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Convergence Acceleration of a Navier-Stokes Solver
for Efficient Static Aeroelastic Computations

Shigeru Obayashi* and Guru E Guruswamy t

NASA Ames Research Center, Moffett Field, California 94035

New capabilities have been developed for a Navier-Stokes solver to perform steady-state simulations more effi-
ciently. The flow solver for solving the Navier--Stokes equations is based on a combination of the lower-upper fac-
tored symmetric Gauss-Seidel implicit method and the modified Harten-Lax-van Leer-Einfeldt upwind scheme.
A numerically stable and efficient pseudo-time-marching method is also developed for computing steady flows over
flexible wings. Results are demonstrated for transonic flows over rigid and flexible wings.

Introduction

HIS paper summarizes new developments in the static option ofthe NASA Ames Research Center's aeroelasticity simulation

code ENSAERO, which computes steady-state flowfields and static

deformations of structures simultaneously. This code is capable of

computing aeroelastic responses by simultaneously integrating the
Euler/Navier-Stokes equations and the modal structural equations

of motion using aeroelastically adaptive dynamic grids, l It was en-

hanced with the upwind option and applied to transonic flows from

small to moderately large angles of attack for lighter wings undergo-

ing unsteady motions. 2'3 Next, it was extended to simulate unsteady

flows over a wing with an oscillating trailing-edge flap. 4 The geo-

metric capability of the code has further been extended to handle

a full-span wing-body configuration with control surfaces. _ As an

option, the structure can be modeled using shell/plate finite element
formulation. _

The present research has been performed to improve the static
aeroelastic option of the code. The computational fluid dynamics

part of the code has been completely rewritten with new algorithms.

These new techniques do not change the accuracy of the code, but

they make the code more efficient and robust. The lower-upper
factored symmetric Gauss-Seidel (LU-SGS) method 7 is employed

to reduce the arithmetic operation count in the implicit solver.
The modified Harten-Lax-van Leer-Einfeldt (HLLE) upwind

scheme 8 is used to obtain a robust flow solver with reasonable costs.

The code originally employed the streamwise upwind algorithm as

an upwind option. This algorithm brings multidimensional informa-

tion to the upwind technique and gives better accuracy than conven-

tional dimensional-split upwind techniques. After the higher order
extension is made in a standard manner, however, the improvements

in accuracy become small, while the additional computational cost is

high. Although it is acceptable for a research code to obtain the best
accuracy on a given grid, efficiency is also important for a produc-

tion code. Therefore, the streamwise upwind algorithm is replaced

with the dimensional-split upwind algorithm, in addition, the HLLE

upwind scheme is a positively conservative scheme. 9 The present
modified HLLE scheme has the same resolution, but it is more robust

than the widely used Roe upwind scheme, m Its arithmetic operation

count still remains comparable to the Roe scheme.

Presented as Paper 94-2268 at AIAA 25th Fluid Dynamics Conference,
Colorado Springs, CO, June 20-23, 1994; received June 27, 1994; revision
received Feb. 1, 1995; accepted for publication Feb. I. 1995. Copyright ©

1995 by the American Institute of Aeronautics and Astronautics, Inc. No
copyright is asserted in the United States under Title 17, U.S. Code. The
U.S. Government has a royalty-free license to exercise all rights under the

copyright claimed herein for Governmental purposes. All other rights are
reserved by the copyright owner.

*Senior Research Scientist. MCAT Institute, San Jose. CA 95127; cur-

rently Associate Professor. Tohoku University, Sendal, Japan. Senior Mem-
ber AIAA.

*Research Scientist, Applied Computational Aerodynamics Branch. As-
sociate Fellow AIAA.

In aeroelastic calculations, structural oscillations are often ob-

served during the initial transient period, which leads to divergence
of flow calculations or slow convergence. To reduce such oscilla-

tions, the structural dynamics part of the code is also modified to
use artificial structural damping along with a pseudo-time-marching

method.

