus those

in IFNAR12/2 mice, which are unresponsive to IFN-I. Because

systemic C. glabrata infection is normally not pathogenic for

immunocompetent mice (42, 43), we used tissue fungal burden to

assess persistence. At day 7 postinfection, CFU counts in spleen,

liver, and brain of IFNAR12/2 mice were significantly lower

than those in WT organs (Fig. 7A). No significant difference in C.

glabrata CFU counts was observed in kidney of WT versus

IFNAR12/2 mice (data not shown). At days 14 and 28 post-

infection, CFU counts were still detectable in organs of infected

animals, although without statistically significant differences be-

tween WT and IFNAR12/2 tissues (data not shown). Interestingly,

a significantly more pronounced splenomegaly was observed in

infected IFNAR12/2 mice in comparison with that of infected WT

mice at day 7 (Fig. 7B), suggesting a stronger immune response

in the spleen of IFNAR12/2 mice than in the spleen of WT

animals at day 7 postinfection.

Discussion
In this report, we show for the first time, to our knowledge, that

Candida spp. trigger an IFN-I response in mouse BM-DCs. We

identify TLR7 as the essential PRR activating this immune re-

sponse in a MyD88-dependent fashion from within maturing

phagolysosomes. Because of the phagocytic and microbicidal

properties, innate immune cells are the first line of defense against

many microbial pathogens. In addition, they are producers of

IFNs-I, a family of cytokines specialized in coordinating the cross

talk between the innate and adaptive immune responses to mi-

crobial or viral infections (9). Therefore, we studied the capa-

bilities of several innate immune cell types such as bone marrow-

derived neutrophils or macrophages, peritoneal macrophages, and

bone marrow or splenic DCs to respond to fungal challenges by

producing IFN-b using an in vitro coculture interaction system.

However, only mouse BM-DCs are able to release IFN-b but not

IFN-a (data not shown) in response to Candida spp. Notably,

others also observed detectable IFN-b induction upon challenge

with C. albicans in flt3-differentiated DCs but only a weak but

significant induction of IFN-a gene transcription in BM-DCs

stimulated with the yeast form of C. albicans. This discrepancy

may be caused by differences in the protocols used to prepare the

BM-DCs (11). Markedly, both BMDMs and BM-DCs release

IFN-b when challenged with another prominent fungal pathogen,

Cryptococcus neoformans (13). Under our experimental con-

ditions, the IFN-I response to Candida is highly cell-type–

specific within innate immune cells, because peritoneal or

BMDMs as well as neutrophils or splenic DCs challenged by

Candida fail to release detectable amounts of IFN-b. Thus, our

results are consistent with reports about distinct and cell-type–

specific cytokine responses between BMDMs and myeloid den-

dritic cells (44–46), suggesting that different innate immune cells

may have distinct repertoires to sense and to respond to micro-

bial PAMPs, depending on the differentiation procedure used to

obtain the cells in vitro or the host tissue environment in vivo. This

may help to fine-tune the host defense and immune surveillance.

We show in this study that other Candida spp. such as C.

dubliniensis. and C. glabrata also spark IFN-b release. Inter-

estingly, C. glabrata, a nondimorphic yeast-like species, appears as

a much better trigger for IFN-b than the pleomorphic filamentous

speciesC. albicans orC. dubliniensis. Thismay relate to the fact that

C. glabrata can persist in the host for prolonged periods (42, 47),

whereas C. albicans normally efficiently kills host cells after a few

hours or escapes from the phagosome (48, 49). Hence, it seems

feasible that the ability of C. albicans to escape the phagosome,

subsequently causing host cell lysis, may explain the weaker in-

duction of IFN-I response versus C. glabrata, the latter leading to

strong IFN-b release due to its persistence in the host immune cells.

b-Glucan preparations stimulate the release of a number of

cytokines such as TNF-a, IL-2, or IL-12 from innate immune cells

(38), and they can induce BM-DC maturation in humans (50) as

well as in mice (51). b-Glucan drives BM-DC maturation at least

in part through dectin-1, which is considered a major PRR for

glucans (37). However, in this study we show that the C.

glabrata-induced IFN-b release is independent of dectin-1 and

CD11b, both acting as b-glucan receptors accumulating at the site

of Candida uptake by macrophage phagocytosis (52). Further-

more, we tend to exclude the involvement of other unknown

b-glucan receptors, because all of the b-glucan preparations that

we used, namely, b-1,3- and b-1,6-glucan extracts obtained from

the S. cerevisiae cell wall, and Curdlan, a linear b-1,3-glucan

polymer, fail to trigger an IFN-b release in BM-DCs. Likewise,

mannan and chitin are also inactive under these conditions. Hence,

in contrast to LPS from the cell wall of Gram-negative bacteria,

fungal cell wall extracts do not induce IFN-b release in innate

immune cells, despite being a rich source of fungal PAMPs for

other cytokine responses (2). However, care has to be taken when

performing these experiments, because many commercial and

custom-made cell wall preparations contain minute LPS con-

tamination, which may lead to conflicting interpretations of

results. Therefore, all of our cytokine experiments in primary cells

were carried out in the presence of polymyxin B, which alleviates

the LPS contamination problem (32)

By specifically inhibiting dynamin, we demonstrate that fungal

phagocytosis is a mandatory prerequisite for IFN-b release.

Similarly, inhibition of Src family kinases also strongly blocks

IFN-b release. Notably, phosphorylation of cortactin and dynamin

by Src kinase is required for activation of endocytosis in epithelial

cells (53), and both cortactin and dynamin are essential for Can-

dida internalization in epithelial cells (54). Furthermore, Syk ki-

nase activation is also in part necessary for IFN-b production.

