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Dendritic cells (DC) play critical roles in linking innate and adaptive immunity. DC are
heterogenous and there are subsets with various distinct functions. One DC subset,
conventional type 1 DC (cDC1), can be defined by expression of CD8a/CD103 in mice
and CD141 in humans, or by expression of a chemokine receptor, XCR1, which is a
conserved marker in both mice and human. cDC1 are characterized by high ability to
ingest dying cells and to cross-present antigens for generating cytotoxic CD8 T cell
responses. Through these activities, cDC1 play crucial roles in immune responses against
infectious pathogens or tumors. Meanwhile, cDC1 involvement in homeostatic situations
is not fully understood. Analyses by using mutant mice, in which cDC1 are ablated in vivo,
revealed that cDC1 are critical for maintaining intestinal immune homeostasis. Here, we
review the homeostatic roles of cDC1, focusing upon intestinal immunity.
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INTRODUCTION

The intestinal immune system responds to pathogenic organisms in a protective manner.
Meanwhile, it also prevents responses against a variety of commensal resident bacteria or viruses
and dietary components. Intestinal immunity should therefore be delicately tuned to maintain its
homeostasis. Intestinal immune homeostasis depends on intimate interactions between innate and
adaptive immune cells, epithelial cells and commensal microorganisms (1). Dysregulation of this
homeostasis could lead to a variety of inflammatory bowel diseases and also to systemic
inflammatory or metabolic diseases. Elucidation of the molecular and cellular mechanisms of
how intestinal immune homeostasis is regulated is therefore of great importance.

The intestine contains a variety of immune cells, including B and T lymphocytes and innate
immune cells such as macrophages or dendritic cells (DC). DC are professional antigen presenting
cells (APC) that can produce a variety of cytokines in response to innate immune sensor signaling
and that can support activation and differentiation of T cells (2). DC are heterogeneous and several
subsets have subset-specific functions (3, 4). One subset of DC, conventional type 1 DC (cDC1),
have recently been in the spotlight for its critical roles in anti-tumor immunity and cancer
immunotherapy (5, 6). Meanwhile, it is unclear whether cDC1 play certain roles in homeostatic
conditions, although retinoic acid, a metabolite of vitamin A derived from the diet, is involved in
regulation of intestinal homeostasis by affecting a variety of immune cells including subsets of DC
(7). cDC1 have been shown to be critically involved in maintaining intestinal immune homeostasis
(8–10). Here, we review the homeostatic roles of cDC1 in intestinal immunity.
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DC SUBSETS AND THEIR
ABLATION IN VIVO

DC Subsets
DC include plasmacytoid DC (pDC) and cDC. In mice, pDC can
be defined by several pDC-specific markers such as BST-2 or
Siglec-H and is characterized by the ability to produce large
amounts of type I interferons (IFNs) following detection of viral
nucleic acids through binding to TLR7 or TLR9 (11). Also in
humans, pDC exist as a type I IFN-producing cell in response to
TLR7/9 signaling. pDC are involved not only in antiviral
immunity, but also in the pathogenesis of certain autoimmune
diseases such as systemic lupus erythematosus or psoriasis (12).

In mice, cDC are a major population of DCs and can be
further divided according to the expression of CD8a and CD11b.
CD103 can also be used instead of CD8a. In the spleen or dermal
lymph nodes, DC consist mainly of two subsets, CD103+CD11b-
DC and CD103-CD11b+ DC, corresponding with cDC1 and
cDC2, respectively. cDC1 were originally identified as CD8a+
DC and recognized for high crosspresenting activity, through
which exogenous antigens incorporated by endocytosis or
phagocytosis are presented with MHC class I to generate
cytotoxic T cell responses (13). cDC1 also have notable potent
ability to incorporate dying cells and produce proinflammatory
cytokines. The generation of cDC1 depends on transcription
factors such as IRF8 and BATF3 (14–16). cDC2 are more
heterogenous than cDC1 and supports antigen presentation
with MHC class II to generate various types of Th responses,
including Th1, Th2 or Th17 responses, depending on situations
(17–25). Involvement of transcription factors for cDC2
generation is complicated. For example, cDC2 can be divided
into at least two subsets according to differential involvement of
Notch2 and Klf4 in cDC2 generation (21, 23). IRF4 is highly
expressed in cDC2, but is only partially involved in cDC2
generation, although it is critical for migration of cDC2 from
skin or intestine to the draining lymph nodes (19, 20, 26, 27).

