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Abstract

We compared six different analytic models for multitrait–multimethod (MTMM) data
in terms of convergence, admissibility, and model fit to 258 samples of previously
reported data. Two well-known models, the correlated trait–correlated method
(CTCM) and the correlated trait–correlated uniqueness (CTCU) models, were fit
for reference purposes in comparison to four other under- or unstudied models,
including (a) Rindskopf’s reparameterization of the CTCM (CTCM-R) model, (b) a
correlated trait–constrained uncorrelated method model and two of its more general
cases, (c) a correlated trait–constrained correlated method model, and (d) a corre-
lated trait–uncorrelated method model. Results show that (a) the CTCM-R model
often solved convergence and admissibility problems with the CTCM model at rates
equivalent to the CTCU model and (b) constrained models often provided conver-
gent and admissible solutions but significantly worse model fit, indicating that they are
often not plausible when analyzing real data. A follow-up simulation study showed
that the CTCM-R model also provided the most accurate estimates of the full range
of parameters relevant to a confirmatory factor analytic model of MTMM data.
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In light of continuing controversy over alternative estimation methods to minimize

convergence and admissibility (C&A) problems in the analysis of multitrait–

multimethod (MTMM) data, we compared six different analytic models in terms of

C&A and goodness-of-fit in a reanalysis of a large sample of previously published

MTMM matrices. We fit the correlated trait–correlated method (CTCM; Widaman,

1985) and correlated trait–correlated uniqueness (CTCU; Marsh, 1989) models for

reference purposes because their relative advantages and disadvantages are already

well known (Lance, Nobel, & Scullen, 2002). Next, we fit a reparameterized version

of the CTCM model described by Rindskopf (1983; CTCM-R) that is designed to

avoid Heywood cases. We also describe three new models that are adapted from

Andrews (1984) and Saris and Andrews (1991) that have been widely applied but

which have not been systematically studied otherwise. One of these, a correlated

trait–constrained uncorrelated method model (CTCoUM) places invariance con-

straints on same-method factor loadings and orthogonality constraints on method cor-

relations. The correlated traits–uncorrelated methods (CTUM) and correlated traits–

constrained method (CTCoM) models are nested within the CTCoUM model and

apply these constraints individually. After a brief review of relevant literature, we

describe these models in more detail, the sample of studies that provided the data to

compare them, and our findings with respect to their performance in terms of model

admissibility and fit to data in 258 samples from previously reported studies. Finally,

we report results of a small simulation study that complements the main study’s find-

ings and sheds light on accuracy of these alternative models’ parameter estimates.

Background

One of the main sources of controversy in the MTMM literature has concerned the

optimal analytic approach for analyzing MTMM data, and a number of approaches

have been proposed. Campbell and Fiske’s (1959) original approach involved subjec-

tive comparisons among monotrait–heteromethod, heterotrait–heteromethod, and

heterotrait–monomethod correlations to establish inferences regarding convergent

validity, discriminant validity, and the presence of method effects. Subsequently, a

number of more quantitative approaches to the analysis of MTMM data were pro-

posed, including analysis of variance (e.g., Kavanagh, MacKinney, & Wolins, 1971),

path analysis (Schmitt, 1978), and various confirmatory factor analytic (CFA) mod-

els. One of the earliest examples of the latter was the CTCM model and its many

special cases (Widaman, 1985), but it soon became known that the full CTCM model

suffers from C&A problems due to empirical underidentification issues (Brannick &

Spector, 1990; Kenny & Kashy, 1992). The CTCU model was proposed as an alter-

native to the CTCM model (Kenny, 1976; see also Marsh, 1989) and tends to avoid

model C&A problems, though it suffers its own conceptual and statistical limitations

(Lance et al., 2002). We include it here for comparative purposes because its

strengths and limitations relative to the CTCM model are well known. The other

models we compare are not new but their performance in terms of convergence,
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admissibility, and model fit to sample data have either not been studied or have been

understudied. One of these is Rindskopf’s (1983) reparameterization of the CTCM

model that is designed to avoid Heywood cases. The other three invoke equality (i.e.,

invariance) and/or orthogonality constraints on method factor correlations. As such,

the purpose of the present study was to compare the performance of these latter four

understudied CFA models to the performance of two CFA models for MTMM data

whose performance is well known (i.e., the CTCM and CTCU models).

Assumptions

In what follows, we assume that the observed Trait-Method Units (TMUijs, i.e., vari-

ables representing the ith Trait as measured by the jth Method), and Trait (jTi) and

Method (jMj) factors (where appropriate) are at least approximately normally distrib-

uted and mean centered (i.e., E[TMUij] = E[jTi] = [jMj] = 0) with unit variance and

uncorrelated with model disturbances (dijs) (i.e., E[TMUij, dij] = E[jTi, dij] = E[jMj,

dij] = 0 with E[dij] = 0 and E½d2ij�=s
2
d = e

2 + s2, where e2 and s2 refer to nonsystematic

and specific variance components, respectively. As is also typical (Widaman, 1985),

we assumed that E[jTi, jMj] = 0, where appropriate.