Although in this context, Syk function on IFN-b release is not

dectin-1– or CD11b-dependent, it is relevant for mediating

FIGURE 7. IFN-I signaling promotes C. glabrata persistence in host

tissues. WT and IFNAR12/2 mice were i.v. infected with 5 3 107 CFU

C. glabrata on day 0. A, On day 7 postinfection, fungal burdens were

determined by culture from tissue homogenates of five animals per group.

B, Average spleen weight of WT and IFNAR12/2 mice on day 7 post-

infection with C. glabrata. Spleen weights of three mice injected with PBS

only are shown as controls. Nonparametric t test (Mann–Whitney U test)

was performed on data sets. *p , 0.05, **p , 0.01.
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Candida phagocytosis. Whether it occurs through its role in

integrin-mediated signal transduction (55), as signaling adaptor of

ITAM-bearing receptors, or as mediator of phagocytic processes

(56) is under investigation. Nonetheless, our data emphasize the

pivotal importance of phagocytosis and thus compartmentalized

ligand–receptor interactions for orchestrating the IFN-I host re-

sponse to Candida spp. as for other microbial pathogens (41).

Using BM-DCs lacking the TLR adaptors TRIF or MyD88, we

demonstrate that the C. glabrata-induced IFN-b release strictly

requires MyD88 signaling. Hence, our findings are consistent

with the model of a MyD88 pathway mediating the cytokine re-

sponse of inflammatory DCs to yeast (11). Our data further

strengthen the importance of inflammatory DCs in the response

against Candida infection as major producers of IFN-b. Surpris-

ingly, however, neither lack of TLR2 nor TLR4 impairs the IFN-b

release, although these PRRs appear to be critical for survival to

C. albicans dissemination in mouse models (2).

Most interestingly, our results demonstrate that TLR7 is the

main phagosomal PRR triggering an initial IFN-b release upon

Candida recognition by BM-DCs. They are in agreement with the

notion that endolysosomes are unique IFN-inducible organelles

(41). Spatial recognition of microbial ssRNA by TLR7 within en-

dosomes was first observed for viruses (9). More recently, this

mechanism was found to apply to bacterial recognition in mice

and humans (46, 57). However, this is the first report, to our

knowledge, of fungal recognition by TLR7, thus underscoring the

importance of the TLR7–MyD88–IRF1 pathway for endolysoso-

mal recognition of pathogens in BM-DCs. A potential role of

TLR7 in survival to C. albicans or any fungal microbe has yet to

be further explored. Because TLR7 recognizes ssRNA, the present

report also hints the importance of Candida-derived RNAs as

potential PAMP sources driving host immune cell activation

through the IFN-I response. Indeed, recognition of Candida DNA

by TLR9 triggers release of IL-12p40 in BM-DCs (6). In-

terestingly, Candida RNA-pulsed bone marrow and spleen DCs

undergo activation and confer protection against systemic C.

albicans infection in mice (7). Whether these properties resulted

from activation of an IFN-I response in these innate immune cells

is unknown.

Activation of the IFN-I response is critical for the maturation of

DCs into professional APCs that help to shape the magnitude and

duration of the adaptive immune response by inducing the dif-

ferentiation of Th cells (9). In general, IFNs-I can function both as

proinflammatory and anti-inflammatory cytokines, but the con-

tribution of each property to the overall host response is not well

understood (9, 58). To test the pathophysiological relevance of

IFN-I signaling in the host response to Candida infection, we

challenged mice lacking a functional IFNAR through tail vein

injections with C. glabrata. Strikingly, we show that the IFN-I

response promotes the persistence of C. glabrata in host tissues,

thus suggesting that IFN-type I is detrimental for fungal clearance

in a model of disseminated Candida infection. Notably, very little

is known as yet about the mechanisms enabling C. glabrata to

persist in host tissues, and we report in this study for the first time,

to our knowledge, that IFN-I plays a role in this process. Treat-

ment with neutralizing Abs against TNF-a indicates that this

cytokine promotes C. glabrata clearance from host tissues in the

early postinfection phase (43). When we measured TNF-a at day

7 postinfection in liver and spleen though, we were unable detect

a statistically significant difference between WT and IFNAR12/2

mice (data not shown). The more pronounced splenomegaly ob-

served in IFNAR12/2 versus WT mice in response to infections

implies that the decrease in C. glabrata persistence in IFNAR12/2

mice could be due to a higher general immune response in the

absence of IFN-I. In humans and mice, IFNs-I inhibit DC-

mediated Th17 cell differentiation (59–62). Furthermore, by

stimulating IL-10 expression and downregulating IL-12 pro-

duction, IFNs-I appear to modulate Th1/Th2 polarization favoring

reduced inflammation and host tissue damage, indicating a pro-

tective role (63). Further experiments are ongoing in our labora-

tory to decipher the molecular mechanisms of IFN-Is in promoting

C. glabrata persistence or clearance.

Taken together, our results presented in this study hint to a

crucial and as yet unrecognized role for TLR7 in fungal recog-

nition and induction of IFN-I response in mouse BM-DCs chal-

lenged with Candida spp. Our work is entirely consistent with

reports where fungal nucleic acids were recognized as PAMPs to

trigger host immune responses (5–7, 12, 57). Importantly, our data

are highly relevant for humans, because microbial RNAs induce

IFN-a release in human DCs (57). Furthermore, our results stress

the importance of IFN-I in modulating the host response to fungal

pathogens such as Candida spp. and suggest a hitherto un-

recognized general role of IFN-I in modulating fungal virulence.
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