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CONVERGENCE ANALYSIS FOR FINITE ELEMENT

DISCRETIZATIONS OF THE HELMHOLTZ EQUATION WITH

DIRICHLET-TO-NEUMANN BOUNDARY CONDITIONS

J. M. MELENK AND S. SAUTER

Abstract. A rigorous convergence theory for Galerkin methods for a model
Helmholtz problem in Rd, d ∈ {1, 2, 3} is presented. General conditions on the
approximation properties of the approximation space are stated that ensure
quasi-optimality of the method. As an application of the general theory, a full
error analysis of the classical hp-version of the finite element method (hp-FEM)
is presented for the model problem where the dependence on the mesh width
h, the approximation order p, and the wave number k is given explicitly. In
particular, it is shown that quasi-optimality is obtained under the conditions
that kh/p is sufficiently small and the polynomial degree p is at least O(log k).

1. Introduction

Helmholtz boundary value problems appear in various applications, for example,
in the context of inverse and scattering problems. When such problems are solved
numerically, the questions of stability and convergence arise. Of particular interest
is how critical parameters such as the discretization parameters (e.g., mesh size,
approximation order) and the wave number k affect the performance of the method.

Many discretization techniques for Helmholtz problems have been proposed and
discussed in the literature. In the context of Galerkin methods, which is the setting
of the present paper, these include both standard and non-standard finite element
methods. Although significant progress in the understanding of the behavior of
numerical methods for Helmholtz problems has been made in the past, a general, full
analysis that is explicit in the wave number k and discretization parameters is still
not available. Partial results such as sharp estimates for the inf-sup constant of the
continuous equations, lower estimates for the convergence rates, one-dimensional
analysis by using the discrete Green’s function as well as a dispersion analysis for
finite element discretizations and generalizations thereof have been derived by many
researchers in the past decades (see, e.g., [2, 4, 6, 7, 9, 10, 11, 15, 17, 18, 19, 22, 23,
24, 25, 26, 27, 28, 33, 38, 43, 44]).

The goal of the present and the companion paper [32] is to derive fairly general
stability and convergence estimates for Helmholtz problems that are:

• explicit in the wave number, the mesh width, and the polynomial degree of
the hp-FEM space;
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• valid for problems in d spatial dimensions, d ∈ {1, 2, 3};
• only based on approximation properties of the (generalized) finite element
space; the rationale behind this requirement is that it is easier to verify
such an approximation property than to perform a full-fledged convergence
analysis for a given approximation space.

These estimates require the development of new analytical tools and cannot be
achieved in one stroke. As a first step, therefore, the present paper focuses on
the Helmholtz equation in a bounded d-dimensional domain Ω with transparent
boundary conditions, which we assume to be realized exactly with a Dirichlet-to-
Neumann map (DtN map) Tk. We will place special attention on the case where
Ω is a ball since then the DtN map Tk can be analyzed fairly explicitly. In this
specific setting, we provide stability and convergence estimates of finite element
discretizations that are explicit in the wave number, the mesh width, and the
polynomial degree of the finite element space. The companion paper [32] will build
upon the results of the present paper and will address more general situations such
as the Helmholtz equation with Robin boundary conditions on smooth bounded
domains or in convex polygons.

The outline of this paper is as follows: Section 2 formulates the model prob-
lem. Section 3 provides an analysis of the model problem. In particular, the k-
dependence of the solution is made explicit (Lemmata 3.9, 3.5). Section 4 analyzes
the discrete stability and states conditions on the properties of the approximation
space to ensure quasi-optimality of the Galerkin scheme. For the case where Ω
is a circle or a sphere, the conditions for stability and quasi-optimality are made
fully explicit (Theorems 4.2, 4.3). Section 5 applies the results of Section 4 to
the hp-version of the FEM. In particular, for the setting of Theorem 4.2 we show
in Corollary 5.6 that quasi-optimality of the hp-FEM can be achieved under the
assumption that

(1.1)
kh

p
+ k

(
kh

σp

)p

≤ C

where the constants C, σ > 0 are sufficiently small but independent of h, p, and
k. Several appendices conclude the paper: Appendix A provides detailed prop-
erties of Bessel functions that are needed in Section 3. Appendix B is concerned
with hp-approximation of functions in the Sobolev spaces Hs; the novel feature
of our results is its focus on simultaneous approximation in L2 and H1, which is
an essential ingredient in our k-explicit bounds. Appendix C finally provides hp-
approximation results for functions that are analytic. These latter approximation
results are tailored to regularity properties of solutions of Helmholtz-type problems.

2. Formulation of the model Helmholtz problem

The Helmholtz problem in the full space Rd with Sommerfeld radiation condition
is given by: Find U ∈ H1

loc(R
d) such that

(2.1)

(
−Δ− k2

)
U = f in Rd,∣∣∣∣∂U∂r − i kU

∣∣∣∣ = o
(
‖x‖

1−d
2

)
‖x‖ → ∞

is satisfied in a weak sense (cf. [35]). Here, ∂/∂r denotes the derivative in radial
direction x/ ‖x‖. We assume throughout the paper that the wave number is positive
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and bounded away from zero, i.e.,

(2.2) k ≥ k0 > 0.

We assume that f is local in the sense that there exists a bounded, simply
connected domain Ω ⊂ Rd that satisfies supp f ⊂ Ω. The complement of Ω is
denoted by Ω+ := Rd\Ω and the interface by Γ := Ω ∩ Ω+. Then (2.1) can be
formulated in an equivalent way as a transmission problem by seeking functions
u ∈ H1 (Ω) and u+ ∈ H1

loc(Ω
+) such that

(2.3)

(
−Δ− k2

)
u = f in Ω,(

−Δ− k2
)
u+ = 0 in Ω+,

u = u+ and ∂u/∂n = ∂u+/∂n on ∂Ω,∣∣∣∣∂u+

∂r
− i ku+

∣∣∣∣ = o
(
‖x‖

1−d
2

)
‖x‖ → ∞.

Here, n denotes the normal vector pointing into the exterior domain Ω+.
It can be shown that, for given g ∈ H1/2 (∂Ω), the problem

(2.4) Find w ∈ H1
loc

(
Ω+

)
such that

⎧⎪⎪⎨⎪⎪⎩
(
−Δ− k2

)
w = 0 in Ω+,

w = g on ∂Ω,∣∣∣∣∂w∂r − i kw

∣∣∣∣ = o
(
‖x‖

1−d
2

)
‖x‖ → ∞

has a unique weak solution. The mapping g 
→ w is called the Steklov-Poincaré op-
erator and is denoted by SP : H1/2 (∂Ω) → H1

loc (Ω
+). The Dirichlet-to-Neumann

map is given by Tk := γ1SP : H1/2 (∂Ω) → H−1/2 (∂Ω), where γ1 := ∂/∂n is
the normal trace operator. Hence, problem (2.3) can be reformulated as: Find
u ∈ H1 (Ω) such that

(2.5)

(
−Δ− k2

)
u = f in Ω,

∂u/∂n = Tku on ∂Ω.

The weak formulation of this equation is given by: Find u ∈ H1 (Ω) such that

(2.6) a (u, v) :=

∫
Ω

〈∇u,∇v̄〉 − k2uv̄ −
∫
∂Ω

(Tku) v̄ =

∫
Ω

fv ∀v ∈ H1 (Ω) .

The exact solution of (2.1) can be written as the acoustic volume potential. Let
Gk : Rd\ {0} → C denote the fundamental solution to the operator Lk := −Δ−k2,
i.e., Gk (z) = gk (‖z‖), where

gk (r) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− ei kr

2 i k d = 1,

i
4H

(1)
0 (kr) d = 2,

ei kr

4πr d = 3.

Then, the solution of (2.1) is given by

(2.7) U (x) := (Nkf) (x) :=

∫
Ω

Gk (x− y) f (y) dy ∀x ∈ Rd.

Consequently, the solution of (2.5) and (2.6) is given by

u (x) := (Nkf) (x) :=

∫
Ω

Gk (x− y) f (y) dy ∀x ∈ Ω.
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Finally, we recall that a Galerkin method for (2.6) is given as follows: For a (typi-
cally finite dimensional) space S ⊂ H1(Ω), the Galerkin approximation uS ∈ S to
the exact solution u is given by:

(2.8) Find uS ∈ S s.t. a(uS , v) =

∫
Ω

fv ∀v ∈ S.

3. Analysis of the continuous problem

The analysis of the continuous problem is split into three parts. First, we pro-
vide some estimates for the Dirichlet-to-Neumann map Tk. Then, we prove some
mapping properties of the solution operator and, finally, state the existence and
uniqueness of the continuous problem.

3.1. Estimates for the DtN operator Tk. We equip the space H1 (Ω) with the
norm

‖u‖H :=
(
|u|2H1(Ω) + k2 ‖u‖2L2(Ω)

)1/2

,

which is obviously equivalent to the H1(Ω)-norm. For d = 1, the boundary ∂Ω
consists of the two endpoints of Ω and the L2 (∂Ω)- and H1/2 (∂Ω)-scalar product
and norm are understood as

(u, v)L2(∂Ω) :=
∑
x∈∂Ω

u (x) v (x) and ‖u‖L2(∂Ω) = ‖u‖H1/2(∂Ω) =

√ ∑
x∈∂Ω

|u (x)|2.

For Lipschitz domains, it is well known that a trace estimate holds.

Lemma 3.1. There exists a constant Ctr depending only on Ω and k0 such that
for all u ∈ H1(Ω),

‖u‖H1/2(∂Ω) ≤ Ctr ‖u‖H ,(3.1a)

‖u‖L2(∂Ω) ≤ Ctr ‖u‖1/2L2(Ω) ‖u‖
1/2
H1(Ω) .(3.1b)

Corollary 3.2. For u ∈ H1 (Ω), we have

√
k ‖u‖L2(∂Ω) ≤ C̃tr ‖u‖H with C̃tr :=

Ctr√
2

√
1 + k20
k0

,

where k0 is as in (2.2).

Proof. There holds

k ‖u‖2L2(∂Ω) ≤ C2
trk ‖u‖L2(Ω) ‖u‖H1(Ω) ≤

C2
tr

2

(
k2 ‖u‖2L2(Ω) + ‖u‖2H1(Ω)

)
(3.2)

=
C2

tr

2

((
1 + k2

)
‖u‖2L2(Ω) + |u|2H1(Ω)

)
≤ C̃2

tr ‖u‖
2
H . �

Let Br (x) denote the open ball with radius r about x. For x = 0, we write Br

short for Br (0). Since the right-hand side f in (2.3) has compact support, we may
always choose Ω as some ball BR. In the following analysis we will always restrict
our attention to this case and assume that

(3.3) R ≥ R0 > 0.

Lemma 3.3. Let (3.3) and (2.2) be satisfied. For d = 2, we assume additionally
that k0 ≥ 1. Then, there exist constants c, C > 0 that depend solely on R0 and k0
such that the following is true:
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(1)

(3.4a)
∣∣∣(Tku, v)L2(∂BR)

∣∣∣ ≤ C ‖u‖H ‖v‖H ∀u, v ∈ H1 (BR) .

(2) For d ∈ {2, 3} and all u ∈ H1/2 (∂BR) the real and imaginary parts of
(Tku, u)L2(∂BR) satisfy

−Re (Tku, u)L2(∂BR) ≥ c
‖u‖2L2(∂BR)

R
,(3.4b)

Im (Tku, u)L2(∂BR) > 0 for u �= 0.(3.4c)

For d = 1, instead of (3.4b), (3.4c), there holds

−Re (Tku, u)L2(∂BR) = 0,(3.4d)

Im (Tku, u)L2(∂BR) ≥ k ‖u‖2L2(∂BR) .(3.4e)

Before proving Lemma 3.3, we note the following corollary.

Corollary 3.4. There exists Cc > 0 which depend only on k0 and R0 (cf. (2.2),
(3.3)) such that for all u, v ∈ H1 (BR),

|a (u, v)| ≤ Cc ‖u‖H ‖v‖H .

Proof. The estimate

|a (u, v)| ≤ |u|H1(BR) |v|H1(BR) + k2 ‖u‖L2(BR) ‖v‖L2(BR) +

∣∣∣∣∫
∂BR

(Tku) v̄

∣∣∣∣
is obvious. Hence, the assertion follows from Lemma 3.3. �

Proof of Lemma 3.3. Case d = 3.
The Dirichlet data on ∂BR can be expanded according to

(3.5) u (x) =

∞∑
�=0

�∑
m=−�

um
� Y m

� (θ, φ) ,

where (R, θ, φ) are the spherical coordinates for x ∈ ∂BR and the functions Y m
�

are the standard spherical harmonics. The solution to the exterior homogeneous
Helmholtz problem with Sommerfeld radiation conditions at infinity and prescribed
Dirichlet data at ∂BR can be expanded in the form

(3.6) u (x) =

∞∑
�=0

�∑
m=−�

um
� Y m

� (θ, φ)
h
(1)
� (kr)

h
(1)
� (kR)

,

where (r, θ, φ) are the spherical coordinates of x ∈ R3\BR. By taking the normal
derivative at the boundary we end up with a representation of the Dirichlet-to-
Neumann map

(3.7) Tku =
∞∑
�=0

�∑
m=−�

um
� Y m

� (θ, φ)
z� (kR)

R

with the functions z� (r) := r

(
h
(1)
�

)′
(r)

h
(1)
� (r)

. These functions have been analyzed in [35,

Theorem 2.6.1] where it is shown that

(3.8) 1 ≤ −Re (z� (r)) ≤ �+ 1 and 0 < Im (z� (r)) ≤ r.
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(In [35, Theorem 2.6.1], only Im z� (r) ≥ 0 is stated, while the strict positivity
follows from the positivity of the function q� in [35, (2.6.34)].) It follows from (3.7)
that ∫

∂BR

(Tku) v =
∞∑
�=0

�∑
m=−�

z� (kR)

R
um
� vm�

and from (3.8) we conclude that∣∣∣∣Re∫
∂BR

(Tku) v

∣∣∣∣ =
∣∣∣∣∣
∞∑
�=0

�∑
m=−�

{
Re z� (kR)

R
Re

(
um
� vm�

)
− Im z� (kR)

R
Im

(
um
� vm�

)}∣∣∣∣∣
≤ 1

R

∞∑
�=0

�∑
m=−�

{|Re z� (kR)|+ |Im z� (kR)|} |um
� | |vm� |

≤ 1

R

∞∑
�=0

�∑
m=−�

{|�+ 1|+ kR} |um
� | |vm� |

≤ C
(
R−1 ‖u‖H1/2(∂BR) ‖v‖H1/2(∂BR)+k ‖u‖L2(∂BR) ‖v‖L2(∂BR)

)
.

Using Corollary 3.2 we get∣∣∣∣Re ∫
∂BR

(Tku) v

∣∣∣∣ ≤ CC̃2
tr

(
1 +

1

R0k0

)
‖u‖H ‖v‖H .

Repeating these steps for the imaginary part results in the same upper bound, and
we get for some C that depends only on R0 and k0 the estimate∣∣∣∣∫

∂BR

(Tku) v

∣∣∣∣ ≤ C ‖u‖H ‖v‖H .