Comparison Models

CTCM Model

The CTCM model is written as

MTMM= LT LM½ �
FTT 0 sym

0 FMM 0

� �

L
0

T

L
0

M

" #

+Θ ð1Þ

where MTMM is the p3p multitrait–multimethod correlation matrix where typically

(but not necessarily) p = T * M (where T refers to the number of Traits and M refers

to the number of Methods).1 LT (p3T) and LM (p3M) contain a priori specified

fixed and freely estimated factor loadings connecting the TMUij observed variables

to their respective Trait and Method factors,FTT# (T3T) and FMM# (M3M), are both

symmetric matrices that contain freely estimated correlations among the Trait and

Method factors, respectively,2 and Θ is a diagonal matrix containing estimated

uniquenesses (i.e., residuals from the TMUijs’ regressions on the appropriate Trait

and Method factors). The CTCM model is the most general linear model in

Widaman’s (1985) taxonomy (Model 3C) and presents a number of theoretical

advantages over alternative models in this taxonomy as it permits the estimation of

the full range of parameters contained within the Trait and Method factor space.

However, it has long been known to suffer C&A problems associated with empirical

underidentification issues (Brannick & Spector, 1990; Kenny & Kashy, 1992). We

included the CTCM model here primarily as a reference model against which the

performance of the alternative models studied were compared.
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The CTCU Model

The CTCU model was originally formulated by Kenny (1976) but was popularized

by Marsh (1989) as an analytic alternative model that often avoids C&A problems

associated with the CTCM model. The CTCU model may be written as

MTMM=LTΘTT 0L
0

T +Θ ð2Þ

where again LT (p3T) and FTT# (T3T) contain the Trait factor loadings and correla-

tions, respectively. The CTCU model parameterizes Method effects not as Method

factors’ effects on variables (as in the CTCM model) but as covariances among the

uniquenesses. Thus, s2
d = e

2 + s2 +s2
Mj and E(dij,di#j#) = sdijdi0 j 0

for all j = j#. As such,

Θ is a symmetric matrix containing unique (and Method) variances along the diago-

nal and covariances among uniquenesses for TMUijs that share a common method

factor that are structured either as subdiagonals (if Methods are nested within Traits

in the MTMM matrix) or as triangular covariance submatrices (if Traits are nested

within Methods). Although the CTCU model returns C&A CFA solutions far more

frequently than the CTCM model (e.g., Marsh & Bailey, 1991), it suffers from a num-

ber of conceptual limitations (Lance et al., 2002), and it produces upwardly biased

estimates of Trait factor loadings and correlations when Method factors are correlated

in the population (Conway, Lievens, Scullen, & Lance, 2004). As such, we include it

here too primarily as a reference model against which the performance of the alterna-

tive models studied here are compared.

CTCM-R Model

Rindskopf (1983) presented a reparameterization of the CTCM model that some

researchers have used to overcome problems of Heywood cases (i.e., negative esti-

mates of unique variances) that are often encountered using the CTCM model (e.g.,

Kinicki, McKee-Ryan, Schriesheim, & Carson, 2002; La Du & Tanaka, 1989; Lance,

Dawson, Birklebach, & Hoffman, 2010; Nagy, Trautwein, & Lüdtke, 2010). The

CTCM-R model may be written as

MTMM= LT LM Θ
1=2

� �

FTT 0 sym

0 FMM 0

0 0 I

2

4

3

5

L
0

T

L
0

M

Θ
1=2

2

6

4

3

7

5
ð3Þ

where LT (p3T) and LM (p3M) contain the Trait and Method factor loadings,

respectively, Θ1/2 (p3p) is a diagonal matrix containing the square roots of the

TMUijs’ uniquenesses and I (p3p) is the identity matrix. This parameterization

avoids Heywood cases that are encountered frequently in the estimation of the full

CTCM model (Brannick & Spector, 1990) because uniquenesses are calculated as

the squared elements in Θ1/2 (i.e., regardless of whether individual elements in Θ1/2

are positive or negative, their squares are positive by definition), while their
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orthogonality is maintained by fixing their correlation matrix to I. Inadmissible solu-

tions can still be obtained, however, because estimated Trait and/or Method correla-

tions can exceed |1.0|.

To our knowledge, the performance of the CTCM-R model has been studied only

once before. Dillon, Kumar, and Mulani (1987) compared (a) the CTCM-R model,

(b) an alternative parameterization presented by Bentler (1976), and (c) simply fixing

offending estimates (i.e., Heywood cases) to zero in simple CFA models. Based on

their findings, Dillon et al. (1987) had little to recommend for the first two

approaches, saying ‘‘though these two approaches represent theoretically elegant ways

of handling this problem, they have limited practical usefulness compared with the sim-

pler approach in which the offending parameter estimate is fixed at zero’’ (p. 134). We

disagree with respect to the Rindskopf parameterization (Lance, Fan, Siminovsky,

Morgan, & Shaikh, 2014). Whereas either approach may contend with Heywood cases,

fixing offending estimates to zero is an ad hoc symptom-based approach, while the

Rindskopf reparameterization represents a more general and preemptive model-based

approach. As such, we include the CTCM-R model here as it has not been studied in

the analysis of MTMM data and in theory is guaranteed to solve one of the two inad-

missibility problems associated with the analysis of such data.