To demonstrate the capability of the resulting code, three test cases

are shown: computation of a flat-plate boundary layer, transonic

flow around the ONERA M6 wing, and transonic flow about an

aeroelastic wing. <H

Algorithm Development

ENSAERO computes the three-dimensional Euler or thin-layer

Navier-Stokes equations with the Baldwin-Lomax model for the

fluid flow part. The description of those equations and the turbulence

model can be found in Refs. 1 and 12, for example. The essence of

the new algorithms can be described in the one-dimensional equa-

tions as shown in the following sections.

Modified HLLE Scheme
The conservation form of the one-dimensional Euler equations is

Qs+Fx=0 (la)

where the conserved quantities Q and flux F are

Q = , F = pu 2 + p (lb)

L (e + p)u

and where p is the density, u is the velocity, and e is the total energy

per unit volume. The pressure p is related to the conserved quantities

through the equation of state for a perfect gas

p = (y -- l)(e -- pu2/2) (lc)

The cell interface flux FL R can be evaluated by the HLLE scheme _
as

i FFLR = _( L+ FR kALtxQ) (2a)

where

AQ = QR - QL (2b)

b+b_ik -- b___+_b t. a -2--1
b_ - b_ b+R- bL

(2c)

= t/+ _ _2d)

0 fi
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and where R, /_, and L are the right eigenvector, eigenvalue, and

left eigenvector matrices of the Roe-averaged Jacobian] ° I is the

identity matrix, and the subscripts L and R indicate the left and right

states. (The overbar indicates Roe-averaged quantities.) The HLLE
scheme defines b + and bZ as

b_ = max(fi + E, uR + cR, 0) (3a)

b_ -----min(fi - E, uL - CL, 0) (3b)

This scheme satisfies all of the stability, entropy, and posi-

tively conservative conditions required for the nonlinear difference
equationsY

The HLLE scheme approximates the solution of the Riemann

problem with two waves propagating with speed ofbR ----max(fi +
3, uR + cR) and bL = min(fi -- _, uL -- CL) and a state QLR between

those waves. Compared with the Roe scheme, the HLLE scheme

introduces large numerical dissipation at contact discontinuities. A
newly proposed modification s improves the resolution at contact

discontinuities by replacing .,_ = diag[_q, _-z, _.3] in Eq. (2a) with

where

,'_ = diag[_.l - 28min(b_, bZ), _.2, _.3] (4a)

min (pLR 1) (4b)= \fail'

and where crl = Ap - Ap/c. 2. Thus 3 = 1/2. The resulting scheme

reduces to the Roe scheme when 6 = 1/2(pt.,_/lall --+ oo as lall

0), and to the scheme when 8 = O(pt.,_/lcrtl _ 0 as lall _ oo).

Because cq represents a jump in entropy, it is zero for isentropic

flows. Then the present scheme results in the Roe scheme. As the

jump in entropy becomes large, the present scheme turns into the
HLLE scheme.

To compute the present modified HLLE flux, Eq. (2), there is no

need to do a matrix computation as suggested for the Roe scheme./3

In the actual implementation, Eq. (2) is rewritten as

_I (_) (a) ( 0 )1
FLR = fl L +fir U + pL + PR+82

L H R 83

(5a)

where

flL = pL(UL +3-t) +St (5b)

fir = PR(UR -- _q) + 8_ (5C)

32 =--(_-+/SAu + _.- "_) (5e)

83 = --(_., Ap + fi_S2) (50

_+ -- _'2 "+" _'3 )"1 (5g)
2

__ _ _-2 - [3 (5h)
2

Again by replacing _._ with _-i by using Eq. (4), the present algorithm

is obtained. The extension to the three dimensions is straightforward

by dimensional splitting.