In humans, DC can be defined in the peripheral blood as MHC
class II+ leucocytes that lack surface expression of lineage markers
for T cells (CD3), B cells (CD19), and monocytes (CD14) (28).
CD141 (thrombomodulin, BDCA-3) + DC correspond with
cDC1, based on the crosspresenting activity and gene expression
pattern (28). CD1c+ DC are similar to cDC2, although their
similarity is much less than that between murine cDC1 and
human CD141+ DC (28). In addition to these DCs, both
humans and mice have monocyte-derived inflammatory DC (28).
In Vivo Ablation of cDC1
Specific ablation of subsets of DC has provided useful
information on their in vivo roles (29). For cDC1, specific
ablation was observed in mutant mice lacking a transcription
factor, BATF3, also known as Jun dimerization protein
p21SNFT, which is expressed abundantly in cDC, including
cDC2, albeit not as highly as in cDC1 (16). Mutant mice have
been widely used as cDC1-ablated mice and studies on BATF3-
deficient mice clarified that cDC1 are critically involved in
protective immunity against viral or bacterial infection and
Frontiers in Immunology | www.frontiersin.org 2
tumors (16, 30–35). Meanwhile, it should be noted that
pathogen infection or IL-12 administration can restore cDC1
in BATF3-deficient mice (32).

cDC1 ablation can also be achieved also by genetically
manipulated mice, in which cDC1-specific genes were targeted.
A gene for a chemokine receptor, XCR1, is a representative
cDC1-specific gene (36, 37). XCR1-DTR Venus mice were
generated by knocking the gene for a fusion protein consisting
of human diphtheria toxin receptor (DTR) and a fluorescence
protein, Venus, into the Xcr1 locus (Table 1) (38). XCR1+DC
can be ablated transiently in XCR1-DTR Venus mice, through
which a variety of immune responses have been analyzed (33, 38,
48–57). Mutant mice lacking XCR1+ DC constitutively were also
generated by crossing mutant mice carrying a gene encoding cre
recombinase in the Xcr1 locus and R26:lacZbpAflox-DTA mice
(8, 58). Murphy et al. also generated knock-in mice carrying the
cre recombinase gene with a gene for a fluorescence protein,
mCherry in the Xcr1 locus (40). In the mice, XCR1+DC can be
monitored by mCherry expression. Malissen et al. also generated
another mutant mouse, in which genes encoding cre
recombinase and monomeric teal fluorescent protein 1
(mTFP1) were knocked into the Xcr1 locus (41). In the mice,
XCR1+DC can be monitored by mTFP1 expression and
endogenous Xcr1 expression is retained due to the effect of an
internal ribosomal entry site. Furthermore, mutant mice carrying
the DTR or cre recombinase gene casettes in the locus of other
cDC1-specific genes such as Clec9A or a530099/19rik (Gpr141b/
Karma) were also generated (39, 44–47).

Other reporter mice for monitoring XCR1+ DC are also shown
(Table 1). Fluorescence proteins used for monitoring include
Venus, green fluorescence protein (GFP), and Kikume Green-
Red (KikGR) (42, 43). KikGR is a photoconvertible fluorescence
protein that can turn red from green when illuminated with a blue
light and can be used for tracking cell migration (43).
TABLE 1 | Knock-in mice for analyzing XCR1+ DC.