The CTCoUM Model and Its More General Cases

The CTCoUM model that we propose here may be written as

MTMM= LT L
c
M Θ

1=2
� �

FTT 0 sym

0 I

0 0 I

2

4

3

5

L
0

T

L
c0

M

Θ
1=2

2

6

4

3

7

5
ð4Þ

Note that the general structure of this model is the same as that of the CTCM-R

model but with two important exceptions: (a) factor loading estimates are constrained

equal to one another within columns of Lc
Mand (b) method factors are constrained to

be orthogonal. This model is essentially a Rindskopf (1983) parameterization of the

model proposed by Andrews (1984). According to Andrews, Method effects can be

seen as arising from individual differences in interpretations of response options pre-

sented within a given method (e.g., individual differences in leniency/severity, differ-

ential perceptions of the width of response intervals, extremity or central tendency

bias, etc.). As Corten et al. (2002) put it, ‘‘[I]ndividuals may differ in the way they

use a certain response scale, and it may be expected that the use of such a scale by a

single individual is more or less constant across traits’’ (p. 214; see also Kogovšek,

Ferligoj, Coenders, & Saris, 2002; Saris & Aalberts, 2003). As such, and since the

measurement method per se remains invariant across the Traits assessed using that

method (e.g., a 5-point Likert-type scale remains the same across items representing

different constructs), it may be a reasonable assumption and is a testable hypothesis

that invariance constraints be imposed on factor loadings within Methods across
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Traits in MTMM data, by imposing equality constraints within columns of the Lc
M

matrix in Equation 4. The specification of orthogonal Methods is motivated by the

assumption that researchers will use maximally different (unrelated) methods as

called for in Campbell and Fiske’s (1959) original exposition of the MTMM matrix.

Of course, this model is nested within two other models that are more liberal with

respect to these constraints but which themselves are also nested within the CTCM-R

model: a correlated trait–constrained methods (CTCoM) model and a correlated trait-

uncorrelated methods (CTUM) model.

CTCoM Model. In the CTCoM model, Method factor loadings are constrained to be

equal to one another within columns of the Lc
M matrix, but the Method factors are

themselves allowed to be oblique, rather than being constrained to be orthogonal as

in the CTCoUM model. Thus, this model proposes that while Method effects may be

homogeneous within Methods, the Methods themselves may be correlated and recent

meta-analytic evidence presented by Lance et al. (2010) suggests that correlated

methods may be the rule rather than the exception. However, the Lance et al. find-

ings are based on reanalyses of a small number of MTMM studies (k = 18) and to

our knowledge this model has not been studied.

CTUM Model. The CTUM model corresponds to a Rindskopf (1983) parameteriza-

tion of Model 3B# in Widaman’s (1985) taxonomy, relaxes the Method factor load-

ing equality constraints specified by the CTCoUM model, and provides an omnibus

test (as compared with the CTCM-R model) of whether Methods are oblique or

orthogonal. Using simulated data, Woehr and Hoffman (2004)3 showed that the

CTUM model resulted in convergent and admissible solutions far more often than

did the CTCM model. However, we know of no studies that have compared the

CTUM model with other alternative models using real (i.e., not simulated) data. As

such, little is known regarding its relevance for real MTMM data.

Study Purpose

In summary, the purpose of the current study was to effect comparisons between two

analytic models for MTMM data whose performance in terms of C&A problems are

well known (the CTCM and CTCU models) to a set of alternative models, some old,

some new, whose performance has not been studied. We chose to conduct the main

portion of this study using real, unsimulated, previously published MTMM data

because we wished to test the viability of the models we investigated using data that

were representative of MTMM data as they actually exist, toward strong external

and ecological validity of our findings. However, we do present supplementary simu-

lated data to document the relative accuracy of model parameter estimates provided

by each model. Also, we chose to not study some other alternative models because,

for example, (a) the CTC(M-1) model (Eid, 2000) is not directly comparable with

the models investigated here; (b) the direct-product model (Campbell & O’Connell,
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1967) specifies multiplicative Trait 3 Method relationships, whereas we limited our

attention to linear models; and (c) multiple indicator MTMM models (Marsh &

Hocevar, 1988; Thomás, Hontangas, & Oliver, 2000) require multiple observed indi-

cators for each Ti3Mj combination and no published data of this sort were available.

Table 1 presents a summary of the models we studied here.