The lower estimate of the real part follows from

−Re

∫
∂BR

(Tku) u =

∞∑
�=0

�∑
m=−�

−Re z� (kR)

R
|um

� |2≥
∞∑
�=0

�∑
m=−�

1

R
|um

� |2=
‖u‖2L2(BR)

R
.

The upper estimate for the imaginary part is just a repetition of the previous
arguments.

For the lower estimate of the imaginary part, we consider u ∈ H1/2 (∂BR) \ {0}.
Hence, there exists (m�, ��) in the expansion (3.5) so that um�

��
�= 0. This leads to

Im

∫
∂BR

(Tku) ū =

∞∑
�=0

�∑
m=−�

Im z� (kR)

R
|um

� |2 ≥ C
∣∣um�

��

∣∣2 > 0,

and the lower bound is proved.
Case d = 2.
We expand the Dirichlet data on ∂BR in polar coordinates

(3.9) u (x) =
∑
�∈Z

u� e
i �θ,
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where (R, θ) are the polar coordinates of x ∈ ∂BR. It follows (see, e.g., [12, (2.10)])
that

(3.10) Tku =
∑
�∈Z

u�
w� (kR)

R
ei �θ with w� (r) := r

(
H

(1)
|�|

)′
(r)

H
(1)
|�| (r)

.

Obviously, it is sufficient to analyze w� only for � ∈ N0. By decomposing w� into
its real and imaginary part we get

w� = r
J ′
�J� + Y ′

�Y� + i (Y ′
� J� − J ′

�Y�)

J2
� + Y 2

�

.

For the imaginary part, we obtain

Y ′
� J� − J ′

�Y�
[1, 9.1.27]

= Y�−1J� − J�−1Y�
[1, 9.1.16]

=
2

πr
.

We set M� :=
∣∣∣H(1)

�

∣∣∣ and obtain

(3.11) w� = r
J ′
�J� + Y ′

�Y�

M2
�

+ i
2

πM2
�

=
r

2

d

dr
M2

�

M2
�

+ i
2

πM2
�

.

In the next step, we derive estimates for the coefficients w�.
Case d = 2 and � ∈ N≥2.
Let

M2
�,n (r) :=

2

πr

n∑
m=0

δ�,m
r2m

with δ�,m :=
(2m)!γ�,m

(m!)
2
16m

and

γ�,m :=

m∏
k=1

(
4�2 − (2k − 1)

2
)(3.12)

and define RM
�,n := M2

� −M2
�,n. Note that

(3.13) γ�,� =
(4�)!

22� (2�)!
≥ 0 and γ�,�+1 = − (4�+ 1) γ�,� < 0.

We conclude from [46, §13.75] that, for the choice n = � − 1 ≥ 0, there holds
RM

�,�−1 (r) ≥ 0. Thus,

(3.14) M2
� (r) ≥ M2

�,�−1 (r) ∀r ≥ 0.

Let Kν be the modified Bessel function of order ν. From [46, §13.75] we obtain

N2
� :=

d

dr
M2

� = −16

π2

∫ ∞

0

K1 (2r sinh t) sinh t cosh (2�t) dt

and
cosh (2�t)

cosh t
=

n∑
m=0

γ�,m
(2m)!

sinh2m t+ R̃2
�,n.

If n > �− 3/2, the remainder R̃�,n satisfies

(3.15) R̃2
�,n ∈

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
0,

γ�,n+1

(2n+ 2)!
sinh2(n+1) t

]
if γ�,n+1 > 0,

[
γ�,n+1

(2n+ 2)!
sinh2(n+1) t, 0

]
otherwise.
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We introduce

N2
�,n := −16

π2

n∑
m=0

γ�,m
(2m)!

∫ ∞

0

K1 (2r sinh t) (cosh t)
(
sinh2m+1 t

)
dt

= −16

π2

n∑
m=0

γ�,m

(2m)! (2r)2m+2

∫ ∞

0

K1 (z) z
2m+1dz

= − 2

πr2

n∑
m=0

(2m+ 1)
δ�,m
r2m

=
d

dr
M2

�,n.

Note that M2
� (r) is monotone decreasing for r > 0 (cf. [37, §9-7.3]) and hence

N2
� (r) < 0 for r > 0. Thus,∣∣N2

� (r)
∣∣ = −N2

�,n (r) +RN
�,n with RN

�,n := −N2
� (r) +N2

�,n (r)

and RN
�,n has the explicit representation

RN
�,n (r) =

16

π2

∫ ∞

0

K1 (2r sinh t) (sinh t) (cosh t) R̃
2
�,n (t) dt.

Note that sinh, cosh, and K1 are positive on the positive real axes (cf. [1, 9.6.23]).

We choose n = � and obtain from (3.13) and (3.15) that R̃�,� (t) is negative for t > 0
and hence

(3.16)
∣∣N2

� (r)
∣∣ ≤ −N2

�,� (r) ∀r > 0.

In summary, we have proved that

|Rew�| ≤ −r

2

N2
�,�

M2
�,�−1

=
1

2

∑�
m=0 (2m+ 1)

δ�,m
r2m∑�−1

m=0
δ�,m
r2m

≤ 2�− 1

2
+

2�+ 1

2

δ�,�
r2�

δ�,�−1

r2�−2

(3.17)

=
2�− 1

2
+

(4�− 1)
(
4�2 − 1

)
16�r2

.

Hence, for � ≥ 2 and r ≥ C1

√
� we arrive at

|Rew�| ≤
2�− 1

2

(
1 +

9

8C2
1

)
.

It remains to consider the case

(3.18) r ≤ C1

√
�.

We derive from (3.11) and [1, 9.1.27]∣∣∣r
2
N2

� (r)
∣∣∣ = −r

2
N2

� (r) = �M2
� (r)− r (J�−1J� + Y�Y�−1) ,

and this leads to

(3.19) |Rew�| =

∣∣∣ r
2
N2

� (r)
∣∣∣

M2
� (r)

= �− r (J�J�−1 + Y�Y�−1)

M2
� (r)

.

We deduce from [1, 9.5.2, 9.1.7, 9.1.9] that

J� (r) > 0 and Y� (r) < 0 ∀0 ≤ r ≤ �

and thus
J�J�−1 + Y�Y�−1 > 0 ∀0 ≤ r ≤ �− 1.

If C1 ≤ 2−1/2, there holds C1

√
� ≤ �−1 for all � ≥ 2, and we have proved |Rew�| ≤ �.
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To derive a lower bound for (−Rew�), we proceed as for (3.17) and obtain, for
r ≥ k0,

−Rew� (r) ≥ −r

2

N2
�,�−1 (r)

M2
�,� (r)

=
1

2

∑�−1
m=0 (2m+ 1)

δ�,m
r2m∑�

m=0
δ�,m
r2m

≥ 1

2

1

1 +
δ�,�

r2�

(2�−1)
δ�,�−1

r2�−2

(3.20)

=
1

2

1

1 + 4�−1
8�r2

≥ 1

2

1

1 + 1
2k2

0

.

For the imaginary part of w� we get

(3.21) Imw� (r) =
2

πM2
� (r)

> 0 ∀� ∈ N0 ∀r ≥ k0

because M2
� is non-negative and decreasing for r > 0 (cf. [37, §9-7.3]). For the

upper bound, we combine [20, 8.479] with the fact that M2
� is decreasing to obtain

for � ∈ N≥1,

(3.22a) M2
� (r) ≥ 2

πr
∀r ≥ 1.

Hence, the upper bound

(3.23) Imw� (r) =
2

πM2
� (r)

≤ r

follows.
Case d = 2 and � = 0, 1.
For � = 0, we use [46, §13.75] and get

M2
0 (r) ≥ M2

0,1 (r) =
2

πr

(
1− 1

8r2

)
.

For d = 2, there holds k0 > 1/2 by our assumptions and, thus, for r ≥ k0 we get

(3.22b) M2
0 (r) ≥ 1

πr
.

The combination of (3.11) and (3.22) implies

|Rew� (r)| ≤
πr2

2

∣∣N2
� (r)

∣∣ .
We deduce from (3.16) (which is also valid for � = 0, 1) that

∣∣N2
� (r)

∣∣ ≤ ∣∣N2
�,� (r)

∣∣ ≤ 2

πr2

�∑
m=0

(2m+ 1)
δ�,m
r2m

≤ 2

πr2

{
1 � = 0,
1 + 9

8r2 � = 1.

This implies, for r ≥ k0 (cf. (2.2)),∣∣N2
� (r)

∣∣ ≤ C
2

πr2
,

where C depends solely on k0. Thus, for � = 0, 1,

|Rew�| ≤ C ≤ C (�+ 1) .

Since M2
� is monotone decreasing (see [37, §9-7.3]), it follows from (3.10) that

Rew� (r) < 0 for all r > 0.
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In (3.20) we have derived a lower bound for (−Rew�) provided � ≥ 1. It remains

to consider the case � = 0. The assumption on k0 implies r ≥ k0 ≥ 1
2

√
3 so that

−Rew0 (r) ≥ −r

2

N2
0,1 (r)

M2
0,0 (r)

=
1

2

(
1− 3

8r2

)
≥ 1

4
.

To summarize both cases, we have proved that

(3.24a) 0 < c ≤ −Rew� (r) ≤ C (�+ 1) ∀r ≥ k0 ∀� ∈ N0,

where c, C only depends on k0.
For the imaginary part, it remains (cf. (3.22a), (3.23)) to prove the upper bound

for (Imw0) and employ (3.11) and (3.22b) to obtain

(3.24b) Imw0 =
2

πM2
0

≤ 2r.

By proceeding as for d = 3 (after (3.8)) the estimates (3.4) follow from (3.24).
Case d = 1.
For boundary values ψ : {−R,R} → R, the Dirichlet-to-Neumann operator is

given by

(3.25) Tkψ = i kψ.

The trace theorem (in one dimension) leads to∣∣∣∣Re ∫
∂BR

(Tku) v

∣∣∣∣ =
∣∣∣∣∣Re

(
i k

∑
r=±R

u (r) v (r)

)∣∣∣∣∣
≤ k

∣∣∣∣∣Im ∑
r=±R

u (r) v (r)

∣∣∣∣∣ ≤ k
∑

r=±R

|u (r)| |v (r)|

Cor. 3.2
≤ C ‖u‖H ‖v‖H ,

where C only depends on R0 and k0. By the same techniques we can estimate the
imaginary part and, thus, obtain (3.4a). The lower bounds (3.4d), (3.4e) follow
from

−Re

∫
∂BR

(Tku)u = −Re

(
i k

∑
r=±R

|u (r)|2
)

= 0,

Im

∫
∂BR

(Tku)u = k
∑

r=±R

|u (r)|2 ≥ k ‖u‖2L2(∂BR) . �

3.2. Analysis of the solution operator Nk. In this section, we derive some
explicit bounds for the solution operator Nk under the assumption that the right-
hand side is in L2 (Ω). These estimates will be the basic tool for proving the discrete
stability of the finite element discretization and the convergence. The key ingredient
of the analysis of the hp-FEM in Section 5 is the following decomposition result:

Lemma 3.5 (decomposition lemma). Let Ω be contained in a ball of radius R > 0.
Then there exists a constant C > 0 depending only on R and k0 such that for
f ∈ L2(Ω) the function v given by

v(x) = Nkf(x) =

∫
Ω

Gk(x− y)f(y) dy, x ∈ Ω,
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satisfies

k−1‖v‖H2(Ω) + ‖v‖H1(Ω) + k‖v‖L2(Ω) ≤ C‖f‖L2(Ω).

Furthermore, for every λ > 1, there exists a λ- and k-dependent splitting v =
vH2 + vA with

‖∇pvH2‖L2(Ω) ≤ C

(
1 +

1

λ2 − 1

)
(λk)p−2 ‖f‖L2(Ω) ∀p ∈ {0, 1, 2},(3.26a)

‖∇pvA‖L2(Ω) ≤ Cλ
(√

dλk
)p−1

‖f‖L2(Ω) ∀p ∈ N0.(3.26b)

Here, ∇pvA stands for a sum over all derivatives of order p (see (5.1) for details).

Remark 3.6. 1) For f ∈ L2(Ω) the function v = Nk(f) cannot be expected to have
more Sobolev regularity than H2. The decomposition v = vH2 + vA of Lemma 3.5
splits v into an H2-regular part vH2 and an analytic part vA. The essential feature
of this splitting is that theH2-part vH2 has a betterH2-regularity constant in terms
of k than v itself, namely, (3.26a), (3.26b), and the triangle inequality ‖∇2v‖L2(Ω) ≤
‖∇2vH2‖L2(Ω) + ‖∇2vA‖L2(Ω) imply

‖∇2vH2‖L2(Ω) ≤ C‖f‖L2(Ω) versus ‖∇2v‖L2(Ω) ≤ Ck‖f‖L2(Ω).

The fact that ‖vH2‖H2 ≤ C‖f‖L2 for a C > 0 independent of k will be essential for
the stability and convergence analysis below.

2) Inspection of the proof shows that the mappings f 
→ vH2 and f 
→ vA are
linear maps.

Proof of Lemma 3.5. The estimates for v follow directly from those for vH2 and vA
by fixing a parameter λ > 1. In order to construct the splitting v = vH2 + vA, we
start by recalling the definition of the Fourier transform for functions with compact
support

û (ξ) = (2π)−d/2
∫
Rd

e− i〈ξ,x〉 u (x) dx ∀ξ ∈ Rd

and the inversion formula

u (x) = (2π)−d/2
∫
Rd

ei〈x,ξ〉 û (ξ) dξ ∀x ∈ Rd.

Let BΩ ⊂ Rd be a ball of radius R containing Ω. Extend f by zero outside of Ω and
denote this extended function again by f . Let μ ∈ C∞ (R≥0) be a cutoff function
such that

(3.27)

suppμ ⊂ [0, 4R] , μ|[0,2R] = 1, |μ|W 1,∞(R≥0) ≤
C

R
,

∀x ∈ R≥0 : 0 ≤ μ (x) ≤ 1, μ|[4R,∞[ = 0, |μ|W 2,∞(R≥0) ≤
C

R2
.

Define M (z) := μ (‖z‖) and

vμ (x) :=

∫
BΩ

Gk (x− y)M (x− y) f (y) dy ∀x ∈ Rd.

The properties of μ guarantee vμ|BΩ
= v|BΩ

so that we may restrict our attention
to the function vμ. Since supp f ⊂ BΩ we may write

(3.28) vμ = (GkM) � f,
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where “�” denotes the convolution in Rd. We will define a decomposition of vμ
(which will determine the decomposition of v on BΩ) by decomposing its Fourier
transform, i.e.,

(3.29) v̂μ = v̂H2 + v̂A.

In order to define the two terms on the right-hand side of (3.29), we let Bλk(0)
denote the ball of radius λk centered at the origin where λ > 1 is the fixed constant
(independent of k) selected in the statement of the lemma. The characteristic func-
tion of Bλk(0) is denoted by χλk. The Fourier transform of f is then decomposed
as

f̂ = f̂χλk + (1− χλk)f̂ =: f̂k + f̂ c
k .

By the inverse Fourier transformation, this decomposition of f̂ entails a decompo-
sition of f into fk and f c

k given by

(3.30) fk (x) := (2π)−d/2
∫
Rd

ei〈x,ξ〉 χλk (ξ) f̂ (ξ) dξ and f c
k (x) := f − fk.