Modified Differentiable Limiter

Higher order numerical fluxes are obtained from higher order
interpolation of the primitive variables for the left and right states

at the cell interface) 4 For example, the interpolated pressure are

given as

pm+½ = {l--_[(l+x)V+(l-Jc)A]}ps+_ (fib)

where V and A are backward and forward difference operators,

respectively. For a one-dimensional or Cartesian grid case, third-

order interpolation can be obtained from x = 1/3. One limiter
function 4, from Koren _5 is given as

3Vpi . Api
_b(pi) = (7)

2(Api -- Vpi) 2 + 3Vpi • Api

Since this limiter reacts to even small oscillations in smooth regions,

convergence to steady state is often stalled. To avoid clipping smooth

extrema, a modification to the limiter was proposed in Refs. 16
and 17 as

_(Pi) = 3Vpi. Api + e/2 (8)
2(Api - Vp,) 2 + 3Vpi " Api + e_

In this paper, the threshold e] is given by e 2 = max(3.01V_'],. -3,

10 -12) where _edenotes the generalized coordinate.

LU-SGS Method

Discretizing Eq. (1), the LU-SGS method 7 can be described as

{I + h[xp(A)il - A+_I]}[I + hxp(A)l]_ 1

x {I + h[Xp(a)iI + A,7+,]}AQ = -h(F/+½ - F__½) (9a)

where h = At/Ax, A = OF/OQ, p(A) denotes the spectral radius
of A,

a ± = ½[a + xp(a)l)] (9b)

and X = 1.01 typically. Its extension to three dimensions is straight-

forward. Note that this is a two-factored scheme so that the algorithm
can be written as

Forward sweep:

AQ: = [-- h(F/+½ - Fi_½) + hA + AQ:_l]/[1 + hXP(mi) ]

(10a)

Backward sweep:

AQi = AQ i-hA AQi+l/[1 + hXp(ai)] (10b)

where 1 + hxp(Ai) is only a scalar quantity. Thus, it requires no
block-matrix inversion.

To vectorize these sweeps in three dimensions, a hyperplane is

necessary. Suppose i, j, and k denote the indices of a grid point, a hy-

perplane is expressed as i + j +k = const. The three-dimensional ar-

ray (i, j, k) is then converted to two-dimensional array (1, m) where

l denotes the point in the hyperplane and m = i + j + k represents

the hyperplane. This enjoys a very long vector length, but the per-

mutation requires additional memory space. Instead, the existing

three-dimensional array can be used as it is by vectorizing only in

the i index. The outer DO loop is for m. The next loop is for k. The

inner DO loop is for i, and j is determined as j --- m - k - i. Its

vector length is shorter than the former, but it requires no additional
memory space for vectorization.

The split Jacobian matrices A j- mimic the upwind Jacobians. For

a natural upwinding, A ÷ ----A and A- = 0 when u > c. However,

the definition of A ± in Eq. (9b) gives A- # 0. A simple modification

to the split Jacobian was tried as

s_ (X - 1)p(A) IA ±
-_[A 4- p(A)l] 4- _ (1 la)

where

s e = I 1, if+(u4-c) >0

I 0, if 4-(u4-c) <0
(llb)



1136 OBAYASHI AND GURUSWAMY: STATIC AEROELASTIC COMPUTATIONS

In the authors' experience, it gives slightly better convergence

than the unmodified case. For the flat-plate boundary-layer case,

however, it did not make the convergence any better or worse.

For the thin-layer Navier-Stokes computations, the split
Jacobians in the viscous direction are further modified as

A*- = [A + p(A)l] 4- p(A)l 4- Iz +/_r IV_I21 (12)
Re.p

where/z is the laminar viscosity and _r is the turbulent viscosity.

In addition, Eq. (9b) introduces large dissipation through the time
integration. Only when the solution converges to a steady state, its
effect vanishes. However, the LU-SGS method which is first-order

accurate in time similar to other implicit methods, can be used for

unsteady calculations by using special methods. For example, the
Newton iteration _s'_ can be used for unsteady computations, which

not only removes the excess dissipation but also gives the second-

order accuracy in time.