Targeted
gene locus

Knocked-in gene Purpose Ref

Xcr1 DTR Venus Inducible ablation (38)
Marking

cre Gene deletion (8, 39)
cre, mCherry Gene deletion (40)

Marking
cre, mTFP1 Gene deletion (41)

Marking
Venus Marking (38)
GFP Marking (42)
KikGR Marking (43)

(Photoconvertible)
Clec9a DTR Inducible ablation (44)*

Cre Gene deletion (45)
GFP Marking (46)

Karma DTR, tdTomato** Inducible ablation (47)
Marking

Cre Gene deletion (39)
May 20
22 | Volume 13 | Article 8
*This mutant was generated by transfection with a recombineered bacterial artificial
chromosome (BAC) clone carrying DTR in the Clec9a locus.
**tdTomato represents the fluorescent tandem dimer Tomato.
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These mice are useful for clarifying the in vivo roles and
behavior of XCR1+ DC.
CRITICAL ROLES OF XCR1+ DC IN
THE INTESTINE

In the intestine or mesenteric lymph nodes, CD103+CD11b+ DC
exist as a major subset and intestinal CD11c+ cells consist of three
subsets, includingCD103+CD11b-, CD103+CD11b+, andCD103-
CD11b+ cells. CD103+CD11b+ cells are closely related to cDC2 in
terms of the gene expression profile and their dependency on IRF4.
CD103+CD11b+ cells are involved in Th17 or regulatory T (Treg)
cell differentiation (19, 20, 59, 60) and critical for antifungal
immunity (61). CD103-CD11b+ cells include macrophages and
may be involved in regulating inflammation by producing anti-
inflammatory cytokines such as IL-10 or TGF-b (62, 63).
CD103+CD11b- cells are quite similar to cDC1 in other tissues in
termsof gene expression profiles and their dependence on IRF8 and
BATF3. Earlier studies on the intestine have analyzed CD103
+CD11c+ and CD103-CD11c+ DC (59, 60). However, it was not
clearwhether orhowaminor population,CD103+CD11b-CD11c+
cells, i.e. cDC1, are involved in intestinal immunity.

Constitutive ablation of cDC1 with the retention of other DC
subsets such as CD103+CD11b+ as well as CD103-CD11b+ cells
was achieved in XCR1-DTA and DC-specific IRF8-deficient
mice (8, 9, 64). In those mice, lamina propria (LP) T cells in
the small intestine were decreased. Significant numbers of
lymphocytes reside within the intestinal epithelium and are
known as intraepithelial lymphocytes. Intraepithelial T cells
include not only conventional CD4 or CD8 T cells expressing
TCRab but also T cells expressing TCRgd or both CD4 and CD8.
A subpopulation of such intestine-specific T cells expresses a
CD8 homodimer, CD8aa, instead of a CD8 heterodimer,
CD8ab, that conventional CD8 T cells have. In addition to LP
T cells, both conventional and intestine-specific T cell subsets in
IEL were decreased in mice with constitutive ablation of cDC1.

Importantly, T lineage cell numbers were retained in other
tissues, including the thymus, spleen, and dermal and mesenteric
lymph nodes, lung and large intestine (8, 9). Thus, although
cDC1 were deleted in the whole body, T cell decrease was
detected specifically in the small intestine. Intestinal T cells
remained in XCR1-DTA mice were more prone to death than
those in control mice, although their proliferative state was
normal, indicating that cDC1 are not involved in proliferation,
but in survival of intestinal T cells (8). Furthermore, in wildtype
mice, LP T cells showed lower expression of CD62L and higher
expression of CD103 than splenic or lymph node T cells. This
expression pattern was less prominent in remaining T cells in
XCR1-DTA than in wildtype mice (8). DC-specific IRF8-
deficient mice also exhibited decreased expression not only of
CD103, but also of gut homing receptors such as CCR9 or a4b7
on the intestinal T cells (9). The decreased expression of CCR9
can be ascribed to defective production of retinoic acid, which
depends on aldehyde dehydrogenase activity from cDC1 (9).
Concerning CD4 T cell differentiation, ablation of cDC1 led to
decrease of IFN-g and increase of IL4, IL-5, IL-17 and IL-22
Frontiers in Immunology | www.frontiersin.org 3
expression. These results indicate skewed differentiation from
Th1 towards Th2 or Th17 cells and suggest involvement of cDC1
in driving Th1 cell differentiation in the steady state. Notably,
DC-specific IRF8-deficient mice also showed impaired IgG2c
responses after oral administration of eggs of a gastrointestinal
parasite, Trichulis muris, indicating that cDC1 are required for
Th1 responses to the parasite (9). Thus, in the intestine, cDC1
maintain intestinal T cell homeostasis by supporting survival,
expression pattern of surface molecules including gut homing
receptors and Th1 differentiation of intestinal T cells.