Accordingly, we define the decomposition of vμ by

(3.31) vμ,H2 := (GkM) � f c
k and vμ,A := (GkM) � fk.

The functions vH2 and vA in (3.29) are then obtained by setting vH2 := vμ,H2 |Ω
and vA := vμ,A|Ω. We will obtain the desired estimates by showing the following,
stronger estimates:

‖vμ,H2‖H2(Rd) ≤ C‖f‖L2(Rd),(3.32a)

‖Dαvμ,A‖L2(Rd) ≤ Cλ (λk)|α|−1 ‖f‖L2(Rd), ∀α ∈ Nd
0.(3.32b)

The estimates (3.32) are obtained by Fourier techniques. To that end, we compute
the Fourier transform of GkM :

(3.33)

(
ĜkM

)
(ξ) = (2π)−d/2

∫
Rd

e− i〈ξ,x〉 Gk (x)M (x) dx

= (2π)
−d/2

∫ ∞

0

gk (r)μ (r) rd−1

(∫
Sd−1

e− i r〈ξ,ζ〉 dSζ

)
dr

= (2π)−d/2 I (ξ) .

The inner integral in I (ξ) can be evaluated analytically1 and I (ξ) = ι (‖ξ‖) with

(3.34) ι (s) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2

∫ ∞

0

gk (r)μ (r) cos (sr) dr d = 1,

2π

∫ ∞

0

gk (r)μ (r) rJ0 (rs) dr d = 2,

4π

∫ ∞

0

gk (r)μ (r) r2
sin (rs)

(rs)
dr d = 3.

1This is trivial for d = 1 and follows for d = 2 from [20, (3.338)(4)]. For d = 3, we use the
formula ∫

S2
e−i〈x,x̂〉Y m

� (x) dx = g� (‖x̂‖)Y m
�

(
x̂

‖x̂‖

)
with g� (r) = (−i)� 4πj� (r)

(which follows by a comparison of [35, Section 3.2.4, formula (3.2.44) and (3.2.54)]) for m = � = 0,
where Y 0

0 = const and g0 (r) = 4π sin (r) /r.
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Applying the Fourier transform to the convolutions (3.31) leads to

v̂μ,H2 = (2π)d/2 ĜkMf̂ c
k = (2π)d/2 ĜkMf̂(1− χλk),

v̂μ,A = (2π)d/2 ĜkMf̂k = (2π)d/2 ĜkMf̂χλk.

To estimate higher order derivatives of vμ,H2 and vμ,A we define for a multi-index

α ∈ Nd
0 the function Pα : Rd → Rd by Pα (ξ) := ξα and obtain, by using standard

properties of the Fourier transformation and the support properties of χλk, for all
|α| ≤ 2, ∥∥∂αvμ,H2

∥∥
L2(Rd)

= (2π)
d/2

∥∥∥PαĜkM (1− χλk) f̂
∥∥∥
L2(Rd)

(3.35)

≤ (2π)d/2
(

max
ξ∈Rd:|ξ|≥λk

|PαI (ξ)|
)∥∥∥(1− χλk) f̂

∥∥∥
L2(Rd)

≤ (2π)d/2
(
max
s≥λk

∣∣∣s|α|ι (s)∣∣∣) ‖f‖L2(Ω) .

Lemma 3.7, (iv) implies for |α| ∈ {0, 1, 2}

max
s≥λk

∣∣∣s|α|ι (s)∣∣∣ ≤ C (λk)|α|−2

(
1 +

1

λ2 − 1

)
.

Thus,

‖∂αvH2‖L2(BΩ) ≤ C (λk)|α|−2

(
1 +

1

λ2 − 1

)
‖f‖L2(Ω)

and (3.26a) follows.
Completely analogously, we derive for all α ∈ Nd

0,

(3.36) ‖∂αvμ,A‖L2(Rd) ≤ (2π)d/2
(

max
0≤s≤λk

∣∣∣s|α|ι (s)∣∣∣) ‖f‖L2(Ω) .

We can complete the proof of the lemma using the bounds on the function ι given
in Lemma 3.7, (v) below and using (5.1), (5.2). �

Lemma 3.7. For the function ι defined in (3.34) the quantity smι (s) can be esti-
mated:

(i) for m = 0 by

|ι (s)| ≤ C
R

k
;

(ii) for m = 1 by

|sι (s)| ≤ CR

⎧⎪⎪⎨⎪⎪⎩
1 + (Rk)−1 d = 1,
|log kR| d = 2 and 4Rk ≤ 1,
1 d = 2 and 4Rk > 1,
1 d = 3;

(iii) and for m = 2 by

s2 |ι (s)| ≤ C

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Rk +

1

Rk
d = 1,

|log(kR)| d = 2 and 4Rk ≤ 1,
Rk d = 2 and 4Rk > 1,
1 + kR d = 3.
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(iv) For fixed R0, R1 > 0 there exists C > 0 (depending only on R0, R1, k0, d,
and the constant appearing in (3.27)) such that for any R ∈ [R0, R1] and
any λ > 1,

sup
|s|≥λk

s2 |ι (s)| ≤ C

(
1 +

1

λ2 − 1

)
.

(v) For any λ > 0 and all m ∈ N0 we have

sup
|s|≤λk

|s|m |ι (s)| ≤ CλR (λk)m−1 .

Proof. In this proof, C denotes a generic constant which may vary from term to
term. It suffices to prove the estimates (3.7)–(3.7) because (3.7) follows directly
from (3.7). We discuss the cases d = 3, d = 1, and d = 2 in turn.

Case 1: d = 3.
There holds

|sι (s)| = C

∣∣∣∣∫ ∞

0

ei kr μ (r) sin (rs) dr

∣∣∣∣ ≤ CR.

Applying integration by parts we obtain

|ι (s)| = C

k

∣∣∣∣∫ ∞

0

ei kr
(
μ′ (r)

sin (rs)

s
+ μ (r) cos (rs)

)
dr

∣∣∣∣
≤ C

k

∫ 4R

0

(
C

R
r + 1

)
dr = C

R

k
.

For the product s2ι (s), we get∣∣s2ι (s)∣∣ = C

∣∣∣∣∫ ∞

0

ei kr μ (r) s sin (rs) dr

∣∣∣∣ = C

∣∣∣∣∫ ∞

0

ei kr μ (r) ∂r cos (rs) dr

∣∣∣∣
≤ C

(∣∣∣∣∫ ∞

0

cos (rs) ∂r
(
ei kr μ (r)

)
dr

∣∣∣∣+ 1

)
≤ Ck

∣∣∣∣∫ ∞

0

cos (rs) ei kr μ (r) dr

∣∣∣∣+ C

(∣∣∣∣∫ ∞

0

cos (rs) ei kr μ′ (r) dr

∣∣∣∣+ 1

)
=: T I + T II.

The estimates T I ≤ CIkR and T II ≤ CII follows from the properties of μ
(cf. (3.27)). For |s| ≥ λk, the estimate of T I can be refined by using integra-
tion by parts:

T I ≤ Ck

∣∣∣∣∫ ∞

0

cos (rs) ei kr μ (r) dr

∣∣∣∣ = C
k

2

∣∣∣∣∫ ∞

0

(
ei(k+s)r +ei(k−s)r

)
μ (r) dr

∣∣∣∣
≤ C ′

(
k2

s2 − k2
+

∫ ∞

0

k2

s2 − k2
|μ′ (r)| dr

)
≤ C ′ (1 + C)

λ2 − 1
.

Case 2: d = 1.
There holds

|ι (s)| ≤ 1

k

∫ ∞

0

μ (r) dr ≤ C
R

k
.
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To estimate sι (s), we apply integration by parts to obtain

|sι (s)| ≤
∣∣∣∣∫ ∞

0

ei kr

k
μ (r) ∂r sin (sr) dr

∣∣∣∣
=

∣∣∣∣∫ ∞

0

sin (sr) ∂r

(
ei kr

k
μ (r)

)
dr

∣∣∣∣ ≤ C
1 +Rk

k
.

Similarly, we get by two-fold integration by parts:∣∣s2ι (s)∣∣ ≤ ∣∣∣∣∫ ∞

0

ei kr

k
μ (r) ∂2

r cos (sr) dr

∣∣∣∣ = ∣∣∣∣∫ ∞

0

{∂r cos (sr)}
{
∂r

(
ei kr

k
μ (r)

)}
dr

∣∣∣∣
≤

∣∣∣∣∫ ∞

0

cos (sr)

{
∂2
r

(
ei kr

k
μ (r)

)}
dr + 1

∣∣∣∣
≤ k

∣∣∣∣∫ ∞

0

cos (sr) ei kr μ (r) dr

∣∣∣∣
+

∣∣∣∣∫ ∞

0

cos (sr)

(
2 i ei kr μ′ (r) +

ei kr

k
μ′′ (r)

)
dr + 1

∣∣∣∣
=: T I + T III.

The estimate T III ≤ C
(
1 + 1

kR

)
directly follows from the properties of the cutoff

function μ (3.27). The term T I was estimated already in Case 1 so that the proof
of the case d = 1 is complete.

Case 3a: d = 2 and 4R ≤ 1/k.
For brevity, we write

hk (r) := H
(1)
0 (kr) and jν,s (r) := Jν (sr) .

Estimate (A.3c) implies

∀0 < r < 4R ≤ 1/k : |hk (r)| ≤ C (1 + |log kr|) and ∀r ≥ 0 : |J0 (r)|
[1, 9.1.60]

≤ 1.

Hence,

|ι (s)| ≤ C

∫ 4R

0

(1 + |log kr|) rdr = CR2 (1 + |log (4kR)|) .

For the estimate of smι (s), m ∈ {1, 2}, we employ the relations (see [1, 9.1.30],
[1, 9.1.1])

(3.37) (rj1,s (r))
′ = rsj0,s (r) and

(
rj′0,s (r)

)′
= −rs2j0,s (r) .

Integration by parts results in

|sι (s)| ≤ C

∣∣∣∣∫ ∞

0

hkμ (rj1,s)
′
dr

∣∣∣∣ = C

∣∣∣∣∫ ∞

0

rj1,s (μ
′hk + μh′

k) dr

∣∣∣∣
(A.8), (A.3c), (A.11)

≤ C

∫ 4kR

0

r

{
(1 + |log kr|)

R
+

1

r
+ k2r

}
dr

≤ CR
{
1 + |log kR| + k2R2

}
≤ CR (1 + |log kR|) ≤ CR |log kR| .

Finally, we estimate s2ι (s) by two-fold integration by parts
(3.38)∣∣s2ι (s)∣∣ = C

∣∣∣∣∫ ∞

0

hkμ
(
rj′0,s

)′∣∣∣∣ ≤ C

(∣∣∣∣∣
∫ 4R

0

j0,s
(
r (hkμ)

′)′∣∣∣∣∣+ ∣∣∣ lim
r→0

(rh′
k (r))

∣∣∣) .
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Note that limr→0 rh
′
k (r) = 2 i /π. For the first term, we use

(3.39)
(
r (hkμ)

′)′ = μ (rh′
k)

′
+ 2rμ′h′

k + (rμ′)
′
hk.

We employ (A.12) for the first, (3.27), (A.11) for the second, (3.27), and (A.3c) for
the third term on the right-hand side in (3.39) to obtain∣∣∣(r (hkμ)

′)′∣∣∣ ≤ Ck2r (1 + |log (kr)|) + 1

R
+

R + r

R2
(1 + |log (kr)|) .

Hence, ∣∣s2ι (s)∣∣ ≤ C
(
(kR)

2
(1 + |log(kR)|) + 1 + |log(kR)|

)
≤ C (1 + |log(kR)|) .

Case 3b: d = 2 and 4Rk > 1.
We define ϕk (r) := hk (r)μ (r) r and denote its antiderivative by Φk (r) :=∫ r

1/k
ϕk (t) dt. We use the splitting

ι (s) =
π i

2

∫ 1/k

0

ϕkj0,s +
π i

2

∫ 4R

1/k

ϕkj0,s =: ιI (s) + ιII (s) .

For ιI (s), we employ the estimates as in Case 3a (with 4R replaced by 1/k therein)
to obtain

|ιI (s)| ≤
C

k2
.

It remains to estimate ιII (s). Note that j′0,s = −sj1,s. There holds

(3.40) ιII (s) =
π i

2

∫ ∞

1/k

ϕkj0,s =
π i

2

∫ 4R

1/k

Φksj1,s +
π i

2
Φkj0,s

∣∣∣∣4R
r=1/k

.

In the next step, we will estimate Φk. Let ϕ̃k (r) := e− i kr ϕk (r) so that Φk can be
written as

Φk (r) :=

∫ r

1/k

ei kt ϕ̃k (t) dt = −
∫ r

1/k

ei kt

i k
ϕ̃′
k (t) dt+

ϕk (t)

i k

∣∣∣∣r
t=1/k

= −
∫ r

1/k

ei kt

i k
ϕ̃′
k (t) dt︸ ︷︷ ︸

=:ΦI
k(r)

+
1

i k
thkμ|rt=1/k︸ ︷︷ ︸
=:ΦII

k (r)

.

By using (A.6) and supt>0

∣∣(tμ (t))′
∣∣ ≤ C we obtain∣∣ΦI

k (r)
∣∣ ≤ 1

k

∫ r

1/k

|ϕ̃′
k| dt =

1

k

∫ r

1/k

∣∣∣tμ (
e− i kt hk

)′
+ (tμ)

′
e− i kt hk

∣∣∣ dt
≤ C

k

∫ r

1/k

1√
kt

dt ≤ C

k

√
r

k
.

The function ΦII
k can be estimated by using (A.3a)

∣∣ΦII
k (r)

∣∣ = ∣∣∣∣ 1i k thkμ|rt=1/k

∣∣∣∣ ≤ C

(
1

k

√
r

k
+

1

k2

) √
1
k≤√

r

≤ C

k

√
r

k
.

In summary we have proved

|Φk (r)| ≤
C

k

√
r

k
.
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By inserting this estimate and (A.3b) into (3.40) we get

|ιII (s)| ≤ C

√
|s|

k3/2

∫ 4R

0

√
|s|r

1 + r|s|dr +
C

k

√
r

k

∣∣∣∣
r=4R

+
C

k

√
r

k

∣∣∣∣
r=1/k

≤ C

(
4R

√
|s|

k3/2
+

1

k

√
4R

k
+

1

k2

)
.

This leads to

(3.41) |ι (s)| ≤ C
R

k

√
|s|
k

+
R

k
.

Next, we estimate s2ι (s). As in the Case 3a, our starting point is (3.38). Re-
calling | limr→0 rh

′
k(r)| = 2/π, we are left with estimating

(3.42)

∣∣∣∣∣
∫ 4R

0

j0,s
(
r (hkμ)

′)′∣∣∣∣∣ ≤
∣∣∣∣∣
∫ 1/k

0

j0,s
(
r (hkμ)

′)′∣∣∣∣∣︸ ︷︷ ︸
=:I1

+

∣∣∣∣∣
∫ 4R

1/k

j0,s
(
r (hkμ)

′)′∣∣∣∣∣︸ ︷︷ ︸
=:I2

.