Method

Literature Review

We took several steps to identify published MTMM matrices for reanalysis. First, we

conducted a citation search of Campbell and Fiske’s (1959) article to identify studies

that had reported an original MTMM matrix. Second, we examined reference lists of

previous reviews (e.g., Bowler & Woehr, 2006; Crampton & Wagner, 1994; Lance et

al., 2010; Turner, 1981; Williams, Cote, & Buckley, 1989) to identify relevant stud-

ies. Third, we contacted authors of studies that did not report the original MTMM

matrices to determine their availability.4 In all, we identified 318 studies that reported

one or more MTMM matrices. The data we describe here are from 258 MTMM

matrices reported in 187 studies5 (a) that reported at least a three trait–three method

(3T3M), 2T4M, or 4T2M matrix,6 (b) were positive definite, and (c) whose data

resulted in a convergent and admissible solution for either the CTCM, CTCU, or

CTCM-R models, as these represented the three baseline models against whose per-

formance the alternative models were compared.

Analyses

We used LISREL-VIII (Jöreskog & Sörbom, 1993) to fit each of the models described

earlier and noted whether the model converged to a solution within 1,000 iterations

and whether the solution was admissible. Inadmissible solutions contained factor cor-

relations or loadings . |1.00| and/or negative uniquenesses. We recorded in an Excel

document, for each matrix and each model tested, (a) sample size; (b) the number of

Traits and Methods included in the MTMM matrix; (c) where possible, the Trait and

Method type classified according to the taxonomy reported by Lance et al. (2014); (d)

whether the model was nonconvergent, inadmissible, or admissible; (e) df and x2; and

(f) the standardized root mean squared residual (SRMSR), the root mean squared error

of approximation (RMSEA; Browne & Cudeck, 1993), the Tucker–Lewis index (TLI;

Tucker & Lewis, 1973), and Bentler’s (1990) comparative fit index (CFI) as these are

commonly reported and recommended overall goodness-of-fit indices (Hu & Bentler,

1998; McDonald & Ho, 2002).

Results

Table 2 summarizes overall study characteristics. The typical MTMM study in our

sample had a ‘‘modest’’ N (Mdn = 183, though N ranged considerably from 17 to
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nearly 40,000), included 3 to 7 Traits (Mdn = 4) and 2 to 4 Methods (Mdn = 3). The

MTMM matrices reanalyzed in this study represented wide varieties of (a) Traits,

including job performance (k = 34), personality (k = 52), attitudes (k = 40), job or life

satisfaction facets (k = 19), assessment center (AC) dimensions (k = 14), job/organi-

zational characteristics (k = 12), academic performance (k = 17), children’s (problem)

behavior (k = 25), and core self-evaluations (k = 31), and (b) Methods, including AC

exercises (k = 14), raters/rater sources (k = 83), occasions (k = 51), rater source plus

objective assessment (k = 19), scale format (k = 51), and alternative test forms (k =

55).7

Table 3 shows results pertaining to C&A. As expected, the CTCM model dis-

played significantly lower C&A rates compared with the CTCU model (24% vs.

79%; x2[1] = 156.39, p\ .01) and these rates are consistent with previous research

(e.g., Lance, Woehr, & Meade, 2007; Marsh & Bailey, 1991). Note that in these two

models only, nonconvergence/inadmissibility issues can stem either from out-of-

range factor correlations/loadings or negative uniquenesses. Table 4 shows that the

CTCM model returned inadmissible solutions due to estimated factor correlations

. |1.00| or Heywood cases or both but that when the CTCU model was inadmissible

it was almost always due to the fact that both problems were present.

Table 3 shows that the CTCM-R model resulted in an admissible solution far

more often than did the CTCM model (84% vs. 24%, respectively; x2[1] = 189.79,

Table 3. Model Convergence and Admissibility.

Model
Number/% convergent

and admissible
Number/%

nonconvergent
Number/%
inadmissible

CTCM 61/24% 114/44% 83/32%
CTCU 203/79% 12/5% 43/17%
CTCM-R 217/84% 11/4% 30/12%
CTUM 242/94% 1/\1% 15/6%
CTCoM 107/42% 6/2% 145/56%
CTCoUM 219/85% 0/0% 39/15%

Note. CTCM = correlated trait–correlated method; CTCU = correlated trait–correlated uniqueness;

CTCoUM = correlated trait–constrained uncorrelated method model; CTCoM = correlated traits–
constrained method; CTUM = correlated traits–uncorrelated methods.

Table 2. Overall Study Characteristics.

Median Range 10th percentile 90th percentile

Sample size 183 17 to 39,923 69 621
Number of traits 4 2 to 13 3 7
Number of methods 3 2 to 6 2 4
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p\ .01). This is despite the fact that the CTCM and CTCM-R models are mathema-

tically identical—the correlations between dfs and x2s for cases in which both mod-

els resulted in C&A solutions were 1.00, confirming their identity. The CTCM-R

model even surpassed the CTCU model in producing admissible solutions (84% vs.

79%, respectively). The CTUM model resulted in the highest rates of admissible

solutions (94%), even surpassing its conceptual cousin the CTCU model. Recall that

the CTCoM model imposes equality constraints within columns of LM in the

CTCM-R model. The relatively small proportion of admissible solutions for this

model (42%) suggests that these restrictions are often implausible. Every inadmissi-

ble and nonconvergent model CTCoM contained Method correlations that were esti-

mated . |1.00|, suggesting that these out-of-bounds estimates of Method correlations

were symptoms of misspecified equality constraints among Method factor loadings.