In the following calculations, a locally varying time step was
taken as

1 + 0.0005_

Ati.Lk = At#ohal 1 + _ (13)

where J is the Jacobian of transformation and Atg_,,b_a= 1-5, de-

pending on the problem. The Jacobian scaling in the denominator
has been used commonly (for example, see Ref. 20). The additional

scaling in the numerator has been also used widely without doc-

umentation. It prevents the time step from becoming too small as
the Jacobian becomes very large. With the LU-SGS scheme, this

Jacobian scaling for the time stepping might not be necessary since

the scheme is unconditionally stable. However, it was used to make

fair comparisons with the previous version of the code.

Aeroelastic Equation of Motion

The governing aeroelastic equations of motion of a flexible wing

are solved using the Rayleigh-Ritz method. It is assumed that the

deformed shape of the wing can be represented by a set of dis-

crete displacements at selected nodes. From the modal analysis, the

displacement vector {d} can be expressed as

{d} = [_]{q} (14)

where [q_] is the modal matrix and {q} is the generalized displace-
ment vector. The final matrix form of the aeroelastic equations of

motion is

[M]{/1} + [D]{q} + [g]{q} = {Z} (15)

where [M], [D], and [K] are modal mass, damping, and stiffness

matrices, respectively. The term {Z} is the aerodynamic force vec-

tor defined as pU_[ck]r[L](ACp}/2, and [L] is the diagonal area

matrix of the aerodynamic control points. The aeroelastic equation

of motion, Eq. (15), is solved by a numerical integration technique
based on the linear acceleration method, zl

Since {/i/} = {q } = 0 at a steady state, a primary static option uses

[K]{q} = {Z} (16)

However, this often causes significant numerical oscillations be-

cause there is no damping in the system. These oscillations are

initiated by numerical transients. To obtain a smooth numerical

transition, a pseudo-time-marching method can be taken by using

Eq. (15) where the time step is set as Atstructure = 0.02Atgl,,b_ typ-

ically. The damping coefficients [D] are set so that all aeroelastic
modes damp out quickly. The damping matrix is computed using
the relation

[D] = _[M] + [:1[K] (16a)

where a and/_ are functions viscous damping coefficients of each

mode. More details about the computation of [D] can be found in

Chap. 9 of Ref. 22. In this work, viscous damping coefficient val-

ues for all modes are set to a high value of 0.80. This large value

for the damping coefficient gives an artificial "shock absorber" for

structural oscillations caused by flow transients.

Results

Flat-Plate Boundary Layer
First, performances of the new algorithms are examined. Figure I

shows a comparison of computed u-velocity profiles of a laminar
layer on a fiat plate. The freestream Mach number is 2, the Reynolds
number is 1 x 106, and the freestream temperature is 222 K. The

Sutherland law was used to compute the laminar viscosity. This

computation was performed on a 111 x 5 × 69 grid by enforcing
two dimensionality through five planes. The grid was generated
algebraically. The time step Atgl,,h_ used was 2.6 for all cases.

The upwind (modified HLLE) solution coincides with the similar-
ity solution perfectly, whereas the central difference (CD) solution
gives slight smearing at the outer edge of the boundary layer. The
CD option uses the combination of the second- and fourth-order
dissipation with the pressure switch. 2° The smoothing coefficients
were set to 0.25 and 0.005 for the second- and fourth-order dissipa-

tion terms, respectively. The upwind algorithm performs better as
expected. Since obtaining grid convergence is not practical for most
cases, the upwind option is generally recommended. Figure 2 shows
a comparison of the convergence history (in terms of the averaged
residual for all five equations multiplied by the Jacobian) between
unmodified and modified limiters. The modified limiter, Eq. (8),

shows a clear improvement over the original limiter.
Figure 3 shows a comparison of convergence history among four