We conclude from Case 3a that |I1| ≤ C holds. For the second integral, we employ
(A.3a), (3.27), (A.5), (A.7) to get∣∣∣(r (hkμ)

′)′∣∣∣ = |hk (μ
′ + rμ′′) + h′

k (μ+ 2rμ′) + rh′′
kμ|

≤ C

(
1

r
√
kr

+

√
k

r
+ rk

√
k

r

)
≤ C

(
1

r
√
kr

+ k
√
kr

)
.(3.43)

The combination of (3.42), (3.43), and (A.3b) leads to

I2 ≤ CkR

√
Rk

1 +R|s| .

Thus, we have proved

(3.44)
∣∣s2ι (s)∣∣ ≤ CkR

√
Rk

1 +R|s| .

For 0 ≤ |s| ≤ k, we employ (3.41) and for |s| > k we use (3.44) to obtain for
m ∈ {0, 1, 2},

|s|m |ι (s)| ≤ CRkm−1.

For the case d = 2, we now show (iv), i.e., we consider the case |s| ≥ λk.
The assumptions R ≥ R0 and k ≥ k0 imply for the case Rk ≤ 1/4 immediately
sup|s|>0 s

2|ι(s)| ≤ C. For Rk > 1/4, we take, as in the Case 3b, the estimate

(3.42) as our starting point. The integral I1 in (3.42) is already seen to be bounded
independent of k. Since, by [1, 9.1.1],

(rh′
k)

′ = −k2rhk

we can write the integral I2 as

I2 =

∣∣∣∣∣
∫ 4R

1/k

j0,s
(
−k2rhkμ+ 2rh′

kμ
′ + (rμ′)′hk

)∣∣∣∣∣ .
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Recalling that μ′ ≡ 0 on (0, 2R), we can estimate I2 by

I2 ≤
∣∣∣∣∣
∫ 4R

1/k

j0,sk
2rhkμ

∣∣∣∣∣︸ ︷︷ ︸
=:II

2

+CR sup
r∈(2R,4R)

{|j0,sh′
k|+ |j0,shk|} .

We conclude from (A.3), (A.5), and (A.1) together with (A.2)

CR sup
r∈(2R,4R)

{|j0,sh′
k|+ |j0,shk|} ≤ CR

1√
|s|R

(
1

R
√
Rk

+

√
k

R
+

1√
Rk

)
≤ C,

where we used |s| ≥ λk ≥ k and the fact that k ≥ k0. It remains to bound II2 .
Lemma A.1 allows us to write

II2 =
2k2

π
√
k|s|

∣∣∣∣∣
∫ 4R

1/k

gI(kr)μ(r)
{
ei(|s|+k)rf I(|s|r) + ei(−|s|+k)rf II(|s|r)

}∣∣∣∣∣ .
Since f I , f II , gI are bounded functions by Lemma A.1, an integration by parts
leads to

II2 ≤ Ck

(
1

|s|+ k
+

1

|s| − k

)
+Ck

∣∣∣∣∣
∫ 4R

1/k

ei(|s|+k)r

|s|+ k
∂r

(
f I(|s|r)gI(kr)μ(r)

)
+
ei(k−|s|)r

k − |s| ∂r
(
f II(|s|r)gI(kr)μ(r)

)∣∣∣∣∣ .
Since |s| ≥ λk, Lemma A.1 provides the estimates∣∣∂r (f I(sr)gI(kr)μ(r)

)∣∣+ ∣∣∂r (f II(sr)gI(kr)μ(r)
)∣∣ ≤ C

(
1

R
+

1

kr2

)
, 1/k ≤ r.

Combining these results, we arrive at

II2 ≤ C
1

λ− 1
.

Observing 1 + (λ− 1)−1 ≤ 2 + (λ2 − 1)−1 allows us to conclude the proof. �
3.3. Existence and uniqueness. Existence, uniqueness, and well-posedness of
problem (2.6) has been studied in much more generality (concerning the assumption
on the domain Ω) in [12] by using different techniques.

The main goal of the estimates which we have derived in the previous sections
is their application to the proof of the discrete stability for the finite element dis-
cretization and the convergence rates. However, since existence, uniqueness, and
well-posedness for our model problem are simple by-products we state them in
passing.

Theorem 3.8. Let BR be a ball of radius R > 0. Then, there exists a constant

C (R, k) > 0 such that for all f ∈
(
H1 (BR)

)′
the unique solution u of problem

(2.6) satisfies
‖u‖H ≤ C (R, k) ‖f‖H1(BR)′ .

Proof. The coercivity of the bilinear form a (u, v) follows from the compact embed-

ding H1 (BR)
c
↪→ L2 (BR) and (3.4b), (3.4d):

Re a (u, u) ≥ ‖u‖2H − 2k2 ‖u‖2L2(BR) − Re

∫
∂BR

(Tku) ū ≥ ‖u‖2H − 2k2 ‖u‖2L2(BR) .
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Next, we show uniqueness of the adjoint problem (see, e.g., [29, p. 43]):

a (v, u) = 0 ∀v ∈ H1 (BR) =⇒ u = 0.

Let u ∈ H1 (BR) be a solution of the homogeneous adjoint problem. We choose
v = u and consider the imaginary part:

0 = Im a (u, u) = − Im

∫
∂BR

(Tku) ū = Im

∫
∂BR

(Tku) ū.

Lemma 3.3 implies u = 0 on ∂BR. Hence, u ∈ H1
0 (BR) and satisfies

(3.45)

∫
BR

〈∇u,∇v〉 = k2
∫
BR

uv ∀v ∈ H1 (BR) .

This means in particular that u ∈ H1
0 (BR) is an eigenfunction of (−Δ)−1 with

eigenvalue k−2. However, for any domain Ω̃ ⊃ BR, equation (3.45) implies that the
extension

ũ (x) :=

{
u (x) x ∈ BR,
0 x /∈ BR,

satisfies (3.45) with BR replaced by Ω̃, i.e., ũ is also an eigenfunction of (−Δ)−1

with eigenvalue k−2 on any domain Ω̃ ⊃ BR. A simple scaling argument shows
that this is impossible.

Thus, the assertion follows from the theory of Fredholm operators (see, e.g., [29,
Theorem 2.4]). �

Note that the proof of Theorem 3.8 does not provide how the constant C (R, k)
depends on the wave number. In [12], this question has been investigated in much
more generality and, hence, will not be discussed here. The Fourier analysis which
we developed in Section 3.2 gives explicit bounds on this constant provided the
right-hand side is in L2 (Ω).

Lemma 3.9. Let Ω be a bounded domain which is contained in the ball BR for
some R satisfying (3.3). For any f ∈ L2 (Ω) and v := Nkf , there holds

‖v‖H ≤ C ‖f‖L2(Ω) ,

where C only depends on k0 and R0 (cf. (2.2), (3.3)).

Proof. The radius of the minimal ball that contains Ω is denoted by RΩ. If 4kRΩ >
1, the estimate

‖v‖L2(Ω)

(3.28)
= ‖vμ‖L2(Ω)

(3.35),(3.36)

≤ (2π)
d
2

(
max
s∈R≥0

∣∣∣s|α|ι (s)∣∣∣) ‖f‖L2(Ω)

Lemma 3.7(i)

≤ (2π)
d
2
RΩ

k
‖f‖L2(Ω)

follows. The estimate

‖∇v‖L2(Ω) ≤ C

(
1

k0
+RΩ

)
‖f‖L2(Ω)

follows by the same reasoning. If α < 4kRΩ ≤ 1, then |log kRΩ| ≤ |logα|. Hence,
both estimates remain valid (cf. Lemma 3.7), possibly with a different constant C
which, in addition, depend on α. �
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3.4. An adjoint problem. The operator Nk and the DtN operator Tk introduced
in Section 2 are associated with the outgoing radiation condition. Adopting the
notation Ω and Ω+ of Section 2 and assuming supp f ⊂ Ω, one can define a problem
with incoming radiation conditions: Find u ∈ H1(Ω) and u+ ∈ H1

loc(Ω
+) such that

(3.46)

(
−Δ− k2

)
u = f in Ω,(

−Δ− k2
)
u+ = 0 in Ω+,

u = u+ and ∂u/∂n = ∂u+/∂n on ∂Ω,∣∣∣∣∂u+

∂r
+ i ku+

∣∣∣∣ = o
(
‖x‖

1−d
2

)
‖x‖ → ∞.

For k > 0, we see that the complex conjugate u and u+ of the solution satisfy (2.3).
By uniquess, this allows us to identify the solution operator N�

k : L2(Ω) → H1(Ω)
for the u-component of the solution of (3.46), namely,

(3.47) u = N�
k (f) = Nk(f) =

∫
Ω

Gk(x− y)f(y) dy.

The solution component u+ is related to a Dirichlet-to-Neumann map. For the
incoming radiation condition, this operator is given by T �

k g := γ1w, where w ∈
H1

loc(Ω
+) solves:

(3.48)

Find w ∈ H1
loc

(
Ω+

)
such that

⎧⎪⎪⎨⎪⎪⎩
(
−Δ− k2

)
w = 0 in Ω+,

w = g on ∂Ω,∣∣∣∣∂w∂r + i kw

∣∣∣∣ = o
(
‖x‖

1−d
2

)
‖x‖ → ∞.

Again by using k > 0 and complex conjugation, we note (again by uniqueness) the
representation T �

k g = Tkg. We employed the notation T �
k since the operator T �

k is
the adjoint of Tk with respect to the L2(∂BR) inner product in the case of a ball:

Lemma 3.10. Let Ω = BR ⊂ Rd, d ∈ {1, 2, 3}. Then
∫
∂BR

Tkuv =
∫
∂BR

uT �
k v for

all u, v ∈ H1/2(∂BR).

Proof. We will only consider the case d = 2. We expand u and v as in (3.9) with
coefficients (u�)�∈Z, (v�)�∈Z. For the calculations below, we assume that only finitely
many coefficients u�, v� are non-zero; the generalization to u, v ∈ H1/2(∂BR) then
follows by a density argument.

We see immediately from (3.10) that w�(r) = w−�(r). From the orthogonality
properties of functions ei �θ with the representation of Tk in (3.10) we get∫

∂BR

uT �
k v=

∫
∂BR

uTkv=2π
∑
�∈Z

u�v�w−�(kR)=2π
∑
�∈Z

u�v�w�(kR)=

∫
∂BR

Tkuv.

�

4. Stability and convergence analysis

This section is devoted to the analysis of the discrete problem (2.8) for the finite-
dimensional space S ⊂ H1(Ω); we will provide conditions on S under which unique
solvability and quasi-optimality of (2.8) can be guaranteed.
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We employ the generalization of the theory of [33] that has been developed in
[39]. There, a measure of “almost invariance”2 of the approximation space S under
the solution operator of an adjoint Helmholtz problem has been introduced.

Adjoint Problem: The weak formulation of problem (2.5) corresponds to the
sesquilinear form a (·, ·) as in (2.6), where Ω may be chosen as a ball BR with
sufficiently large radius R. The adjoint sesquilinear form a� (·, ·) is defined by (see,
e.g., [29, p. 43])

a� (u, v) = a (v, u).

For given f ∈ L2 (BR), the corresponding adjoint problem is given by finding
z ∈ H1 (BR) such that

(4.1) a� (z, v) = (v, f)L2(BR) ∀v ∈ H1 (BR) .

Explicitly, we have

a� (z, v) =

∫
BR

〈∇u,∇v̄〉 − k2uv̄ −
∫
∂BR

u
(
Tkv

)
.

From Lemma 3.10 we conclude that

a� (z, v) =

∫
BR

〈∇u,∇v̄〉 − k2uv̄ −
∫
∂BR

T �
k uv.

The strong formulation of the adjoint problem is: Find z such that

(4.2) −Δz − k2z = f̄ in BR,
∂z

∂n
= T �

k z on ∂BR.

Recalling the definition of T �
k , we see that the solution z of this problem is given

by the solution u of (3.46); the solution formula (3.47) therefore allows us to write
the solution of (4.1) as

(4.3) z = N�
k f =

∫
Ω

Gk (x− y) f̄ (y) dy.

In view of z = Nkf and ‖z‖H = ‖z‖H, we obtain from Lemma 3.9 the following
observation:

Lemma 4.1. Let Ω be a bounded Lipschitz domain and k ≥ k0. Then the constant

(4.4) sup
f∈L2(Ω)\{0}

‖N�
k f‖H

‖f‖L2(Ω)
=: Cstab < ∞

is independent of k and depends solely on Ω.

For the stability of the discrete problem, the following adjoint approximation
property plays a crucial role:

(4.5) η (S) := sup
f∈L2(Ω)\{0}

inf
v∈S

‖N�
k f − v‖H
‖f‖L2(Ω)

.

(Note that the quantity η (S) was denoted in [39] by η̃ (S).)

2We slightly changed the definition here and denote the new quantity by “adjoint approxima-
tion property”.
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4.1. Discrete stability. In this section, we will prove the discrete stability in the
form of an inf-sup condition.

Theorem 4.2. Let Ω = BR be a ball with radius R and let the assumptions of
Lemma 3.3 be satisfied. Assume that the space S is chosen such that

(4.6) kη (S) ≤ 1

4Cc
,

where Cc is defined in Corollary 3.4. Then, with Cstab defined in Lemma 4.1, the
discrete inf-sup constant satisfies

inf
u∈S

sup
v∈S\{0}

|a (u, v)|
‖u‖H ‖v‖H

≥ 1

2 + C−1
c + 4kCstab

,

and this ensures existence and uniqueness of the discrete problem (2.8).

Proof. Let u ∈ S and set z := 2k2N�
ku. Then,

a (u, u+ z) =

(∫
BR

〈∇u,∇u〉+ k2 |u|2 −
∫
∂BR

(Tku)u

)
+ a (u, z)− 2k2

∫
BR

|u|2

=

∫
BR

〈∇u,∇u〉+ k2 |u|2 −
∫
∂BR

(Tku)u.

We derive from Lemma 3.3 that

Re a (u, u+ z) ≥ ‖u‖2H .

Let zS ∈ S denote the best approximation of z with respect to the ‖·‖H-norm.
Then,

Re a (u, u+ zS) ≥ Re a (u, u+ z)− |a (u, z − zS)|
Cor. 3.4

≥ ‖u‖2H − Cc ‖u‖H ‖z − zS‖H
≥ ‖u‖H

(
‖u‖H − 2k2Ccη (S) ‖u‖L2(BR)

)
≥ (1− 2kCcη (S)) ‖u‖2H .

The stability of the continuous problem (cf. Lemma 4.1) implies

‖u+ zS‖H ≤ ‖u‖H + ‖z − zS‖H + ‖z‖H
≤ ‖u‖H + 2k2η (S) ‖u‖L2(BR) + 2k2Cstab ‖u‖L2(BR)

≤ (1 + 2kη (S) + 2kCstab) ‖u‖H
so that

Re a (u, u+ zS) ≥
1− 2Cckη (S)

1 + 2kη (S) + 2kCstab
‖u‖H ‖u+ zS‖H .

Therefore, in view of the assumption (4.6), we have proved

inf
u∈S

sup
v∈S\{0}

|a (u, v)|
‖u‖H ‖v‖H

≥ 1

2 + C−1
c + 4kCstab

. �

4.2. Convergence analysis. The convergence of the finite element discretization
is proved by applying the theory as developed in [39] (see also [7, 33, 40], [8, Sec.
5.7]).