Perhaps ironically, the CTCoUM model that combines the invariance restrictions

within Methods and constrains the Method correlations to orthogonality resulted in

one of the highest rates of model admissibility of all the models tested (85%). This

was because the offending Method correlations . |1.00| in the CTCoM model were

fixed = 0 in the CTCoUM model, thus solving (or rather, obscuring) the C&A prob-

lem in the CTCoM model but worsening model fit (see below).

It has been suggested that the CTCU model be invoked only as a ‘‘last-ditch’’

option only in the event that other, more theoretically plausible, models fail to return

an admissible solution (Lance et al., 2002). Restricting attention to the 41 samples in

which the CTCU model (but not the CTCM or CTCM-R models) returned an admis-

sible solution, we found that the CTCoM, and especially the CTUM, and CTCoUM

models often returned admissible solutions (see Table 5). Thus, one or more of these

constrained models, which are in some cases perhaps more theoretically defensible

than the CTCU model, may still be viable analytic alternatives to the CTCU model

even when some parameterization of the CTCM (including even the CTCM-R model)

model fails. These might include cases in which Method effects are suspected to be

present but may be assumed (or shown empirically) to be independent of one another

(the CTUM model), where Method effects may be assumed (or shown empirically) to

be homogeneous across Traits (the CTCoM model), or both (the CTCoUM model).

Table 6 summarizes overall model fit. Note first that even though the CTCM and

CTCM-R models are identical mathematically the median df and 20% trimmed mean

x2 are both larger for the CTCM model (t[276] = 6.17; p\ .01, for mean Winsorized

Table 4. Reasons for CTCM and CTCU Model Inadmissibility.

Model
Number/% factor

correlations . |1.0|
Number/% negative

uniqueness
Number/%

both
Total number of

inadmissible solutions

CTCM 24/29% 17/20% 42/51% 83
CTCU 4/9% 0 39/91% 43

Note. CTCM = correlated trait–correlated method; CTCU = correlated trait–correlated uniqueness.
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x2 statistics). This is because ‘‘smaller’’ MTMM matrices are more prone to empiri-

cal underidentification problems that can cause inadmissible solutions as compared

with ‘‘larger’’ models that afford greater nominal df. Perhaps more interesting are

comparisons between the CTCM-R model and its special cases. At the aggregate

level the CTCM-R fit significantly better than all three of them (t[457] = 3.83, p\

.01 vs. CTUM; t[322] = 7.91, p \ .01, vs. CTCoM; t[434] = 3.09, p \ .01, vs.

CTCoUM) indicating that orthogonal Methods or invariance constraints within

Methods, or both, were often implausible model restrictions. At the individual study

level, there were 87 cases in which all four models reached admissible solutions. In

36 (41%) of these cases, the CTCM-R model fit significantly better (in terms of Dx2

tests) than all three alternative models, indicating that neither the invariance con-

straints on Method factor loadings nor the hypothesis of orthogonal Methods was sta-

tistically plausible. In 30 (34%) cases, the fit of the CTCM-R model did not differ

from that for the CTUM model but was significantly better than that for the CTCoM

and CTCoUM models, indicating that the hypothesis of uncorrelated Method factors

was plausible but the invariance constraints on Method factor loadings were not. In

the remaining 21 (24%) cases, the Dx2 tests indicated that both sets of restrictions

were plausible. Finally, results for the overall goodness-of-fit indices shown in the

right hand portion of Table 5 show that they were of little use in distinguishing

among models except perhaps for the CTCoUM model, which, on the average, failed

to meet currently accepted cutoff values for RMSEA (� .06) and TLI (� .95; Hu &

Bentler, 1998).

Simulation Study

One of the limitations of the main portion of this study was that in the analysis of real

data one cannot judge the accuracy of parameter estimates, because population values

are never known. Consequently, we undertook a small simulation study that would

allow us to estimate bias in parameter estimates incurred in the MTMM models stud-

ied here. We generated multivariate normal data using R (R Core Development

Team, 2012) with the CTCM model as the generating model and manipulated one

Table 5. Restricted Models’ C&A Rates for Studies in Which the CTCU (But Not the
CTCM and CTCM-R) Model Returned Admissible Solutions.

Model
Number/% convergent

and admissible
Number/%

nonconvergent
Number/%
inadmissible

CTUM 29 (71%) 1 (2%) 11 (27%)
CTCoM 10 (24%) 2 (5%) 29 (71%)
CTCoUM 27 (66%) 0 (0%) 14 (34%)

Note. C&A = convergence and admissibility; CTCM = correlated trait–correlated method; CTCU =

correlated trait–correlated uniqueness.
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factor thought to be related to model C&A rate—model size. As such, the two popu-

lation models were a 3T3M model and a 5T5M MTMM model. These represent min-

imum and ‘‘large’’ MTMM matrices according to Lance et al.’s (2014) review.

Model parameters’ values were varied about the median values presented in Lance et

al.’s review so as to represent ‘‘typical’’ values found in the MTMM literature (see

Table 7). We selected a sample size of N = 200 (just above the Mdn of 183 reported

in Table 2 earlier) with 1,000 replications.