different schemes. The original ENSAERO has the CD option with

the diagonal approximate factorized alternating direction implicit
(ADI) solver 2° and the upwind option using the streamwise upwind
algorithm with the LU-ADI solver. 2 The new version of the code
employs the LU-SGS solver for both CD and upwind options. The
computational time per grid point per iteration in microseconds was
4.0 for the CD option with the LU-SGS solver, 6.0 for the CD option
with the diagonal ADI solver, 9.5 for the modified HLLE upwind
option with the LU-SGS solver, and 13.8 for the streamwise upwind
option with the LU-ADI solver, on a single Cray C90 processor. It
should be noted that there is a disadvantage in the vectorization for
the ADI solver in this comparison because the grid has only five

planes in one direction.

.008 _ CD (LU-SGS) /

Modified HLLE

(LU-SGS) 1

.002

I I I I I

0 .5 1.0 1.S =.0 2.5

_/coo

Fig. 1 Comparison of computed laminar boundary-layer profiles on

a flat plate between the central difference and the upwind algorithms,
M_ = 2.0 and Re =10 _.

100 _ Original HmlWr

_-- Modified Umlter

10"2
_10"4

lO-e I I I I '_'_ J

0 1000 2OOO 3OOO 4OOO 5O00

lloratlcm

Fig. 2 Comparison of convergence history between the original and
modified differentiable ibniters, M_ = 2.0 and Re = 10 _.
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The LU-SGS solver shows better convergence for both CD and

upwind options than the ADI solvers. The advantage of using the

LU-SGS solver is more apparent when the residual is replotted

against CPU time in seconds using a single Cray C90 processor as

shown in Fig. 4. Because of fewer operations and better convergence

100 - _ CD(LU-SGS)

.... Modified HLLE (LU-SGS)

............. StmemwlN Upwind (LU-ADI)

, _ - CD (Dlagorml ADO

10"2 _4_,t,_utt_t.4.-)

"_ "_-_--._:::...:_...._. .........

-_ 10.4

10"6 I I I I

0 1000 2000 3000 4000 5000

Iteration

Fig. 3 Comparison of convergence history among four methods using

the present and the previous version of the code, M_ = 2.0 and Re = I0 n.

CD (LU-SGS)

.... Modified HLLE (LU-.qGS)

............. StNmrnwise Upwind (LU-ADI)

,. -- - -- CD (Diagonal ADI)

*'*..,......

\ ",,,'_. •...................
%. _. ".....

I _ I 1%', I I

500 1000 1500 2000 2500

CPU time (see)

Fig. 4 Comparison of convergence history in CPU seconds among four
methods using the present and the previous versions of the code, Mov =
2.0 and Re = 106.

-1.5 -

-1.0

-,5

Cp

0

.5

1.0

-- Computation

O Exl_rlment

I I I I I I

rates, the LU-SGS solver is about four times faster than the diag-

onal ADI solver with the CD option. Even the new upwind option

using the modified HLLE scheme is faster than the original CD op-
tion with the diagonal ADI solver. The original upwind option is

obviously the slowest because of the multidimensional upwinding.

To obtain further acceleration for the LU-SGS solver, one might

consider implementing the multigrid technique. 23

ONERA M6 Wing
To further validate the flow solver, transonic flows over the

ONERA M6 wing have been computed by using the new upwind
option of the code. A series of experimental data can be found in

Ref. 24. Following a recent report of computational results, 25 the

two cases chosen were one for Mach number 0.8395 and angle of

attack of 3.06 dog and the other for Mach number of 0.8447 and
angle of attack of 5.06 deg. The Reynolds number was set to 1l

× 106 for both cases. A C-O grid of size 193 x 34 x 49 was used.

This is the coarser grid used in Ref. 25. The nondimensional time

step was set to 2.0.