Theorem 4.3. Let the assumptions of Theorem 4.2 be satisfied. Let u denote the
solution of (2.6) and uS its Galerkin approximation (cf. (2.8)).

Then

(4.7) ‖u− uS‖H ≤ 2Cc inf
v∈S

‖u− v‖H .
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The L2-error satisfies

‖u− uS‖L2(BR) ≤ Ccη (S) ‖u− uS‖H .

Proof. In the first step, we will estimate the L2-error by the H1-error and employ
the Aubin-Nitsche technique. The Galerkin error is denoted by e = u − uS . We
set ψ := N�

k e (cf. (4.3)) and denote by ψS ∈ S the best approximation of ψ with
respect to the H-norm.

The L2-error can be estimated by

‖e‖2L2(BR) = a (e, ψ) ≤ a (e, ψ − ψS) ≤ Cc ‖e‖H ‖ψ − ψS‖H
≤ Ccη (S) ‖e‖H ‖e‖L2(BR) ,(4.8)

i.e.,

(4.9) ‖e‖L2(BR) ≤ Ccη (S) ‖e‖H .

To estimate the H-norm of the error we proceed as follows. Note that (3.4b), (3.4d)
imply

(4.10) Re (Tku, u)L2(∂BR) ≤ 0.

Hence, for any vS ∈ S,

‖e‖2H = Re (a (e, e)) +
{
‖e‖2H − Re a (e, e)

}
= Re a (e, u− vS) + 2k2 ‖e‖2L2(BR) +Re

∫
∂BR

(Tke) ē

(4.9), (4.10), k‖e‖L2 ≤ ‖e‖H
≤ Cc ‖e‖H ‖u− vS‖H + 2kCcη (S) ‖e‖2H .

Noting that (4.6) implies 2kCcη (S) ≤ 1/2 we arrive at the final estimate‖e‖H ≤
2Cc ‖u− vS‖H . �

5. Example: hp-FEM

Theorems 4.2, 4.3 show quasi-optimality of arbitrary approximation spaces un-
der the assumption (4.6) on the adjoint approximation property η (S). However, for
concrete finite element spaces, or generalizations thereof, the verification of condi-
tion (4.6) is far from trivial. The purpose of this section is two-fold: First, we show
that for classical higher order FEM spaces the assumption (4.6) can be met un-
der a relatively mild condition on the local polynomial order of the classical FEM
space; in particular, we will demonstrate that for spaces consisting of piecewise
polynomials of degree p on quasi-uniform meshes that satisfy the side condition
p ≥ c ln k, the key condition (4.6) is satisfied. Second, we derive conditions on the
approximation space that may be easier to ascertain in practice than the condition
(4.6).

In view of the fact that the circle (in 2D) and the sphere (in 3D) are relevant
geometries for our theory (recall that Theorems 4.2, 4.3 have been shown for cir-
cles/spheres), we consider triangulations with curved elements that permit inclusion
of these geometries. Before formulating the conditions on the mesh in an abstract
way, we give an example of a typical construction.

Example 5.1 (Patchwise construction of FE mesh.). Let Ω denote a bounded
domain.
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1. We assume that there exists a polyhedral (polygonal in 2D) domain Ω̃ along

with a bi-Lipschitz mapping χ : Ω̃ → Ω. Let T̃ macro =
{
K̃macro

i : 1 ≤ i ≤ q
}

denote a conforming finite element mesh for Ω̃ consisting of simplices which

are regular in the sense of [13]. T̃ macro is considered as a coarse partition of

Ω̃, i.e., the diameters of the elements in T̃ macro are of order 1. We assume
that the restrictions χi := χ|

K̃macro
i

are analytic for all 1 ≤ i ≤ q.

2. The finite element mesh with step size h is generated by refining the mesh

T̃ macro in a standard way (e.g., in 2D, by connecting the midpoints of the

triangle edges) and denoted by T̃h =
{
K̃i : 1 ≤ i ≤ N

}
. The corresponding

finite element mesh for Ω is then defined by Th =
{
K = χ

(
K̃

)
: K̃ ∈ T̃h

}
.

Note that, for any K = χ
(
K̃

)
∈ Th, there exists an affine bijection AK : K̂ → K̃

which maps the reference element K̂ :=
{
x ∈ (R≥0)

d
:
∑d

i=1 xi ≤ 1
}
to the simplex

K̃. A parametrization FK : K̂ → K can be chosen by FK := RK ◦ AK , where
RK := χ|

K̃
is independent of the mesh width h := max {diamK : K ∈ Th}.

To formulate the smoothness and scaling assumptions on RK and AK in an
abstract way we have to introduce some notation first. For a function u : Ω → R,
Ω ⊂ Rd, we write

(5.1) |∇nu(x)|2 =
∑

α∈Nd
0 :|α|=n

n!

α!
|Dαu(x)|2.

For later purposes, we recall the multinomial formula and a simple fact that follows
from the Cauchy-Schwarz inequality for sums:

dn

n!
=

∑
α∈Nd

0 :|α|=n

1

α!
,(5.2)

∑
α∈Nd

0 :|α|=n

1

α!
|Dαu(x)| ≤ 1

n!
dn/2|∇nu(x)|.(5.3)

Assumption 5.2 (quasi-uniform regular triangulation). Each element map FK

can be written as FK = RK ◦ AK , where AK is an affine map and the maps RK

and AK satisfy for constants Caffine, Cmetric, γ > 0 independent of h:

‖A′
K‖

L∞(K̂)
≤ Caffineh, ‖(A′

K)−1‖
L∞(K̂)

≤ Caffineh
−1,

‖(R′
K)−1‖

L∞(K̃)
≤ Cmetric, ‖∇nRK‖

L∞(K̃)
≤ Cmetricγ

nn! ∀n ∈ N0.

Here, K̃ = AK(K̂).

For meshes Th satisfying Assumption 5.2 with element maps FK we denote the
usual space of piecewise (mapped) polynomials by

Sp,1(Th) := {u ∈ H1(Ω) | ∀K ∈ Th : u|K ◦ FK ∈ Pp},
where Pp denotes the space of polynomials of degree p. It is desirable to construct
an approximant Iu ∈ Sp,1(Th) of a given (sufficiently smooth) function u in an
elementwise fashion. The C0-continuity of an elementwise defined approximant Iu
is most conveniently ensured if Iu is defined in such a way that for every topological
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entity E of the mesh (i.e., E is an element K, a face f , an edge e, or a vertex V ) the
restriction (Iu)|E is fully determined by u|E . There are many ways of realizing this
construction principle. The construction employed in the present paper is based on
the following concept:

Definition 5.3 (element-by-element construction). Let K̂ be the reference sim-
plex in Rd, d ∈ {2, 3}. A polynomial π is said to permit an element-by-element

construction of polynomial degree p for u ∈ Hs(K̂), s > d/2, if:

(i) π(V ) = u(V ) for all d+ 1 vertices V of K̂,

(ii) for every edge e of K̂, the restriction π|e ∈ Pp is the unique minimizer of

(5.4) π 
→ p1/2‖u− π‖L2(e) + ‖u− π‖
H

1/2
00 (e)

under the constraint that π satisfies (5.3); here the Sobolev norm H
1/2
00 is

defined in (B.1).

(iii) (for d = 3) for every face f of K̂, the restriction π|f ∈ Pp is the unique
minimizer of

(5.5) π 
→ p‖u− π‖L2(f) + ‖u− π‖H1(f)

under the constraint that π satisfies (5.3), (5.3) for all vertices and edges
of the face f .

Remark 5.4. The conditions of Definition 5.3 are a variation of similar proposals
in the literature, e.g., [14] and [21]. For example, the effective difference between
the projection-based interpolation of [14] and the present construction lies in the
choice of the norms employed in the minimization process in Definition 5.3. Our
motivation for formulating the conditions in Definition 5.3 is that they permit us
in Appendix B to construct approximation operators with optimal simultaneous
approximation properties in L2 and H1. Previously, the literature had focused on
H1-approximation alone.

We are now in position to show that the solution v = N�
k f can be approximated

well by the FEM space Sp,1(Th) provided that kh/p is sufficiently small and p ≥
c ln k.

Theorem 5.5. Let d ∈ {1, 2, 3} and Ω ⊂ Rd be a bounded domain. Then there exist
constants C, σ > 0 that depend solely on the constants appearing in Assumption 5.2
such that for every f ∈ L2(Ω) the function v := N�

k f satisfies

inf
w∈Sp,1(Th)

k‖v − w‖H ≤ C‖f‖L2(Ω)

(
1 +

kh

p

){
kh

p
+ k

(
kh

σp

)p}
.

Proof. We will only prove the cases d ∈ {2, 3}. The case d = 1 follows by similar
arguments where the appeal to Theorem B.4 and Lemma C.3 is replaced with that
to [41, Thm. 3.17].

We note v = N�
k f = Nkf , fix λ > 1 in Lemma 3.5, and split with its aid

v = vH2 + vA with vH2 ∈ H2(Ω) and vA analytic; we have the following bounds:

‖vH2‖H2(Ω) ≤ C‖f‖L2(Ω), ‖∇pvA‖L2(Ω) ≤ C(λk)p−1‖f‖L2(Ω) ∀p ∈ N0.

We approximate vH2 and vA separately. Theorem B.4 and a scaling argument
provides an approximant wH2 ∈ Sp,1(Th) such that for every K ∈Th we have, for
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q = 0, 1,

‖vH2 − wH2‖Hq(K) ≤ C

(
h

p

)2−q

‖vH2‖H2(K) ∀K ∈ Th.

Hence, by summation over all elements, we arrive at

k‖vH2 − wH2‖H ≤ C

(
kh

p
+

(
kh

p

)2
)
‖f‖L2(Ω).

We now turn to the approximation of vA. Again, we construct the approximation
wA ∈ Sp,1(Th) in an element-by-element fashion. We start by defining for each
element K ∈Th the constant CK by

(5.6) C2
K :=

∑
p∈N0

‖∇pvA‖2L2(K)

(2λk)2p

and we note

‖∇pvA‖L2(K) ≤ (2λk)pCK ∀p ∈ N0,(5.7) ∑
K∈Th

C2
K ≤ 4

3

(
C

λk

)2

‖f‖2L2(Ω).(5.8)

Let the element map for K be FK = RK ◦AK . Lemma C.1 gives that the function
ṽ := vA|K ◦ RK satisfies, for suitable constants C̃, C (which depend additionally
on the constants describing the analyticity of the element maps RK),

‖∇pṽ‖
L2(K̃)

≤ CC̃p max{p, k}pCK ∀p ∈ N0.

Since AK is affine, the function v̂ := vA|K ◦ FK = ṽ ◦AK therefore satisfies

‖∇pv̂‖
L2(K̂)

≤ Ch−d/2C̃php max{p, k}pCK ∀p ∈ N0.

Hence, the assumptions of Lemma C.3 (with R = 1 there) are satisfied, and we get
an approximation w on the elementK by lifting an element-by-element construction

on K̂ to K via FK which satisfies for q ∈ {0, 1},

‖vA − w‖Hq(K) ≤ Chd/2−qh−d/2CK

{(
h

h+ σ

)p+1

+

(
kh

σp

)p+1
}
.

Summation over all elements K ∈Th gives

(5.9) ‖vA − w‖2H ≤
[(

h

h+ σ

)2p

+ k2
(

h

h+ σ

)2p+2

+
k2

p2

(
kh

σp

)2p

+k2
(
kh

σp

)2p+2
] ∑

K∈Th

C2
K .

The combination of (5.9) and (5.8) yields

k‖vA − w‖H ≤ C

[(
h

h+ σ

)p (
1 +

hk

h+ σ

)
+ k

(
kh

σp

)p (
1

p
+

kh

σp

)]
‖f‖L2(Ω).
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Furthermore, we estimate using h ≤ diamΩ and σ > 0 (independent of h)(
h

h+ σ

)p (
1 +

kh

σ + h

)
≤ Ch(1 + kh)

(
h

σ + h

)p−1

≤ Ch(1 + kh)p−2 ≤ C
h

p

(
1

p
+

kh

p

)
.

We therefore arrive at

k‖vA − w‖H ≤ C

(
1

p
+

kh

p

)[
kh

p
+ k

(
kh

σp

)p]
‖f‖L2(Ω),

which completes the proof of the theorem. �
Combining Theorems 5.5, 4.3 produces the condition (1.1) for quasi-optimality

of the hp-FEM announced in the Introduction. We extract from Theorem 5.5 that
quasi-optimality of the h-version FEM can be achieved under the side condition
that p ≥ C log k:

Corollary 5.6. Let Ω = BR be a ball of radius R and assume (3.3), (2.2) with
the additional condition k0 ≥ 1 in the case d = 2. Let Assumption 5.2 be valid.
Then there exist constants c1, c2 > 0 independent of k, h, and p such that (4.6) is
implied by the following condition:

(5.10)
kh

p
≤ c1 together with p ≥ c2 ln k.

Alternatively, the discrete stability follows from

(5.11) p = O (1) fixed independent of k and kh+ k (kh)p ≤ C,

which is understood as a condition on the maximal step size h.

Proof. Theorem 5.5 implies

kη(S) ≤ C

(
1 +

kh

p

)(
kh

p
+ k

(
kh

σp

)p)
.

The right-hand side needs to be bounded by 1/Cc. It is now easy to see that we
can select c1, c2 such that this can be ensured. �

An easy consequence of the stability result Corollary 5.6 is:

Corollary 5.7. Let the assumptions of Corollary 5.6 be satisfied and let (5.10) or
(5.11) hold. Then, the Galerkin solution uS exists and satisfies the error estimate

‖u− uS‖H ≤ Cc

(
h

p
+

(
kh

σp

)p)
‖f‖L2(Ω) .

Remark 5.8. To the best of the authors’ knowledge, discrete stability in 2D and 3D
has only been shown under much more restrictive conditions than (5.10), e.g., the
condition k2h � 1. Even in one dimension, condition (5.10) improves the stability
condition kh � 1 that was required in [27].

Finally, we reformulate Theorem 5.5 by deriving the statement under some con-
ditions on abstract approximation spaces that may be easier to verify than a direct
proof of (4.6).

The key step in Theorem 5.5 is the ability to decompose v = N�
k f into an

analytic, but oscillatory part and an H2-regular part and to approximate each part
separately. This gives rise to the definition of two types of approximation properties.
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Definition 5.9. For given γ > 0 and k > 0 let

Hosc(γ, k) :=
{
v ∈ H1(Ω)

∣∣∣ ‖∇pv‖L2(Ω) ≤ (γk)p−1 ∀p ∈ N0

}
,

HH2

:=
{
v ∈ H2(Ω) | ‖v‖H2(Ω) ≤ 1

}
.

Let S ⊂ H1 (Ω) be the (possibly k-dependent) finite dimensional approximation
space for the Galerkin method. The approximation properties for the oscillatory
and the H2-part are

ηA (S, k, γ) := sup
v∈Hosc(γ,k)

inf
w∈S

‖v − w‖H ,(5.12)

ηH2 (S) := sup
v∈HH2

inf
w∈S

‖v − w‖H .