Loss or decrease of intraepithelial T cells due to gene
mutations or chemical reagents lead to severe manifestations of
colitis, indicating that those T cells are involved in preventing
intestinal inflammation (65–69). The immunoregulatory activity
of the intraepithelial T cells depends on the production of anti-
inflammatory cytokines such as IL-10. XCR1-DTA mice showed
no overt signs of intestinal inflammation in the steady state. They
did show exaggerated manifestations of dextran sodium sulfate
(DSS)-induced colitis (8), indicating that XCR1+ DC are
involved in preventing intestinal inflammations likely through
the maintenance of intestinal T cell populations.

The critical roles of cDC1 in intestinal immune homeostasis were
also demonstrated by transient deletion of cDC1 (10). Inducible
ablation of cDC1 in Clec9A-DTRmice led to decrease of intestinal T
cells and exaggeration of DSS-induced colitis. cDC1were involved in
maintaining not only IFN-g expression from T cells, but also
expression of IFN-g inducible genes from epithelial cells. This IFN-
g-induced cascade is involved in preventing intestinal inflammation,
which was verified by the findings that IFN-g-deficient mice showed
enhanced susceptibility to DSS-induced colitis and that IFN-g
induction by an immunostimulatory oligonucleotide ameliorated
the severity of the colitis. This study further showed IL-12 or IL-15
from cDC1 should induce LP or intraepithelial lymphocytes to
produce IFN-g that subsequently can trigger an anti-inflammatory
response in intestinal epithelial cells. At present it remains unclear
howIFN-g exerts suchprotective roles, although inductionof ananti-
inflammatory enzyme, indoleamine 2,3 dioxygenase (IDO1), which
is abrogated in both cDC1-ablated and IFN-g-deficientmice, may be
involved (10).
MOLECULAR MECHANISMS FOR
XCR1+ DC-DEPENDENT INTESTINAL
HOMEOSTASIS

XCR1+DCoccupy less than 10%of intestinalDC and the otherDC
ormacrophages fail to compensate for the functions of XCR1+DC.
This suggests that certain molecule(s) specifically expressed by
XCR1+ DC play critical roles in maintaining intestinal
homeostasis. XCR1 itself should be a candidate molecule. A
ligand of XCR1 is XCL1 in mice and XCL1 and its close relative,
XCL2, inhumans. Inboth species, XCL1 is abundantly produced by
NK cells and activated T, especially CD8 T cells. XCL1- or XCR1-
deficient mice show partial defects in CD8 T cell responses during
the late phase of immunization (36). XCL1 is also expressed in
thymic medullary epithelial cells and critical for localization of
May 2022 | Volume 13 | Article 857954
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XCR1+ DC into the thymic medulla (70). XCL1 deficiency leads to
disturbance of this localization and partial defects in Treg cell
generation (70). Thus, the XCR1-XCL1 axis has the potential to
modulate interactions of T cells and DC. However, it was unclear,
however, whether the axis regulates intestinal T cell homeostasis
and how this happens.