High angle of attack cases with a large flow separation present a
severe test for turbulence models. Even the Baldwin-Lomax model

was found to be sensitive for a particular function evaluation. 26 The

model requires the definition of _m_x, (_21E -2 -2= Uma x -- Umin), which

is supposed to be _m,x - tilers, not the maximum of t_ along the

grid line normal to the wall. For the flat-plate boundary layer with

a uniform outer flow, for example, it does not matter how fim_ is
defined. However, _m_x should be defined at the Fm_ location.

The 5.06-deg angle of attack case of ONERA M6 wing was sen-

sitive to this definition of _m_,. The computation didn't converge

by using the true definition of fim_,, whereas the computation did

converge by using the nominal am_,, the maximum of _ along the

grid line normal to the wing surface. Since turbulent viscosity is

increased by overestimating _m_,, more numerical viscosity is in-

troduced into the computation. It probably helped stabilize the com-
putation. In the following calculations, the nominal t_m_, is used in
the Baldwin-Lomax model.

Figure 5 shows the surface pressure distributions compared with

the experiment at the 44, 65, 80, and 90% spanwise sections for

the 3.06-dog case. The computational results agree reasonably well

with the experiment except on the upper surface of the 80% spanwise

section where a finer grid may be required to resolve the merger of

65%

I I I I I I I

Cp

-1.5

-1.0

0

.5

1.0

-.2

!

(

I I I I I I

0 .2 .4 .6 .8 1.0

x/c

90%

I I I I I I 1 I

1.2 _.2 O .2 .4 .6 .8 1.0 1.2

_c

Fig. 5 Comparison of computed pressure distributions on the ONERA M6 wing with experiment, M_ = 0.84, Rec = l I X 106, and t_ = 3 deg.
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two shock waves. Figure 6 shows the comparison of the convergence

history between the new upwind option (modified HLLE + LU-SGS)

and the previous CD option (diagonal ADI) in terms of both the

residual and lift coefficient. The new upwind option shows a better

convergence history. It took roughly 4500 iterations to converge to
three digits of accuracy in the lift coefficient for the new upwind

option. The CD computation was performed with the time step 1.0,
since it diverged with the time step 2.0. The smoothing coefficients
in this case were also set to 0.25 and 0.01 for the second- and fourth-

order dissipation terms, respectively, since the computation diverged

with the fourth-order dissipation coefficient 0.005. The CD option

required roughly 8700 iterations to converge to three digits in the
lift coefficients.

The computational time per grid point per iteration using the

upwind option was 7.7/zs on a C90 single processor. This number

is better than the flat-plate case (9.5 #s) because the grid is truly
three dimensional. On the other hand, the diagonal ADI CD option

requires 5.9 /.zs. To obtain the three-digit convergence in the lift

coefficient, the new upwind option required two-thirds of the total

computational time of the previous CD option. Although the time

per grid point per iteration is reasonably fast for both cases, the

convergence is still slow because of the more complicated flow-

Modified HLLE (LU-SGS)

101 .... CD (Diagonal ADI) - .4

¢; 10 "1 CL
u)
•,r .2
¢_.

,-_ 104

.I

10"5 I I I I 0
0 1000 2000 3000 4000 5000

Iteration

Fig. 6 Comparison of convergence history between the new upwind
option and the previous CD option of the code, ONERA M6 wing, M_
= 0.84, Rec = 11 × 106, and _ = 3 deg.

field in this case than that in the flat-plate case. To improve the
convergence rate further, the multigrid technique may be useful as

demonstrated on the same grid in Ref. 25.

Figure 7 shows the corresponding surface pressure distribu-

tions for the 5.06-deg case. The Baldwin-Lomax model predicts

a stronger shock wave and less flow separation, similar to the re-
sults in Ref. 25.

Aeroelastic Wing

To demonstrate static aeroelastic computations, a swept wing of

aspect ratio 3 and taper ratio 1/7 with the NACA 65A006 airfoil

section was selected. The planform of the wing is shown in Fig. 8.