Results

Table 8 shows that (as expected) model size had a large effect on the number of

C&A solutions achieved by the CTCM model because larger models afford more

Table 6. Model Goodness of Fit for Convergent and Admissible Solutions.

Model k df x2 % p\ .01 SRMSR RMSEA TLI CFI

CTCM 61 33 89.81 54% .041 .048 .98 .99
MIN 5 1.71 0 0 .77 .89
MAX 662 11458.77 .15 .17 1.02 1.00
SD 100.84 1484.80 .03 .04 .05 .02

CTCU 203 15 42.51 35% .043 .063 .98 .99
MIN 2 0.19 0 0 .68 .76
MAX 572 3294.38 .19 .46 1.86 1.00
SD 57.89 340.58 .03 .07 .26 .04

CTCM-R 217 14 46.99 44% .044 .048 .98 .99
MIN 5 1.33 0 0 .63 .79
MAX 662 11458.77 .18 .19 1.99 1.00
SD 64.67 816.84 .03 .05 .11 .03

CTUM 242 15 63.43 48% .055 .061 .97 .99
MIN 6 0.97 .01 0 .53 .76
MAX 672 11982.62 .18 .25 1.88 1.00
SD 67.41 829.32 .03 .05 .13 .04

CTCoM 107 36 95.23 63% .058 .069 .96 .98
MIN 9 3.80 .02 0 .28 .49
MAX 697 15538.15 .33 .22 1.86 1.00
SD 83.21 1632.40 .09 .05 .18 .09

CTCoUM 219 23 123.15 70% .064 .082 .93 .96
MIN 10 4.72 .01 0 .18 .48
MAX 707 20033.65 .31 .27 1.86 1.00
SD 74.20 1462.66 .04 .06 .18 .09

Note. CTCM = correlated trait–correlated method; CTCU = correlated trait–correlated uniqueness;
SRMSR = standardized root mean squared residual; RMSEA = root mean square error of approximation;

TLI = Tucker–Lewis index; CFI = comparative fit index; MIN = minimum observed value; MAX =
maximum observed value; SD = standard deviation. First row of entries for each model are k = number

of C&A studies; df = median df; x2 = 20% trimmed mean x2 (Wilcox & Keselman, 2003); % p\ .01 =
percentage of studies whose probability values for estimated x2 statistics were \.01. SRMSR, RMSEA,
TLI, and CFI are median standardized root mean squared residuals, respectively.
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nominal df. All models that specified orthogonal Method factors achieved very favor-

able C&A rates (however, see below) as did the CTCM-R model. In general terms,

C&A results for the simulated data were consistent with those for previously pub-

lished data shown in Table 3.

Table 9 shows summary goodness-of-fit data for models that reached C&A solu-

tions. Just as for the real data reported in Table 6, the models tested were largely

indistinguishable from one another in terms of popularly reported goodness-of-fit

indexes relative to their recommended cutoff criteria (Hu & Bentler, 1998). However,

the relative magnitudes of the models’ noncentrality parameter estimates clearly indi-

cate which models were not the generating models for both the 3T3M and 5T5M

data.

Finally, Table 10 shows estimated bias for parameter estimates. Given that the

models’ population values were deviated about the medians by 6.10 (see Table 7),

we considered bias � .10 as representing large estimation bias. Table 10 shows that

the CTCM model produced ‘‘homogenized’’ estimates (i.e., underestimated Trait

factor loadings and correlations and overestimated Method factor loadings and

Table 8. Model Convergence and Admissibility.

Model

3T3M 5T5M

Number
convergent

Number convergent
and admissible

Number
convergent

Number/Convergent
and admissible

CTCM 528 79 574 252
CTCU 995 956 1,000 1,000
CTCM-R 952 643 985 731
CTUM 957 949 979 979
CTCoM 936 307 980 471
CTCoUM 997 986 1,000 1,000

Note. CTCM = correlated trait–correlated method; CTCU = correlated trait–correlated uniqueness;

CTCoUM = correlated trait–constrained uncorrelated method model; CTCoM = correlated traits–
constrained method; CTUM = correlated traits–uncorrelated methods.

Table 7. Population Values for Simulation Study.

Population parameters Mdn from Lance et al. (2014) Population values

Method loading .28 .18, .28, .38
Trait loading .50 .40, .50, .60
Method correlation .29 .19, .29, .39
Trait correlation .36 .26, .36, .46

Note. Parameter values were selected equally often in population models so that the mean value equaled

Lance et al.’s median value.
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correlations) in the 3T3M data but that these effects diminished somewhat in the

5T5M data, this despite the fact that the CTCM model was the generating model.

Recall, however, from Table 8 that these results are from relatively few samples.