The decomposition Lemma 3.5 allows us to recast η(S) in terms of ηA(S, k, γ)
and ηH2(S):

Lemma 5.10. Let Ω ⊂ Rd, d ∈ {1, 2, 3}, be a bounded domain and select λ > 1.

Set γ :=
√
dλ and define

CH2 := sup
f∈L2(Ω)

‖vH2‖H
‖f‖L2(Ω)

, CA := sup
f∈L2(Ω)

sup
p∈N0

‖∇pvA‖L2(Ω)

(γk)p−1‖f‖L2(Ω)
,

where, for each f ∈ L2(Ω) we employ the λ-dependent decomposition N�
k f = vH2 +

vA according to Lemma 3.5. Let S ⊂ H1 (Ω) be a finite dimensional approximation
space. Then, the adjoint approximability η(S) is bounded by

η (S) ≤ CAηA (S, k, γ) + CH2ηH2 (S) .

Before proving this statement, we stress that the scaling in Definition 5.9 has
been chosen such that, according to Lemma 3.5, the constants CA and CH2 are
bounded uniformly in k.

Proof. For f ∈ L2 (Ω), we employ the splitting v = N�
k f = vH2 + vA as in Lemma

3.5 for the selected λ > 1. We set

ṽH2 :=

{
0 if f = 0,

vH2

CH2‖f‖L2(Ω)
if f �= 0, and ṽA :=

{
0 if f = 0,
vA

CA‖f‖L2(Ω)
if f �= 0,

and note ṽH2 ∈ HH2

and ṽA ∈ Hosc(γ, k). Then,

η (S) = sup
f∈L2(Ω)\{0}

inf
w∈S

‖vA + vH2
− w‖H

‖f‖L2(Ω)

≤ sup
f∈L2(Ω)\{0}

inf
w∈S

‖vA − w‖H
‖f‖L2(Ω)

+ sup
f∈L2(Ω)\{0}

inf
w∈S

‖vH2
− w‖H

‖f‖L2(Ω)

≤ sup
f∈L2(Ω)\{0}

‖vA‖H / ‖ṽA‖H
‖f‖L2(Ω)

inf
w∈S

‖ṽA − w‖H

+ sup
f∈L2(Ω)\{0}

‖vH2‖H / ‖ṽH2‖H
‖f‖L2(Ω)

inf
w∈S

‖ṽH2
− w‖H

≤ CAηA (S) + CH2ηH2 (S) . �
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Appendix A. Estimate of Bessel functions

In this appendix we derive some estimates for the Hankel and Bessel functions
that are used in Subsection 3.2. First, we will consider the case of large arguments
z > 1 and then the case 0 < z ≤ 1.

Case 1: z = kr > 1.
From [1, 9.2.5-9.2.16], we conclude that the Hankel functions H

(1)
� and Bessel

functions J�, � ∈ N0, can be written in the form

J� (z)
[1, 9.2.5]

=

√
2

πz
(P� (z) cosχ−Q� (z) sinχ) ,(A.1a)

H
(1)
� (z)

[1, 9.2.7]
=

√
2

πz
(P� (z) + iQ� (z)) e

iχ,(A.1b)

where χ := z − π/4. The functions P�, Q� have the following property: Upon
defining

P�,m (z) :=
m∑

k=0

β�,2k

z2k
,(A.1c)

Q�,m (z) = − i
m∑

k=0

β�,2k+1

z2k+1
(A.1d)

with

β�,k :=
ik γ�,k
23kk!

and γ�,m as in (3.12)

there holds

∀z > 0 ∀m >
�

2
− 1

4

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|(P� − P�,m−1) (z)| ≤

|γ�,2m|
26m (2m)!

1

z2m
,

|(Q� −Q�,m−1) (z)| ≤
γ�,2m+1

26m+2 (2m+ 1)!

1

z2m+1
.

Note that in Subsection 3.2 the order � is always small, i.e., � ∈ {0, 1} and, hence,
we do not analyze the dependence of the constants on � in the following estimates.

We conclude that

(A.2a) ∀z ≥ 1 : |P� (z)| ≤
∣∣∣P�,� �

2�−1 (z)
∣∣∣+

∣∣∣γ�,2� �
2�

∣∣∣
26� �

2� (2 ⌈ �
2

⌉)
!

1

z2� �
2�

≤ C,

and similarly,

(A.2b) ∀z ≥ 1 : |Q� (z)| ≤
C

z
, |P ′

� (z)| ≤
C

z3
, |Q′

� (z)| ≤
C

z2
.

Hence, for f ∈
{
J�, H

(1)
�

}
, � ∈ N0, there holds

(A.3a) ∀z ≥ 1 : |f (z)| ≤ C√
z
,

and the combination with |J� (z)|
[1, 9.1.60]

≤ C for all z ≥ 0 yields

(A.3b) ∀z ≥ 0 : |J� (z)| ≤ C

√
1

1 + z
.
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We need an estimate of the derivative at the argument z = kr for z ≥ 1. The
derivative of (A.1b) can be written in the form

d

dr
H

(1)
0 (kr)

[1, 9.2.7]
= C ei kr

√
1

kr

d

dr
(P0 (kr) + iQ0 (kr))(A.4)

+ C (P0 (kr) + iQ0 (kr))
d

dr

(
ei kr

√
1

kr

)
.

The combination of (A.4) and (A.2) leads to

(A.5)

∣∣∣∣ ddrH(1)
0 (kr)

∣∣∣∣ ≤ C

(
1

r
√
kr

+

√
k

r

)
.

We also need an estimate of ∂r

(
e− i kr H

(1)
0 (kr)

)
. Employing (A.1b) we obtain

d

dr

(
e− i kr H

(1)
0 (kr)

)
=

√
2

π
e−π/4 d

dr

(√
1

kr
(P0 (kr) + iQ0 (kr))

)
.

Thus, for kr ≥ 1, we get

(A.6)
∣∣∣∂r (e− i kr H

(1)
0 (kr)

)∣∣∣ ≤ C

r
√
kr

.

An estimate of the second derivative of H
(1)
0 is derived by using [1, 9.1.27, 9.1.28]:

(A.7)

∣∣∣∣ d2dr2
H

(1)
0 (kr)

∣∣∣∣ = k2

∣∣∣∣∣−H
(1)
0 (kr) +

H
(1)
1 (kr)

kr

∣∣∣∣∣ (A.3a)

≤ Ck

√
k

r
.

Case 2: z = kr ∈ (0, 1).

To estimate H
(1)
0 (z) in the range (0, 1) we employ

H
(1)
0 (z) = J0 (z) + iY0 (z)

and use for Y0 (z) the expansion

Y0 (z) =
2

π

(
log

z

2

)
J0 (z)−

2

π

∞∑
k=0

ψ (k + 1)

(
− z2

4

)k

(k!)
2 ,

where

ψ (n) := −γ +

n−1∑
k=1

k−1 and γ := 0.57721566 . . . is Euler’s constant.

For 0 ≤ z ≤ 1, we have

|Y0 (z)| ≤
2

π

∣∣∣log z

2

∣∣∣+ 2

π

∞∑
k=0

ψ (k + 1)

4k (k!)
2 .

Furthermore,

|ψ (k + 1)| ≤ γ + 1 +

k∑
s=2

1

s
≤ γ + 1 +

∫ k

1

1

x
dx = γ + 1 + log k =: γ′ + log k.
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Thus, for 0 ≤ z ≤ 1, we have

|Y0 (z)| ≤
2

π

∣∣∣log z

2

∣∣∣+ 2

π

(
γ +

∞∑
k=1

γ′ + log k

4k (k!)2

)
Since γ′+log k

4kk!
≤ 1 we get

|Y0 (z)| ≤
2

π
|log z|+ C.

This leads to the estimate:

(A.3c) ∀z ∈ ]0, 1] :
∣∣∣H(1)

0 (z)
∣∣∣ ≤ 2

π
|log z|+ C.

The combination with (A.3a) finally results in

(A.3d)
∣∣∣H(1)

0 (z)
∣∣∣ ≤ min

{
2

π
|log z|+ C,

C√
z

}
.

We will need further estimates of J1 and ∂rH
(1)
0 . From [1, 9.1.60], we conclude that

(A.8) ∀z ≥ 0 : J1 (z) ≤ 1/
√
2.

For the derivative of Y0, we obtain (by using J ′
0 = −J1)

(A.9) Y ′
0 (z) =

2

π

(
J0 (z)

z
− J1 (z) log

z

2

)
+

z

π

∞∑
k=0

ψ (k + 2)

(
− z2

4

)k

k! (k + 1)!
.

For 0 ≤ z ≤ 1, we obtain

z

π

∞∑
k=0

ψ (k + 2)

(
− z2

4

)k

k! (k + 1)!
≤ z

π

∞∑
k=0

γ′ + log (k + 1)

k!4k (k + 1)!
≤ z

π

∞∑
k=0

1

k!
= Cz.

Now,

(A.10) |J1 (z)|
[1, 9.1.62]

≤ z/2,

and we get

Y ′
0 (z) ≤

2

π

(
z−1 +

z

2
log

z

2
+

e z

2

)
≤ 2

πz
+ C.

Hence, for 0 ≤ r ≤ 1/k, we arrive at

(A.11)
∣∣∣∂rH(1)

0 (kr)
∣∣∣ = k (|J ′

0 (kr)|+ |Y ′
0 (kr)|) ≤

2

πr
+Ck+

k2r

2
≤ C

(
1

r
+

k2r

2

)
.

In addition, we need some weighted estimates for second order derivatives of

H
(1)
0 . From (A.9) we obtain

∂r (r∂rY0 (kr))=
2k

π

⎛⎜⎝−2J1 (kr)−kr log
kr

2
J0 (kr) + kr

∞∑
k=0

ψ (k + 2)

(
− (kr)2

4

)k

(k!)2

⎞⎟⎠ .

This leads to the estimate, for 0 < z ≤ 1,

|∂r (r∂rY0 (kr))| ≤
2

π
k2r

(
C +

∣∣∣∣log kr

2

∣∣∣∣) .

Note that

∂r

(
r∂rH

(1)
0 (kr)

)
= −rk2J0 (kr) + i ∂r (r∂rY0 (kr)) ,
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and, hence,

(A.12) ∀0 ≤ kr ≤ 1 :
∣∣∣∂r (r∂rH(1)

0 (kr)
)∣∣∣ ≤ 2

π
k2r

(
C +

∣∣∣∣log kr

2

∣∣∣∣) .

We finally state a lemma required for the proof of Lemma 3.7:

Lemma A.1. Let |s| ≥ k and k ≥ k0 > 0. Then

rJ0(sr)H
(1)
0 (kr) =

2

π
√
k|s|

{
ei(|s|+k)rf I(|s|r) + ei(−|s|+k)rf II(|s|r)

}
gI(kr),

where the functions f I , f II , gI satisfy for r ≥ 1 and a C > 0 depending solely on
k0:

|f I(r)|+ |f II(r)|+ |gI(r)| ≤ C,

r2
(
| d
dr

f I(r)|+ | d
dr

f II(r)|+ | d
dr

gI(r)|
)

≤ C.

Proof. By symmetry of J0, we may assume s > 0. Formulas (A.1a), (A.1b) imply
the stated representation with f I(sr) = 1

2 (P0(sr) + iQ0(sr)) e
− iπ/4, f II(sr) =

1
2 (P0(sr)− iQ0(sr)) e

iπ/4, and gI(kr) = (P0(kr) + iQ0(kr))e
i π/4. The estimates

for f I , f II , gI now follow from the bounds for P0, Q0, P
′
0, Q

′
0 given in (A.2a),

(A.2b). �

Appendix B. Approximation by hp-finite elements.

Case I: finite regularity

The purpose of the present section is the proof of Theorem B.4, which constructs
a polynomial approximation to a function u ∈ Hs, s > d/2, in an element-by-
element fashion (see Definition 5.3). The novelty of the present construction over
existing operators such as those of [3], [14], [34] is that we obtain optimal rates (in
p) simultaneously in the H1-norm and the L2-norm. Closely related results can be
found in the recent paper [21], where similar duality arguments are employed to
obtain estimates in L2.

B.1. Lifting operators. In the p-FEM, globally continuous, piecewise polynomial
approximations to a function u are typically constructed in two steps: in a first step,
discontinuous approximations are constructed element by element. In a second step,
the jumps across the element interfaces are corrected by suitable lifting operators.
The construction of these lifting operators is the purpose of the present section; the
ensuing Section B.2 is devoted to the analysis of polynomial approximation.

Before proceeding we recall the definition of the Sobolev space H
1/2
00 (Ω). If Ω is

an edge or a face of a triangle or a tetrahedron, then the Sobolev norm ‖ · ‖
H

1/2
00 (Ω)

is defined by

(B.1) ‖u‖2
H

1/2
00 (Ω)

:= ‖u‖2H1/2(Ω) +

∥∥∥∥∥ u√
dist(·, ∂Ω)

∥∥∥∥∥
2

L2(Ω)

,

and the space H
1/2
00 (Ω) is the completion of C∞

0 (Ω) under this norm.

Lemma B.1. Let K̂2D be the reference triangle in 2D. Vertex and edge lifting
operators can be constructed with the following properties:
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(1) For each vertex V of K̂2D there exists a polynomial LV,p ∈ Pp that at-

tains the value 1 at the vertex V and vanishes on the edge of K̂2D oppo-
site to V . Additionally, for every s ≥ 0, there exists Cs > 0 such that
‖LV,p‖Hs(K̂2D)

≤ Csp
−1+s.

(2) For every edge e of K̂2D there exists a bounded linear operator πe : H
1/2
00 (e)

→ H1(K̂2D) with the following properties:

(a) ∀u ∈ Pp ∩H
1/2
00 (e) : πeu ∈ Pp,

(b) ∀u ∈ H
1/2
00 (e) : πeu|∂K̂2D\e = 0,

(c) ∀u ∈ H
1/2
00 (e) : p‖πeu‖L2(K̂2D)

+ ‖πeu‖H1(K̂2D)

≤ C
(
‖u‖

H
1/2
00 (e)

+ p1/2‖u‖L2(e)

)
.

Proof. Let K̂2D = {(x, y) | 0 < x < 1, 0 < y < 1− x}. The vertex function LV,p for
the vertex V = (0, 0) is defined as LV,p(x, y) = (1− (x+ y))p. A simple calculation
then shows the result. The functions LV,p for the remaining 2 vertices are obtained
by suitable affine transformations.

For the edge lifting, let e be the edge e = {(x, 0) | 0 < x < 1}. By [3] there exists

a bounded linear operator E : H
1/2
00 (e) → H1(K̂2D) with the following properties:

Eu|e = u, Eu|
∂K̂2D\e = 0, and Eu ∈ Pp if u ∈ Pp∩H1/2

00 (e). Introduce the auxiliary

operator (Gu)(x, y) := (1− y)p(Eu)(x, y). By [31, Lemma B.5], we have

p‖Gu‖
L2(K̂2D)

+ ‖Gu‖
H1(K̂2D)

≤ C
(
|Eu|

H1(K̂2D)
+ p1/2‖u‖L2(e)

)
≤ C

(
‖u‖

H
1/2
00 (e)

+ p1/2‖u‖L2(e)

)
.