Experimental and numerical studies can be found in Ref. 11 and 6,

respectively. A C-H grid of size 151 x 44 x 44 was used. The

time step was set to 6.25 for all of the steady cases. Only the upwind
(the modified HLLE and LU-SGS option) results are shown here.

The computational time per grid point per iteration was 8.0 _s for the

fluid part and 0.7 izs for the structure part, including computations

for grid movement.

In the following calculations, the freestream Mach number was

set to 0.854, the Reynolds number was 0.597 × 106, and the ratio of

specific heats was 1.135 because the experimental fluid was Freon.

The Baldwin-Lomax model was used to compute turbulent viscos-

ity. The dynamic pressure was set to 0.7 psi. The natural vibra-
tion modes of the wing were calculated by the finite element plate

model. _ The computed frequencies for first three modes are 21.8,

78.1, and 126 Hz, and the corresponding measured values are 21.6,

79.7, and 121 Hz. Following Ref. 22, the values obtained for ct and
/_ are equal to 137.5 and 2.912 x 10 -3, respectively.

Figure 9 shows responses of the leading-edge displacement at the

wing tip. The displacement is plotted in inches, and 5000 iterations

correspond to about 0.05 s in the unsteady computations. Small gen-

eralized accelerations were given as initial conditions for the struc-

ture. Starting from the steady-state flow solution at l-deg angle of

attack, three aeroelastic computations were performed. Two of them

are steady-state calculations using the locally varying time stepping

in the fluid part. One of them uses the pseudo-time-marching method

for the structure using Eq. (I 5) (denoted as "pseudodynamic"), and
the other uses the static equation, Eq. (16) (denoted as "static").

The third case is an unsteady computation using the time-accurate

-1.S --

-1,0 --

Cp

0 -

1.0

44%

I I I I I I I

65%

I 1 I I I I I

-1.5 -

-1.0 -

-.S -

Cp

0 -

1.0

-.2

80% 90%

I I l l I l I I I I I I I I

0 .2 .4 .6 .8 1,0 1_ -.2 0 .2 .4 .6 .8 1.0 1.2
_c _c

Fig. 7 Comparison of computed pressure distributions on the ONERA M6 wing with experiment, Moc = 0.84, Rec = 11 x 106, and t_ = 5 deg.
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065 in. aluminum Insert N / Flexible pllml_ loam

"x ¢,

-

B

t_

- _ 2.00

Aspec* ratio .... 3

Taper ratio .... 1/7
AC/4. 450

Airfoil section ..... NACA 65A - sedmL

Dimensions are In inches

Fig. 8 Planform of an experimental swept wing.

option of the code where the time step is constant for both fluid
and structure part. It uses high damping coefficients _ in Eq. (15)

(denoted as "dynamic with damping").

The two steady-state computations converged within 1000 iter-

ations. The unsteady result shows that the solution approaches the

same steady state slowly. The unsteady computation with the damp-

ing was continued up to 10,000 iterations and confirmed to converge

to a displacement of 0.279 in. However, this option is too slow to

be used for a production code. Figure 10 shows the magnified view

of Fig. 9 for the first 1000 iterations. Both of the steady-state cal-

culations go through the initial transient in the first 200 iterations
and converge to 0.279 (three digits) in about 1000 iterations. The

main difference of the two is the behavior during the initial transient.

The pseudodynamic case shows very smooth transient, whereas the

static case shows significant oscillations. Although it damps out

quickly in this case, such oscillations often cause numerical insta-

bility in the fluid part. Thus, the pseudo-time-marching method is
very favorable for static aeroelastic computations.