In XCL1- and XCR1-deficient mice, intestinal, but not spleen
or lymph node, T cells were significantly decreased as observed
in the XCR1-DTA or DC-specific IRF8-deficient mice (8, 9, 64).
The XCR1-XCL1 axis is therefore suggested to be critical for
maintaining intestinal T cell populations.

It is important to consider the sources of XCL1. Upon viral
infection, activated CD8 T cells are known to recruit XCR1+ DC
by producing XCR1+ DC (50). In steady states, XCL1 expression
level is much higher in NK cells than in CD4 or CD8 T cells in
the spleen (8). However, all intestinal T cell subsets expressed
higher levels of XCL1 than splenic T cells and the expression
level was comparable with that of splenic NK cells. Importantly,
Xcl1 expression in LP T cells of XCR1-DTA mice was decreased
to approximately 20% of that in control mice (8). XCR1+ DC in
the intestine are therefore indicated to be critical for driving
XCL1 expression in intestinal T cells.

T cells are stimulated by XCR1+ DC to keep the XCL1
expression level, so it is important to address whether XCR1+
DC are also stimulated by T cells. In XCR1- and XCL1-deficient
mice, CD103+CD11b- DC were increased in LP, but decreased in
mesenteric lymph nodes (8). In the homeostatic conditions, DC
leave LP and migrates into the mesenteric lymph nodes. The
phenotype of XCR1- and XCL1-deficient mice therefore suggests
defects in this homeostatic migration of CD103+CD11b- DC.
Consistent with this speculation, expression of CCR7, a
chemokine receptor involved in migration of DC from LP to
mesenteric lymph nodes (71), was decreased in XCR1-deficient
CD103+CD11b- DC (8). Furthermore, increase of LP and
decrease of mesenteric lymph node CD103+CD11b- DC were
also observed in RAG2-deficient mice, which lack B and T
lymphocytes (8), also supporting the involvement of T cells.
Thus, XCR1+ DC migrate from LP to mesenteric lymph nodes
by the function of the XCR1-XCL1 axis and the interaction
between XCR1+ DC and T cells is bidirectional.

It is interesting why T cells are decreased in the small, but not
large intestine due to loss of XCR1+ DC. Such a segment-specific
T cell decrease is interesting and not surprising, because
intestinal immunity is regulated in a segment-specific manner
(72–74). Notably, compartmentalization and gene expression
profiles of DC subsets are different among intestinal segments.
Furthermore, several reports also show differential roles of DC
subsets in intestinal immunity (74, 75). Further studies are
necessary to clarify segment-specific roles of XCR1+ DC or
other DC subsets in intestinal immunity.
SCENARIO FOR THE INTERACTION OF
XCR1+ DC AND T CELLS IN THE INTESTINE

Understanding the crosstalk between XCR1+ DC and intestinal
T cells may provide insight into the mechanisms that maintain
Frontiers in Immunology | www.frontiersin.org 4
intestinal homeostasis. Based on current data we propose the
following model (Figure 1). First, intestinal T cells can be
activated by any type of APC in the steady state. Once
activated, T cells produce XCL1, which attracts XCR1+ DC
selectively among DC subsets. Then XCR1+ DC supports T
cell survival and activation, which is represented by decreased
expression of CD62L and increased expression of CD103.
XCR1+ DC produce retinoic acid due to their high aldehyde
dehydrogenase activity, thereby increasing T cell expression of
gut homing receptors such as CCR9 and a4b7 (9). XCR1+ DC
also show high expression of b8 integrin, which is required for
IEL generation (9). Furthermore, XCR1+ DC is involved in
skewing Th cell polarization from Th2 or Th17 to Th1 cells (8,
9). High expression level of XCL1 in T cells is also driven and
kept by XCR1+ DC. Meanwhile, XCR1+ DC are also stimulated
by XCL1 from T cells. XCR1 signaling should lead to
upregulation of CCR7 expression and promote homeostatic
migration of XCR1+ DC from LP to mesenteric lymph nodes.
This intimate and two-way crosstalk between XCR1+ DC and T
cells through the XCR1-XCL1 axis is critical for homeostasis of
intestinal immunity and prevention of aggravation of
intestinal inflammation.