The CTCU model produced slightly elevated estimates of Trait factor loadings and

correlations as would be expected due to the moderate-to-low population Method

factor loadings and correlations (see Conway et al., 2004) but by definition produced

highly downwardly biased estimates of Method factor loadings and correlations by

virtue of the fact that they are not estimated (i.e., assumed = 0) in this model. The

CTCM-R model exhibited a ‘‘homogenizing’’ effect on model parameter estimates

similar to that of the CTCM model but to a much lesser degree—CTCM-R model

estimates were among the most accurate of any shown in Table 10. While the

CTUM and CTCoUM models provided reasonably accurate estimates of Trait factor

loadings and correlations they, like the CTCU model, provided severely biased esti-

mates for Method correlations by virtue of their nonestimation. Finally, the CTCoM

model produced significant underestimates (overestimates) for Trait (Method) factor

loadings in both the 3T3M and 5T5M data sets. In general, the CTCM-R model pro-

vided the least biased model estimates for the complete set of parameters that are rel-

evant to a CFA model representation of MTMM data.

Recommendations, Discussion, and Conclusions

Results from this study support the following conclusions and recommendations:

Table 9. Model Goodness of Fit Means for Convergent and Admissible Solutions.

Model k df x2 NCP RMSEA TLI CFI

3T3M
CTCM 79 12 6.48 .06 .001 1.07 1.00
CTCU 949 15 42.51 1.93 .063 .98 .99
CTCM-R 643 12 8.46 .31 .003 1.05 1.00
CTUM 949 15 15.49 2.28 .018 .99 .99
CTCoM 307 18 17.74 1.91 .013 1.00 .99
CTCoUM 986 21 22.01 2.84 .017 .99 .99

5T5M
CTCM 252 230 228.79 3.03 .004 1.00 .99
CTCU 1,000 215 230.85 10.20 .011 .99 .99
CTCM-R 731 230 230.75 3.43 .004 1.00 .99
CTUM 979 240 252.96 8.55 .009 .99 .99
CTCoM 471 250 269.86 12.14 .011 .98 .99
CTCoUM 1,000 260 284.02 15.25 .013 .98 .98

Note. CTCM = correlated trait–correlated method; CTCU = correlated trait–correlated uniqueness;

CTCoUM = correlated trait–constrained uncorrelated method model; CTCoM = correlated traits–
constrained method; CTUM = correlated traits–uncorrelated methods; NCP = noncentrality parameter;
RMSEA = root mean square error of approximation; TLI = Tucker–Lewis index; CFI = comparative fit

index; k = number of C&A studies; df = median df; x2 = median x2.
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1. Among the models studied here, CTCM-R model is often the optimal model

as it (a) maintains all the theoretical advantages of its mathematical

Table 10. Mean Bias and Standard Deviation for Parameter Estimates.

Trait loadings Trait correlations Method loadings Method correlations

3T3M
CTCM

M 2.042 2.115 .056 .160
SD .182 .277 .224 .327

CTCU
M .023 .058 2.280 2.290
SD .102 .130 0 0

CTCM-R
M 2.028 2.100 .070 .090
SD .197 .237 .269 .292

CTUM
M .023 .053 .007 2.290
SD .104 .128 .285 0

CTCoM
M 2.041 2.169 .171 .198
SD .189 .226 .136 .381

CTCoUM
M .023 .056 2.068 2.290
SD .103 .126 .107 0

5T5M
CTCM

M 2.026 2.061 .033 .124
SD .121 .165 .166 .268

CTCU
M .020 .040 2.280 2.290
SD .071 .096 0 0

CTCM-R
M 2.014 2.025 .015 .047
SD .124 .151 .195 .268

CTUM
M .023 .052 2.035 2.290
SD .075 .097 .197 0

CTCoM
M 2.048 2.151 .128 2.004
SD .117 .193 .320 .503

CTCoUM
M .021 .052 .004 2.290
SD .070 .099 .056 0

Note. M = mean; SD = standard deviation; CTCM = correlated trait–correlated method; CTCU =

correlated trait–correlated uniqueness; CTCoUM = correlated trait–constrained uncorrelated method
model; CTCoM = correlated traits–constrained method; CTUM = correlated traits–uncorrelated

methods.
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equivalent CTCM model (Lance et al., 2002) while largely avoiding C&A

problems associated with it, (b) generally returns C&A solutions at least as

often as any of the other models studied here, (c) generally provides superior

model fit as compared to its special cases studied here, and (d) returns very

accurate model parameter estimates relative to simulated population values.

2. The CTUM model is a viable and attractive model when the fuller CTCM-R

model results are inadmissible and when orthogonal Methods is a plausible

hypothesis. However, results presented here (and the fact that the average

Method correlation in the sample reported here was .29) indicate that this

hypothesis is not routinely plausible and should be tested, when possible,

before implementing the CTUM model.

3. Imposition of invariance constraints within Method factors in the CTCM-R

model often results in improper solutions caused by estimated Method factor

correlations . |1.00| in the CTCoM model. Improper estimates for Method

factor correlations are apparently one symptom of misspecified invariance

constraints and can be used, in conjunction with statistical tests (i.e., Dx2

tests), to ascertain the plausibility of these constraints. Fixing these offending

estimates to zero in the CTCoUM model often yields an admissible solution

(because it obscures out-of-bounds values estimated for Method factor corre-

lations) but at the expense of worse model fit (thereby providing additional

evidence that this model is inconsistent with the data).