Since the pseudo-time-marching method for the structure gives

a smooth transient, and computations can be started from the

freestream condition impulsively. Note that the previous static

aeroelastic calculations required 1000 iterations in addition to com-

puting the initial steady-state flow solution without the structural

dynamics. Figure 11 shows responses of the leading-edge displace-

ment at the wing tip for this impulsive start case. The initial transient

of the 1-deg angle of attack case was damped out in 2000 iterations. It

converged to 0.279 (three digits) in about 3400 iterations. This con-

verged value coincides with that obtained in Fig. 10. The freestream
condition was also set to 3-deg angle of attack. The convergence

was slower than that for the l-deg case, but it reached steady state

roughly at 3500 iterations.

Figure 12 shows the corresponding responses of the lift coef-
ficients. The lift coefficients behave similarly to the leading-edge

displacements shown in Fig. 11. The rigid wing cases without any
structural dynamics are included for the comparison. The compar-

ison between the flexible and rigid cases indicates that there is no

penalty for having structural dynamics on convergence. In fact, the

convergence history is almost identical for aeroelastic and rigid

cases to a certain degree as shown in Fig. 13. Since the aeroelas-

tic option does not slow down the convergence, it is more efficient

and much simpler to perform static aeroelastic simulations directly

starting from freestream conditions.

The aeroelastic case seems to fall into the limit cycle earlier than

the rigid case, although the 3-deg cases go into the limit cycle before

they depart from each other. For the fluid part, the threshold in Eq. (8)
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Fig. 9 Comparison of computed responses of leading-edge displace-
ments at wing tip with steady and unsteady options of the code, Mc_ =
0.85, Rec = 0.6 × l0 s, and o_ = 1 deg.
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Fig. 10 Close-up view of computed responses of leading-edge displace-
ments at wing tip.
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Fig. 11 Computed responses of leading-edge displacements at wing tip
with the pseudodynamic options of the code, Moo = 0.85, Rec = 0.6 × 10 °,
and _ = 1 and 3 deg.
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Fig. 14 Comparison of computed surface pressures between flexible

and rigid wing cases, Moo = 0.85, Rec = 0.6 x 106, and c_ = 3 deg.

can be tuned case by case to obtain better convergence. However, it

is simply more practical to accept such limit cycles in convergence

history for general applications. In such cases, one may choose

either lift coefficient or leading-edge displacement as an index for

convergence.

In Fig. 12, the flexible cases consistently show lower lift at both 1

and 3-deg angles of attack. Figure 14 shows comparison of surface

pressure coefficients between the flexible and rigid wing cases at

3-deg angle of attack. The plots confirm the lower lift for the flexi-
ble wing. Figure 15 illustrates the corresponding tip displacement.

The wing tip is bent up, and its leading edge is twisted down. The

aeroelastic deformation reduces the effective angle of attack locally

.12
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Fig. 15 Comparison of wing tip locations between flexible and rigid

wing cases, Moo = 0.85, Rec = 0.6 x 106, and _ = 3 deg (the vertical

scale is exaggerated).

Flexible

Rigid

Fig. 16 Comparison of wing shapes between flexible and rigid wing
cases, Moo = 0.85, Rec = 0.6 X 1w', and c_ = 3 deg.

near the tip, which results in the lower lift. Figure 16 shows the

overall view of the wing deformation.

Conclusion

New capabilities to compute static aeroelasticity more efficiently
have been added to ENSAERO code. The test case of computing

a boundary layer on a flat plate demonstrates that the combina-

tion of the LU-SGS implicit method and the modified HLLE up-

wind scheme gives a good compromise of accuracy and efficiency

for solving the Navier-Stokes equations. This option computes a

steady-state solution faster than the original central difference option

of the code. The capability of this new flow solver has been demon-

strated successfully for computing transonic flows over wings.

The existing procedure for static aeroelastic option requires a

good initial guess, specifically a converged steady-state flow solu-

tion. In this study, it is found that aeroelastic computations can be

started from freestream conditions with the use of a pseudo-time-

marching method for the structural equations of motion. The test

case of computing transonic flows over a flexible wing indicates

that static aeroelastic simulations can be performed at computa-

tional effort similar to the cost of single-discipline steady-state flow
simulations.
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