Denote by ΠH1

p : H1
0 (K̂

2D) → H1
0 (K̂

2D) ∩ Pp the H1-projection and set πeu :=

Eu+ΠH1

p (Gu− Eu). Then by the stability of ΠH1

p and E we have

‖πeu‖H1(K̂2D)
≤ ‖Gu‖

H1(K̂2D)
+ 2‖Gu− Eu‖

H1(K̂2D)

≤ C
(
‖u‖

H
1/2
00 (e)

+ p1/2‖u‖L2(e)

)
,

which is the desired H1-stability result. For the L2-bound, we use a duality argu-
ment as in [21]:

‖Gu−Eu−ΠH1

p (Gu−Eu)‖
L2(K̂2D)

≤ Cp−1‖(Gu−Eu)−ΠH1

p (Gu−Eu)‖
H1(K̂2D)

.

The H1-stability of ΠH1

p together with stability properties of E and G produce the

desired L2-bound. �

Lemma B.2. Let K̂3D be the reference tetrahedron in 3D. Vertex, edge, and face
lifting operators can be constructed with the following properties:

(i) For each vertex V of K̂3D there exists a polynomial LV,p ∈ Pp that attains
the value 1 at the vertex V and vanishes on the face opposite V . Addi-
tionally, for every s ≥ 0 there exists Cs > 0 such that ‖LV,p‖Hs(K̂3D)

≤
Csp

−3/2+s.

(ii) For every edge e of K̂3D there exists a bounded linear operator πe : H
1/2
00 (e)

→ H1(K̂3D) with the following properties:

(a) πeu ∈ Pp if u ∈ Pp ∩H
1/2
00 (e),
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(b) (πeu)|f = 0 for the two faces f with f ∩ e = ∅,
(c) for the two faces f adjacent to e (i.e., f ∩ e = e),

p‖πeu‖L2(f) + ‖πeu‖H1(f) ≤ C‖u‖
H

1/2
00 (e)

+ p1/2‖u‖L2(e),

‖πeu‖H1/2(∂K̂3D)
≤ C

(
p−1/2‖u‖

H
1/2
00 (e)

+ ‖u‖L2(e)

)
,

p‖πeu‖L2(K̂3D)
+ ‖πeu‖H1(K̂3D)

≤ C
(
p−1/2‖u‖

H
1/2
00 (e)

+ ‖u‖L2(e)

)
.

(iii) For every face f of K̂3D there exists a bounded linear operator πf : H
1/2
00 (f)

→ H1(K̂3D) with the following properties:

(a) πfu ∈ Pp if u ∈ Pp ∩H
1/2
00 (f),

(b) (πeu)|f ′ = 0 for the faces f ′ �= f ,

p‖πfu‖L2(K̂3D)
+ ‖πfu‖H1(K̂3D)

≤ C
(
‖u‖

H
1/2
00 (f)

+ p1/2‖u‖L2(f)

)
.

Proof. We take the reference tetrahedron K̂3D to be K̂3D = {(x, y, z) | 0 < x <
1, 0 < y < 1− x, 0 < z < 1− x− y}.

Proof of (i). For the vertex V = (0, 0, 0) we select LV,p(x, y, z) := (1− (x+ y +
z))p. A calculation shows that LV,p has the desired properties. The functions LV,p

for the remaining 3 vertices are obtained by affine transformations.

Proof of (iii). [34, Lemma 8] exhibits a bounded linear operator F : H
1/2
00 (f) →

H1(K̂3D) with the additional property that Fu ∈ Pp if u ∈ Pp ∩H
1/2
00 (f). With-

out loss of generality, let f = ∂K̂3D ∩ {z = 0}. Define the auxiliary operator
(Gu)(x, y, z) := (1− z)p(Fu)(x, y, z). This operator satisfies (see [31, Lemma B.5]
where the analogous arguments are worked out in the 2D setting)

p‖Gu‖
L2(K̂3D)

+ ‖Gu‖
H1(K̂3D)

≤ C
(
|Fu|

H1(K̂3D)
+ p1/2‖Fu‖L2(f)

)
≤ C‖u‖

H
1/2
00 (f)

+ p1/2‖u‖L2(f).

Again, letting ΠH1

p : H1
0 (K̂

3D) → H1
0 (K̂

3D) ∩ Pp be the H1-projection, we can set

πfu := Fu+ΠH1

p (Gu−Fu). The desired properties of πf are then seen in exactly
the same way as in the 2D case of Lemma B.1.

Proof of (ii). Set fe,1 = ∂K̂3D ∩{z = 0} and fe,2 = ∂K̂3D ∩{1−x− y− z = 0}.
The edge shared by the faces fe,1 and fe,2 is e = {(x, 1 − x, 0) | 0 < x < 1}. By

Lemma B.1 a function u ∈ H
1/2
00 (e) can be lifted to a function Eu ∈ H1(fe,1) such

that Eu|∂fe,1\e = 0 and

p‖Eu‖L2(fe,1) + ‖Eu‖H1(fe,1) ≤ C
(
‖u‖

H
1/2
00 (e)

+ p1/2‖u‖L2(e)

)
.

Additionally, if u ∈ Pp, then Eu ∈ Pp. Since the same lifting can be done for

the face fe,2, we can find a function, again denoted Eu ∈ H1(∂K̂3D), that van-

ishes on ∂K̂3D \ (fe,1 ∪ fe,2 ∪ e), such that p‖Eu‖
L2(∂K̂3D)

+ ‖Eu‖
H1(∂K̂3D)

≤
C

(
‖u‖

H
1/2
00 (e)

+ p1/2‖u‖L2(e)

)
. Additionally, Eu is a piecewise polynomial of de-

gree p if u ∈ Pp. An interpolation inequality gives

‖Eu‖
H1/2(∂K̂3D)

≤ C‖Eu‖1/2
L2(∂K̂3D)

‖Eu‖1/2
H1(∂K̂3D)

≤ Cp−1/2
(
‖u‖

H
1/2
00 (∂K̂3D)

+ p1/2‖u‖
L2(∂K̂3D)

)
.
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For this function Eu, [34, Lemma 8] provides a lifting Fu ∈ H1(K̂3D) with
‖Fu‖

H1(K̂3D)
≤ C‖Eu‖

H1/2(K̂3D)
. To get a better L2-bound, we introduce the

distance functions d1(·) := dist(·, fe,1) and d2(·) := dist(·, fe,2) as well as d(·) :=
dist(·, fe,1 ∪ fe,2) = min{d1(·), d2(·)} and set w := (1 − d)p. Define Gu := wFu.
Then (Gu)|

∂K̂3D = (Fu)|
∂K̂3D since w|fe,1∪fe,2 ≡ 1 and Fu|

∂K̂3D\(fe,1∪fe,2)
= 0.

Additionally, Gu ∈ H1(K̂3D) since w is Lipschitz continuous. Furthermore, we
have

(B.2) p‖Gu‖
L2(K̂3D)

+‖Gu‖
H1(K̂3D)

≤ C
(
‖Fu‖

H1(K̂3D)
+ p1/2‖Fu‖L2(fe,1∪fe,2)

)
.

To see this, we adapt the proof given in [31, Lemma B.5]. We split K̂3D = K1∪K2

with Ki = {(x, y, z) ∈ K̂3D | d(x, y, z) ≤ di(x, y, z)}, i ∈ {1, 2}. We note that on
K1, we have d(x, y, z) = d1(x, y, z) = z. Hence, by the arguments given in [31,
Lemma B.5], we get

p‖Gu‖L2(K1) + ‖Gu‖H1(K1) ≤ C
(
‖Fu‖H1(K1) + p1/2‖Fu‖L2(fe,1)

)
.

Proceeding completely analogously for K2 gives us (B.2). Since Fu|∂K3D coincides
with Eu, we conclude that Gu satisfies

(B.3) p‖Gu‖L2(K1) + ‖Gu‖H1(K1) ≤ Cp−1/2
(
‖u‖

H
1/2
00 (e)

+ p1/2‖u‖L2(e)

)
.

We recall that ΠH1

p : H1
0 (K̂

3D) → H1
0 (K̂

3D) ∩ Pp denotes the H1-projection and
we define

πeu := Fu+ΠH1

p (Gu− Fu).

If u is a polynomial of degree p, then πeu is a polynomial of degree p. Additionally,

πeu = Fu on ∂K̂3D so that the estimates for πe on the faces of K̂3D are satisfied. To
see the H1(K̂3D)- and L2(K̂3D)-bounds we note that the stability of ΠH1

p together

with (B.3) and the stability of F gives us the H1-bound. The L2-bound follows
as in the proof of Lemma B.1 and in [21] from Nitsche’s trick: ‖πeu‖L2(K̂3D)

≤
‖πeu−Gu‖

L2(K̂3D)
+ ‖Gu‖

L2(K̂3D)
≤ Cp−1‖Fu−Gu‖

H1(K̂3D)
+ ‖Gu‖

L2(K̂3D)
. �

B.2. Approximation operators. Lemma B.3 provides polynomial approxima-
tion results on triangles and tetrahedra. The lifting operators of the preceding sub-
section are employed in Theorem B.4 to modify the approximations of Lemma B.3
such that approximations are obtained that permit an element-by-element con-
struction in the sense of Definition 5.3; that is, the approximation πu of a function

u satisfies the following: For every vertex V , edge e, face f of K̂, the restrictions
(πu)(V ), (πu)|e, (πu)|f are completely determined by u(V ), u|e, u|f , respectively.

Lemma B.3. Let K̂ be the reference triangle or the reference tetrahedron. Let

s > d/2. Then there exists for every p a bounded linear operator πp : Hs(K̂) → Pp

and for each t ∈ [0, s] a constant C > 0 (depending only on s and t) such that

(B.4) ‖u− πpu‖Ht(K̂)
≤ Cp−(s−t)|u|

Hs(K̂)
, p ≥ s− 1.

Additionally, we have ‖u−πpu‖L∞(K̂)
≤ Cp−(s−d/2)|u|

Hs(K̂)
. Furthermore, for the

case d = 2 we have ‖u − πpu‖Ht(e) ≤ Cp−(s−1/2−t)|u|
Hs(K̂)

for 0 ≤ t ≤ s − 1/2

for every edge. For the case d = 3 we have ‖u− πpu‖Ht(f) ≤ Cp−(s−1/2−t)|u|
Hs(K̂)
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for 0 ≤ t ≤ s− 1/2 for every face f and ‖u− πpu‖Ht(e) ≤ Cp−(s−1−t)|u|
Hk(K̂)

for

0 ≤ t ≤ s− 1 for every edge.

Proof. The construction of πp with the property (B.4) is fairly classical (see, e.g.,
[5]). One possible construction is worked out in [31, Appendix A] first for integers
s, t and, then, interpolation arguments remove this restriction. Next, we consider
the L∞-bound, for which we need the assumption s > d/2: We recall that for a
Lipschitz domain K ⊂ Rd and s > d/2 there exists C > 0 such that

(B.5) ‖u‖L∞(K) ≤ C‖u‖1−d/(2s)
L2(K) ‖u‖d/(2s)Hs(K) ∀u ∈ Hs(K).

From this, the desired L∞-bound follows easily. The inequality (B.5) can be seen
as follows: First, using an extension operator for K (e.g., the one given in [42,
Chap. VI]) it suffices to show this estimate with K replaced with the full space

Rd. Next, [45, Thm. 4.6.1] asserts the embedding B
d/2
2,1 (R

d) ⊂ C(Rd). Finally, the

Besov space B
d/2
2,1 (R

d) is recognized as an interpolation space between L2(Rd) and

Hs(Rd): B
d/2
2,1 (R

d) = (L2(Rd), Hs(Rd))d/(2s),1. The interpolation inequality then
produces the desired result. The remaining estimates on the edges and faces follow

from appropriate trace inequalities. Specifically, let ω ⊂ ∂K̂ be an edge (for d = 2)
or a face (for d = 3). By [45, Thm. 2.9.3] the trace operator γ is a continuous
mapping in the following spaces:

γ : B
1/2
2,1 (K̂) → L2(ω) and γ : Ht(K̂) → Ht−1/2(ω), t > 1/2.

Together with the observation B
1/2
2,1 (K̂) = (L2(K̂), Hs(K̂))1/(2s),1 the desired es-

timates can be inferred. It remains to see the case of traces on an edge e of the
tetrahedron in the case d = 3. In this case [45, Thm. 2.9.4] asserts the continuity
of the trace operator in the following spaces:

γ : B1
2,1(K̂) → L2(e) and γ : Ht(K̂) → Ht−1(e), t > 1.

Again, these continuity properties are sufficient to establish the desired error esti-
mates. �

We conclude this section with the construction of an approximation operator
that permits an easy element-by-element construction.

Theorem B.4. Let K̂ ⊂ Rd be the reference triangle or the reference tetrahedron.
Let s > d/2. Then there exists C > 0 (depending only on s and d) and for every p

a linear operator π : Hs(K̂) → Pp that permits an element-by-element construction
in the sense of Definition 5.3 such that

(B.6) p‖u− πu‖
L2(K̂)

+ ‖u− πu‖
H1(K̂)

≤ Cp−(s−1)|u|
Hs(K̂)

∀p ≥ s− 1.

Proof. We discuss only the case d = 3; the case d = 2 is treated very similarly.
Also, we will construct πu for a given u; inspection of the construction shows that
u 
→ πu is in fact a linear operator.
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Let π1 ∈ Pp be given by Lemma B.3. Then, for p ≥ s− 1 there holds

‖u− π1‖
Ht(K̂)

≤ Cp−(s−t)|u|
Hs(K̂)

, 0 ≤ t ≤ s,(B.7)

‖u− π1‖Ht(f) ≤ Cp−(s−t−1/2)|u|
Hs(K̂)

, ∀ faces f, 0 ≤ t ≤ s− 1/2,(B.8)

‖u− π1‖Ht(e) ≤ Cp−(s−t−1)|u|
Hs(K̂)

, ∀ edges e, 0 ≤ t ≤ s− 1,(B.9)

‖u− π1‖
L∞(K̂)

≤ Cp−(s−3/2)|u|
Hs(K̂)

.(B.10)

From (B.10) and the vertex-lifting properties given in Lemma B.2, we may adjust
π1 by vertex liftings to obtain a polynomial π2 satisfying (B.7)–(B.9) and addi-
tionally the condition (5.3) of Definition 5.3. We next adjust the edge values. The
polynomial π2 coincides with u in the vertices and satisfies (B.9). By fixing a
t ∈ (1/2, s− 1), we get from an interpolation inequality:

p1/2‖u− π2‖L2(e) + ‖u− π2‖
H

1/2
00 (e)

≤ p1/2‖u− π2‖L2(e) + C‖u− π2‖1−1/(2t)
L2(e) ‖u− π2‖1/(2t)Ht(e)

≤ Cp−(s−3/2)|u|
Hs(K̂)

.