In germ-free mice, intraepithelial T cells are significantly
decreased (76, 77). Furthermore, certain commensal bacteria,
such as Lactobacillus reuteri, have been shown to promote
generation of intraepithelial CD4+CD8aa+ T cells (78).
Commensal microorganisms therefore contribute to
maintenance of intestinal T cell populations and XCR1+ DC
are likely involved in this step. Intriguingly, certain Klebsiella
strains, when colonized in the intestine, induce Th1 cell
differentiation in an XCR1+ DC-dependent manner (79),
providing more evidence for the involvement of XCR1+ DC in
intestinal T, especially Th1, cell responses.

Discussion of whether or how cDC1 are involved in Treg
generation, and how this might work, is important. In BATF3-
deficient, DC-specific IRF8-deficient or XCR1-DTA mice,
CD4+Foxp3+ Treg cells show a normal population at the
steady state in the intestine (8, 9, 80). In BATF3-deficient
mice, Treg cell induction was attenuated after infection with a
gastric pathobiont, Helicobacter pylori (81). Furthermore, in
cDC-specific IRF8-deficient mice, in which Irf8 is deleted by
cre recombinase expression under the control of Zbtb46, a cDC-
specific gene, Treg cell induction after oral administration of
ovalbumin is impaired, but oral tolerance is intact (64). cDC1 are
therefore dispensable for Treg cell population at the steady state
in the intestine as well as for oral tolerance, although it is
required for optimal Treg cell induction.
IN VIVO ROLES OF CDC1 IN
VARIOUS TISSUES

cDC1 are present not only in the intestine but also in various
peripheral tissues including skin, lung, and liver. It is interesting
to clarify how cDC1 in those tissues function in homeostatic or
pathogenic conditions. In the nonobese diabetic (NOD)
background, autoreactive T cells were absent in islets of
May 2022 | Volume 13 | Article 857954
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Langerhans and autoimmune manifestations were ameliorated
in BATF3-deficient mice, indicating that cDC1 in islets are
involved in the pathogenesis of autoimmune diabetes (82). In
atherosclerosis, cDC1 increase in the aorta and ablation of cDC1
by deleting Flt3, a cytokine receptor, leading to increase of
atherosclerotic lesion size and plaque area, concomitantly with
decrease of Treg cells (83). This implies protective roles of cDC1
in the pathogenesis of atherosclerosis, although it should be kept
in mind that Flt3 deletion results in decrease of cDC2 as well as
cDC1. Meanwhile, in non-alcoholic steatohepatitis (NASH), DC
including cDC1 increase in the liver and depletion of XCR1+ DC
attenuated liver pathology, indicating that XCR1+ DC drive liver
pathology in NASH (84). Gene manipulated mice for XCR1+ DC
(Table 1) should be valuable tools for further clarification of in
vivo roles of cDC1 in various tissues.
CONCLUSION

cDC1 were found to be critical in maintaining intestinal immune
homeostasis, mainly by supporting intestinal T cell populations.
Notably, this homeostatic activity cannot be compensated by the
other DC or myeloid lineage cells such as macrophages. At
present it remains unclear yet how cDC1 exhibit their functions
in the intestine. Commensal bacteria may be involved in the
mechanisms, although further studies are still required.

XCR1 is not only a specific marker to cDC1, but also
involved in the specific roles of cDC1. Selective expression of
Frontiers in Immunology | www.frontiersin.org 5
XCR1 is observed in various species including mice, rats,
sheep, and humans (38, 85, 86). XCL1 is abundantly
expressed in NK and activated CD8+ T cells in both humans
and mice. The XCR1-XCL1 axis, therefore, seems to be well
conserved among species. It would be interesting to clarify
whether or how XCR1 or XCR1+ DC function in human
intestinal immune homeostasis.
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