4. The constrained models presented here may serve as attractive alternatives to

the CTCU model (which often produces upwardly biased estimates of Trait

factor loadings and correlations and severely downwardly biased estimates of

Method factor loadings and correlations) when the full CTCM-R model does

not hold, and especially if the imposed constraints are plausible theoretically

and statistically.

Study Limitations and Directions for Future Research

These conclusions and recommendations are based on the largest sample of MTMM

studies ever reported, sampling wide varieties of Traits and Methods and supplemen-

ted with simulated data. As such, we view our findings as being ecologically valid

and generalizable. Still, there are likely other MTMM studies that would have met

our inclusion criteria that our literature search efforts did not detect. As such, we limit

our conclusions and recommendations with the realization that the studies reported

here represent a sample (albeit a very large one) and not the population of MTMM

studies reported in published and unpublished literature.

Second, it could be argued that the CTCM-R model is no longer relevant as

Heywood cases can be resolved using inequality constraint options that are available

in many currently popular SEM software packages and this is, to some extent, a rea-

sonable claim. Some examples of implementations of inequality constraints are given

in the appendix. However, and as we alluded to earlier, most of these are post hoc

symptom-based fixes that may disguise other clues to sources of model misfit,
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whereas the Rindskopf reparameterization of the CTCM model is a preemptive,

model-based approach to avoiding Heywood cases.

Finally, we made informed and reasoned decisions as to which MTMM models we

would study here and, as a result, eliminated some models from study. Many of the

models omitted from our study were simply not theoretically motivated (e.g., many of

the other submodels in the taxonomy of Widaman, 1985), were not comparable on

common grounds (e.g., the CTC(M-1) and direct product models) or presented insur-

mountable data challenges (i.e., multiple indicator models). As such, our conclusions

and recommendations are confined to the models studied here; future research may

extend our work to a broader sample of analytic models for MTMM data.

Conclusion

In conclusion, we recommend the CTCM-R model for the analysis of MTMM data

as it (a) maintains the theoretical advantages of its mathematically identical CTCM

model but without the C&A problems that the CTCM model often encounters; (b)

returns C&A model solutions as often as the CTCU model, which is known to pro-

vide upwardly biased estimates for trait factor loadings and correlations when

Method correlations are nonzero in the population; and (c) produces estimates for the

complete array of parameters relevant to a CFA parameterization of MTMM data

relative to the other models studied here. Invariance restrictions on Method factor

loadings and orthogonality constraints on Method correlations may also be plausible

when they are justified theoretically and empirically.

Appendix

Implementation of Inequality Constraints in Popular SEM Software Packages

Mplus (Muthén & Muthén, 1998-2012) users may include the following syntax:

MODEL:

F1@1;

F2@1;

MODEL CONSTRAINT;

F1 WITH F2 \ 1.0;

D1 . 0;

to constrain the correlation between factors F1 and F2 to be less than unity and the

uniqueness (D1) to be positive.

Similarly, LISREL (Jöreskog & Sörbom, 1993) users can use interval restrictions

syntax of the form:

IR TD(1,1) . 0

IR PH(2,1) . -1\1
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to constrain a uniqueness to be positive and a factor correlation to be\ |1.0|. SAS

PROC CALIS users can use the BOUNDS statement to effect constraints such as

these. However, Jöreskog and Sörbom (1993) recommend that users ‘‘run the prob-

lem without the interval restrictions first and then apply only those interval restric-

tions which are needed. Chi-square and standard errors will be affected if parameter

estimates are on the boundary of the interval’’ (p. 76). To our knowledge, the CTCM-

R reparameterization of the mathematically identical CTCM model does not suffer

from these limitations.

Third, and as noted in the EQS program manual (Bentler, 2006), ‘‘The program

automatically constrains variance estimates to be nonnegative, and correlations

between variables having fixed variances as lying between 21 and + 1’’ (p. 81).

This is a very convenient feature, but we urge caution in invoking it as it may mask

important clues (i.e., improper solutions) that the model being fit is inconsistent with

the data as was the case with respect to the CTCoM model in this study.
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Notes

1. Commonly, Traits are fully crossed with Methods but they need not necessarily be (see

especially, the assessment center literature in which performance Dimensions qua Traits

are rarely fully crossed with different Exercises qua Methods).

2. Correlations between Traits and Methods are routinely constrained to zero for identifica-

tion purposes.

3. It was later discovered that there were a number of errors in this study’s simulations and so

their results should be considered suspect.

4. We are especially grateful to Joseph A. Cote for providing a list of MTMM studies

reviewed in Cote and Buckley (1987) along with many of the original data sets.

5. A bibliography of these 187 studies as well as the 258 correlation matrices themselves are

available by contacting the first author at clancephd@gmail.com.

6. These are the minimum matrix sizes required for identification purposes for the CTCM

model (see Table 4 in Lance et al., 2002).

7. Frequencies reported here do not sum to 258 because some studies’ Traits or Methods were

not classifiable according to these categories.
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