Hence, for an edge e, the minimizer πe of the functional (5.4) satisfies p1/2‖u −
πe‖L2(e) + ‖u − πe‖

H
1/2
00 (e)

≤ Cp−(s−3/2)|u|
Hk(K̂)

; the triangle inequality therefore

gives that the correction πe − π2 needed to obtain condition (5.3) of Definition 5.3
likewise satisfies p1/2‖πe − π2‖L2(e) + ‖πe − π2‖

H
1/2
00 (e)

≤ Cp−(s−3/2)|u|
Hs(K̂)

. We

conclude that the edge lifting of Lemma B.2 allows us to adjust π2 to get a poly-
nomial π3 ∈ Pp that satisfies the conditions (5.3) and (5.3) of Definition 5.3. Ad-
ditionally, we have

p‖u− π3‖
L2(K̂)

+ ‖u− π3‖
H1(K̂)

≤ Cp−(s−1)|u|
Hs(K̂)

,

p‖u− π3‖L2(f) + ‖u− π3‖H1(f) ≤ Cp−(s−3/2)|u|
Hs(K̂)

for all faces f.

Since π3|e = πe for the edges, the minimizer πf of the functional (5.5) for each face
f has to satisfy p‖u−πf‖L2(f)+‖u−πf‖H1(f) ≤ p‖u−π3‖L2(f)+‖u−π3‖H1(f) ≤
Cp−(s−3/2)|u|

Hs(K̂)
. From the triangle inequality, we conclude that

p‖π3 − πf‖L2(f) + ‖π3 − πf‖H1(f) ≤ Cp−(s−3/2)|u|
Hk(K̂)

,

together with π3 − πf ∈ H1
0 (f).

Hence, the face lifting of Lemma B.2 allows us to correct the face values to
achieve also condition (5.3) of Definition 5.3. Lemma B.2 also implies that the
correction is such that (B.6) is true. �

Appendix C. Approximation by hp-finite elements.

Case II: analytic regularity

In this section, we construct a polynomial approximation operator for analytic
functions that permits element-by-element construction in the sense of Defini-
tion 5.3 and leads to exponential rates of convergence.

Lemma C.1. Let d ∈ {2, 3}. Let G1, G ⊂ Rd be bounded open sets. Assume that
g : G1 → Rd satisfies g(G1) ⊂ G. Assume additionally that g is injective on G1,
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analytic on G1 and satisfies

‖∇pg‖L∞(G1) ≤ Cgγ
p
gp! ∀p ∈ N0, |det(g′)| ≥ c0 > 0 on G1.

Let f be analytic on G and satisfy, for some Cf , γf , κ > 0,

(C.1) ‖∇pf‖L2(G) ≤ Cfγ
p max{p, κ}p ∀p ∈ N0.

Then, the function f ◦ g is analytic on G1 and there exist constants C, γ1 > 0 that
depend solely on γg, Cg, c0, and γf such that

‖∇p(f ◦ g)‖L2(G) ≤ CCfγ
p
1 max{p, κ}p ∀p ∈ N0.

Proof. This is essentially proved in [30, Lemma 4.3.1]; specifically, [30, Lemma 4.3.1]
analyzes the case d = 2 and states that C, γ1 depends on the function g. Inspection
of the proof shows that the case d = 3 can be handled analogously and shows that
the dependence on the function g can be reduced to a dependence on Cg, γg, and
γf . �

Lemma C.2. Let d ∈ {1, 2, 3}, and let K̂ ⊂ Rd be the reference simplex. Let γ,

C̃ > 0 be given. Then there exist constants C, σ > 0 that depend solely on γ and

C̃ such that the following is true: For any function u that satisfies for some Cu, h,
R > 0, κ ≥ 1 the conditions

(C.2) ‖∇nu‖
L2(K̂)

≤ Cu(γh)
nmax{n/R, κ}n ∀n ∈ N, n ≥ 2,

and for any polynomial degree p ∈ N that satisfies

(C.3) h/R+ κh/p ≤ C̃

there holds

(C.4) inf
π∈Pp

‖u− π‖
W 2,∞(K̂)

≤ CCu

[(
h/R

σ + h/R

)p+1

+

(
κh

σp

)p+1
]
.

Proof. Let Π1u ∈ P1 be the L2-projection of u onto the space P1. Set ũ := u−Π1u.
It suffices to approximate ũ from Pp. By the lemma of Deny and Lions and (C.3)
we have

‖ũ‖
L2(K̂)

≤ C‖∇2u‖
L2(K̂)

≤ CCu(1 + (h/R)2 + (hκ)2) ≤ CCup
2,

‖∇ũ‖
L2(K̂)

≤ C‖∇2u‖
L2(K̂)

≤CCu(1+(h/R)2 + (hκ)2)≤CCuph/Rmax{1, κR},
‖∇nũ‖

L2(K̂)
= ‖∇nu‖

L2(K̂)
≤ CCu(γh/R)n max{n,Rκ}n ∀n ≥ 2.

We conclude that (estimating generously p ≤ p2 for the case n = 1)

(C.5) ‖∇nũ‖
L2(K̂)

≤ CCup
2(γh/R)n max{n, κR}n ∀n ∈ N0.

For the case κR ≤ 1, we estimate κR ≤ 1 and get directly from [30, Thm. 3.2.19]

inf
π∈Pp

‖ũ− π‖
W 2,∞(K̂)

≤ CCu

(
h/R

σ + h/R

)p+1

.

It remains to consider the case κR > 1. To that end, we note that (C.5) and the

Sobolev embedding theorem H2(K̂) ⊂ C(K̂) gives us for suitable C > 0,

‖∇nũ‖
L∞(K̂)

≤ Cup
2C

[
(γh/R)n+2 max{n+ 2, κR}n+2

+(γh/R)nmax{n+ 2, κR}n]
≤ CCup

2(γh/R)n max{n+ 2, κR}n
(
1 + max{(n+ 2)h/R, hκ}2

)
∀n ∈ N0.
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Hence, we get for suitable constant γ > 0 in view of (C.3),

(C.6) ‖∇nũ‖
L∞(K̂)

≤ CCup
4(γγh/R)n max{n+ 2, κR}n ∀n ∈ N0.

Define

(C.7) μ := γγ
√
d e,

and let r0 = diam(K̂) and b
K̂

be the barycenter of K̂. The bounds (C.6), (5.2)
and Stirling’s formula in the form n! ≥ (n/ e)n imply that the Taylor series of ũ

about x ∈ K̂ converges on a (complex) ball B1/(μh/R)(x) ⊂ Cd of radius 1/(μh/R)

and center x ∈ K̂. For the polynomial approximation of ũ, we distinguish the cases
μh/R ≤ 1/(2r0) and μh/R > 1/(2r0).

The case μh/R ≤ 1/(2r0): In this case the Taylor series of ũ about b
K̂

converges

on an open ball that contains the closure of K̂. We may therefore approximate ũ
by its truncated Taylor series Tpu. The error is then given by

ũ(x)− Tpu(x) =
∑

α∈Nd
0 :|α|≥p+1

1

α!
Dαũ(b

K̂
)(x− b

K̂
)α, x ∈ B1/(μh/R)(bK̂) ⊂ Cd.

Hence (5.2) and (C.6) imply

‖ũ− Tpu‖L∞(Br0
(b

K̂
)) ≤

∑
|α|≥p+1

1

α!
|Dαũ(b

K̂
)|r|α|0 ≤

∞∑
n=p+1

rn0 d
n/2 1

n!
‖∇nũ‖

L∞(K̂)

≤ CCup
4

∞∑
n=p+1

1

n!
max{n+ 2, κR}ndn/2(γγh/R)nrn0 =: S.

The last sum S is split further using Stirling’s formula n!≥(n/ e)n and (1+2/n)n≤
e2:

S = CCup
4

⎛⎝ ∑
p+1≤n≤κR−2

1

n!
(
√
dr0γγκh)

n

+
∑

n≥max{p+1,κR−2}
(γγr0

√
dh/R)n

(n+ 2)n

n!

⎞⎠
≤ CCup

4e2

⎛⎜⎝ ∑
n≥p+1

1

n!

(√
dr0γγκh

)n

+
∑

n≥p+1

(e γγ
√
d︸ ︷︷ ︸

=μ

r0h/R)n

⎞⎟⎠ =: S1 + S2.

We estimate these two sums separately. For S2, we use the assumption μr0h/R ≤
1/2, which allows us to estimate

S2 ≤ CCup
4e2(μr0h/R)p+1 = CCup

4e2

(
h/R

1
2μr0

+ 1
2μr0

)p+1

≤ CCup
4e2

(
h/R

1
2μr0

+ h/R

)p+1

.
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For S1, we recall that Taylor’s formula gives, for x > 0,∑
n≥p+1

1

n!
xn = ex −

p∑
n=0

1

n!
xn =

1

p!

∫ x

0

(x− t)pet dt ≤ xp+1

p!
ex.

Hence, we can estimate S1 by (recall that γγ
√
d = μ/e),

S2 ≤ CCup
4 ((μ/e)r0κh)

p+1

p!
e(μ/e)r0κh ≤ CCup

5

(
eθμr0κh

p+ 1

)p+1

,

where, in the second inequality, we have used the assumption hκ/p ≤ C̃ and Stir-

ling’s formula n! ≥ (n/ e)n and have abbreviated θ := C̃μ/er0. Combining the
estimates for S1 and S2 we arrive at the following estimate for suitable σ > 0

(depending only on μ,r0, and C̃):

‖ũ− Tpu‖L∞(Br0
(b

K̂
)) ≤ S ≤ CCu

((
κh

σp

)p+1

+

(
h/R

σ + h/R

)p+1
)
.

Since dist(K̂, ∂Br0(bK̃)) > 0, the Cauchy integral formula for derivatives then im-
plies

‖ũ− Tpu‖W 2,∞(K̂)
≤ CCu

((
κh

σp

)p+1

+

(
h/R

σ + h/R

)p+1
)
.

The case μh/R > 1/(2r0): We recall that for every x ∈ K̂ the Taylor series of ũ
about x converges on the (complex) ball B1/(μh/R)(x) ⊂ Cd. From (C.3) we get a

lower bound for 1/(μh/R), namely, 1/(μh/R) ≥ 1/(μC̃) =: 2r1. We conclude that

ũ is analytic on Û2r1 :=
⋃

x∈K̂
B2r1(x) ⊂ Cd. The estimate (C.6) and a calculation

analogous to the above reveals that on Ûr1 :=
⋃

x∈K̂
Br1(x) we have

‖ũ‖L∞(Ûr1
) ≤ CCup

4eϑκh

for a constant ϑ > 0 independent of p, κ, h. Approximation results for analytic
functions on triangles/tetrahedra (see [30, Prop. 3.2.16] for the case d = 2 and [16,
Thm. 1] for the case d = 3) imply the existence of C, b > 0 that depend solely on
r1 such that

inf
π∈Pp+1

‖u− π‖
W 2,∞(K̂)

≤ CCup
4 eϑκh e−bp ∀p ∈ N0.

We finally distinguish two further cases: If ϑκh < pb/2, then we can estimate

p4eϑκhpe−bp ≤ p4e−b/2p ≤ C

(
1/(2μr0)

σ + 1/(2μr0)

)p+1

,

for suitable constants C, σ > 0 depending only on b, μ, and r0. Since h/R ≥
1/(2μr0) and the function x 
→ x/(σ + x) is monotone increasing, we have reached
the desired bound. If, on the other hand, ϑκh ≥ pb/2, then

p4eϑκhe−bp ≤ Ceϑκh ≤ CeϑC̃p = C
(
eϑC̃

)p

≤ C

(
κh

p

2

b
eϑC̃

)p

;

we recognize this bound to have the desired form. �
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Lemma C.3. Assume the hypotheses of Lemma C.2. Then one can find a polyno-
mial π ∈ Pp that satisfies

(C.8) ‖u− π‖
W 1,∞(K̂)

≤ CCu

[(
h/R

σ + h/R

)p+1

+

(
κh

σp

)p+1
]

and additionally admits an element-by-element construction as defined in Defini-
tion 5.3.

Proof. The construction follows standard lines. We will only outline the arguments
for the case d = 3. In order to keep the notation compact, we introduce the
expression

E(C, σ) := CCu

[(
h/R

σ + h/R

)p+1

+

(
κh

σp

)p+1
]
.

In what follows, the constants Ci, σi > 0 (i = 1, 2, . . .) will be independent of
Cu, h, R, p, and κ. Let π ∈ Pp be the polynomial given by Lemma C.2. It
satisfies ‖u − π‖

W 2,∞(K̂)
≤ E(C, σ). Therefore, we may correct π by a linear

polynomial without sacrificing the approximation rate to ensure u(V ) − π(V ) for
all vertices V ∈ V . This corrected polynomial, denoted π2, vanishes in the vertices
and still satisfies ‖u − π2‖

W 2,∞(K̂)
≤ E(C2, σ2). Next, we correct the edges. We

illustrate the procedure only for one edge. Without loss of generality, we assume

that K̂ = {(x, y, z) | 0 < x, y, z < 1, x+y < 1− z} and that the edge e considered is
e = {(0, 0, z) | z ∈ (0, 1)}. Let the univariate polynomial πe ∈ Pp be the minimizer
of the functional (5.4). From ‖u− π2‖W 2,∞(e) ≤ ‖u − π2‖

W 2,∞(K̂)
≤ E(C2, σ2) we

can conclude that p1/2‖u − πe‖L2(e) + ‖u − πe‖
H

1/2
00 (e)

≤ Cp1/2E(C2, σ2). Hence,

for the required correction πc := π2|e − πe, which vanishes in the two endpoints
of e, we get from a triangle inequality and standard polynomial inverse estimates

‖ 1
1−zπ

c‖L∞(e) + ‖πc‖L∞(e) ≤ E(C3, σ3). We may lift this univariate function to K̂
by

π̃e(x, y, z) :=
1− x− y − z

1− z
πc(z).

This is a polynomial of degree ≤ p that vanishes on all edges but the edge e;
clearly, ‖π̃e‖

L∞(K̂)
≤ E(C3, σ3). The polynomial inverse estimate ‖π̃e‖

W 1,∞(K̂)
≤

Cp2‖π̃e‖
L∞(K̂)

shows that ‖π̃e‖
W 2,∞(K̂)

≤ E(C4, σ4). Proceeding in this fashion

for all edges, we arrive at a polynomial π3 with the desired behavior on all edges

of K̂ and satisfies ‖u− π3‖
W 2,∞(K̂)

≤ E(C5, σ5).

It remains to construct a correction for the faces. To that end, the key issue
is again that of a lifting from a face f . Without loss of generality, this face is
f := {(x, y, 0) | 0 < x, y, x + y < 1}. For a polynomial πc defined on f that
additionally vanishes on ∂f , we define the lifting π̃f by

π̃f (x, y, z) =
xy(1− x− y − z)

xy(1− x− y)
πc(x, y).

This is a polynomial that vanishes on all faces of K̂ except on f . Additionally, it is
a lifting, i.e., π̃f |f = πc. As in the case of the lifting from the edge we see that if πc

is exponentially small on f , then the lifting is likewise exponentially small. To see
that the required correction πc is exponentially small, let πf be the minimizer of
the functional (5.5). Since π3 has the desired behavior on the edges of f , we have
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π3|∂f = πf |∂f and therefore ‖u − π3‖
W 2,∞(K̂)

≤ E(C5, σ5) allows us to conclude

‖π3 − πf‖H1(f) ≤ CE(C5, σ5). Polynomial inverse estimates then imply for the

lifting π̃f that ‖π̃f‖
W 1,∞(K̂)

≤ E(C6, σ6). �
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